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Abstract—Distributed radar systems are capable of enhancing4
the detection performance by using multiple widely spaced dis-5
tributed antennas. With prior statistic information of targets, re-6
source allocation is of critical importance for further improving the7
system’s achievable performance. In this paper, the total transmit-8
ted power is minimized at a given mean-square target-estimation9
error. We derive two iterative decomposition algorithms for solving10
this nonconvex constrained optimization problem, namely, the op-11
timality condition decomposition (OCD)-based and the alternating12
direction method of multipliers (ADMM)-based algorithms. Both13
the convergence performance and the computational complexity14
of our algorithms are analyzed theoretically, which are then con-15
firmed by our simulation results. The OCD method imposes a16
much lower computational burden per iteration, while the ADMM17
method exhibits a higher per-iteration complexity, but as a benefit18
of its significantly faster convergence speed, it requires less itera-19
tions. Therefore, the ADMM imposes a lower total complexity than20
the OCD. The results also show that both of our schemes outper-21
form the state-of-the-art benchmark scheme for the multiple-target22
case, in terms of the total power allocated, at the cost of some degra-23
dation in localization accuracy. For the single-target case, all the24
three algorithms achieve similar performance. Our ADMM algo-25
rithm has similar total computational complexity per iteration and26
convergence speed to those of the benchmark.27

Index Terms—Alternating direction method of multipliers,28
localization, multiple-input multiple-output radar, optimality29
condition decomposition, resource allocation.30

I. INTRODUCTION31

MULTIPLE-input multi-output (MIMO) radar systems re-32

lying on widely-separated antennas have attracted con-33

siderable attention from both industry and academia. The family34

of distributed MIMO radar systems is capable of significantly35

improving the estimation/detection performance [1]–[6] by ex-36

ploiting the increased degrees of freedom resulting from the37

improved spatial diversity. In particular, distributed radar sys-38

tems are capable of improving accuracy of target location and39
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velocity estimation by exploiting the different Doppler estimates 40

from multiple spatial directions [7]–[10]. 41

Naturally, the localization performance of MIMO radar sys- 42

tems relying on widely-spaced distributed antennas, quantified 43

in terms of the mean square estimation error (MSE), is deter- 44

mined by diverse factors, including effective signal bandwidth, 45

the signal-to-noise ratio (SNR), the product of the numbers of 46

transmit and receive antennas, etc [11]. Since the SNR is influ- 47

enced by the path loss, the target radar cross section (RCS) and 48

the transmitted power, the attainable localization performance 49

can be improved by increasing either the number of participat- 50

ing radars or the transmitted power. However, simply increasing 51

the amount of resources without considering the cooperation 52

among the individual terminals is usually far from optimal. 53

In most traditional designs, the system’s power budget is usu- 54

ally allocated to the transmit radars and it is fixed [6], [10], 55

which is easy to implement and results in the simplest network 56

structure. However, when prior estimation of the target RCS 57

is available, according to estimation theory, uniform power al- 58

location is far from the best strategy. In battlefields, a radar 59

system is usually supported by power-supply trucks, but un- 60

der hostile environments, their number is strictly limited. Thus, 61

how to allocate limited resources to multiple radar stations is of 62

great importance for maximizing the achievable performance. In 63

other words, power allocation substantially affects the detection 64

performance of multi-radar systems. 65

Recently, various studies used the Cramer-Rao lower bound 66

(CRLB) for evaluating the performance of MIMO radar systems 67

[11]–[16]. A power allocation scheme [12] based on CRLB was 68

designed for multiple radar systems with a single target. The 69

resultant nonconvex optimization problem was solved by re- 70

laxation and a domain-decomposition method. Specifically, in 71

[12] the total transmitted power was minimized at a given es- 72

timation MSE threshold. However the algorithm of [12] was 73

not designed for multiple-target scenarios, which are often en- 74

countered in practice. In [13] a power allocation algorithm was 75

proposed for the multiple-target case, which is equally applica- 76

ble to the single-target senario. 77

Against this background, in this paper, we propose two iter- 78

ative decomposition methods, which are referred to as the opti- 79

mality condition decomposition (OCD) [17] and the alternating 80

direction method of multipliers (ADMM) [18] algorithms, in 81

order to minimize the total transmitted power while satisfying a 82

predefined estimation MSE threshold. These two algorithms can 83

be applied to both multiple-target and single-target scenarios. 84

The ADMM method has been widely adopted for solving con- 85

vex problems. In this paper, we extend the ADMM algorithm to 86

nonconvex problems and show that it is capable of converging. 87
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It is worth pointing out that Simonetto and Leus [19] applied88

the ADMM method to solve a localization problem in a sensor89

network by converting the nonconvex problem to a convex one90

using rank-relaxation. However, the algorithm of [19] cannot91

be applied to our problem, because the task of [19] is that of92

locating sensors, which is not directly related to the signal wave-93

form and power. Furthermore, the maximum likelihood (ML)94

criterion can be used for solving this sensor localization prob-95

lem. However, our task is to assign the power of every MIMO96

radar transmitter, and at the time of writing it is an open chal-97

lenge to design the ML estimator for this task [11]. The main98

contributions of our work are as follows.99
� We propose two iterative decomposition algorithms,100

namely, the OCD-based and ADMM-based methods, for101

both multiple-target and single-target scenarios. The con-102

vergence of these two algorithms is analyzed theoretically103

and verified by simulations. Both these two methods are ca-104

pable of converging to locally optimal solutions. The com-105

plexity analysis of the two algorithms is provided and it is106

shown that the OCD method imposes a much lower com-107

putational burden per iteration, while the ADMM method108

enjoys a significantly faster convergence speed and there-109

fore it actually imposes a lower total complexity.110
� In the multiple-target case, we demonstrate that both of our111

two algorithms outperform the state-of-the-art benchmark112

scheme of [13], in terms of the total power allocated at the113

expense of some degradation in localization accuracy. We114

show furthermore that our ADMM-based algorithm and115

the algorithm of [13] have similar convergence speed and116

total computational complexity.117
� In the single-target case, we show that all the three meth-118

ods attain a similar performance, since the underlying op-119

timization problems are identical. We also prove that the120

closed-form solution of [12] is invalid for the systems with121

more than three transmit radars and we propose a beneficial122

suboptimal closed-form solution.123

The paper is organized as follows. In Section II, the MIMO124

radar system model is introduced and the corresponding opti-125

mization problem is formulated. Our power allocation strate-126

gies are proposed in Section III for both the multiple-target and127

single-target cases, while our convergence and complexity anal-128

ysis is provided in Section IV. Section V presents our simulation129

results for characterizing the attainable performance of the pro-130

posed algorithms which are then compared to the scheme of131

[13]. Finally, our conclusions are offered in Section VI.132

Throughout our discussions, the following notational conven-133

tions are used. Boldface lower- and upper-case letters denote134

vectors and matrices, respectively. The transpose, conjugate135

and inverse operators are denoted by (·)T , (·)∗ and (·)−1 , re-136

spectively, while Tr (·) stands for the matrix trace operation and137

diag (x1 , x2 , · · · , xn ) or diag(x) is the diagonal matrix with the138

specified diagonal elements. Additionally, diag (X1 , · · · ,XK )139

and diag (x1 , · · · ,xK ) denotes the block diagonal matrices140

with the specified sub-matrices and vectors, respectively, at the141

corresponding block diagonal positions. The operator vdiag(X)142

forms a vector using the diagonal elements of square matrix143

X, while E{·} denotes the expectation operator and ⊗ is the144

Fig. 1. Illustration of distributed radar network.

Kronecker product operator. The sub-matrix consisting of the 145

elements of the i1 to i2 rows and j1 to j2 columns of A is 146

denoted by [A][i1 :i2 ;j1 :j2 ] , and the ith row and jth column ele- 147

ment of A is given by [A]i,j . Similarly, [a][i1 :i2 ] is the vector 148

consisting of i1 th to i2 th elements of a. The magnitude operator 149

is given by | · |, and ‖ · ‖ denotes the vector two-norm or matrix 150

Frobenius norm. IK is the identity matrix of size K × K and 0 151

is the zero matrix/vector of an appropriate size, while 1 denotes 152

the vector of an appropriate size, whose elements are all equal 153

to one. Finally, �[ ] denotes the real part of a complex value and 154

j =
√
−1 represents the imaginary axis. 155

II. SYSTEM MODEL 156

The MIMO radar system consists of M transmit radars and N 157

receive radars which cooperate to locate K targets, as illustrated 158

in Fig. 1. The M transmit radars are positioned at the coordi- 159

nates (xtx
m , ytx

m ) for 1 ≤ m ≤ M , and the N receive radars are 160

positioned at (xrx
n , yrx

n ) for 1 ≤ n ≤ N , while the position of 161

target k is (xk , yk ). A set of mutually orthogonal waveforms 162

are transmitted from the transmit radars, and the corresponding 163

baseband signals are denoted by
{
sm (t)

}M

m=1 with normal- 164

ized power, i.e.,
∫

τm
|sm (t)|2 dt = 1, where τm is the duration 165

of the mth transmitted signal. Furthermore, the orthogonality 166

of the transmitted waveforms can always be guaranteed even 167

for different time delays, i.e.,
∫

τm
sm (t)s∗m ′(t − τ) dt = 0 for 168

m′ 	= m. The narrowband signals of the transmitted waveforms 169

have the effective bandwidth βm specified by 170

β2
m =

∫
W f 2 |Sm (f)|2 df
∫

W |Sm (f)|2 df
(Hz)2 , (1)

where W is the frequency range of the signals, and Sm (f) is the 171

Fourier transform of sm (t) transmitted from the mth transmit 172

radar. The transmitted powers of the different antennas, denoted 173

by p = [p1 p2 · · · pM ]T , are constrained by their corresponding 174
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minimum and maximum values specified by175

pmin = [p1m in p2m in · · · pMm in ]T , (2)

pmax = [p1m a x p2m a x · · · pMm a x ]T . (3)

The upper bound pmm a x is determined by the design and176

the lower bound pmm in is used to guarantee that the trans-177

mit radar m operates at an appropriate SNR. Let the propa-178

gation path spanning from the transmitter m to the target k179

and from the target k to the receiver n be defined as the chan-180

nel (m, k, n). Then the propagation time τ
(k
m,n of the channel181

(m, k, n) can be calculated by τ
(k
m,n = (Rtx

m,k + Rrx
n,k )/c, where182

c is the speed of light, Rtx
m,k =

√
(xtx

m − xk )2 + (ytx
m − yk )2183

is the distance from transmitter m to target k, and Rrx
n,k =184

√
(xrx

n − xk )2 + (yrx
n − yk )2 is the distance from target k to185

receiver n. The time delay τ
(k
m,n is used to estimate the position186

of targets. For far field signals, by retaining only the linear terms187

of its Taylor expansion, τ
(k
m,n can be approximated as a linear188

function of xk and yk189

τ (k
m,n 
 − xk

c

(
cos θ(k

m + cos ϕ(k
n

)

− yk

c

(
sin θ(k

m + sin ϕ(k
n

)
, (4)

where θ
(k
m is the bearing angle of the transmitting radar m to the190

target k and ϕ
(k
n is the bearing angle of the receiving radar n to191

the target k, both measured with respect to the x axis.192

Let the complex-valued reflectivity coefficient h(k
m,n represent193

the attenuation and phase rotation of channel (m, k, n). The194

baseband signal at receive radar n can be expressed as195

rn (t) =
K∑

k=1

M∑

m=1

√
pm h(k

m,nsm

(
t − τ (k

m,n

)
+ ωn (t), (5)

where ωn (t) is a circularly symmetric complex Gaussian white196

noise, which is bandlimited to the system bandwidth W and197

hence has a zero mean and E{|ωn (t)|2} = σ2 . In our work, the198

path-loss κ
(k
m,n is chosen as199

κ(k
m,n ∝ 1

(
Rtx

m,k

)2(
Rrx

n,k

)2 . (6)

Thus, given the complex target RCS ζ
(k
m,n , the channel coeffi-200

cient h
(k
m,n is given by201

h(k
m,n = ζ(k

m,n

√
κ

(k
m,n = h(k,Re

m,n + jh(k,Im
m,n , (7)

where h
(k,Re
m,n and h

(k,Im
m,n are the real and imaginary parts of202

h
(k
m,n . Let us collect all the channel coefficients associated with203

the target k in the (2MN × 1)-element real-valued vector as204

hk =
[
h

(k,Re
1,1 · · ·h(k,Re

1,N · · ·h(k,Re
M,N h

(k,Im
1,1 · · ·h(k,Im

1,N · · ·h(k,Im
M,N

]T
.

(8)

Similarly, we introduce the (NM × 1)-element real vectors 205

∣
∣h(k

∣
∣2 =

[∣
∣h(k

1,1

∣
∣2 · · ·

∣
∣h(k

1,N

∣
∣2 · · ·

∣
∣h(k

M ,1

∣
∣2 · · ·

∣
∣h(k

M ,N

∣
∣2
]T

, (9)

∣
∣h(k

∣
∣ =
[∣
∣h(k

1,1

∣
∣ · · ·

∣
∣h(k

1,N

∣
∣ · · ·

∣
∣h(k

M ,1

∣
∣ · · ·

∣
∣h(k

M ,N

∣
∣
]T

. (10)

Upon defining h =
[
hT

1 hT
2 · · ·hT

K

]T
and the location vector 206

of the K targets as lx,y =
[
x1 y1 · · ·xK yK

]T
, all the system’s 207

parameters can be stacked into a single real-valued vector 208

u =
[
lTx,y hT]T . (11)

Since the received signal (5) is also a function of the time delays 209

τ
(k
m,n , we also define the following system parameter vector 210

ψ =
[
τ

(1
1,1 · · · τ

(1
1,N · · · τ (K

M,N hT]T . (12)

There exists a clear one-to-one relationship between u and ψ. 211

Let f(r|u) be the conditional probability density function 212

(PDF) of the observation vector r = [r1(t), r2(t), · · · , rN (t)] 213

conditioned on u. Similarly, we have the conditional PDF of r 214

conditioned on ψ. Then the unbiased estimate û of u satisfies 215

the following inequality [20] 216

E
{(

û − u
)(

û − u
)T} ≥ J−1(u), (13)

where the Fisher information matrix (FIM) J(u) is defined by 217

J(u) = E

{
∂

∂u
log f(r|u)

(
∂

∂u
log f(r|u)

)T
}

. (14)

Similarly, we have the FIM of ψ, denoted by J(ψ). The FIM 218

J(u) can be derived from J(ψ) according to 219

J(u) =

[
D 0

0 I2K M N

]

J(ψ)

[
D 0

0 I2K M N

]T

, (15)

where the (2K × KMN)-element block diagonal matrix D 220

takes the following form 221

D = diag
(
D(1 ,D(2 , · · · ,D(K ), (16)

with the (2 × MN)-element sub-matrix D(k given by 222

D(k =

⎡

⎢
⎢
⎢
⎣

∂τ
(k
1,1

∂xk
· · ·

∂τ
(k
M ,N

∂xk

∂τ
(k
1,1

∂yk
· · ·

∂τ
(k
M ,N

∂yk

⎤

⎥
⎥
⎥
⎦

= −1
c

⎡

⎣
cos
(
θ

(k
1

)
+cos

(
ϕ

(k
1

)
· · · cos

(
θ

(k
M

)
+cos

(
ϕ

(k
N

)

sin
(
θ

(k
1

)
+sin

(
ϕ

(k
1

)
· · · sin

(
θ

(k
M

)
+sin

(
ϕ

(k
N

)

⎤

⎦.

(17)

The matrix Cx,y associated with the CRLB for the unbiased 223

estimator of lx,y is the (2K × 2K)-element upper left block 224

sub-matrix of J−1(u), which can be derived as [11], [21] 225

Cx,y =
[
J−1(u)

]
[1:2K ;1:2K ] =

(
DPΨDT)−1

, (18)
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where P = IK ⊗ diag(p) ⊗ IN , and Ψ = diag
(
Ψ(1 , · · · ,226

Ψ(K
)

is the (KMN × KMN)-element block diagonal ma-227

trix with the kth sub-matrix defined as228

Ψ(k = 8π2 (diag
(
β2

1 , · · · , β2
M

)
⊗ IN

)
diag

(∣
∣h(k

∣
∣2
)

. (19)

Let us denote the variances of the estimates of xk and yk by σ2
xk

229

and σ2
yk

, respectively. Then we have230

K∑

k=1

(
σ2

xk
+ σ2

yk

)
≥ Tr (Cx,y ) , (20)

where Tr (Cx,y ) is a lower bound on the sum of the MSEs of the231

localization estimator l̂x,y . By defining X = diag(p) ⊗ IN and232

noting D of (16), we obtain the expression of the lower bound233

for the kth target location estimate as [12], [22]234

2∑

i=1

[Cx,y ]i+2(k−1),i+2(k−1)

=
2∑

i=1

[(
DPΨDT)−1

]

i+2(k−1),i+2(k−1)

= Tr

⎛

⎜
⎜
⎝

⎡

⎢
⎣

(
a(k

1,1

)T
p
(
a(k

1,2

)T
p

(
a(k

2,1

)T
p
(
a(k

2,2

)T
p

⎤

⎥
⎦

−1⎞

⎟
⎟
⎠ =

bT
k p

pTAkp
, (21)

where the second equation is obtained by first dividing the235

(MN × 2) matrix
(
D(k
)T

into the two column vectors,
(
D(k
)T

236

=
[
d(k

1 d(k
2

]
, and generating the (N × 1) vectors237

d(k
i,m =

[
d(k

i

]

[(m−1)N +1:mN ]
, i = 1, 2, 1 ≤ m ≤ M. (22)

Then a(k
i,j for 1 ≤ i, j ≤ 2 are given by238

a(k
i,j = vdiag

(
diag

((
d(k

i,1

)T
, · · · ,

(
d(k

i,M

)T
)

Ψ(k

× diag
(
d(k

j,1 , · · · ,d(k
j,M

))
, (23)

while bk = a(k
1,1 + a(k

2,2 and Ak = a(k
1,1

(
a(k

2,2

)T − a(k
1,2

(
a(k

2,1

)T
.239

Our task is to design a beneficial power allocation strategy240

capable of achieving a localization accuracy threshold η. We241

can use the weighting vk to indicate the localization accuracy242

requirement for the kth target. The larger vk is, the higher ac-243

curacy is required for the kth target. For a predetermined lower244

bound of total MSE of all the targets, the transmit power of the245

different transmit radars can then be appropriately allocated for246

minimizing the total transmit power. This can be formulated as247

the following optimization problem P1248

P1 :

min
p

1Tp,

s.t.
K∑

k=1
vk

bT
k p

pT Ak p ≤ η,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(24)

Because generally speaking Ak is not a positive definite matrix,249

the optimization P1 is a nonconvex problem.250

In [13], a similar optimization problem is formulated as 251

min
p

1Tp,

s.t. bT
k p

pT Ak p ≤ η̄, 1 ≤ k ≤ K,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M,

(25)

given an equivalent localization accuracy threshold η̄. In [13], 252

a Taylor series based technique is applied to approximate the 253

inequality constraints in (25) in order to relax the nonconvex 254

optimization problem for the sake of obtaining a solution. Intu- 255

itively, the cost function associated with an optimal solution of 256

our problem P1 of (24) is generally smaller than that associated 257

with an optimal solution of (25), i.e., we can achieve a lower 258

power consumption. This is achieved at the potential cost of a 259

slightly reduced localization accuracy. 260

III. POWER RESOURCE ALLOCATION 261

A. Multi-Target Case 262

In order to solve the nonconvex problem P1 of (24), we have 263

to change it into a simpler form. Specifically, we have to change 264

the inequality constraint into an equality one, i.e., 265

K∑

k=1

vk
bT

k p
pTAkp

≤ η ⇒
K∑

k=1

vk
bT

k p
pTAkp

= η. (26)

Lemma 1: An increase of the transmit power p results in a 266

reduction of the MSE, namely, 267

K∑

k=1

vk

bT
k

(
p + Δp

)

(
p + Δp

)TAk

(
p + Δp

) ≤
K∑

k=1

vk
bT

k p
pTAkp

. (27)

The proof of Lemma 1 is similar to that of single-target case 268

given in [12]. Thus, to achieve a reduced power consumption, 269

we can always set the MSE to its maximum tolerance. The 270

change of constraint as given in (26) leads to the problem P2, 271

P2 :

min
p

1Tp,

s.t.
K∑

k=1
vk

bT
k p

pT Ak p = η,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(28)

Theorem 1: The solutions of P1 and P2 are identical. 272

The proof of Theorem 1 is straightforward. By introducing 273

the auxiliary variables 274

wk =
1

ηpTAkp
, 1 ≤ k ≤ K, (29)

and their corresponding lower and upper bounds 275

wkm in =
1

ηpT
maxAkpmax

, wkm a x =
1

ηpT
minAkpmin

, 1 ≤ k ≤ K,

(30)
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P2 is reformulated as the following optimization problem P3:276

P3 :

min
p,w

1Tp,

s.t.
K∑

k=1
vkwkbT

k p = 1,

wkηpTAkp = 1, 1 ≤ k ≤ K,
pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M,
wkm in ≤ wk ≤ wkm a x , 1 ≤ k ≤ K.

(31)

The following corollary is obvious.277

Corollary 1: If p associated with w
k = 1

η
(
p
)T

Ak p
for278

1 ≤ k ≤ K is an optimal solution of the problem P3 (31), p279

is an optimal solution for the problem P1 of (24). Conversely,280

if p is an optimal solution of the problem P1, together with281

w
k = 1

η
(
p
)T

Ak p
for 1 ≤ k ≤ K it is an optimal solution of282

the problem P3.283

1) OCD-based method: The Lagrangian associated with the284

optimization problem P3 is285

L(p,w, λ,μ) = 1Tp + λ

(
K∑

k=1

vkwkbT
k p − 1

)

+
K∑

k=1

μk

(
wkηpTAkp − 1

)
, (32)

with w =
[
w1 w2 · · ·wK

]T
and μ =

[
μ1 μ2 · · ·μK

]T
, where λ286

and μk for 1 ≤ k ≤ K are Lagrangian multipliers. We optimize287

the Lagrangian (32) with respect to p, λ, wk and μk . Using the288

steepest descent method, the search directions are related to the289

Karush-Kuhn-Tucker (KKT) conditions by290

Δp = ∇pL(p,w, λ,μ) = 1 + λ

(
K∑

k=1

wkvkbk

)

+
K∑

k=1

μkwkη
(
Ak + AT

k

)
p, (33)

Δλ = ∇−λL(p,w, λ,μ) = −
K∑

k=1

wkvkbT
k p + 1, (34)

Δwk = ∇wk
L(p,w, λ,μ)

= λvkbT
k p + μkηpTAkp, 1 ≤ k ≤ K, (35)

Δμk = ∇−μk
L(p,w, λ,μ)

= −
(
ηwkpTAkp + 1

)
, 1 ≤ k ≤ K, (36)

where we have Δp =
[
Δp1 Δp2 · · ·ΔpM

]T
. The primal and291

dual variables are updated iteratively292

p(n+1)
m =

[
p(n)

m − κ1Δp(n)
m

]pm m a x

pm m in

, 1 ≤ m ≤ M, (37)

λ(n+1) = λ(n) − κ2Δλ(n) , (38)

w
(n+1)
k = w

(n)
k − κ3Δw

(n)
k , 1 ≤ k ≤ K, (39)

μ
(n+1)
k = μ

(n)
k − κ4Δμ

(n)
k , 1 ≤ k ≤ K, (40)

where the superscript (n) denotes the iteration index and 293

[a]cb = min {max {a, b} , c} , (41)

while κi for 1 ≤ i ≤ 4 represent the step sizes for the primal 294

variables p, the dual variable λ, the primal variables w and the 295

dual variables μ, respectively. According to [23], an exponen- 296

tially decreasing step size is highly desired. Furthermore, since 297

p, λ, w and μ have very different properties and their impacts 298

on the Lagrangian are ‘unequal’, using different step sizes for 299

them makes sense. By combining these two considerations, we 300

set the four step sizes for p, λ, w and μ according to 301

κi = cie
−αn with 0 ≤ α � 1, for 1 ≤ i ≤ 4, (42)

where ci > 0 for 1 ≤ i ≤ 4 are different constants. 302

The choice of the initial values for the primal variables pm , 303

1 ≤ m ≤ M , influences the convergence performance. Ideally, 304

they should be chosen to be close to their own specific optimal 305

values so as to enhance the convergence speed. For practical 306

reason, the initialization should be easy and simple to realize 307

too. Hence we opt for the initial powers of 308

p(0) = pequ =
1
η

K∑

k=1

vk
bT

k 1
1TAk1

1, (43)

which is obtained by setting all the elements of p to be equal. 309

Then, wk is initialized according to 310

w
(0)
k =

1
ηpT

equAkpequ
, 1 ≤ k ≤ K. (44)

The iterative procedure of (37) to (40) is repeated until 311∥
∥p(n+1) − p(n)

∥
∥ becomes smaller than a preset small positive 312

number or the maximum number of iterations is reached. 313

Remark 1: It is difficult to find a closed-form solution from 314

the set of KKT conditions, because Ak for 1 ≤ k ≤ K are 315

generally non-invertible. Hence our algorithm finds a locally 316

optimal point in an iterative manner. It is also worth noting 317

that the standard OCD [17] is typically based on a Newton- 318

type algorithm, but our proposed OCD method is a steepest 319

descent algorithm. The reason is that the Hessian matrix for the 320

Lagrangian L(p,w, λ,μ) of (32) is not invertible. 321

2) ADMM-based method: ADMM was originally proposed 322

for solving convex problems in a parallel manner [18]. Let us 323

now discuss how to apply the ADMM method for solving the 324

nonconvex problem P3. By introducing an auxiliary vector z = 325

p, (29) can be rewritten as 326

p = z and ηwkzTAkp = 1, 1 ≤ k ≤ K. (45)

Therefore, P3 can be reformulated into the problem P4: 327

P4 :

min
p,w ,z

1Tp,

s.t.
K∑

k=1
vkwkbT

k p = 1,

p = z,
wkηzTAkp = 1, 1 ≤ k ≤ K,
pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M,
wkm in ≤ wk ≤ wkm a x , 1 ≤ k ≤ K.

(46)
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This problem is convex with respect to p, z and wk , respectively.328

An augmented Lagrangian is constructed as follows329

L(p,w, z,d0 , d1 ,d2) = 1Tp +
ρ0

2
‖p − z‖2 + dT

0 (p − z)

+
K∑

k=1

ρ2,k

2

∣
∣wkzTAkpη − 1

∣
∣2 +

K∑

k=1

d2,k

(
wkzTAkpη − 1

)

+
ρ1

2

∣
∣
∣
∣
∣

K∑

k=1

wkvkbT
k p − 1

∣
∣
∣
∣
∣

2

+d1

(
K∑

k=1

wkvkbT
k p −1

)

(47)

where d0 =
[
d0,1 · · · d0,M

]T
, d1 and d2 =

[
d2,1 · · · d2,K

]T
330

are the dual variables corresponding to the constraints p = z,331 ∑K
k=1 wkvkbT

k p = 1 and wkzTAkpη = 1 for 1 ≤ k ≤ K, re-332

spectively, while ρ0 , ρ1 and ρ2 =
[
ρ2,1 · · · ρ2,K

]T
are the333

penalty parameters. Note that the augmented Lagrangian (47)334

is quadratic. For convenience, we scale the dual variables as335

e = 1
ρ0

d0 , μ = 1
ρ1

d1 and γ =
[
γ1 · · · γK

]T
with γk = 1

ρ2 , k
d2,k336

for 1 ≤ k ≤ K. Then, from (47) we obtain the following aug-337

mented Lagrangian338

L(p,w, z, e, μ,γ) = 1Tp +
ρ0

2
‖p − z + e‖2 − ρ0

2
‖e‖2

+
K∑

k=1

ρ2,k

2

∣
∣wkzTAkpη − 1 + γk

∣
∣2 −

K∑

k=1

ρ2,k

2

∣
∣γk

∣
∣2

+
ρ1

2

∣
∣
∣
∣
∣

K∑

k=1

wkvkbT
k p − 1 + μ

∣
∣
∣
∣
∣

2

− ρ1

2
|μ|2 . (48)

We can find the saddle point of the augmented Lagrangian (48)339

by minimizing the Lagrangian over the primal variables p, w340

and z, as well as maximizing it over the dual variables e, μ341

and γ, in an alternative way. In particular, we update the primal342

variables p, w and z separately one by one. Furthermore, after343

the update of the dual variables e, μ and γ, we adjust the penalty344

parameters ρ0 , ρ1 and ρ2 . We now summarize our ADMM-345

based procedure.346

Initialization: Let us also opt for the equal power initialization347

p(0) = pequ of (43). The other primal variables are initialized348

as w
(0)
k = 1

ηpT
e q u Ak pe q u

for 1 ≤ k ≤ K of (44), and349

z(0) = pequ . (49)

The initial penalty parameters, ρ
(0)
0 , ρ

(0)
1 and ρ

(0)
2,k for 1 ≤ k ≤350

K, are typically set to a large positive value, say, 500. Next, the351

dual variables are initialized as follows. Choose μ(0) = 1 and352

γ
(0)
k = 1 for 1 ≤ k ≤ K, while every element of e(0) is set to 1353

too. Then we set the iteration index n = 0.354

Iterative Procedure: At the (n + 1)th iteration, perform:355

� Step 1: Update the primal variables p. Upon isolating all 356

the terms involving p in the Lagrangian (48), we have 357

min
p

1Tp +
ρ

(n)
0

2

∥
∥
∥p − z(n) + e(n)

∥
∥
∥

2

+
ρ

(n)
1

2

∣
∣
∣
∣
∣

K∑

k=1

w
(n)
k vkbT

k p − 1 + μ(n)

∣
∣
∣
∣
∣

2

+
K∑

k=1

ρ
(n)
2,k

2

∣
∣
∣
∣w

(n)
k

(
z(n)
)T

Akpη − 1 + γ
(n)
k

∣
∣
∣
∣

2

,

s.t. pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M, (50)

which is a constrained convex optimization. Setting the 358

derivative of the objective function to zero yields the (n + 359

1)th estimate of p as follows. First compute 360

p̄(n+1)=
[
p̄

(n+1)
1 · · · p̄(n+1)

M

]T
=
(
P(n+1)

1

)−1
p(n+1)

2 ,

(51)

P(n+1)
1 =ρ

(n)
0 IM + ρ

(n)
1

(
K∑

k=1

w
(n)
k vkbk

)

×
(

K∑

k=1

w
(n)
k vkbT

k

)

+
K∑

k=1

ρ
(n)
2,k

×
(
w

(n)
k (Ak )Tz(n)η

)(
w

(n)
k

(
z(n)
)T

Akη

)T

,

(52)

p(n+1)
2 = − 1 + ρ

(n)
0

(
z(n) + e(n)

)

+ ρ
(n)
1

(
K∑

k=1

w
(n)
k vkbk

)
(
1 − μ(n)

)

+ ρ
(n)
2,k

(
w

(n)
k (Ak )Tz(n)η

)(
1 − γ

(n)
k

)
. (53)

The final estimate is then given by 361

p(n+1)
m =

[
p̄(n+1)

m

]pm m a x

pm m in

, 1 ≤ m ≤ M. (54)

� Step 2: Update the primal variables w. The optimization 362

involving w is also a constrained convex problem 363

min
w

ρ
(n)
1

2

∣
∣
∣
∣
∣

K∑

k=1

wkvkbT
k p(n+1) − 1 + μ(n)

∣
∣
∣
∣
∣

2

+
K∑

k=1

ρ
(n)
2,k

2

∣
∣
∣
∣wk

(
z(n)
)T

Akp(n+1)η−1+γ
(n)
k

∣
∣
∣
∣

2

,

s.t. wkm in ≤ wk ≤ wkm a x , 1 ≤ k ≤ K. (55)

The solution is given by 364

w
(n+1)
k =

[
w

(n+1)
k,1

w
(n+1)
k,2

]wk m a x

wk m in

, 1 ≤ k ≤ K, (56)
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where365

w
(n+1)
k,1 =ρ

(n)
1 vkbT

k p(n+1)

⎛

⎝1−μ(n)−
∑

k ′ 	=k

vk ′bT
k ′p(n+1)

⎞

⎠

+ ρ
(n)
2,k

((
z(n)
)T

Akp(n+1)η

)(
1 − γ

(n)
k

)
,

(57)

w
(n+1)
k,2 = ρ

(n)
1

(
vkbT

k p(n+1)
)2

+ ρ
(n)
2,k

((
z(n)
)T

Akp(n+1)η

)2

. (58)

� Step 3: Update the primal variables z. Isolating all the366

terms involving z, the optimization is an unconstrained367

convex problem368

min
z

ρ
(n)
0

2

∥
∥
∥p(n+1) − z + e(n)

∥
∥
∥

2

+
K∑

k=1

ρ
(n)
2,k

2

∣
∣
∣w(n+1)

k zTAkp(n+1)η − 1 + γ
(n)
k

∣
∣
∣
2
.

(59)

Solving (59) yields the (n + 1)th estimate of z as369

z(n+1) =
(
Z(n+1)

1

)−1
z(n+1)

2 , (60)

where370

Z(n+1)
1 = ρ

(n)
0 IM +

K∑

k=1

ρ
(n)
2,k

(
w

(n+1)
k Akp(n+1)η

)

×
(
w

(n+1)
k Akp(n+1)η

)T
, (61)

z(n+1)
2 = ρ

(n)
0

(
p(n+1) + e(n)

)

+
K∑

k=1

ρ
(n)
2,k

(
w

(n+1)
k Akp(n+1)η

)(
1 − γ

(n)
k

)
.

(62)

� Step 4: Update the dual variables e, μ and γ. Maximizing371

the Lagrangian (48) with respect to the dual variables yields372

e(n+1) = e(n) + p(n+1) − z(n+1) , (63)

μ(n+1) = μ(n) +
K∑

k=1

w
(n+1)
k vkbT

k p(n+1) − 1, (64)

γ
(n+1)
k = γ

(n)
k + w

(n+1)
k

(
z(n+1)

)T
Akp(n+1)η − 1,

1 ≤ k ≤ K. (65)

� Step 5: Update the penalty parameters ρ0 , ρ1 and ρ2 . The373

penalty parameters are updated at the end of each iteration374

for the first a few iterations to speed up the convergence. At375

the (n + 1)th iteration, associated with the three penalty376

parameters of ρ
(n)
0 , ρ

(n)
1 and ρ

(n)
2 , we have three primal377

residuals 378

r
(n+1)
0 =

∥
∥p(n+1) − z(n+1)

∥
∥, (66)

r
(n+1)
1 =

∣
∣
∣

K∑

k=1

w
(n+1)
k vkbT

k p(n+1) − 1
∣
∣
∣, (67)

r
(n+1)
2,k =

∣
∣
∣wk

(
z(n+1))TAkp(n+1)η − 1

∣
∣
∣,

1 ≤ k ≤ K, (68)

as well as three respective dual residuals 379

s
(n+1)
0 =

∥
∥ρ(n)

0

(
z(n+1) − z(n))∥∥, (69)

s
(n+1)
1 =

∥
∥s(n+1)

1a

∥
∥, (70)

s
(n+1)
2,k =

√(
s

(n+1)
2a,k

)2 +
∥
∥s(n+1)

2b,k

∥
∥, 1 ≤ k ≤ K, (71)

where 380

s(n+1)
1a = μ(n+1)ρ

(n)
1

(
K∑

k=1

(
w

(n)
k − w

(n+1)
k

)
vkbk

)

+ ρ
(n)
1

(
K∑

k=1

w
(n)
k vkbk

)

×
(

K∑

k=1

(
w

(n)
k − w

(n+1)
k

)
vkbT

k p(n+1)

)

,

(72)

s
(n+1)
2a,k = ρ

(n)
2,k

(
z(n))TAkp(n+1)η

×
(
w

(n+1)
k

(
z(n) − z(n+1))TAkp(n+1)η − 1

)

+ γ
(n+1)
k ρ

(n)
2,k

((
z(n)−z(n+1))TAkp(n+1)η

)
,

(73)

s(n+1)
2b,k = ρ

(n)
2,k w

(n)
k ηAT

k z(n)

×
((

w
(n)
k

(
z(n))T − w

(n+1)
k

(
z(n+1))T

)

× Akp(n+1)η
)

+ γ
(n+1)
k ρ

(n)
2,k ηAT

k

×
(
w

(n)
k z(n) − w

(n+1)
k z(n+1)

)
. (74)

The exact definitions of the dual residuals can be found in 381

Appendix A. 382

The penalty parameter ρ0 is updated as follows 383

ρ
(n+1)
0 =

⎧
⎪⎪⎨

⎪⎪⎩

τρ
(n)
0 , if r

(n+1)
0 ≥ εs

(n+1)
0 ,

1
τ ρ

(n)
0 , if s

(n+1)
0 ≥ εr

(n+1)
0 ,

ρ
(n)
0 , otherwise,

(75)

where the scalars τ > 1 and ε > 1 with typical values of 384

τ = 2 and ε = 10. The idea behind this penalty parameter 385

update is to balance the primal and dual residual norms 386

r
(n+1)
0 and s

(n+1)
0 , i.e., to keep r

(n + 1 )
0

s
(n + 1 )
0

≤ ε and s
(n + 1 )
0

r
(n + 1 )
0

≤ ε, 387
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as they both converge to zero [18], [25]. The related dual388

variables are rescaled to remove the impact of changing ρ0389

according to390

e(n+1) =
ρ

(n)
0

ρ
(n+1)
0

e(n) . (76)

Similarly, ρ1 is updated according to391

ρ
(n+1)
1 =

⎧
⎪⎪⎨

⎪⎪⎩

τρ
(n)
1 , if r

(n+1)
1 ≥ εs

(n+1)
1 ,

1
τ ρ

(n)
1 , if s

(n+1)
1 ≥ εr

(n+1)
1 ,

ρ
(n)
1 , otherwise.

(77)

The related dual variable is then scaled according to392

μ(n+1) =
ρ

(n)
1

ρ
(n+1)
1

μ(n) . (78)

Likewise, ρ2,k for 1 ≤ k ≤ K are updated according to393

ρ
(n+1)
2,k =

⎧
⎪⎪⎨

⎪⎪⎩

τρ
(n)
2,k , if r

(n+1)
2,k ≥ εs

(n+1)
2,k ,

1
τ ρ

(n)
2,k , if s

(n+1)
2,k ≥ εr

(n+1)
2,k ,

ρ
(n)
2,k , otherwise,

(79)

and the corresponding dual variables are rescaled as394

γ
(n+1)
k =

ρ
(n)
2,k

ρ
(n+1)
2,k

γ
(n)
k , 1 ≤ k ≤ K. (80)

� Termination of the iterative procedure. The iterative pro-395

cedure is terminated when
∥
∥p(n+1) − p(n)

∥
∥ becomes396

smaller than a predefined small positive value or the preset397

maximum number of iterations is reached. Otherwise, set398

n = n + 1 and go to Step 1.399

Remark 2: The ADMM combines the advantages of the dual400

ascent and the augmented Lagrangian method. The dual as-401

cent approach deals with the complicated constraints, while the402

augmented Lagrangian method is capable of enhancing the con-403

vergence rate and the robustness of the algorithm.404

Remark 3: We deal with the optimization problem (24), and405

in every iteration of our OCD and ADMM methods, we have406

a closed-form update value. By contrast, Garcia et al. [13] deal407

with the optimization problem (25), and in every iteration, an408

inner iterative loop is required for computing an updated value409

by the algorithm of [13].410

B. Single-Target Case411

The target index k can be dropped and then the optimization412

is simplified to the problem P5413

P5 :

min
p

1Tp,

s.t. bT p
pT Ap ≤ η,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(81)

In the single-target case, the optimization (25) is identical to the414

problem P5. Similar to the multi-target case, the problem P5 is415

equivalent to the optimization problem P6: 416

P6 :

min
p,w

1Tp,

s.t. wbTp − 1 = 0,

wηpTAp − 1 = 0,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(82)

This problem is nonconvex due to its equality constraint. 417

1) OCD-based method: The Lagrangian of (82) is 418

L(p, w, λ, μ) = 1Tp + λ
(
wbTp − 1

)
+ μ

(
wηpTAp − 1

)
,

(83)

where λ and μ are the dual variables. The gradients of this 419

Lagrangian are given by 420

Δp= ∇pL(p, w, λ, μ)=1+λ (wb)+μwη
(
A+AT)p,

(84)

Δλ= ∇−λL(p, w, λ, μ) = −wbTp + 1, (85)

Δw= ∇w L(p, w, λ, μ) = λbTp + μηpTAp, (86)

Δμ= ∇−μL(p, w, λ, μ) = −ηwpTAp − 1, (87)

Given λ(0) , μ(0) and 421

p(0) = pequ =
1
η

bT1
1TA1

1, (88)

p, λ, w, μ are updated in the following iterative procedure 422

p(n+1)
m =

[
p(n)

m − κ1Δp(n)
m

]pm m a x

pm m in

, 1 ≤ m ≤ M, (89)

λ(n+1) = λ(n) − κ2Δλ(n) , (90)

w(n+1) = w(n) − κ3Δw(n) , (91)

μ(n+1) = μ(n) − κ4Δμ(n) , (92)

where again the step sizes are chosen according to (42). The 423

iterative procedure is repeated until
∥
∥p(n+1) − p(n)

∥
∥ becomes 424

smaller than a preset threshold. 425

2) ADMM-based method: Similar to the multi-target case, 426

we reformulate the problem P6 as 427

min
p,z

1Tp,

s.t. ηzTAp − bTp = 0,
z = p,
pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(93)

Then, by introducing an augmented Lagrangian, we have 428

max
e,μ

min
p,z

1Tp + ρ0
2 ‖p − z + e‖2

+ ρ1
2

∥
∥ηzTAp − bTp + μ

∥
∥2

,

s.t. pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(94)

With the initialization of p(0) = z(0) = pequ , e(0) = 1, μ(0) = 429

1, and ρ
(0)
0 and ρ

(0)
1 set to a large positive number, each iteration 430

involves the following steps. 431
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TABLE I
COMPLEXITY PER ITERATION OF THE OCD-BASED ALGORITHM

TABLE II
COMPLEXITY PER ITERATION OF THE ADMM-BASED ALGORITHM

� Step 1: Update p. Isolating all the terms involving p, the432

optimization is a constrained convex problem, leading to433

p̄(n+1)

=
(
ρ

(n)
0 IM + ρ

(n)
1

(
ηATz(n) − b

)

×
(
η
(
z(n))TA − bT

))−1(
− 1 + ρ

(n)
0

(
z(n) − e(n))

− ρ
(n)
1 μ(n)(ηATz(n) − b

))
, (95)

p(n+1)
m =

[
p̄(n+1)

m

]pm m a x

pm m in

, 1 ≤ m ≤ M. (96)

� Step 2: Update z. Isolating all the terms involving z, the434

problem is an unconstrained convex problem, leading to435

z(n+1) =
(
ρ

(n)
0 IM + ρ

(n)
1

(
ηAp(n+1))(ηAp(n+1))T

)−1

×
(
ρ

(n)
0

(
p(n+1) + e(n))

+ ρ
(n)
1 ηAp(n+1)(bTp(n+1) − μ(n))

)
. (97)

� Step 3: Update e and μ. The dual variables are updated436

according to437

μ(n+1) = μ(n) +η
(
z(n+1))TAp(n+1)−bTp(n+1), (98)

e(n+1) = e(n) + p(n+1) − z(n+1) . (99)

� Step 4: Update the ρ0 and ρ1 at the first a few iterations. By438

defining the primal and dual residuals r
(n+1)
0 and s

(n+1)
0439

as440

r
(n+1)
0 =

∥
∥p(n+1) − z(n+1)

∥
∥, (100)

s
(n+1)
0 =

∥
∥ρ(n)

0

(
z(n) − z(n+1))∥∥, (101)

the updated ρ
(n+1)
0 is given by (75), and the dual variable 441

e(n+1) is rescaled according to (76). Similarly, define the 442

primal and dual residuals r
(n+1)
1 and s

(n+1)
1 as 443

r
(n+1)
1 =

∣
∣
∣η
(
z(n+1))TAp(n+1) − bTp(n+1)

∣
∣
∣, (102)

s
(n+1)
1 =

∥
∥
∥μ(n+1)ρ

(n)
1 ηAT(z(n) − z(n+1))+ ρ

(n)
1 η

×
(
ηATz(n)− b

)(
z(n)− z(n+1))TAp(n+1)

∥
∥
∥.

(103)

The updated ρ
(n+1)
1 is given by (77), and the rescaled dual 444

variable μ(n+1) is given by (78). 445

3) A closed-form approximate solution: An equivalent La- 446

grangian associated with the problem P5 is L(p, λ) = 1Tp + 447

λ
(
ηpTAp − bTp

)
, whose KKT conditions are 448

1 + λ
(
η
(
A + AT)p − b

)
= 0, (104)

ηpTAp − bTp = 0. (105)

The authors of [12] obtained the closed-form optimal solution 449

λ and p by jointly solving the two equations (104) and (105). 450

In particular, they calculated p̄ from (104) as 451

p̄ =

(
A + AT

)−1

η

(
b − 1

λ 1
)

, (106)

and then obtained p by imposing the power constraints 452

p
m = [p̄

m ]pm m a x
pm m in

, 1 ≤ m ≤ M. (107)

Unfortunately, this closed-form ‘optimal’ solution is gener- 453

ally invalid because in general A + AT is not invertible. 454

Lemma 2: The rank of A + AT is no more than 3. 455

Proof: 456

rank
(
A + AT) ≤ rank

(
a1,1
(
a2,2
)T − a1,2

(
a2,1
)T

+ a2,2
(
a1,1
)T − a2,1

(
a1,2
)T)

≤ rank
(
a1,1
(
a2,2
)T)+ rank

(
a1,2
(
a2,1
)T)

+ rank
(
a2,2
(
a1,1
)T) ≤ 3.

The second inequality is due to the fact that a1,2 = a2,1 . 457

Clearly, for any system with more than 3 transmit radars, the 458

solution of (106) is invalid, and the minimum eigenvalue ξmin of 459

A + AT is negative. We propose an approximate closed-form 460

solution by replacing the invalid
(
A + AT

)−1
in (106) by the 461

valid regularized form 462

B =
(
A + AT +

(
|ξmin | + ε

)
IM

)−1
, (108)

where ε is a small positive number, such as, ε = 0.0001. Thus 463

the ‘unconstrained’ power allocation is given as 464

p̄� =
B
η

(
b − 1

λ�
1
)

, (109)
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TABLE III
COMPLEXITY PER ITERATION OF THE ALGORITHM GIVEN IN [13], WHERE nin IS THE AVERAGE NUMBER OF INNER ITERATIONS IN INNER OPTIMIZATION

PROCEDURE

Fig. 2. Illustration of the MIMO radar system for: (a) three-target application,
and (b) single-target application.

where λ� is obtained by substituting p̄� into (105) and taking465

the positive solution as466

λ� =
−b +

√
b2 − 4ac

2a
, (110)

with467
⎧
⎪⎨

⎪⎩

a = bTBTABb − bTBb,

b = −21TBTATBbT + 2bTB1,

c = 1TBTAB1 − 1TB1.

(111)

The solution p� is then obtained by projecting p̄� onto the468

feasible region. This closed-form solution is inferior to the OCD-469

based and ADMM-based solutions in terms of its achievable470

performance, owing to its suboptimal nature.471

IV. CONVERGENCE AND COMPLEXITY ANALYSIS472

Recall from Section II and III that our optimization problem473

P1 of (24) is nonconvex, and both our ADMM and OCD algo-474

rithms are based on a Lagrangian function approach. It is widely475

acknowledged that the zero duality gap cannot be guaranteed476

for general nonconvex problems. However, Yu and Lui [24]477

proposed a theorem which guarantees the zero duality gap for478

the nonconvex problem that meets the ‘time-sharing condition’.479

In Appendix B, we proved that our optimization problem P1480

satisfies the time-sharing condition of [24]. Hence, the strong481

duality holds for P1. We are now ready to prove that both our482

two algorithms can converge to a local optimal point under some483

assumptions.484

A. Convergence of the Proposed Algorithms485

1) The ADMM-based algorithm: We first point out again486

that since our problem is nonconvex, the ADMM-based algo-487

rithm can only guarantee to converge to a local optimal solu-488

tion. The convergence of the ADMM method is proved for the489

convex optimization problem in [18], while Magnússon et al. 490

[25] extended the convergence results to the nonconvex case. 491

The convergence of our ADMM-based algorithm will be fur- 492

ther illustrated in Section V using simulations. 493

2) The OCD-based algorithm: Again, since our optimiza- 494

tion problem is nonconvex, the OCD-based algorithm can only 495

find a locally optimal solution. Collect all the primal variables 496

of the Lagrangian (32) together as y =
[
pT wT

]T
and denote 497

the cost function and the constraints of P3 respectively by 498

f(y) = 1Tp, (112)

g0(y) =
K∑

k=1

vkwkbT
k p − 1, (113)

gk (y) = wkηpTAkp − 1, 1 ≤ k ≤ K. (114)

According to Theorem 2 in Section 8.2.3 and Lemma 5 in 499

Section 2.1 of [26], to prove the convergence of the OCD al- 500

gorithm, we have to prove that the second derivatives ∇2f(y) 501

and ∇2gk (y) for 0 ≤ k ≤ K satisfy the Lipschitz condition in 502

a neighbourhood of the optimal primal point y . Note that 503

∇2f(y) = 0, (115)

∇2g0(y) =

⎡

⎢
⎢
⎢
⎣

0 v1b1 · · · vK bK

v1bT
1

...
vK bT

K

0

⎤

⎥
⎥
⎥
⎦

, (116)

∇2gk (y) = η

⎡

⎢
⎢
⎣

wk

(
Ak +AT

k

)
0
(
Ak +AT

k

)
p 0

0(
Ak +AT

k

)
pT

0
0

⎤

⎥
⎥
⎦ ,

1 ≤ k ≤ K. (117)

Since ∇2f (y) and ∇2g0 (y) are constants, they satisfy the 504

required Lipschitz condition. For pmin ≤ p ≤ pmax , all the el- 505

ements in the matrix ∇2gk (y), where 1 ≤ k ≤ K, are finite. 506

Therefore, it is easy to find a constant ς satisfying 507
∥
∥∇2gk (y1) −∇2gk (y2)

∥
∥ ≤ ς ‖y1 − y2‖ . (118)

Thus ∇2gk (y) satisfies the required Lipschitz condition too. 508

According to [26], under the assumption that the Hessian ma- 509

trix of the Lagrangian (32) with respect to y at the minimum pri- 510

mal point y =
(
p ,w

)
is positive definite, the Hessian matrix 511

of the Lagrangian (32) with respect to the primal and dual vari- 512

ables is negative definite at the optimal point
(
p ,w , λ ,μ

)
. 513

Then there exists a positive number κ = min
i

−�
[
ξ̄i

] ∣∣ξ̄i

∣
∣−2

, 514
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TABLE IV
SYSTEM PARAMETERS

where ξ̄i are the eigenvalues of the Hessian matrix of the La-515

grangian (32) with respect to the primal and dual variables at516 (
p ,w , λ ,μ

)
. Consequently, as long as the maximum of517

the four step sizes κmax = max
1≤i≤4

κi satisfies the condition of518

κmax ≤ κ, our scheme (37)–(40) will converge to the locally519

optimal point
(
p ,w , λ ,μ

)
when starting from a neigh-520

bourhood of
(
p ,w , λ ,μ

)
, according to [26]. In practice,521

κ is unknown. It is advisable to choose sufficiently small step522

sizes κi , 1 ≤ i ≤ 4, in order to ensure the convergence of the523

OCD scheme.524

Remark 4: A positive-definite Hessian matrix of the La-525

grangian (32) with respect to y at y is a sufficient condition526

for the convergence of the OCD scheme. If this Hessian matrix527

is semi-positive definite, we cannot prove the convergence of528

the OCD scheme based on the result of [26]. By adopting an529

exponentially decaying step size κmax ∝ e−αn , we ensure that530

our OCD algorithm works well in any situation.531

B. Complexity of Proposed Algorithms and Algorithm of [13]532

The complexity of our OCD and ADMM algorithms are sum-533

marized in Tables I and II, respectively. For the ADMM-based534

algorithm, since the penalty parameters are only updated in535

the first few iterations, the complexity associated with this part536

of operation is omitted. Additionally, we assume that Gauss-537

Jordan elimination is used for matrix inversion and, therefore,538

the number of flops required by inverting an M × M matrix is539

M 3 + M 2 + M . For the OCD-based algorithm, the complexity540

of computing the four step sizes is negligible and therefore it 541

is also omitted. Clearly, the complexity of the ADMM-based 542

algorithm is on the order of M 3 per iteration, which is denoted 543

by O
(
M 3
)
, while the complexity of the OCD-based algorithm 544

is on the order of O
(
M 2
)

per iteration. It will be shown by our 545

simulation results that the convergence speed of the ADMM al- 546

gorithm is at least one order of magnitude faster than that of the 547

OCD algorithm. Therefore, despite its higher per-iteration com- 548

plexity, the ADMM algorithm actually imposes a lower total 549

complexity, compared to the OCD algorithm. 550

The benchmark scheme of [13] invokes two iterative loops for 551

solving the optimization problem (25). Specifically, at each outer 552

iteration, the parameters of the inner quadratic constrained lin- 553

ear programming (QCLP) problem are updated, and the QCLP 554

problem is then solved iteratively in the inner iterative loop. We 555

assume that the interior-point method is used for solving this 556

inner QCLP, which requires nin iterations on average. Based on 557

the above discussions, the complexity of the algorithm of [13] is 558

summarized in Table III, where it is seen that the complexity per 559

inner iteration is on the order of O
(
M 3
)
. Thus the complexity 560

of our ADMM-based algorithm is only marginally higher than 561

that of the algorithm in [13], because they are both on the order 562

of O
(
M 3
)

per iteration. The algorithm of [13] requires a total 563

of nounin iterations to converge, where nou is the number of 564

iterations for the outer iterative loop. As it will be shown in 565

the simulation results, the number of iterations required for the 566

ADMM-based algorithm to converge is very close to the total 567

number of iterations nounin required by the algorithm of [13]. 568
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Fig. 3. Convergence performance of three algorithms, in terms of (a) total
power consumption, and (b) aggregate localization accuracy, for the three-target
case with v1 = 1, v2 = 2 and v3 = 1.

Fig. 4. Convergence performance of three algorithms, in terms of (a) total
power consumption, and (b) aggregate localization accuracy, for the three-target
case with v1 = v2 = v3 = 1.

In this sense, both algorithms require a similar total complexity 569

for solving their associated optimization problems. Although 570

our OCD-based algorithm enjoys a much lower complexity per 571

iteration than the algorithm of [13], it imposes a higher total 572

complexity. 573

V. SIMULATION RESULTS 574

Let us now evaluate the performance of the proposed al- 575

gorithms using a MIMO radar system having M = 5 trans- 576

mit radars and N = 7 receive radars. The algorithm of [13] is 577

used as the benchmark. Fig. 2 depicts both the triple-target and 578

single-target cases considered. The system parameters of both 579

the triple-target and single-target cases are listed in Table IV. The 580

localization accuracy threshold η is set to 15 m2 for the triple- 581

target case and 10 m2 for the single-target case. The exponential 582

decaying factor is empirically chosen to be α = 0.0005 for the 583

four step sizes of the OCD algorithm. 584

A. Triple-Target Case 585

We consider the two sets of the importance weightings for 586

the three targets given by: i) v1 = 1, v2 = 2 and v3 = 1, and 587

ii) v1 = v2 = v3 = 1. For the sake of a fair comparison to the 588

algorithm of [13], the effects of these weightings have to be taken 589

into consideration, and the target estimation error thresholds 590

for the three constraints of the optimization problem (25) are 591

suitably scaled as 592

bT
1 p

pTA1p
≤ η̄1 ,

bT
2 p

pTA2p
≤ η̄2 ,

bT
3 p

pTA3p
≤ η̄3 ,

with η̄1 = 1
3v1

η, η̄2 = 1
3v2

η and η̄3 = 1
3v3

η. For our ADMM 593

algorithm, the initial values of the dual variables are set to 594

e(0) = [1 1 1 1 1]T , μ(0) = 1 and γ
(0)
k = 1 for 1 ≤ k ≤ 3, while 595

all the initial penalty parameters are set to 500. For our OCD 596

algorithm, the initial values of the dual variables are set to 597

λ(0) = 1 and μ
(0)
k = 1 for 1 ≤ k ≤ 3. Additionally, the four 598

constants in the four step sizes of the OCD algorithm are set 599

to c1 = 0.3, c2 = 1.0, c3 = 1.5 and c4 = 1.1 for the senario i), 600

while they are set to c1 = 0.3, c2 = 0.9, c3 = 1.5 and c4 = 1.1 601

for the senario ii). These parameters were found empirically to 602

be appropriate for the corresponding application scenarios. For 603

the algorithm of [13], we use the CVX software to solve its inner 604

QCLP problem. In our simulations, we observe that the CVX 605

converges within 25 to 35 iterations. Therefore, we will assume 606

that the average number of inner iterations for the algorithm of 607

[13] is nin = 30. Q1608

Fig. 3 compares the total power allocations p and the ag- 609

gregate localization accuracy results of
∑3

k=1
bT

k p
pT Ak p obtained 610

by the three algorithms for the senario i), while Fig. 4 depicts 611

the results for the senario ii). It can be seen that the number of 612

iterations required by the ADMM-based algorithm to converge 613

is similar to the total number of iterations nounin required by 614

the algorithm of [13], while the convergence speed of the OCD- 615

based algorithm is considerably slower than that of the other 616

two algorithms. As expected, our algorithms outperform the al- 617

gorithm of [13] in terms of its total power consumption, albeit 618

at the expense of some degradation in localization accuracy. 619
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TABLE V
PERFORMANCE COMPARISON OF THREE ALGORITHMS FOR THE THREE-TARGET CASE

The average results are obtained over 1000 random simulation experiments.

Fig. 5. Convergence performance of three algorithms, in terms of (a) total
power consumption, and (b) aggregate localization accuracy, in comparison
with the EPA and the closed-form solution, for the single-target case.

Table V details how our algorithms trade the localization accu-620

racy against the transmit power, in comparison to the algorithm621

of [13]. Specifically, for the senario of i), our ADMM algorithm622

achieves 28.9% power saving at the cost of 25.3% degradation623

in aggregate localization accuracy, while our OCD algorithm624

trades 27.9% power saving against 27.9% degradation in lo-625

calization accuracy. For the equal weighting senario of ii), the626

savings in power achieved by our two algorithms are consid-627

erably smaller but the losses in localization accuracy are also628

significantly smaller, compared with the senario i). To obtain629

statistically relevant comparison, we carry out 1000 simulations630

by randomly locating all the transmit radars and receive radars at 631

the radius R = 3000(0.5 + εx) m with the angular rotations of 632

θ = 2πεy , where εx and εy are uniformly distributed in [0, 1.0]. 633

The average power saving and degradation in localization accu- 634

racy over the 1000 random experiments are listed in the last two 635

rows of Table V. 636

B. Single-Target Case 637

The four constants in the four step sizes of the OCD al- 638

gorithm are set to c1 = c2 = 1.0 and c3 = c4 = 0.3, which is 639

empirically found to be appropriate for this application senario. 640

Fig. 5 characterizes the performance of our ADMM-based and 641

OCD-based algorithms as well as the algorithm of [13]. As ex- 642

pected, all the three algorithms attain the same performance, 643

both in terms of total power allocated and localization accu- 644

racy, since the underlying optimization problems are identical 645

in the single-target case. In terms of convergence speed, our 646

ADMM-based algorithm outperforms the algorithm of [13], 647

while the OCD-based algorithm is considerably slower than the 648

algorithm of [13]. In Fig. 5 (a), we also characterize the equal- 649

power allocation (EPA) scheme and the closed-form solution of 650

SubSection III-B3. It can be seen that our closed-form solu- 651

tion performs significantly better than the EPA scheme, but it 652

is inferior to the other three iterative algorithms because the 653

suboptimal nature of this closed-form solution. 654

VI. CONCLUSION 655

The target localization problem of distributed MIMO radar 656

systems has been investigated, which minimizes the power of 657

the transmit radars, while meeting a required localization ac- 658

curacy. We have proposed the OCD-based and ADMM-based 659

iterative algorithms to solve this nonconvex optimization prob- 660

lem. Both the algorithms are capable of converging to a local 661

optimum. The OCD algorithm imposes a much lower com- 662

putational complexity per iteration, while the ADMM algo- 663

rithm achieves a much faster convergence. For the multi-target 664

senario, we have shown how our proposed approach trades the 665

power saving with some degradation in localization accuracy, 666
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compared with that of state-of-the-art scheme [13]. We have also667

demonstrated that our ADMM-based algorithm and the existing668

state-of-the-art scheme have similar computational complexity669

and convergence speed. For the single-target senario, we have670

confirmed that our algorithms and the benchmark attain the same671

performance in terms of both power consumption and localiza-672

tion accuracy, because the underlying optimization problems673

become identical.674

APPENDIX675

A. Derivation of Updating Formulae for Penalty Parameters676

The optimal solution to the P4 of (45) should be primal and677

dual feasible, that is,678

p(n+1) − z(n+1) = 0, (119)

K∑

k=1

w
(n+1)
k vkbT

k p(n+1) − 1 = 0, (120)

wk

(
z(n+1))TAkp(n+1)η − 1 = 0, 1 ≤ k ≤ K, (121)

∂L′(p, z(n+1) ,w(n+1) ,d(n+1)
0 , d

(n+1)
1 ,d(n+1)

2

)

∂p
= 0, (122)

∂L′(p(n+1) , z(n+1) ,w,d(n+1)
0 , d

(n+1)
1 ,d(n+1)

2

)

∂w
= 0, (123)

∂L′(p(n+1) , z,w(n+1) ,d(n+1)
0 , d

(n+1)
1 ,d(n+1)

2

)

∂z
= 0, (124)

where L′(p,w, z,d0 , d1 ,d2
)

is the Lagrangian of (45), which679

can be separated into three parts680

L′(p,w, z,d0 , d1 ,d2
)

= 1Tp + dT
0 (p − z)

︸ ︷︷ ︸
L ′

0 (p,z,d0 )

+

d1

(
K∑

k=1

wkvkbT
k p − 1

)

︸ ︷︷ ︸
L ′

1 (p,w ,d1 )

+
K∑

k=1

d2,k

(
wkzTAkpη − 1

)

︸ ︷︷ ︸
L ′

2 (p,w ,z,d2 )

.

(125)

However, the ADMM-based algorithm uses the augmented681

Lagrangian of682

L(p,w, z,d0 , d1 ,d2) = 1Tp +
ρ0

2
‖p − z‖2 + dT

0 (p − z)
︸ ︷︷ ︸

L0 (p,z,d0 )

+
ρ1

2

∣
∣
∣
∣
∣

K∑

k=1

wkvkbT
k p − 1

∣
∣
∣
∣
∣

2

+ d1

(
K∑

k=1

wkvkbT
k p − 1

)

︸ ︷︷ ︸
L1 (p,w ,d1 )

+
K∑

k=1

ρ2,k

2

∣
∣wkzTAkpη−1

∣
∣2 +

K∑

k=1

d2,k

(
wkzTAkpη−1

)

︸ ︷︷ ︸
L2 (p,w ,z,d2 )

,

(126)

which can be divided into three parts, and all the primal and 683

dual variables are updated one by one. Thus, in every iteration, 684

there exist primal and dual residuals. 685

Specifically, in the (n + 1)th iteration, the primal residuals 686

are given by r
(n+1)
0 of (65), r

(n+1)
1 of (66), and r

(n+1)
2,k for 687

1 ≤ k ≤ K of (67), while the dual residuals are defined via 688

dr =
√

‖dr0‖2 + ‖dr1‖2 + ‖dr2‖2 , (127)

with 689

dr0 =
∂L
(
p, z(n) ,w(n) ,d(n)

0 , d
(n)
1 ,d(n)

2

)

∂p

−
∂L′(p, z(n+1) ,w(n+1) ,d(n+1)

0 , d
(n+1)
1 ,d(n+1)

2

)

∂p
,

(128)

dr1 =
∂L
(
p(n+1) , z(n) ,w,d(n)

0 , d
(n)
1 ,d(n)

2

)

∂w

−
∂L′(p(n+1) , z(n+1) ,w,d(n+1)

0 , d
(n+1)
1 ,d(n+1)

2

)

∂w
,

(129)

dr2 =
∂L
(
p(n+1) , z,w(n+1) ,d(n)

0 , d
(n)
1 ,d(n)

2

)

∂z

−
∂L′(p(n+1) , z,w(n+1) ,d(n+1)

0 , d
(n+1)
1 ,d(n+1)

2

)

∂z
.

(130)

It can be seen that the primal residuals r
(n+1)
0 , r

(n+1)
1 and 690

r
(n+)
2,k for 1 ≤ k ≤ K are related to L0(p, z,d0), L1(p,w, d1) 691

and L2(p,w, z,d2), respectively. Therefore, we will similarly 692

‘separate’ the dual residuals into s
(n+1)
0 , s

(n+1)
1 and s

(n+1)
2,k for 693

1 ≤ k ≤ K, corresponding to L0(p, z,d0), L1(p,w, d1) and 694

L2(p,w, z,d2), respectively. 695

In order to analyze the updating formula (75) for the penalty 696

parameter ρ0 , we have to calculate s
(n+1)
0 as follows 697

s
(n+1)
0 =

(∥
∥
∥

∂L0
(
p(n+1) , z,d(n)

0

)

∂z
−

∂L′
0
(
p(n+1) , z,d(n+1)

0

)

∂z

∥
∥
∥

2

+
∥
∥
∥
∂L0
(
p, z(n) ,d(n)

0

)

∂p
−

∂L′
0
(
p, z(n+1) ,d(n+1)

0

)

∂p

∥
∥
∥

2
) 1

2

.

(131)

By evaluating the required four partial derivatives and plugging 698

them into (131), we arrive at the dual residual s
(n+1)
0 of (68). 699

Note that a large value for ρ0 adds a large penalty on the violation 700

of primal feasibility and, therefore, a large ρ0 reduces the primal 701

residual r
(n+1)
0 . On the other hand, from the expression (68), it 702

is seen that a small ρ0 reduces the dual residual s
(n+1)
0 . Thus, 703

in order to balance the primal and dual residuals r
(n+1)
0 and 704

s
(n+1)
0 , the penalty parameter ρ0 is updated according to (75), 705

which is beneficial to convergence. 706



IEE
E P

ro
of

MA et al.: DECOMPOSITION OPTIMIZATION ALGORITHMS FOR DISTRIBUTED RADAR SYSTEMS 15

Similarly, it can be shown that the dual residual s
(n+1)
1 re-707

lated to L1(p,w, d1) is given by (69) and (71), while the dual708

residuals s
(n+1)
2,k for 1 ≤ k ≤ K related to L2(p,w, z,d2) are709

specified by (70), (72) and (73). Following the same logic of710

balancing the primal and dual residuals, the updating formulae711

for the penalty parameters ρ1 and ρ2,k are specified by (76) and712

(78), respectively.713

B. Proof of the Time-Sharing Condition for Problem P1714

According to [24], the time-sharing condition for the op-715

timization problem P1 of (24) is as follows. Time-sharing716

condition: Let p1 and p2 be the optimal solutions of P1 in717

conjunction with η = η1 and η = η2 , respectively. P1 is said718

to satisfy the time-sharing condition if for any η1 and η2719

and for any 0 ≤ ξ ≤ 1, there always exists a feasible solu-720

tion p3 so that
K∑

k=1
vk

bT
k p3

pT
3 Ak p3

≤ ξη1 + (1 − ξ)η2 and 1Tp3 ≥721

ξ1Tp1 + (1 − ξ)1Tp2 .722

According to Lemma 1, if we set p3 = pmax , then723

K∑

k=1

vk
bT

k p3

pT
3 Akp3

≤ η1 and
K∑

k=1

vk
bT

k p3

pT
3 Akp3

≤ η2 .

Hence724

K∑

k=1

vk
bT

k p3

pT
3 Akp3

= ξ

K∑

k=1

vk
bT

k p3

pT
3 Akp3

+ (1 − ξ)
K∑

k=1

vk
bT

k p3

pT
3 Akp3

≤ ξη1 + (1 − ξ)η2 ,

1Tp3 = ξ1Tp3 + (1 − ξ)1Tp3 ≥ ξ1Tp1 + (1 − ξ)1Tp2 .

Therefore, P1 satisfies the time-sharing condition and the dual725

gap for our nonconvex problem is zero.726
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Abstract—Distributed radar systems are capable of enhancing4
the detection performance by using multiple widely spaced dis-5
tributed antennas. With prior statistic information of targets, re-6
source allocation is of critical importance for further improving the7
system’s achievable performance. In this paper, the total transmit-8
ted power is minimized at a given mean-square target-estimation9
error. We derive two iterative decomposition algorithms for solving10
this nonconvex constrained optimization problem, namely, the op-11
timality condition decomposition (OCD)-based and the alternating12
direction method of multipliers (ADMM)-based algorithms. Both13
the convergence performance and the computational complexity14
of our algorithms are analyzed theoretically, which are then con-15
firmed by our simulation results. The OCD method imposes a16
much lower computational burden per iteration, while the ADMM17
method exhibits a higher per-iteration complexity, but as a benefit18
of its significantly faster convergence speed, it requires less itera-19
tions. Therefore, the ADMM imposes a lower total complexity than20
the OCD. The results also show that both of our schemes outper-21
form the state-of-the-art benchmark scheme for the multiple-target22
case, in terms of the total power allocated, at the cost of some degra-23
dation in localization accuracy. For the single-target case, all the24
three algorithms achieve similar performance. Our ADMM algo-25
rithm has similar total computational complexity per iteration and26
convergence speed to those of the benchmark.27

Index Terms—Alternating direction method of multipliers,28
localization, multiple-input multiple-output radar, optimality29
condition decomposition, resource allocation.30

I. INTRODUCTION31

MULTIPLE-input multi-output (MIMO) radar systems re-32

lying on widely-separated antennas have attracted con-33

siderable attention from both industry and academia. The family34

of distributed MIMO radar systems is capable of significantly35

improving the estimation/detection performance [1]–[6] by ex-36

ploiting the increased degrees of freedom resulting from the37

improved spatial diversity. In particular, distributed radar sys-38

tems are capable of improving accuracy of target location and39
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velocity estimation by exploiting the different Doppler estimates 40

from multiple spatial directions [7]–[10]. 41

Naturally, the localization performance of MIMO radar sys- 42

tems relying on widely-spaced distributed antennas, quantified 43

in terms of the mean square estimation error (MSE), is deter- 44

mined by diverse factors, including effective signal bandwidth, 45

the signal-to-noise ratio (SNR), the product of the numbers of 46

transmit and receive antennas, etc [11]. Since the SNR is influ- 47

enced by the path loss, the target radar cross section (RCS) and 48

the transmitted power, the attainable localization performance 49

can be improved by increasing either the number of participat- 50

ing radars or the transmitted power. However, simply increasing 51

the amount of resources without considering the cooperation 52

among the individual terminals is usually far from optimal. 53

In most traditional designs, the system’s power budget is usu- 54

ally allocated to the transmit radars and it is fixed [6], [10], 55

which is easy to implement and results in the simplest network 56

structure. However, when prior estimation of the target RCS 57

is available, according to estimation theory, uniform power al- 58

location is far from the best strategy. In battlefields, a radar 59

system is usually supported by power-supply trucks, but un- 60

der hostile environments, their number is strictly limited. Thus, 61

how to allocate limited resources to multiple radar stations is of 62

great importance for maximizing the achievable performance. In 63

other words, power allocation substantially affects the detection 64

performance of multi-radar systems. 65

Recently, various studies used the Cramer-Rao lower bound 66

(CRLB) for evaluating the performance of MIMO radar systems 67

[11]–[16]. A power allocation scheme [12] based on CRLB was 68

designed for multiple radar systems with a single target. The 69

resultant nonconvex optimization problem was solved by re- 70

laxation and a domain-decomposition method. Specifically, in 71

[12] the total transmitted power was minimized at a given es- 72

timation MSE threshold. However the algorithm of [12] was 73

not designed for multiple-target scenarios, which are often en- 74

countered in practice. In [13] a power allocation algorithm was 75

proposed for the multiple-target case, which is equally applica- 76

ble to the single-target senario. 77

Against this background, in this paper, we propose two iter- 78

ative decomposition methods, which are referred to as the opti- 79

mality condition decomposition (OCD) [17] and the alternating 80

direction method of multipliers (ADMM) [18] algorithms, in 81

order to minimize the total transmitted power while satisfying a 82

predefined estimation MSE threshold. These two algorithms can 83

be applied to both multiple-target and single-target scenarios. 84

The ADMM method has been widely adopted for solving con- 85

vex problems. In this paper, we extend the ADMM algorithm to 86

nonconvex problems and show that it is capable of converging. 87

1053-587X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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It is worth pointing out that Simonetto and Leus [19] applied88

the ADMM method to solve a localization problem in a sensor89

network by converting the nonconvex problem to a convex one90

using rank-relaxation. However, the algorithm of [19] cannot91

be applied to our problem, because the task of [19] is that of92

locating sensors, which is not directly related to the signal wave-93

form and power. Furthermore, the maximum likelihood (ML)94

criterion can be used for solving this sensor localization prob-95

lem. However, our task is to assign the power of every MIMO96

radar transmitter, and at the time of writing it is an open chal-97

lenge to design the ML estimator for this task [11]. The main98

contributions of our work are as follows.99
� We propose two iterative decomposition algorithms,100

namely, the OCD-based and ADMM-based methods, for101

both multiple-target and single-target scenarios. The con-102

vergence of these two algorithms is analyzed theoretically103

and verified by simulations. Both these two methods are ca-104

pable of converging to locally optimal solutions. The com-105

plexity analysis of the two algorithms is provided and it is106

shown that the OCD method imposes a much lower com-107

putational burden per iteration, while the ADMM method108

enjoys a significantly faster convergence speed and there-109

fore it actually imposes a lower total complexity.110
� In the multiple-target case, we demonstrate that both of our111

two algorithms outperform the state-of-the-art benchmark112

scheme of [13], in terms of the total power allocated at the113

expense of some degradation in localization accuracy. We114

show furthermore that our ADMM-based algorithm and115

the algorithm of [13] have similar convergence speed and116

total computational complexity.117
� In the single-target case, we show that all the three meth-118

ods attain a similar performance, since the underlying op-119

timization problems are identical. We also prove that the120

closed-form solution of [12] is invalid for the systems with121

more than three transmit radars and we propose a beneficial122

suboptimal closed-form solution.123

The paper is organized as follows. In Section II, the MIMO124

radar system model is introduced and the corresponding opti-125

mization problem is formulated. Our power allocation strate-126

gies are proposed in Section III for both the multiple-target and127

single-target cases, while our convergence and complexity anal-128

ysis is provided in Section IV. Section V presents our simulation129

results for characterizing the attainable performance of the pro-130

posed algorithms which are then compared to the scheme of131

[13]. Finally, our conclusions are offered in Section VI.132

Throughout our discussions, the following notational conven-133

tions are used. Boldface lower- and upper-case letters denote134

vectors and matrices, respectively. The transpose, conjugate135

and inverse operators are denoted by (·)T , (·)∗ and (·)−1 , re-136

spectively, while Tr (·) stands for the matrix trace operation and137

diag (x1 , x2 , · · · , xn ) or diag(x) is the diagonal matrix with the138

specified diagonal elements. Additionally, diag (X1 , · · · ,XK )139

and diag (x1 , · · · ,xK ) denotes the block diagonal matrices140

with the specified sub-matrices and vectors, respectively, at the141

corresponding block diagonal positions. The operator vdiag(X)142

forms a vector using the diagonal elements of square matrix143

X, while E{·} denotes the expectation operator and ⊗ is the144

Fig. 1. Illustration of distributed radar network.

Kronecker product operator. The sub-matrix consisting of the 145

elements of the i1 to i2 rows and j1 to j2 columns of A is 146

denoted by [A][i1 :i2 ;j1 :j2 ] , and the ith row and jth column ele- 147

ment of A is given by [A]i,j . Similarly, [a][i1 :i2 ] is the vector 148

consisting of i1 th to i2 th elements of a. The magnitude operator 149

is given by | · |, and ‖ · ‖ denotes the vector two-norm or matrix 150

Frobenius norm. IK is the identity matrix of size K × K and 0 151

is the zero matrix/vector of an appropriate size, while 1 denotes 152

the vector of an appropriate size, whose elements are all equal 153

to one. Finally, �[ ] denotes the real part of a complex value and 154

j =
√
−1 represents the imaginary axis. 155

II. SYSTEM MODEL 156

The MIMO radar system consists of M transmit radars and N 157

receive radars which cooperate to locate K targets, as illustrated 158

in Fig. 1. The M transmit radars are positioned at the coordi- 159

nates (xtx
m , ytx

m ) for 1 ≤ m ≤ M , and the N receive radars are 160

positioned at (xrx
n , yrx

n ) for 1 ≤ n ≤ N , while the position of 161

target k is (xk , yk ). A set of mutually orthogonal waveforms 162

are transmitted from the transmit radars, and the corresponding 163

baseband signals are denoted by
{
sm (t)

}M

m=1 with normal- 164

ized power, i.e.,
∫

τm
|sm (t)|2 dt = 1, where τm is the duration 165

of the mth transmitted signal. Furthermore, the orthogonality 166

of the transmitted waveforms can always be guaranteed even 167

for different time delays, i.e.,
∫

τm
sm (t)s∗m ′(t − τ) dt = 0 for 168

m′ 	= m. The narrowband signals of the transmitted waveforms 169

have the effective bandwidth βm specified by 170

β2
m =

∫
W f 2 |Sm (f)|2 df
∫

W |Sm (f)|2 df
(Hz)2 , (1)

where W is the frequency range of the signals, and Sm (f) is the 171

Fourier transform of sm (t) transmitted from the mth transmit 172

radar. The transmitted powers of the different antennas, denoted 173

by p = [p1 p2 · · · pM ]T , are constrained by their corresponding 174
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minimum and maximum values specified by175

pmin = [p1m in p2m in · · · pMm in ]T , (2)

pmax = [p1m a x p2m a x · · · pMm a x ]T . (3)

The upper bound pmm a x is determined by the design and176

the lower bound pmm in is used to guarantee that the trans-177

mit radar m operates at an appropriate SNR. Let the propa-178

gation path spanning from the transmitter m to the target k179

and from the target k to the receiver n be defined as the chan-180

nel (m, k, n). Then the propagation time τ
(k
m,n of the channel181

(m, k, n) can be calculated by τ
(k
m,n = (Rtx

m,k + Rrx
n,k )/c, where182

c is the speed of light, Rtx
m,k =

√
(xtx

m − xk )2 + (ytx
m − yk )2183

is the distance from transmitter m to target k, and Rrx
n,k =184

√
(xrx

n − xk )2 + (yrx
n − yk )2 is the distance from target k to185

receiver n. The time delay τ
(k
m,n is used to estimate the position186

of targets. For far field signals, by retaining only the linear terms187

of its Taylor expansion, τ
(k
m,n can be approximated as a linear188

function of xk and yk189

τ (k
m,n 
 − xk

c

(
cos θ(k

m + cos ϕ(k
n

)

− yk

c

(
sin θ(k

m + sin ϕ(k
n

)
, (4)

where θ
(k
m is the bearing angle of the transmitting radar m to the190

target k and ϕ
(k
n is the bearing angle of the receiving radar n to191

the target k, both measured with respect to the x axis.192

Let the complex-valued reflectivity coefficient h(k
m,n represent193

the attenuation and phase rotation of channel (m, k, n). The194

baseband signal at receive radar n can be expressed as195

rn (t) =
K∑

k=1

M∑

m=1

√
pm h(k

m,nsm

(
t − τ (k

m,n

)
+ ωn (t), (5)

where ωn (t) is a circularly symmetric complex Gaussian white196

noise, which is bandlimited to the system bandwidth W and197

hence has a zero mean and E{|ωn (t)|2} = σ2 . In our work, the198

path-loss κ
(k
m,n is chosen as199

κ(k
m,n ∝ 1

(
Rtx

m,k

)2(
Rrx

n,k

)2 . (6)

Thus, given the complex target RCS ζ
(k
m,n , the channel coeffi-200

cient h
(k
m,n is given by201

h(k
m,n = ζ(k

m,n

√
κ

(k
m,n = h(k,Re

m,n + jh(k,Im
m,n , (7)

where h
(k,Re
m,n and h

(k,Im
m,n are the real and imaginary parts of202

h
(k
m,n . Let us collect all the channel coefficients associated with203

the target k in the (2MN × 1)-element real-valued vector as204

hk =
[
h

(k,Re
1,1 · · ·h(k,Re

1,N · · ·h(k,Re
M,N h

(k,Im
1,1 · · ·h(k,Im

1,N · · ·h(k,Im
M,N

]T
.

(8)

Similarly, we introduce the (NM × 1)-element real vectors 205

∣
∣h(k

∣
∣2 =

[∣
∣h(k

1,1

∣
∣2 · · ·

∣
∣h(k

1,N

∣
∣2 · · ·

∣
∣h(k

M ,1

∣
∣2 · · ·

∣
∣h(k

M ,N

∣
∣2
]T

, (9)

∣
∣h(k

∣
∣ =
[∣
∣h(k

1,1

∣
∣ · · ·

∣
∣h(k

1,N

∣
∣ · · ·

∣
∣h(k

M ,1

∣
∣ · · ·

∣
∣h(k

M ,N

∣
∣
]T

. (10)

Upon defining h =
[
hT

1 hT
2 · · ·hT

K

]T
and the location vector 206

of the K targets as lx,y =
[
x1 y1 · · ·xK yK

]T
, all the system’s 207

parameters can be stacked into a single real-valued vector 208

u =
[
lTx,y hT]T . (11)

Since the received signal (5) is also a function of the time delays 209

τ
(k
m,n , we also define the following system parameter vector 210

ψ =
[
τ

(1
1,1 · · · τ

(1
1,N · · · τ (K

M,N hT]T . (12)

There exists a clear one-to-one relationship between u and ψ. 211

Let f(r|u) be the conditional probability density function 212

(PDF) of the observation vector r = [r1(t), r2(t), · · · , rN (t)] 213

conditioned on u. Similarly, we have the conditional PDF of r 214

conditioned on ψ. Then the unbiased estimate û of u satisfies 215

the following inequality [20] 216

E
{(

û − u
)(

û − u
)T} ≥ J−1(u), (13)

where the Fisher information matrix (FIM) J(u) is defined by 217

J(u) = E

{
∂

∂u
log f(r|u)

(
∂

∂u
log f(r|u)

)T
}

. (14)

Similarly, we have the FIM of ψ, denoted by J(ψ). The FIM 218

J(u) can be derived from J(ψ) according to 219

J(u) =

[
D 0

0 I2K M N

]

J(ψ)

[
D 0

0 I2K M N

]T

, (15)

where the (2K × KMN)-element block diagonal matrix D 220

takes the following form 221

D = diag
(
D(1 ,D(2 , · · · ,D(K ), (16)

with the (2 × MN)-element sub-matrix D(k given by 222

D(k =

⎡

⎢
⎢
⎢
⎣

∂τ
(k
1,1

∂xk
· · ·

∂τ
(k
M ,N

∂xk

∂τ
(k
1,1

∂yk
· · ·

∂τ
(k
M ,N

∂yk

⎤

⎥
⎥
⎥
⎦

= −1
c

⎡

⎣
cos
(
θ

(k
1

)
+cos

(
ϕ

(k
1

)
· · · cos

(
θ

(k
M

)
+cos

(
ϕ

(k
N

)

sin
(
θ

(k
1

)
+sin

(
ϕ

(k
1

)
· · · sin

(
θ

(k
M

)
+sin

(
ϕ

(k
N

)

⎤

⎦.

(17)

The matrix Cx,y associated with the CRLB for the unbiased 223

estimator of lx,y is the (2K × 2K)-element upper left block 224

sub-matrix of J−1(u), which can be derived as [11], [21] 225

Cx,y =
[
J−1(u)

]
[1:2K ;1:2K ] =

(
DPΨDT)−1

, (18)



IEE
E P

ro
of

4 IEEE TRANSACTIONS ON SIGNAL PROCESSING

where P = IK ⊗ diag(p) ⊗ IN , and Ψ = diag
(
Ψ(1 , · · · ,226

Ψ(K
)

is the (KMN × KMN)-element block diagonal ma-227

trix with the kth sub-matrix defined as228

Ψ(k = 8π2 (diag
(
β2

1 , · · · , β2
M

)
⊗ IN

)
diag

(∣
∣h(k

∣
∣2
)

. (19)

Let us denote the variances of the estimates of xk and yk by σ2
xk

229

and σ2
yk

, respectively. Then we have230

K∑

k=1

(
σ2

xk
+ σ2

yk

)
≥ Tr (Cx,y ) , (20)

where Tr (Cx,y ) is a lower bound on the sum of the MSEs of the231

localization estimator l̂x,y . By defining X = diag(p) ⊗ IN and232

noting D of (16), we obtain the expression of the lower bound233

for the kth target location estimate as [12], [22]234

2∑

i=1

[Cx,y ]i+2(k−1),i+2(k−1)

=
2∑

i=1

[(
DPΨDT)−1

]

i+2(k−1),i+2(k−1)

= Tr

⎛

⎜
⎜
⎝

⎡

⎢
⎣

(
a(k

1,1

)T
p
(
a(k

1,2

)T
p

(
a(k

2,1

)T
p
(
a(k

2,2

)T
p

⎤

⎥
⎦

−1⎞

⎟
⎟
⎠ =

bT
k p

pTAkp
, (21)

where the second equation is obtained by first dividing the235

(MN × 2) matrix
(
D(k
)T

into the two column vectors,
(
D(k
)T

236

=
[
d(k

1 d(k
2

]
, and generating the (N × 1) vectors237

d(k
i,m =

[
d(k

i

]

[(m−1)N +1:mN ]
, i = 1, 2, 1 ≤ m ≤ M. (22)

Then a(k
i,j for 1 ≤ i, j ≤ 2 are given by238

a(k
i,j = vdiag

(
diag

((
d(k

i,1

)T
, · · · ,

(
d(k

i,M

)T
)

Ψ(k

× diag
(
d(k

j,1 , · · · ,d(k
j,M

))
, (23)

while bk = a(k
1,1 + a(k

2,2 and Ak = a(k
1,1

(
a(k

2,2

)T − a(k
1,2

(
a(k

2,1

)T
.239

Our task is to design a beneficial power allocation strategy240

capable of achieving a localization accuracy threshold η. We241

can use the weighting vk to indicate the localization accuracy242

requirement for the kth target. The larger vk is, the higher ac-243

curacy is required for the kth target. For a predetermined lower244

bound of total MSE of all the targets, the transmit power of the245

different transmit radars can then be appropriately allocated for246

minimizing the total transmit power. This can be formulated as247

the following optimization problem P1248

P1 :

min
p

1Tp,

s.t.
K∑

k=1
vk

bT
k p

pT Ak p ≤ η,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(24)

Because generally speaking Ak is not a positive definite matrix,249

the optimization P1 is a nonconvex problem.250

In [13], a similar optimization problem is formulated as 251

min
p

1Tp,

s.t. bT
k p

pT Ak p ≤ η̄, 1 ≤ k ≤ K,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M,

(25)

given an equivalent localization accuracy threshold η̄. In [13], 252

a Taylor series based technique is applied to approximate the 253

inequality constraints in (25) in order to relax the nonconvex 254

optimization problem for the sake of obtaining a solution. Intu- 255

itively, the cost function associated with an optimal solution of 256

our problem P1 of (24) is generally smaller than that associated 257

with an optimal solution of (25), i.e., we can achieve a lower 258

power consumption. This is achieved at the potential cost of a 259

slightly reduced localization accuracy. 260

III. POWER RESOURCE ALLOCATION 261

A. Multi-Target Case 262

In order to solve the nonconvex problem P1 of (24), we have 263

to change it into a simpler form. Specifically, we have to change 264

the inequality constraint into an equality one, i.e., 265

K∑

k=1

vk
bT

k p
pTAkp

≤ η ⇒
K∑

k=1

vk
bT

k p
pTAkp

= η. (26)

Lemma 1: An increase of the transmit power p results in a 266

reduction of the MSE, namely, 267

K∑

k=1

vk

bT
k

(
p + Δp

)

(
p + Δp

)TAk

(
p + Δp

) ≤
K∑

k=1

vk
bT

k p
pTAkp

. (27)

The proof of Lemma 1 is similar to that of single-target case 268

given in [12]. Thus, to achieve a reduced power consumption, 269

we can always set the MSE to its maximum tolerance. The 270

change of constraint as given in (26) leads to the problem P2, 271

P2 :

min
p

1Tp,

s.t.
K∑

k=1
vk

bT
k p

pT Ak p = η,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(28)

Theorem 1: The solutions of P1 and P2 are identical. 272

The proof of Theorem 1 is straightforward. By introducing 273

the auxiliary variables 274

wk =
1

ηpTAkp
, 1 ≤ k ≤ K, (29)

and their corresponding lower and upper bounds 275

wkm in =
1

ηpT
maxAkpmax

, wkm a x =
1

ηpT
minAkpmin

, 1 ≤ k ≤ K,

(30)
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P2 is reformulated as the following optimization problem P3:276

P3 :

min
p,w

1Tp,

s.t.
K∑

k=1
vkwkbT

k p = 1,

wkηpTAkp = 1, 1 ≤ k ≤ K,
pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M,
wkm in ≤ wk ≤ wkm a x , 1 ≤ k ≤ K.

(31)

The following corollary is obvious.277

Corollary 1: If p associated with w
k = 1

η
(
p
)T

Ak p
for278

1 ≤ k ≤ K is an optimal solution of the problem P3 (31), p279

is an optimal solution for the problem P1 of (24). Conversely,280

if p is an optimal solution of the problem P1, together with281

w
k = 1

η
(
p
)T

Ak p
for 1 ≤ k ≤ K it is an optimal solution of282

the problem P3.283

1) OCD-based method: The Lagrangian associated with the284

optimization problem P3 is285

L(p,w, λ,μ) = 1Tp + λ

(
K∑

k=1

vkwkbT
k p − 1

)

+
K∑

k=1

μk

(
wkηpTAkp − 1

)
, (32)

with w =
[
w1 w2 · · ·wK

]T
and μ =

[
μ1 μ2 · · ·μK

]T
, where λ286

and μk for 1 ≤ k ≤ K are Lagrangian multipliers. We optimize287

the Lagrangian (32) with respect to p, λ, wk and μk . Using the288

steepest descent method, the search directions are related to the289

Karush-Kuhn-Tucker (KKT) conditions by290

Δp = ∇pL(p,w, λ,μ) = 1 + λ

(
K∑

k=1

wkvkbk

)

+
K∑

k=1

μkwkη
(
Ak + AT

k

)
p, (33)

Δλ = ∇−λL(p,w, λ,μ) = −
K∑

k=1

wkvkbT
k p + 1, (34)

Δwk = ∇wk
L(p,w, λ,μ)

= λvkbT
k p + μkηpTAkp, 1 ≤ k ≤ K, (35)

Δμk = ∇−μk
L(p,w, λ,μ)

= −
(
ηwkpTAkp + 1

)
, 1 ≤ k ≤ K, (36)

where we have Δp =
[
Δp1 Δp2 · · ·ΔpM

]T
. The primal and291

dual variables are updated iteratively292

p(n+1)
m =

[
p(n)

m − κ1Δp(n)
m

]pm m a x

pm m in

, 1 ≤ m ≤ M, (37)

λ(n+1) = λ(n) − κ2Δλ(n) , (38)

w
(n+1)
k = w

(n)
k − κ3Δw

(n)
k , 1 ≤ k ≤ K, (39)

μ
(n+1)
k = μ

(n)
k − κ4Δμ

(n)
k , 1 ≤ k ≤ K, (40)

where the superscript (n) denotes the iteration index and 293

[a]cb = min {max {a, b} , c} , (41)

while κi for 1 ≤ i ≤ 4 represent the step sizes for the primal 294

variables p, the dual variable λ, the primal variables w and the 295

dual variables μ, respectively. According to [23], an exponen- 296

tially decreasing step size is highly desired. Furthermore, since 297

p, λ, w and μ have very different properties and their impacts 298

on the Lagrangian are ‘unequal’, using different step sizes for 299

them makes sense. By combining these two considerations, we 300

set the four step sizes for p, λ, w and μ according to 301

κi = cie
−αn with 0 ≤ α � 1, for 1 ≤ i ≤ 4, (42)

where ci > 0 for 1 ≤ i ≤ 4 are different constants. 302

The choice of the initial values for the primal variables pm , 303

1 ≤ m ≤ M , influences the convergence performance. Ideally, 304

they should be chosen to be close to their own specific optimal 305

values so as to enhance the convergence speed. For practical 306

reason, the initialization should be easy and simple to realize 307

too. Hence we opt for the initial powers of 308

p(0) = pequ =
1
η

K∑

k=1

vk
bT

k 1
1TAk1

1, (43)

which is obtained by setting all the elements of p to be equal. 309

Then, wk is initialized according to 310

w
(0)
k =

1
ηpT

equAkpequ
, 1 ≤ k ≤ K. (44)

The iterative procedure of (37) to (40) is repeated until 311∥
∥p(n+1) − p(n)

∥
∥ becomes smaller than a preset small positive 312

number or the maximum number of iterations is reached. 313

Remark 1: It is difficult to find a closed-form solution from 314

the set of KKT conditions, because Ak for 1 ≤ k ≤ K are 315

generally non-invertible. Hence our algorithm finds a locally 316

optimal point in an iterative manner. It is also worth noting 317

that the standard OCD [17] is typically based on a Newton- 318

type algorithm, but our proposed OCD method is a steepest 319

descent algorithm. The reason is that the Hessian matrix for the 320

Lagrangian L(p,w, λ,μ) of (32) is not invertible. 321

2) ADMM-based method: ADMM was originally proposed 322

for solving convex problems in a parallel manner [18]. Let us 323

now discuss how to apply the ADMM method for solving the 324

nonconvex problem P3. By introducing an auxiliary vector z = 325

p, (29) can be rewritten as 326

p = z and ηwkzTAkp = 1, 1 ≤ k ≤ K. (45)

Therefore, P3 can be reformulated into the problem P4: 327

P4 :

min
p,w ,z

1Tp,

s.t.
K∑

k=1
vkwkbT

k p = 1,

p = z,
wkηzTAkp = 1, 1 ≤ k ≤ K,
pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M,
wkm in ≤ wk ≤ wkm a x , 1 ≤ k ≤ K.

(46)
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This problem is convex with respect to p, z and wk , respectively.328

An augmented Lagrangian is constructed as follows329

L(p,w, z,d0 , d1 ,d2) = 1Tp +
ρ0

2
‖p − z‖2 + dT

0 (p − z)

+
K∑

k=1

ρ2,k

2

∣
∣wkzTAkpη − 1

∣
∣2 +

K∑

k=1

d2,k

(
wkzTAkpη − 1

)

+
ρ1

2

∣
∣
∣
∣
∣

K∑

k=1

wkvkbT
k p − 1

∣
∣
∣
∣
∣

2

+d1

(
K∑

k=1

wkvkbT
k p −1

)

(47)

where d0 =
[
d0,1 · · · d0,M

]T
, d1 and d2 =

[
d2,1 · · · d2,K

]T
330

are the dual variables corresponding to the constraints p = z,331 ∑K
k=1 wkvkbT

k p = 1 and wkzTAkpη = 1 for 1 ≤ k ≤ K, re-332

spectively, while ρ0 , ρ1 and ρ2 =
[
ρ2,1 · · · ρ2,K

]T
are the333

penalty parameters. Note that the augmented Lagrangian (47)334

is quadratic. For convenience, we scale the dual variables as335

e = 1
ρ0

d0 , μ = 1
ρ1

d1 and γ =
[
γ1 · · · γK

]T
with γk = 1

ρ2 , k
d2,k336

for 1 ≤ k ≤ K. Then, from (47) we obtain the following aug-337

mented Lagrangian338

L(p,w, z, e, μ,γ) = 1Tp +
ρ0

2
‖p − z + e‖2 − ρ0

2
‖e‖2

+
K∑

k=1

ρ2,k

2

∣
∣wkzTAkpη − 1 + γk

∣
∣2 −

K∑

k=1

ρ2,k

2

∣
∣γk

∣
∣2

+
ρ1

2

∣
∣
∣
∣
∣

K∑

k=1

wkvkbT
k p − 1 + μ

∣
∣
∣
∣
∣

2

− ρ1

2
|μ|2 . (48)

We can find the saddle point of the augmented Lagrangian (48)339

by minimizing the Lagrangian over the primal variables p, w340

and z, as well as maximizing it over the dual variables e, μ341

and γ, in an alternative way. In particular, we update the primal342

variables p, w and z separately one by one. Furthermore, after343

the update of the dual variables e, μ and γ, we adjust the penalty344

parameters ρ0 , ρ1 and ρ2 . We now summarize our ADMM-345

based procedure.346

Initialization: Let us also opt for the equal power initialization347

p(0) = pequ of (43). The other primal variables are initialized348

as w
(0)
k = 1

ηpT
e q u Ak pe q u

for 1 ≤ k ≤ K of (44), and349

z(0) = pequ . (49)

The initial penalty parameters, ρ
(0)
0 , ρ

(0)
1 and ρ

(0)
2,k for 1 ≤ k ≤350

K, are typically set to a large positive value, say, 500. Next, the351

dual variables are initialized as follows. Choose μ(0) = 1 and352

γ
(0)
k = 1 for 1 ≤ k ≤ K, while every element of e(0) is set to 1353

too. Then we set the iteration index n = 0.354

Iterative Procedure: At the (n + 1)th iteration, perform:355

� Step 1: Update the primal variables p. Upon isolating all 356

the terms involving p in the Lagrangian (48), we have 357

min
p

1Tp +
ρ

(n)
0

2

∥
∥
∥p − z(n) + e(n)

∥
∥
∥

2

+
ρ

(n)
1

2

∣
∣
∣
∣
∣

K∑

k=1

w
(n)
k vkbT

k p − 1 + μ(n)

∣
∣
∣
∣
∣

2

+
K∑

k=1

ρ
(n)
2,k

2

∣
∣
∣
∣w

(n)
k

(
z(n)
)T

Akpη − 1 + γ
(n)
k

∣
∣
∣
∣

2

,

s.t. pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M, (50)

which is a constrained convex optimization. Setting the 358

derivative of the objective function to zero yields the (n + 359

1)th estimate of p as follows. First compute 360

p̄(n+1)=
[
p̄

(n+1)
1 · · · p̄(n+1)

M

]T
=
(
P(n+1)

1

)−1
p(n+1)

2 ,

(51)

P(n+1)
1 =ρ

(n)
0 IM + ρ

(n)
1

(
K∑

k=1

w
(n)
k vkbk

)

×
(

K∑

k=1

w
(n)
k vkbT

k

)

+
K∑

k=1

ρ
(n)
2,k

×
(
w

(n)
k (Ak )Tz(n)η

)(
w

(n)
k

(
z(n)
)T

Akη

)T

,

(52)

p(n+1)
2 = − 1 + ρ

(n)
0

(
z(n) + e(n)

)

+ ρ
(n)
1

(
K∑

k=1

w
(n)
k vkbk

)
(
1 − μ(n)

)

+ ρ
(n)
2,k

(
w

(n)
k (Ak )Tz(n)η

)(
1 − γ

(n)
k

)
. (53)

The final estimate is then given by 361

p(n+1)
m =

[
p̄(n+1)

m

]pm m a x

pm m in

, 1 ≤ m ≤ M. (54)

� Step 2: Update the primal variables w. The optimization 362

involving w is also a constrained convex problem 363

min
w

ρ
(n)
1

2

∣
∣
∣
∣
∣

K∑

k=1

wkvkbT
k p(n+1) − 1 + μ(n)

∣
∣
∣
∣
∣

2

+
K∑

k=1

ρ
(n)
2,k

2

∣
∣
∣
∣wk

(
z(n)
)T

Akp(n+1)η−1+γ
(n)
k

∣
∣
∣
∣

2

,

s.t. wkm in ≤ wk ≤ wkm a x , 1 ≤ k ≤ K. (55)

The solution is given by 364

w
(n+1)
k =

[
w

(n+1)
k,1

w
(n+1)
k,2

]wk m a x

wk m in

, 1 ≤ k ≤ K, (56)
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where365

w
(n+1)
k,1 =ρ

(n)
1 vkbT

k p(n+1)

⎛

⎝1−μ(n)−
∑

k ′ 	=k

vk ′bT
k ′p(n+1)

⎞

⎠

+ ρ
(n)
2,k

((
z(n)
)T

Akp(n+1)η

)(
1 − γ

(n)
k

)
,

(57)

w
(n+1)
k,2 = ρ

(n)
1

(
vkbT

k p(n+1)
)2

+ ρ
(n)
2,k

((
z(n)
)T

Akp(n+1)η

)2

. (58)

� Step 3: Update the primal variables z. Isolating all the366

terms involving z, the optimization is an unconstrained367

convex problem368

min
z

ρ
(n)
0

2

∥
∥
∥p(n+1) − z + e(n)

∥
∥
∥

2

+
K∑

k=1

ρ
(n)
2,k

2

∣
∣
∣w(n+1)

k zTAkp(n+1)η − 1 + γ
(n)
k

∣
∣
∣
2
.

(59)

Solving (59) yields the (n + 1)th estimate of z as369

z(n+1) =
(
Z(n+1)

1

)−1
z(n+1)

2 , (60)

where370

Z(n+1)
1 = ρ

(n)
0 IM +

K∑

k=1

ρ
(n)
2,k

(
w

(n+1)
k Akp(n+1)η

)

×
(
w

(n+1)
k Akp(n+1)η

)T
, (61)

z(n+1)
2 = ρ

(n)
0

(
p(n+1) + e(n)

)

+
K∑

k=1

ρ
(n)
2,k

(
w

(n+1)
k Akp(n+1)η

)(
1 − γ

(n)
k

)
.

(62)

� Step 4: Update the dual variables e, μ and γ. Maximizing371

the Lagrangian (48) with respect to the dual variables yields372

e(n+1) = e(n) + p(n+1) − z(n+1) , (63)

μ(n+1) = μ(n) +
K∑

k=1

w
(n+1)
k vkbT

k p(n+1) − 1, (64)

γ
(n+1)
k = γ

(n)
k + w

(n+1)
k

(
z(n+1)

)T
Akp(n+1)η − 1,

1 ≤ k ≤ K. (65)

� Step 5: Update the penalty parameters ρ0 , ρ1 and ρ2 . The373

penalty parameters are updated at the end of each iteration374

for the first a few iterations to speed up the convergence. At375

the (n + 1)th iteration, associated with the three penalty376

parameters of ρ
(n)
0 , ρ

(n)
1 and ρ

(n)
2 , we have three primal377

residuals 378

r
(n+1)
0 =

∥
∥p(n+1) − z(n+1)

∥
∥, (66)

r
(n+1)
1 =

∣
∣
∣

K∑

k=1

w
(n+1)
k vkbT

k p(n+1) − 1
∣
∣
∣, (67)

r
(n+1)
2,k =

∣
∣
∣wk

(
z(n+1))TAkp(n+1)η − 1

∣
∣
∣,

1 ≤ k ≤ K, (68)

as well as three respective dual residuals 379

s
(n+1)
0 =

∥
∥ρ(n)

0

(
z(n+1) − z(n))∥∥, (69)

s
(n+1)
1 =

∥
∥s(n+1)

1a

∥
∥, (70)

s
(n+1)
2,k =

√(
s

(n+1)
2a,k

)2 +
∥
∥s(n+1)

2b,k

∥
∥, 1 ≤ k ≤ K, (71)

where 380

s(n+1)
1a = μ(n+1)ρ

(n)
1

(
K∑

k=1

(
w

(n)
k − w

(n+1)
k

)
vkbk

)

+ ρ
(n)
1

(
K∑

k=1

w
(n)
k vkbk

)

×
(

K∑

k=1

(
w

(n)
k − w

(n+1)
k

)
vkbT

k p(n+1)

)

,

(72)

s
(n+1)
2a,k = ρ

(n)
2,k

(
z(n))TAkp(n+1)η

×
(
w

(n+1)
k

(
z(n) − z(n+1))TAkp(n+1)η − 1

)

+ γ
(n+1)
k ρ

(n)
2,k

((
z(n)−z(n+1))TAkp(n+1)η

)
,

(73)

s(n+1)
2b,k = ρ

(n)
2,k w

(n)
k ηAT

k z(n)

×
((

w
(n)
k

(
z(n))T − w

(n+1)
k

(
z(n+1))T

)

× Akp(n+1)η
)

+ γ
(n+1)
k ρ

(n)
2,k ηAT

k

×
(
w

(n)
k z(n) − w

(n+1)
k z(n+1)

)
. (74)

The exact definitions of the dual residuals can be found in 381

Appendix A. 382

The penalty parameter ρ0 is updated as follows 383

ρ
(n+1)
0 =

⎧
⎪⎪⎨

⎪⎪⎩

τρ
(n)
0 , if r

(n+1)
0 ≥ εs

(n+1)
0 ,

1
τ ρ

(n)
0 , if s

(n+1)
0 ≥ εr

(n+1)
0 ,

ρ
(n)
0 , otherwise,

(75)

where the scalars τ > 1 and ε > 1 with typical values of 384

τ = 2 and ε = 10. The idea behind this penalty parameter 385

update is to balance the primal and dual residual norms 386

r
(n+1)
0 and s

(n+1)
0 , i.e., to keep r

(n + 1 )
0

s
(n + 1 )
0

≤ ε and s
(n + 1 )
0

r
(n + 1 )
0

≤ ε, 387
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as they both converge to zero [18], [25]. The related dual388

variables are rescaled to remove the impact of changing ρ0389

according to390

e(n+1) =
ρ

(n)
0

ρ
(n+1)
0

e(n) . (76)

Similarly, ρ1 is updated according to391

ρ
(n+1)
1 =

⎧
⎪⎪⎨

⎪⎪⎩

τρ
(n)
1 , if r

(n+1)
1 ≥ εs

(n+1)
1 ,

1
τ ρ

(n)
1 , if s

(n+1)
1 ≥ εr

(n+1)
1 ,

ρ
(n)
1 , otherwise.

(77)

The related dual variable is then scaled according to392

μ(n+1) =
ρ

(n)
1

ρ
(n+1)
1

μ(n) . (78)

Likewise, ρ2,k for 1 ≤ k ≤ K are updated according to393

ρ
(n+1)
2,k =

⎧
⎪⎪⎨

⎪⎪⎩

τρ
(n)
2,k , if r

(n+1)
2,k ≥ εs

(n+1)
2,k ,

1
τ ρ

(n)
2,k , if s

(n+1)
2,k ≥ εr

(n+1)
2,k ,

ρ
(n)
2,k , otherwise,

(79)

and the corresponding dual variables are rescaled as394

γ
(n+1)
k =

ρ
(n)
2,k

ρ
(n+1)
2,k

γ
(n)
k , 1 ≤ k ≤ K. (80)

� Termination of the iterative procedure. The iterative pro-395

cedure is terminated when
∥
∥p(n+1) − p(n)

∥
∥ becomes396

smaller than a predefined small positive value or the preset397

maximum number of iterations is reached. Otherwise, set398

n = n + 1 and go to Step 1.399

Remark 2: The ADMM combines the advantages of the dual400

ascent and the augmented Lagrangian method. The dual as-401

cent approach deals with the complicated constraints, while the402

augmented Lagrangian method is capable of enhancing the con-403

vergence rate and the robustness of the algorithm.404

Remark 3: We deal with the optimization problem (24), and405

in every iteration of our OCD and ADMM methods, we have406

a closed-form update value. By contrast, Garcia et al. [13] deal407

with the optimization problem (25), and in every iteration, an408

inner iterative loop is required for computing an updated value409

by the algorithm of [13].410

B. Single-Target Case411

The target index k can be dropped and then the optimization412

is simplified to the problem P5413

P5 :

min
p

1Tp,

s.t. bT p
pT Ap ≤ η,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(81)

In the single-target case, the optimization (25) is identical to the414

problem P5. Similar to the multi-target case, the problem P5 is415

equivalent to the optimization problem P6: 416

P6 :

min
p,w

1Tp,

s.t. wbTp − 1 = 0,

wηpTAp − 1 = 0,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(82)

This problem is nonconvex due to its equality constraint. 417

1) OCD-based method: The Lagrangian of (82) is 418

L(p, w, λ, μ) = 1Tp + λ
(
wbTp − 1

)
+ μ

(
wηpTAp − 1

)
,

(83)

where λ and μ are the dual variables. The gradients of this 419

Lagrangian are given by 420

Δp= ∇pL(p, w, λ, μ)=1+λ (wb)+μwη
(
A+AT)p,

(84)

Δλ= ∇−λL(p, w, λ, μ) = −wbTp + 1, (85)

Δw= ∇w L(p, w, λ, μ) = λbTp + μηpTAp, (86)

Δμ= ∇−μL(p, w, λ, μ) = −ηwpTAp − 1, (87)

Given λ(0) , μ(0) and 421

p(0) = pequ =
1
η

bT1
1TA1

1, (88)

p, λ, w, μ are updated in the following iterative procedure 422

p(n+1)
m =

[
p(n)

m − κ1Δp(n)
m

]pm m a x

pm m in

, 1 ≤ m ≤ M, (89)

λ(n+1) = λ(n) − κ2Δλ(n) , (90)

w(n+1) = w(n) − κ3Δw(n) , (91)

μ(n+1) = μ(n) − κ4Δμ(n) , (92)

where again the step sizes are chosen according to (42). The 423

iterative procedure is repeated until
∥
∥p(n+1) − p(n)

∥
∥ becomes 424

smaller than a preset threshold. 425

2) ADMM-based method: Similar to the multi-target case, 426

we reformulate the problem P6 as 427

min
p,z

1Tp,

s.t. ηzTAp − bTp = 0,
z = p,
pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(93)

Then, by introducing an augmented Lagrangian, we have 428

max
e,μ

min
p,z

1Tp + ρ0
2 ‖p − z + e‖2

+ ρ1
2

∥
∥ηzTAp − bTp + μ

∥
∥2

,

s.t. pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(94)

With the initialization of p(0) = z(0) = pequ , e(0) = 1, μ(0) = 429

1, and ρ
(0)
0 and ρ

(0)
1 set to a large positive number, each iteration 430

involves the following steps. 431
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TABLE I
COMPLEXITY PER ITERATION OF THE OCD-BASED ALGORITHM

TABLE II
COMPLEXITY PER ITERATION OF THE ADMM-BASED ALGORITHM

� Step 1: Update p. Isolating all the terms involving p, the432

optimization is a constrained convex problem, leading to433

p̄(n+1)

=
(
ρ

(n)
0 IM + ρ

(n)
1

(
ηATz(n) − b

)

×
(
η
(
z(n))TA − bT

))−1(
− 1 + ρ

(n)
0

(
z(n) − e(n))

− ρ
(n)
1 μ(n)(ηATz(n) − b

))
, (95)

p(n+1)
m =

[
p̄(n+1)

m

]pm m a x

pm m in

, 1 ≤ m ≤ M. (96)

� Step 2: Update z. Isolating all the terms involving z, the434

problem is an unconstrained convex problem, leading to435

z(n+1) =
(
ρ

(n)
0 IM + ρ

(n)
1

(
ηAp(n+1))(ηAp(n+1))T

)−1

×
(
ρ

(n)
0

(
p(n+1) + e(n))

+ ρ
(n)
1 ηAp(n+1)(bTp(n+1) − μ(n))

)
. (97)

� Step 3: Update e and μ. The dual variables are updated436

according to437

μ(n+1) = μ(n) +η
(
z(n+1))TAp(n+1)−bTp(n+1), (98)

e(n+1) = e(n) + p(n+1) − z(n+1) . (99)

� Step 4: Update the ρ0 and ρ1 at the first a few iterations. By438

defining the primal and dual residuals r
(n+1)
0 and s

(n+1)
0439

as440

r
(n+1)
0 =

∥
∥p(n+1) − z(n+1)

∥
∥, (100)

s
(n+1)
0 =

∥
∥ρ(n)

0

(
z(n) − z(n+1))∥∥, (101)

the updated ρ
(n+1)
0 is given by (75), and the dual variable 441

e(n+1) is rescaled according to (76). Similarly, define the 442

primal and dual residuals r
(n+1)
1 and s

(n+1)
1 as 443

r
(n+1)
1 =

∣
∣
∣η
(
z(n+1))TAp(n+1) − bTp(n+1)

∣
∣
∣, (102)

s
(n+1)
1 =

∥
∥
∥μ(n+1)ρ

(n)
1 ηAT(z(n) − z(n+1))+ ρ

(n)
1 η

×
(
ηATz(n)− b

)(
z(n)− z(n+1))TAp(n+1)

∥
∥
∥.

(103)

The updated ρ
(n+1)
1 is given by (77), and the rescaled dual 444

variable μ(n+1) is given by (78). 445

3) A closed-form approximate solution: An equivalent La- 446

grangian associated with the problem P5 is L(p, λ) = 1Tp + 447

λ
(
ηpTAp − bTp

)
, whose KKT conditions are 448

1 + λ
(
η
(
A + AT)p − b

)
= 0, (104)

ηpTAp − bTp = 0. (105)

The authors of [12] obtained the closed-form optimal solution 449

λ and p by jointly solving the two equations (104) and (105). 450

In particular, they calculated p̄ from (104) as 451

p̄ =

(
A + AT

)−1

η

(
b − 1

λ 1
)

, (106)

and then obtained p by imposing the power constraints 452

p
m = [p̄

m ]pm m a x
pm m in

, 1 ≤ m ≤ M. (107)

Unfortunately, this closed-form ‘optimal’ solution is gener- 453

ally invalid because in general A + AT is not invertible. 454

Lemma 2: The rank of A + AT is no more than 3. 455

Proof: 456

rank
(
A + AT) ≤ rank

(
a1,1
(
a2,2
)T − a1,2

(
a2,1
)T

+ a2,2
(
a1,1
)T − a2,1

(
a1,2
)T)

≤ rank
(
a1,1
(
a2,2
)T)+ rank

(
a1,2
(
a2,1
)T)

+ rank
(
a2,2
(
a1,1
)T) ≤ 3.

The second inequality is due to the fact that a1,2 = a2,1 . 457

Clearly, for any system with more than 3 transmit radars, the 458

solution of (106) is invalid, and the minimum eigenvalue ξmin of 459

A + AT is negative. We propose an approximate closed-form 460

solution by replacing the invalid
(
A + AT

)−1
in (106) by the 461

valid regularized form 462

B =
(
A + AT +

(
|ξmin | + ε

)
IM

)−1
, (108)

where ε is a small positive number, such as, ε = 0.0001. Thus 463

the ‘unconstrained’ power allocation is given as 464

p̄� =
B
η

(
b − 1

λ�
1
)

, (109)
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TABLE III
COMPLEXITY PER ITERATION OF THE ALGORITHM GIVEN IN [13], WHERE nin IS THE AVERAGE NUMBER OF INNER ITERATIONS IN INNER OPTIMIZATION

PROCEDURE

Fig. 2. Illustration of the MIMO radar system for: (a) three-target application,
and (b) single-target application.

where λ� is obtained by substituting p̄� into (105) and taking465

the positive solution as466

λ� =
−b +

√
b2 − 4ac

2a
, (110)

with467
⎧
⎪⎨

⎪⎩

a = bTBTABb − bTBb,

b = −21TBTATBbT + 2bTB1,

c = 1TBTAB1 − 1TB1.

(111)

The solution p� is then obtained by projecting p̄� onto the468

feasible region. This closed-form solution is inferior to the OCD-469

based and ADMM-based solutions in terms of its achievable470

performance, owing to its suboptimal nature.471

IV. CONVERGENCE AND COMPLEXITY ANALYSIS472

Recall from Section II and III that our optimization problem473

P1 of (24) is nonconvex, and both our ADMM and OCD algo-474

rithms are based on a Lagrangian function approach. It is widely475

acknowledged that the zero duality gap cannot be guaranteed476

for general nonconvex problems. However, Yu and Lui [24]477

proposed a theorem which guarantees the zero duality gap for478

the nonconvex problem that meets the ‘time-sharing condition’.479

In Appendix B, we proved that our optimization problem P1480

satisfies the time-sharing condition of [24]. Hence, the strong481

duality holds for P1. We are now ready to prove that both our482

two algorithms can converge to a local optimal point under some483

assumptions.484

A. Convergence of the Proposed Algorithms485

1) The ADMM-based algorithm: We first point out again486

that since our problem is nonconvex, the ADMM-based algo-487

rithm can only guarantee to converge to a local optimal solu-488

tion. The convergence of the ADMM method is proved for the489

convex optimization problem in [18], while Magnússon et al. 490

[25] extended the convergence results to the nonconvex case. 491

The convergence of our ADMM-based algorithm will be fur- 492

ther illustrated in Section V using simulations. 493

2) The OCD-based algorithm: Again, since our optimiza- 494

tion problem is nonconvex, the OCD-based algorithm can only 495

find a locally optimal solution. Collect all the primal variables 496

of the Lagrangian (32) together as y =
[
pT wT

]T
and denote 497

the cost function and the constraints of P3 respectively by 498

f(y) = 1Tp, (112)

g0(y) =
K∑

k=1

vkwkbT
k p − 1, (113)

gk (y) = wkηpTAkp − 1, 1 ≤ k ≤ K. (114)

According to Theorem 2 in Section 8.2.3 and Lemma 5 in 499

Section 2.1 of [26], to prove the convergence of the OCD al- 500

gorithm, we have to prove that the second derivatives ∇2f(y) 501

and ∇2gk (y) for 0 ≤ k ≤ K satisfy the Lipschitz condition in 502

a neighbourhood of the optimal primal point y . Note that 503

∇2f(y) = 0, (115)

∇2g0(y) =

⎡

⎢
⎢
⎢
⎣

0 v1b1 · · · vK bK

v1bT
1

...
vK bT

K

0

⎤

⎥
⎥
⎥
⎦

, (116)

∇2gk (y) = η

⎡

⎢
⎢
⎣

wk

(
Ak +AT

k

)
0
(
Ak +AT

k

)
p 0

0(
Ak +AT

k

)
pT

0
0

⎤

⎥
⎥
⎦ ,

1 ≤ k ≤ K. (117)

Since ∇2f (y) and ∇2g0 (y) are constants, they satisfy the 504

required Lipschitz condition. For pmin ≤ p ≤ pmax , all the el- 505

ements in the matrix ∇2gk (y), where 1 ≤ k ≤ K, are finite. 506

Therefore, it is easy to find a constant ς satisfying 507
∥
∥∇2gk (y1) −∇2gk (y2)

∥
∥ ≤ ς ‖y1 − y2‖ . (118)

Thus ∇2gk (y) satisfies the required Lipschitz condition too. 508

According to [26], under the assumption that the Hessian ma- 509

trix of the Lagrangian (32) with respect to y at the minimum pri- 510

mal point y =
(
p ,w

)
is positive definite, the Hessian matrix 511

of the Lagrangian (32) with respect to the primal and dual vari- 512

ables is negative definite at the optimal point
(
p ,w , λ ,μ

)
. 513

Then there exists a positive number κ = min
i

−�
[
ξ̄i

] ∣∣ξ̄i

∣
∣−2

, 514
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TABLE IV
SYSTEM PARAMETERS

where ξ̄i are the eigenvalues of the Hessian matrix of the La-515

grangian (32) with respect to the primal and dual variables at516 (
p ,w , λ ,μ

)
. Consequently, as long as the maximum of517

the four step sizes κmax = max
1≤i≤4

κi satisfies the condition of518

κmax ≤ κ, our scheme (37)–(40) will converge to the locally519

optimal point
(
p ,w , λ ,μ

)
when starting from a neigh-520

bourhood of
(
p ,w , λ ,μ

)
, according to [26]. In practice,521

κ is unknown. It is advisable to choose sufficiently small step522

sizes κi , 1 ≤ i ≤ 4, in order to ensure the convergence of the523

OCD scheme.524

Remark 4: A positive-definite Hessian matrix of the La-525

grangian (32) with respect to y at y is a sufficient condition526

for the convergence of the OCD scheme. If this Hessian matrix527

is semi-positive definite, we cannot prove the convergence of528

the OCD scheme based on the result of [26]. By adopting an529

exponentially decaying step size κmax ∝ e−αn , we ensure that530

our OCD algorithm works well in any situation.531

B. Complexity of Proposed Algorithms and Algorithm of [13]532

The complexity of our OCD and ADMM algorithms are sum-533

marized in Tables I and II, respectively. For the ADMM-based534

algorithm, since the penalty parameters are only updated in535

the first few iterations, the complexity associated with this part536

of operation is omitted. Additionally, we assume that Gauss-537

Jordan elimination is used for matrix inversion and, therefore,538

the number of flops required by inverting an M × M matrix is539

M 3 + M 2 + M . For the OCD-based algorithm, the complexity540

of computing the four step sizes is negligible and therefore it 541

is also omitted. Clearly, the complexity of the ADMM-based 542

algorithm is on the order of M 3 per iteration, which is denoted 543

by O
(
M 3
)
, while the complexity of the OCD-based algorithm 544

is on the order of O
(
M 2
)

per iteration. It will be shown by our 545

simulation results that the convergence speed of the ADMM al- 546

gorithm is at least one order of magnitude faster than that of the 547

OCD algorithm. Therefore, despite its higher per-iteration com- 548

plexity, the ADMM algorithm actually imposes a lower total 549

complexity, compared to the OCD algorithm. 550

The benchmark scheme of [13] invokes two iterative loops for 551

solving the optimization problem (25). Specifically, at each outer 552

iteration, the parameters of the inner quadratic constrained lin- 553

ear programming (QCLP) problem are updated, and the QCLP 554

problem is then solved iteratively in the inner iterative loop. We 555

assume that the interior-point method is used for solving this 556

inner QCLP, which requires nin iterations on average. Based on 557

the above discussions, the complexity of the algorithm of [13] is 558

summarized in Table III, where it is seen that the complexity per 559

inner iteration is on the order of O
(
M 3
)
. Thus the complexity 560

of our ADMM-based algorithm is only marginally higher than 561

that of the algorithm in [13], because they are both on the order 562

of O
(
M 3
)

per iteration. The algorithm of [13] requires a total 563

of nounin iterations to converge, where nou is the number of 564

iterations for the outer iterative loop. As it will be shown in 565

the simulation results, the number of iterations required for the 566

ADMM-based algorithm to converge is very close to the total 567

number of iterations nounin required by the algorithm of [13]. 568
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Fig. 3. Convergence performance of three algorithms, in terms of (a) total
power consumption, and (b) aggregate localization accuracy, for the three-target
case with v1 = 1, v2 = 2 and v3 = 1.

Fig. 4. Convergence performance of three algorithms, in terms of (a) total
power consumption, and (b) aggregate localization accuracy, for the three-target
case with v1 = v2 = v3 = 1.

In this sense, both algorithms require a similar total complexity 569

for solving their associated optimization problems. Although 570

our OCD-based algorithm enjoys a much lower complexity per 571

iteration than the algorithm of [13], it imposes a higher total 572

complexity. 573

V. SIMULATION RESULTS 574

Let us now evaluate the performance of the proposed al- 575

gorithms using a MIMO radar system having M = 5 trans- 576

mit radars and N = 7 receive radars. The algorithm of [13] is 577

used as the benchmark. Fig. 2 depicts both the triple-target and 578

single-target cases considered. The system parameters of both 579

the triple-target and single-target cases are listed in Table IV. The 580

localization accuracy threshold η is set to 15 m2 for the triple- 581

target case and 10 m2 for the single-target case. The exponential 582

decaying factor is empirically chosen to be α = 0.0005 for the 583

four step sizes of the OCD algorithm. 584

A. Triple-Target Case 585

We consider the two sets of the importance weightings for 586

the three targets given by: i) v1 = 1, v2 = 2 and v3 = 1, and 587

ii) v1 = v2 = v3 = 1. For the sake of a fair comparison to the 588

algorithm of [13], the effects of these weightings have to be taken 589

into consideration, and the target estimation error thresholds 590

for the three constraints of the optimization problem (25) are 591

suitably scaled as 592

bT
1 p

pTA1p
≤ η̄1 ,

bT
2 p

pTA2p
≤ η̄2 ,

bT
3 p

pTA3p
≤ η̄3 ,

with η̄1 = 1
3v1

η, η̄2 = 1
3v2

η and η̄3 = 1
3v3

η. For our ADMM 593

algorithm, the initial values of the dual variables are set to 594

e(0) = [1 1 1 1 1]T , μ(0) = 1 and γ
(0)
k = 1 for 1 ≤ k ≤ 3, while 595

all the initial penalty parameters are set to 500. For our OCD 596

algorithm, the initial values of the dual variables are set to 597

λ(0) = 1 and μ
(0)
k = 1 for 1 ≤ k ≤ 3. Additionally, the four 598

constants in the four step sizes of the OCD algorithm are set 599

to c1 = 0.3, c2 = 1.0, c3 = 1.5 and c4 = 1.1 for the senario i), 600

while they are set to c1 = 0.3, c2 = 0.9, c3 = 1.5 and c4 = 1.1 601

for the senario ii). These parameters were found empirically to 602

be appropriate for the corresponding application scenarios. For 603

the algorithm of [13], we use the CVX software to solve its inner 604

QCLP problem. In our simulations, we observe that the CVX 605

converges within 25 to 35 iterations. Therefore, we will assume 606

that the average number of inner iterations for the algorithm of 607

[13] is nin = 30. Q1608

Fig. 3 compares the total power allocations p and the ag- 609

gregate localization accuracy results of
∑3

k=1
bT

k p
pT Ak p obtained 610

by the three algorithms for the senario i), while Fig. 4 depicts 611

the results for the senario ii). It can be seen that the number of 612

iterations required by the ADMM-based algorithm to converge 613

is similar to the total number of iterations nounin required by 614

the algorithm of [13], while the convergence speed of the OCD- 615

based algorithm is considerably slower than that of the other 616

two algorithms. As expected, our algorithms outperform the al- 617

gorithm of [13] in terms of its total power consumption, albeit 618

at the expense of some degradation in localization accuracy. 619
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TABLE V
PERFORMANCE COMPARISON OF THREE ALGORITHMS FOR THE THREE-TARGET CASE

The average results are obtained over 1000 random simulation experiments.

Fig. 5. Convergence performance of three algorithms, in terms of (a) total
power consumption, and (b) aggregate localization accuracy, in comparison
with the EPA and the closed-form solution, for the single-target case.

Table V details how our algorithms trade the localization accu-620

racy against the transmit power, in comparison to the algorithm621

of [13]. Specifically, for the senario of i), our ADMM algorithm622

achieves 28.9% power saving at the cost of 25.3% degradation623

in aggregate localization accuracy, while our OCD algorithm624

trades 27.9% power saving against 27.9% degradation in lo-625

calization accuracy. For the equal weighting senario of ii), the626

savings in power achieved by our two algorithms are consid-627

erably smaller but the losses in localization accuracy are also628

significantly smaller, compared with the senario i). To obtain629

statistically relevant comparison, we carry out 1000 simulations630

by randomly locating all the transmit radars and receive radars at 631

the radius R = 3000(0.5 + εx) m with the angular rotations of 632

θ = 2πεy , where εx and εy are uniformly distributed in [0, 1.0]. 633

The average power saving and degradation in localization accu- 634

racy over the 1000 random experiments are listed in the last two 635

rows of Table V. 636

B. Single-Target Case 637

The four constants in the four step sizes of the OCD al- 638

gorithm are set to c1 = c2 = 1.0 and c3 = c4 = 0.3, which is 639

empirically found to be appropriate for this application senario. 640

Fig. 5 characterizes the performance of our ADMM-based and 641

OCD-based algorithms as well as the algorithm of [13]. As ex- 642

pected, all the three algorithms attain the same performance, 643

both in terms of total power allocated and localization accu- 644

racy, since the underlying optimization problems are identical 645

in the single-target case. In terms of convergence speed, our 646

ADMM-based algorithm outperforms the algorithm of [13], 647

while the OCD-based algorithm is considerably slower than the 648

algorithm of [13]. In Fig. 5 (a), we also characterize the equal- 649

power allocation (EPA) scheme and the closed-form solution of 650

SubSection III-B3. It can be seen that our closed-form solu- 651

tion performs significantly better than the EPA scheme, but it 652

is inferior to the other three iterative algorithms because the 653

suboptimal nature of this closed-form solution. 654

VI. CONCLUSION 655

The target localization problem of distributed MIMO radar 656

systems has been investigated, which minimizes the power of 657

the transmit radars, while meeting a required localization ac- 658

curacy. We have proposed the OCD-based and ADMM-based 659

iterative algorithms to solve this nonconvex optimization prob- 660

lem. Both the algorithms are capable of converging to a local 661

optimum. The OCD algorithm imposes a much lower com- 662

putational complexity per iteration, while the ADMM algo- 663

rithm achieves a much faster convergence. For the multi-target 664

senario, we have shown how our proposed approach trades the 665

power saving with some degradation in localization accuracy, 666
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compared with that of state-of-the-art scheme [13]. We have also667

demonstrated that our ADMM-based algorithm and the existing668

state-of-the-art scheme have similar computational complexity669

and convergence speed. For the single-target senario, we have670

confirmed that our algorithms and the benchmark attain the same671

performance in terms of both power consumption and localiza-672

tion accuracy, because the underlying optimization problems673

become identical.674

APPENDIX675

A. Derivation of Updating Formulae for Penalty Parameters676

The optimal solution to the P4 of (45) should be primal and677

dual feasible, that is,678

p(n+1) − z(n+1) = 0, (119)

K∑

k=1

w
(n+1)
k vkbT

k p(n+1) − 1 = 0, (120)

wk

(
z(n+1))TAkp(n+1)η − 1 = 0, 1 ≤ k ≤ K, (121)

∂L′(p, z(n+1) ,w(n+1) ,d(n+1)
0 , d

(n+1)
1 ,d(n+1)

2

)

∂p
= 0, (122)

∂L′(p(n+1) , z(n+1) ,w,d(n+1)
0 , d

(n+1)
1 ,d(n+1)

2

)

∂w
= 0, (123)

∂L′(p(n+1) , z,w(n+1) ,d(n+1)
0 , d

(n+1)
1 ,d(n+1)

2

)

∂z
= 0, (124)

where L′(p,w, z,d0 , d1 ,d2
)

is the Lagrangian of (45), which679

can be separated into three parts680

L′(p,w, z,d0 , d1 ,d2
)

= 1Tp + dT
0 (p − z)

︸ ︷︷ ︸
L ′

0 (p,z,d0 )

+

d1

(
K∑

k=1

wkvkbT
k p − 1

)

︸ ︷︷ ︸
L ′

1 (p,w ,d1 )

+
K∑

k=1

d2,k

(
wkzTAkpη − 1

)

︸ ︷︷ ︸
L ′

2 (p,w ,z,d2 )

.

(125)

However, the ADMM-based algorithm uses the augmented681

Lagrangian of682

L(p,w, z,d0 , d1 ,d2) = 1Tp +
ρ0

2
‖p − z‖2 + dT

0 (p − z)
︸ ︷︷ ︸

L0 (p,z,d0 )

+
ρ1

2

∣
∣
∣
∣
∣

K∑

k=1

wkvkbT
k p − 1

∣
∣
∣
∣
∣

2

+ d1

(
K∑

k=1

wkvkbT
k p − 1

)

︸ ︷︷ ︸
L1 (p,w ,d1 )

+
K∑

k=1

ρ2,k

2

∣
∣wkzTAkpη−1

∣
∣2 +

K∑

k=1

d2,k

(
wkzTAkpη−1

)

︸ ︷︷ ︸
L2 (p,w ,z,d2 )

,

(126)

which can be divided into three parts, and all the primal and 683

dual variables are updated one by one. Thus, in every iteration, 684

there exist primal and dual residuals. 685

Specifically, in the (n + 1)th iteration, the primal residuals 686

are given by r
(n+1)
0 of (65), r

(n+1)
1 of (66), and r

(n+1)
2,k for 687

1 ≤ k ≤ K of (67), while the dual residuals are defined via 688

dr =
√

‖dr0‖2 + ‖dr1‖2 + ‖dr2‖2 , (127)

with 689

dr0 =
∂L
(
p, z(n) ,w(n) ,d(n)

0 , d
(n)
1 ,d(n)

2

)

∂p

−
∂L′(p, z(n+1) ,w(n+1) ,d(n+1)

0 , d
(n+1)
1 ,d(n+1)

2

)

∂p
,

(128)

dr1 =
∂L
(
p(n+1) , z(n) ,w,d(n)

0 , d
(n)
1 ,d(n)

2

)

∂w

−
∂L′(p(n+1) , z(n+1) ,w,d(n+1)

0 , d
(n+1)
1 ,d(n+1)

2

)

∂w
,

(129)

dr2 =
∂L
(
p(n+1) , z,w(n+1) ,d(n)

0 , d
(n)
1 ,d(n)

2

)

∂z

−
∂L′(p(n+1) , z,w(n+1) ,d(n+1)

0 , d
(n+1)
1 ,d(n+1)

2

)

∂z
.

(130)

It can be seen that the primal residuals r
(n+1)
0 , r

(n+1)
1 and 690

r
(n+)
2,k for 1 ≤ k ≤ K are related to L0(p, z,d0), L1(p,w, d1) 691

and L2(p,w, z,d2), respectively. Therefore, we will similarly 692

‘separate’ the dual residuals into s
(n+1)
0 , s

(n+1)
1 and s

(n+1)
2,k for 693

1 ≤ k ≤ K, corresponding to L0(p, z,d0), L1(p,w, d1) and 694

L2(p,w, z,d2), respectively. 695

In order to analyze the updating formula (75) for the penalty 696

parameter ρ0 , we have to calculate s
(n+1)
0 as follows 697

s
(n+1)
0 =

(∥
∥
∥

∂L0
(
p(n+1) , z,d(n)

0

)

∂z
−

∂L′
0
(
p(n+1) , z,d(n+1)

0

)

∂z

∥
∥
∥

2

+
∥
∥
∥
∂L0
(
p, z(n) ,d(n)

0

)

∂p
−

∂L′
0
(
p, z(n+1) ,d(n+1)

0

)

∂p

∥
∥
∥

2
) 1

2

.

(131)

By evaluating the required four partial derivatives and plugging 698

them into (131), we arrive at the dual residual s
(n+1)
0 of (68). 699

Note that a large value for ρ0 adds a large penalty on the violation 700

of primal feasibility and, therefore, a large ρ0 reduces the primal 701

residual r
(n+1)
0 . On the other hand, from the expression (68), it 702

is seen that a small ρ0 reduces the dual residual s
(n+1)
0 . Thus, 703

in order to balance the primal and dual residuals r
(n+1)
0 and 704

s
(n+1)
0 , the penalty parameter ρ0 is updated according to (75), 705

which is beneficial to convergence. 706
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Similarly, it can be shown that the dual residual s
(n+1)
1 re-707

lated to L1(p,w, d1) is given by (69) and (71), while the dual708

residuals s
(n+1)
2,k for 1 ≤ k ≤ K related to L2(p,w, z,d2) are709

specified by (70), (72) and (73). Following the same logic of710

balancing the primal and dual residuals, the updating formulae711

for the penalty parameters ρ1 and ρ2,k are specified by (76) and712

(78), respectively.713

B. Proof of the Time-Sharing Condition for Problem P1714

According to [24], the time-sharing condition for the op-715

timization problem P1 of (24) is as follows. Time-sharing716

condition: Let p1 and p2 be the optimal solutions of P1 in717

conjunction with η = η1 and η = η2 , respectively. P1 is said718

to satisfy the time-sharing condition if for any η1 and η2719

and for any 0 ≤ ξ ≤ 1, there always exists a feasible solu-720

tion p3 so that
K∑

k=1
vk

bT
k p3

pT
3 Ak p3

≤ ξη1 + (1 − ξ)η2 and 1Tp3 ≥721

ξ1Tp1 + (1 − ξ)1Tp2 .722

According to Lemma 1, if we set p3 = pmax , then723

K∑

k=1

vk
bT

k p3

pT
3 Akp3

≤ η1 and
K∑

k=1

vk
bT

k p3

pT
3 Akp3

≤ η2 .

Hence724

K∑

k=1

vk
bT

k p3

pT
3 Akp3

= ξ

K∑

k=1

vk
bT

k p3

pT
3 Akp3

+ (1 − ξ)
K∑

k=1

vk
bT

k p3

pT
3 Akp3

≤ ξη1 + (1 − ξ)η2 ,

1Tp3 = ξ1Tp3 + (1 − ξ)1Tp3 ≥ ξ1Tp1 + (1 − ξ)1Tp2 .

Therefore, P1 satisfies the time-sharing condition and the dual725

gap for our nonconvex problem is zero.726

REFERENCES727

[1] J. Li and P. Stoica, MIMO Radar Signal Processing. Hoboken, NJ, USA:728
Wiley, 2009.729

[2] Y. Yu, A. P. Petropulu, and H. V. Poor, “Measurement matrix design for730
compressive sensing–based MIMO radar,” IEEE Trans. Signal Process.,731
vol. 59, no. 11, pp. 5338–5352, Nov. 2011.732

[3] S. Gogineni and A. Nehorai, “Target estimation using sparse modeling for733
distributed MIMO radar,” IEEE Trans. Signal Process., vol. 59, no. 11,734
pp. 5315–5325, Nov. 2011.735

[4] Y. Yao, A. P. Petrppulu, and H. V. Poor, “CSSF MIMO radar: Compressive-736
sensing and step-frequency based MIMO radar,” IEEE Trans. Aerosp.737
Electron. Syst., vol. 48, no. 2, pp. 1490–1504, Apr. 2012.738

[5] J. Xu, X.-Z. Dai, X.-G. Xia, L.-B. Wang, J. Yu, and Y.-N. Peng, “Opti-739
mization of multisite radar system with MIMO radars for target detec-740
tion,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 4, pp. 2329–2343,741
Oct. 2011.742

[6] E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and743
R. A. Valenzuela, “Spatial diversity in radars-models and detection per-744
formance,” IEEE Trans. Signal Process., vol. 54, no. 3, pp. 823–838,745
Mar. 2006.746

[7] Q. He, N. H. Lehmann, R. S. Blum, and A. M. Haimovich, “MIMO-radar747
moving target detection in homogeneous clutter,” IEEE Trans. Aerosp.748
Electron. Syst., vol. 46, no. 3, pp. 1290–1301, Jul. 2010.749

[8] Q. He, R. S. Blum, H. Godrich, and A. M. Haimovich, “Cramer-Rao750
bound for target velocity estimation in MIMO radar with widely separated751

antennas,” in Proc. 42nd Annu. Conf. Inf. Sci. Syst., Mar. 19–21, 2008, 752
pp. 123–127. 753

[9] H. Godrich, A. M. Haimovich, and R. S. Blum, “Target localisation tech- 754
niques and tools for multiple-input multiple-output radar,” IET Radar, 755
Sonar Navigat., vol. 3, no. 4, pp. 314–327, Aug. 2009. 756

[10] Q. He, R. S. Blum, H. Godrich, and A. M. Haimovich, “Target velocity 757
estimation and antenna placement for MIMO radar with widely separated 758
antennas,” IEEE J. Sel. Topics Signal Process., vol. 4, no. 1, pp. 79–100, 759
Feb. 2010. 760

[11] H. Godrich, A. M. Haimovich, and R. S. Blum, “Target localization accu- 761
racy gain in MIMO radar-based systems,” IEEE Trans. Inf. Theory, vol. 56, 762
no. 6, pp. 2783–2803, Jun. 2010. 763

[12] H. Godrich, A. P. Petropulu, and H. V. Poor, “Power allocation strategies 764
for target localization in distributed multiple-radar architectures,” IEEE 765
Trans. Signal Process., vol. 59, no. 7, pp. 3226–3240, Jul. 2011. 766

[13] N. Garcia, A. M. Haimovich, M. Coulon, and M. Lops, “Resource alloca- 767
tion in MIMO radar with multiple targets for non-coherent localization,” 768
IEEE Trans. Signal Process., vol. 62, no. 10, pp. 2656–2666, May 2014. 769

[14] N. H. Lehmann et al., “Evaluation of transmit diversity in MIMO-radar 770
direction finding,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 2215– 771
2225, May 2007. 772

[15] C. Wei, Q. He, and R. S. Blum, “Cramer-Rao bound for joint location and 773
velocity estimation in multi-target non-coherent MIMO radars,” in Proc. 774
44th Annu. Conf. Inf. Sci. Syst., Mar. 17–19, 2010, pp. 1–6. 775

[16] Q. He and R. S. Blum, “CramerRao bound for MIMO radar target lo- 776
calization with phase errors,” IEEE Signal Process. Lett., vol. 17, no. 1, 777
pp. 83–86, Jan. 2010. 778

[17] A. J. Conejo, E. Castillo, R. Minguez, and R. Garcia-Bertrand, Decomposi- 779
tion Techniques in Mathematical Programming: Engineering and Science 780
Applications. Berlin, Germany: Springer-Verlag, 2006. 781

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed 782
optimization and statistical learning via the alternating direction method 783
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 784
2011. 785

[19] A. Simonetto and G. Leus, “Distributed maximum likelihood sensor net- 786
work localization,” IEEE Trans. Signal Process., vol. 62, no. 6, pp. 1424– 787
1437, Mar. 2014. 788

[20] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume II: 789
Detection Theory. Upper Saddle River, NJ, USA: Prentice-Hall, 1998. 790

[21] H. Godrich, A. M. Haimovich, and R. S. Blum, “Cramer Rao bound on 791
target localization estimation in MIMO radar systems,” in Proc. 42nd 792
Annu. Conf. Inf. Sci. Syst., Mar. 19–21, 2008, pp. 134–139. 793

[22] H. Godrich, A. P. Petropulu, and H. V. Poor, “Sensor selection in dis- 794
tributed multiple-radar architectures for localization: A knapsack problem 795
formulation,” IEEE Trans. Signal Process., vol. 60, no. 1, pp. 247–260, 796
Jan. 2012. 797
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Q1. Author: “Scenario” is spelled as “senario.” Please check. 904

Q2. Author: Please provide full bibliographic details in Ref. [25]. 905


