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Abstract—The problem of estimating sparse eigenvectors of a
symmetric matrix attracts a lot of attention in many applications,
especially those with high dimensional data set. While classical
eigenvectors can be obtained as the solution of a maximization
problem, existing approaches formulate this problem by adding a
penalty term into the objective function that encourages a sparse
solution. However, the resulting methods achieve sparsity at the
expense of sacrificing the orthogonality property. In this paper, we
develop a new method to estimate dominant sparse eigenvectors
without trading off their orthogonality. The problem is highly
non-convex and hard to handle. We apply the MM framework
where we iteratively maximize a tight lower bound (surrogate
function) of the objective function over the Stiefel manifold. The
inner maximization problem turns out to be a rectangular Pro-
crustes problem, which has a closed form solution. In addition, we
propose a method to improve the covariance estimation problem
when its underlying eigenvectors are known to be sparse. We
use the eigenvalue decomposition of the covariance matrix to
formulate an optimization problem where we impose sparsity
on the corresponding eigenvectors. Numerical experiments show
that the proposed eigenvector extraction algorithm matches or
outperforms existing algorithms in terms of support recovery and
explained variance, while the covariance estimation algorithms
improve significantly the sample covariance estimator.

Index Terms—Sparse PCA, Procrustes, Stiefel manifold,
minorization-maximization, covariance estimation.

I. INTRODUCTION

Principal Component Analysis (PCA) is a popular technique
for data analysis and dimensionality reduction [1]. It has been
used in various fields of engineering and science with a large
number of applications such as machine learning, financial
asset trading, face recognition, and gene expression data anal-
ysis. Given a data matrix A ∈ Rn×m, with rank(A) = r, PCA
finds sequentially orthogonal unit vectors v1, . . . ,vr, such that
the variance of Avi, which essentially is the projection of the
data on the direction vi, for i = 1, . . . , r, is maximized. The
directions vi are known as principal component (PC) loadings
while Avi are the corresponding principal components (PCs).
The PC loadings correspond to the right singular vectors of A
or to the eigenvectors of the corresponding sample covariance
matrix S = 1

nA
TA.

PCA has many optimal properties that made it so widely
used. First, it captures the directions of maximum variance
of the data, thus we can compress the data with minimum
information loss. Further, these directions are orthogonal to
each other, i.e., they form an orthonormal basis. Finally, the
PCs are uncorrelated which aids further statistical analysis. On
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the other hand, a particular disadvantage of PCA is that the
PCs are usually linear combinations of all variables, i.e., the
eigenvectors of S are dense. Even if the underlying covariance
matrix from which the samples are generated indeed has sparse
eigenvectors, we do not expect to get a sparse result due to
estimation error. Further, in many applications, the PCs have
an actual physical meaning (e.g. gene expression). Thus, a
sparse eigenvector could help significantly the interpretability
of the result.

Many different techniques have been proposed in this direc-
tion during the last two decades. In one of the first approaches,
Jolliffe used various rotating techniques to obtain sparse
loading vectors [2]. He showed though that it is impossible
to preserve both the orthogonality of the loadings and the
uncorrelatedness of the rotated components. In the same year,
Cadima and Jolliffe suggested to simply set to zero all the
elements that their absolute value is smaller than a threshold
[3]. In [4], the authors propose the SCoTLASS algorithm
which maximizes the Rayleigh quotient of the covariance
matrix, while sparsity is enforced with the Lasso penalty
[5]. Many recent approaches are based on reformulations or
convex relaxations. For example in [6], Zou et al. formulate
the sparse PCA problem as a ridge regression problem and
they impose sparsity again using the Lasso penalty. In [7],
d’Aspremont et al. form a semidefinite program (SDP) after
a convex relaxation of the sparse PCA problem, leading to
the DSPCA algorithm. In [8], the authors propose a greedy
algorithm accompanied with a certificate of optimality. Low
rank approximation of the data matrix is considered in [9],
under sparsity penalties, while in [10], Journeé et al. refor-
mulated the problem as an alternating optimization problem,
resulting in the GPower algorithm. This algorithm turns out
to be identical to the rSVD algorithm in [9], except for the
initialization and the post-processing phases. Similar power-
type truncation methods were considered in [11], [12]. In
[13], the authors ppropose a truncated power iteration method.
This method is similar to the classical power method, with an
additional truncation operation to ensure sparsity. Finally, in
[14], the sparse generalized eigenvalue problem is considered
only for the first principal component, where the minorization-
maximization (MM) framework is used.

In all the aforementioned algorithms, apart from the fact that
the PCs are correlated, the orthogonality property of the load-
ings is also sacrificed for sparse solutions. The only exception
is the SCoTLASS algorithm that is suboptimal in the sense
that it does not find jointly a sparse basis, but sequentially.
The advantages of an orthogonal basis are well known. For
instance, an orthonormal basis can be extremely useful since
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it can reduce the potential computational cost of any post-
processing phase; this may not seem much for vector spaces
of small dimension but it is invaluable for high dimensional
vector spaces or function spaces. Consider for example the
solution of a linear system via Gaussian elimination. It requires
O(m3) operations for a non-orthogonal basis, compared to
O(m) operations if the basis is orthogonal, where m is the
dimension. This, among other optimal properties, motivates us
to find sparse loading vectors that maintain their orthogonality.

Another issue in many contemporary applications is that
the number of features m in the corresponding datasets is
extremely large while in many cases the number of samples
n is limited. It is well know by now that the sample co-
variance S can be a very poor estimate of the population
covariance matrix Σ if the number of samples is restricted.
Since the population covariance matrix Σ is unknown, the
classical PCA estimates the leading population eigenvectors
by the sample covariance matrix S, which coincides with the
maximum likelihood estimator (MLE) if n ≥ m and under the
assumption that the samples are independent and identically
distributed (i.i.d.), drawn from an m-dimensional Gaussian
distribution. Many methods have been proposed to improve
the covariance estimation in different settings and for different
applications, e.g., for some representative works see [15]–[22]
and references therein. None of them has considered though to
combine the prior information of sparsity in the eigenvectors
with the covariance estimation.

In this paper we focus and solve the two aforementioned
problems: 1) the orthogonal sparse eigenvector extraction and
2) the joint covariance estimation with sparse eigenvectors.
First, we apply the MM framework on the sparse PCA
problem which results in solving a sequence of rectangular
Procrustes problems. With this approach, we obtain sparse
results but with the orthogonality property retained. Then, we
consider low sample settings where the population covariance
matrices are known to have sparse eigenvectors. We formulate
a covariance estimation problem where we impose sparsity
on the eigenvectors. We propose two methods, i.e., alternating
and joint estimation of the eigenvalues and eigenvectors, based
on the MM framework. Both methods reduce to an iterative
closed-form update with bounded iterations for the eigenvalues
and a sequence of Procrustes problems for the eigenvectors,
which maintain their orthogonality.

Throughout the paper we consider real-valued matrices for
simplicity. However, all the results hold for complex-valued
matrices with trivial modifications: in the complex-valued case
|xi| denotes the modulus of xi rather than the absolute value,
while we should replace the transpose operation (i.e., (·)T )
with the conjugate transpose operation (i.e., (·)H ). Finally, we
do not assume direct access to the data matrixA. Nevertheless,
all the formulations hold if either the data matrix A or the
sample covariance matrix S is provided.

The rest of the paper is organized as follows: In Section
II we first formulate the sparse eigenvector extraction and
the covariance estimation problems. Then, we give a short
review of the MM framework which will be the main tool
to tackle both of the aforementioned problems. Finally we
present the Procrustes problem since the solution of both

of our problems involve certain Procrustes reformulations. In
Section III we present the solution of the sparse eigenvector
extraction problem. In Section IV we consider the problem of
joint covariance estimation with sparse eigenvectors and we
propose two algorithms to iteratively minimize the associated
objective function. Section V presents numerical experiments
on artificial and real data and the conclusions are given in
Section VI.

Notation: R denotes the real field, Rm (Rm+ ) the set of (non-
negative) real vectors of size m, and Rn×m the set of real
matrices of size n × m. Vectors are denoted by bold lower
case letters and matrices by bold capital letters i.e., x and X ,
respectively. The i-th entry of a vector is denoted by xi, the
i-th column of matrix X by xi, and the (i-th,j-th) element
of a matrix by xij . A size m vector of ones is denoted by
1m, while Im denotes the identity matrix of size m. vec(·)
denotes the vectorized form of a matrix. The superscripts
(·)T and (·)H denote the transpose and conjugate transpose
of a matrix, respectively, and Tr(·) its trace. Diag(X) is a
column vector consisting of all the diagonal elements of X
and diag(x) is a diagonal matrix formed with x at its principal
diagonal. Given a vector x ∈ Rmn, [x]m×n is an m × n
matrix such that vec([x]m×n) = x. ‖x‖0 denotes the number
of nonzero elements of a vector x ∈ Rm. S < 0 means that
the symmetric matrix S is positive semidefinite, while λ(S)max

denotes its maximum eigenvalue. X ⊗ Y is the Kronecker
product of the matrices X and Y . N (µ,Σ) denotes the
normal distribution with mean µ and covariance matrix Σ.
card(A) denotes the cardinality of the set A, A

⋃
B denotes

the union of the sets A and B, and A \ B their difference.
[i : j] with i ≤ j, denotes the set of all integers between (and
including) i and j.

II. PROBLEM STATEMENT AND BACKGROUND

A. Sparse Eigenvector Extraction

Given a data matrix A ∈ Rn×m, encoding n samples of
dimension m, we can extract the leading eigenvector of the
scaled sample covariance matrix S = ATA by solving the
following optimization problem:

maximize
u

uTSu

subject to uTu = 1.
(1)

In order to get a sparse result, we can include a regularization
term in the objective that imposes sparsity, i.e.,

maximize
u

uTSu− ρ‖u‖0

subject to uTu = 1,
(2)

where ρ is a regularization parameter.
Problem (2) can be generalized to extract multiple eigen-

vectors as follows:

maximize
U

Tr
(
UTSUD

)
−

q∑
i=1

ρi‖ui‖0

subject to UTU = Iq.

(3)

Here, q is the number of eigenvectors we wish to estimate,
U ∈ Rm×q , and D < 0 is a diagonal matrix giving weights
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to the different eigenvectors. In the case where q = m, D
should be different from the (scaled) identity matrix since the
first term reduces to a constant and U? = Pm, where Pm is
a permutation matrix of size m.

The optimization problem (3) involves the maximization of
a non-concave discontinuous objective function over a non-
convex set, thus the problem is too hard to deal with directly.

In order to deal with the discontinuity of the `0-norm, we
approximate it by a continuous function gp(x), where p >
0 is a parameter that controls the approximation. Following
[14], we consider an even function defined on R, which is
differentiable everywhere except at 0, concave and monotone
increasing on [0,+∞), with gp(0) = 0. Among the functions
that satisfy the aforementioned criteria, in this paper we choose
the function

gp(x) =
log (1 + |x|/p)
log (1 + 1/p)

, (4)

with 0 < p ≤ 1. This function is also used to replace the `1-
norm in [23], and leads to the iteratively reweighted `1-norm
minimization algorithm.

The function gp(·) is not smooth which may cause an op-
timization algorithm to get stuck at a non-differentiable point
[24]. To handle non-smoothness of gp(·) we use a smoothened
version, based on Nesterov’s smooth minimization technique
presented in [25] and following the results of [14], which is
defined as:

gεp (x) =


x2

2ε(p+ε) log(1+1/p) , |x| ≤ ε,
log( p+|x|p+ε )+ ε

2(p+ε)

log(1+1/p) , |x| > ε,
(5)

with 0 < p ≤ 1 and 0 < ε� 1.
This leads to the following approximate problem:

maximize
U

Tr
(
UTSUD

)
−

q∑
j=1

ρj

m∑
i=1

gεp (uij)

subject to UTU = Iq.

(6)

The problem presented in [14], is a special case of the
above optimization problem, with q = 1. Nevertheless, it is not
possible to follow the same procedure as in [14] to solve the
problem due to the orthogonality constraint. Instead, we tackle
this problem using the MM algorithm, which results in solving
a sequence of rectangular Procrustes problems that have a
closed-form solution based on singular value decomposition
(SVD).

B. Covariance Estimation

We first consider a typical covariance estimation problem.
We assume that the random variable x ∈ Rm follows a
zero mean Gaussian distribution with covariance Σ, i.e., x ∼
N (0,Σ). Given n ≥ m i.i.d. samples xi, with i = 1, . . . , n,
our goal is to estimate Σ. The maximum likelihood estimator
of Σ is given by the solution of the following problem:

minimize
Σ

log det (Σ) + Tr
(
SΣ−1

)
subject to Σ < 0,

(7)

where S is the sample covariance matrix, i.e.,

S =
1

n

n∑
i=1

xix
T
i . (8)

The above problem is not convex but it can be easily trans-
formed into a convex one by setting Ψ = Σ−1. With this
transformation we get:

minimize
Ψ

− log det (Ψ) + Tr (SΨ)

subject to Ψ < 0.
(9)

The optimal solution of this problem is Ψ = S−1, thus, the
MLE of the covariance matrix is Σ = S, which is simply the
sample covariance matrix.

Now, we would like to estimate the population covariance
matrix Σ while we impose sparsity on its eigenvectors. Thus,
we need to reformulate the covariance estimation problem
in terms of eigenvalues and eigenvectors. Further, we add
a cardinality penalty on the q principal eigenvector. Notice
though that we estimate all m eigenvectors and not only the
q principal ones since it is a covariance estimation and not an
eigenvector extraction problem.

Consider the eigenvalue decomposition of Ψ, i.e., Ψ =
UΛUT , with U ,Λ ∈ Rm×m and Λ = diag(λ) < 0. Then,
we can formulate our problem as follows:

minimize
U ,Λ

−log det(Λ)+Tr
(
SUΛUT

)
+

q∑
i=1

ρi‖ui‖0

subject to Λ < 0,

λi ≤ λi+1, i = 1, . . . , q − 1, (10)
λq ≤ λq+i, i = 1, . . . ,m− q,
UTU = I.

Let us first make some comments on the above problem.
We penalize the cardinality of the first q ≤ m principal
eigenvectors where each of them is associated with a different
sparsity inducing parameter ρi. Thus, we need to keep the
order of the first q eigenvectors intact. We succeed this by
imposing ordering to the corresponding eigenvalues. Notice
also that the principal eigenvector corresponds to the smallest
eigenvalue of Ψ since Ψ = Σ−1.

It will be useful in the following to expand the sparsity
term and include all eigenvectors by setting the redundant
sparsity inducing parameters to zero, i.e., ρi = 0 for i =
q + 1, . . . ,m. Again, we approximate the `0-norm by a
differentiable function gεp (·), given by (5). This leads to the
following approximate problem:

minimize
U ,Λ

− log det (Λ) + Tr
(
SUΛUT

)
+

m∑
j=1

ρj

m∑
i=1

gεp (uij)

subject to Λ < 0,

λi ≤ λi+1, i = 1, . . . , q − 1,

λq ≤ λq+i, i = 1, . . . ,m− q,
UTU = I.

(11)
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Although in (11) we have approximated the objective of
(10) with a continuous and differentiable function, the problem
still remains too hard to deal with directly since it involves the
minimization of a non-convex function over a non-convex set.

C. Shrinkage

In the case where the number of samples is less than the
dimension of the problem, i.e., when n < m, the sample
covariance matrix S is low rank. As a result, all the covariance
estimation problems that were presented are unbounded below.

We can overcome this problem, for example, by shrinking
the sample covariance matrix towards an identity matrix [16],
[26], i.e.,

Ssh = (1− δ)S + δIm, (12)

with 0 < δ ≤ 1. With this technique we bound the minimum
eigenvalue of Ssh by δ, the matrix becomes full rank and the
optimization problems are now well defined. The effect of
shrinkage in the estimation of Σ will be shown in Section V.

D. Review of the MM framework

The minorization-maximization (if we maximize) or
majorization-minimization (if we minimize) algorithm is a
way to handle optimization problems that are too difficult to
face directly [27]. Consider a general optimization problem

maximize
x

f (x)

subject to x ∈ X ,

where X is a closed set. At a given point x(k), the
minorization-maximization algorithm finds a surrogate func-
tion g

(
x|x(k)

)
of f (x) satisfying the following properties:

• f
(
x(k)

)
= g

(
x(k)|x(k)

)
,

• f (x) ≥ g
(
x|x(k)

)
, ∀x ∈ X .

Then x is iteratively updated (with k denoting iterations) as:

x(k+1) = arg max
x∈X

g
(
x|x(k)

)
. (13)

It can be seen easily that f
(
x(k)

)
≤ f

(
x(k+1)

)
holds.

The majorization-minimization algorithm works in an
equivalent way, such that in each update f

(
x(k)

)
≥

f
(
x(k+1)

)
holds.

In practice, it is not a trivial task to find a surrogate function
such that the maximizer of the minorization (or minimizer of
the majorization) function of the objective can be found easily
or even have a closed-form solution. The following lemma
will be useful for the MM algorithms that will be derived
throughout this paper:

Lemma 1. On the set
{
U ∈ Rm×q|UTU = Iq

}
, the function∑q

j=1 ρj
∑m
i=1 g

ε
p (uij) is majorized at U0 by 2Tr

(
HTU

)
+

c, where

H = [diag (w −wmax ⊗ 1m) vec(U0)]m×q (14)

and

c = 2
(
1Tq wmax

)
− vec(U0)

T diag (w) vec(U0). (15)

The weights w ∈ Rmq+ are given by

wi =

{
ρi

2ε(p+ε) log(1+1/p) , |u0,i| ≤ ε,
ρi

2 log(1+1/p)|u0,i|(|u0,i|+p) , |u0,i| > ε,
(16)

where u0 = vec (U0), and wmax ∈ Rq+, with wmax,i being
the maximum weight that corresponds to u0,i.

Proof. See Appendix A.

E. Procrustes problems

Consider the following optimization problem:

maximize
X

Tr
(
Y TX

)
subject to XTX = Iq,

(17)

where X,Y ∈ Rm×q . Notice that problem (17) is equivalent
to

minimize
X

‖X − Y ‖2F

subject to XTX = Iq,
(18)

which is a Procrustes problem.

Lemma 2. For m = q (m > q), problem (17) can be trans-
formed into an orthogonal (rectangular) Procrustes problem
and its optimal solution is X? = V LV

T
R, where V L,V R are

the left and right singular vectors of the matrix Y , respectively
[28], [29, Proposition 7].

III. SPARSE PCA

In this section we return to the sparse eigenvector extraction
problem as formulated in (6). In the following, we apply
the MM algorithm and derive a tight lower bound (surrogate
function), g

(
U |U (k)

)
, for the objective function of (6),

denoted by f (U), at the (k + 1)-th iteration.

Proposition 1. The function f (U) is lowerbounded by the
surrogate function

g
(
U |U (k)

)
= 2Tr

((
G(k) −H(k)

)T
U

)
+ c1 − c2, (19)

where
G(k) = SU (k)D, (20)

H(k) =
[
diag

(
w(k) −w(k)

max ⊗ 1m

)
u(k)

]
m×q

, (21)

and c1, c2 are optimization irrelevant constants. Equality is
achieved when U = U (k).

Proof. The first term of the objective is convex so a lower
bound can be constructed by its first order Taylor expansion:

Tr
(
UTSUD

)
≥ 2Tr

((
SU (k)D

)T
U

)
+ c1, (22)

where c1 = −Tr
(
U (k)TSU (k)D

)
is a constant.

For the second term, using the results from Lemma 1, it is
straightforward to show that it is lowerbounded by the function
−2Tr

(
H(k)U

)
− c2, where H(k) is given by (21) and c2 =

2
(
1Tq wmax

)
− u(k)T diag (w)u(k) is a constant.
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Algorithm 1 IMRP - Iterative Minimization of Rectangular
Procrustes for the sparse eigenvector problem (6)

1: Set k = 0, choose U (0) ∈ {U |UTU = Iq}
2: repeat:
3: Compute G(k),H(k) with (20)-(21)
4: Compute V L, V R, the left and right singular vectors

of
(
G(k) −H(k)

)
, respectively

5: U (k+1) = V LV
T
R

6: k ← k + 1
7: until convergence
8: return U (k)

Now, we drop the constants and the optimization problem
of every MM iteration takes the following form:

maximize
U

Tr
((
G(k) −H(k)

)T
U

)
subject to UTU = Iq.

(23)

Proposition 2. The optimal solution of the optimization
problem (23) is U? = V LV

T
R, where V L ∈ Rm×q and

V R ∈ Rq×q are the left and right singular vectors of the
matrix

(
G(k) −H(k)

)
, respectively.

Proof. The proof comes directly from Lemma 2.

In Algorithm 1 we summarize the above iterative procedure.
We will refer to it as IMRP.

Since the algorithm does not perform any hard thresholding,
the resulting eigenvectors do not have zero elements but rather
very small values. To this end, we can set to zero all the
values that are below a threshold (e.g. 10−12) and obtain sparse
eigenvectors. As it will be shown in the numerical experiments,
the affect of this thresholding on the orthogonality of the
eigenvectors is negligible.

A. Explained Variance

In the ordinary PCA the principal components are uncor-
related while the corresponding loadings are orthogonal. If
we denote by Y the ordinary principal components, the total
explained variance can be calculated as Tr

(
Y TY

)
. If the

principal components are correlated though, computing the
total variance this way will overestimate the true explained
variance.

An approach to overcome this issue was first suggested
in [6] (and adopted in [10]), where the authors introduced
the notion of adjusted variance. The idea is to remove the
correlations of the principal components sequentially. This can
be done efficiently by the QR decomposition: if A ∈ Rn×m
is a data matrix and U ∈ Rm×q are the q estimated loadings,
then the adjusted variance is simply

AdjVar (U) = Tr
(
R2
)
, (24)

where AU = QR, is the QR decomposition of AU .
The explained variance percentage can be then computed
as AdjVar(U)/AdjVar(UPCA), where UPCA are the first q
eigenvectors of ATA.

As mentioned in [9], in the above approach the lack
of orthogonality in the loadings is not addressed. Thus, a
new approach was proposed: when the loading vectors are
not orthogonal we should not consider separate projections
of the data matrix onto each of them. Instead, we should
project the data matrix onto the q-dimensional subspace, i.e.,

Aq = AU
(
UTU

)−1
UT . Then, the total variance is sim-

ply Tr
(
AT
q Aq

)
and the cumulative percentage of explained

variance (CPEV) can be computed as

CPEV = Tr
(
AT
q Aq

)
/Tr
(
ATA

)
. (25)

In this paper we adopt the second approach and compute
the explained variance using (25).

IV. SPARSE EIGENVECTORS IN COVARIANCE ESTIMATION

In this section we return to the problem of covariance esti-
mation with sparse eigenvectors. We consider the formulation
(11), i.e.,

minimize
U ,Λ

− log det (Λ) + Tr
(
SUΛUT

)
+

m∑
j=1

ρj

m∑
i=1

gεp (uij)

subject to Λ < 0,

λi ≤ λi+1, i = 1, . . . , q − 1,

λq ≤ λq+i, i = 1, . . . ,m− q,
UTU = I.

To deal with this problem, we propose two methods based
on the MM framework. In Section IV-A we perform alternating
optimization of the eigenvalues and eigenvectors while in
Section IV-B we estimate them jointly.

A. Alternating Optimization Using the MM Framework

We begin with the optimization problem (11) which is
highly non-convex. We tackle it by alternating optimization
of U and Λ.

For fixed U the optimization problem over λ can be written
in the following convex form:

minimize
λ

−
m∑
i=1

log λi +

m∑
i=1

ziλi

subject to λi ≤ λi+1, i = 1, . . . , q − 1,

λq ≤ λq+i, i = 1, . . . ,m− q,

(26)

where we have dropped the positive semidefinite constraint
of Λ since it is implicit form the log function, and z =

Diag
(
UTSU

)
≥ 0, since S < 0.

The optimization problem (26) does not have a closed-form
solution. Nevertheless, we can find an iterative closed-form
update of the parameter z that will allow us to obtain the
optimal solution for λ.

We start from the corresponding unconstrained version of
problem (26) whose solution is

λ =
1

z(0)
, (27)
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Case 1 Case 2 Case 3

Conditions

z
(k)
j−1 > z

(k)
j if j > 1 z

(k)
q−r−1 > z

(k)
q−r

z
(k)
i ≥z

(k)
i+1, i∈ [1 :q−1] z

(k)
i ≤ z(k)i+1, i ∈ [j : j + k − 1] z

(k)
i ≤ z(k)i+1, i ∈ [q − r : q − 1]

z
(k)
q ≥z

(k)
q+i, i∈ [1 :m−q] if j + k < q if j + k = q z

(k)
q ≤ z(k)ci , i ∈ [1 : k]

z
(k)
j+k>z

(k)
j+k+1 z

(k)
q >z

(k)
q+i, i∈ [1 :m−q] z

(k)
q > z

(k)
q+i, i ∈ [1 : m− q] \ C

Block Updates - z
(k+1)
i = 1

k+1

k∑
i=0

z
(k)
j+i, i ∈ [j : j + k]

z
(k+1)
i = z

(k)
i , i∈C \ A

z
(k+1)
i = 1

r+p+1

r∑
i=0

z
(k)
q−i+

p∑
i=1

z
(k)
ai , i∈ [q−r :q]

⋃
A

Solution λ? = 1
z(k)

- -

TABLE I: Updates and optimal solution of the iterative procedure that solves the optimization problem (26).

where z(0) = z. If the solution is feasible then it is the optimal
one. Else, we need to update z. In every iteration, all the non-
overlapping blocks of zi’s that satisfy certain conditions need
to be updated in parallel. In the k-th iteration we distinguish
three different cases:
Case 1: λ = 1/z(k) satisfies all the constraints of problem
(26). Then the optimal solution is λ? = λ.
Case 2: λ = 1/z(k) violates r ≥ 1 consecutive ordering
constraints of the first q eigenvalues. For any such block
violation we need to update z(k).
Case 3: λ = 1/z(k) violates r + l ≥ 1 consecutive ordering
constraints, with r ≥ 0 and l ≥ 1, including the last r + 1
ordered and a set of l unordered eigenvalues. Since we do
not impose ordering on the m − q last eigenvalues, any of
them could violate the inequality with λq and not only the
neighboring ones. Thus, we use the indices c1, . . . , cl, with
ci > q, for i = 1, . . . , l, and ci ∈ C, with C the set of indices
of the eigenvalues that violate the inequality constraints with
λq . We further denote by A ⊆ C, with card(A) = p < l, the
set of indices given by

A=

{
ci

∣∣∣∣∣z(k)ci ≥
1

r+l−i+1

(
r∑
s=0

z
(k)
q−s+

l−i−1∑
s=0

z(k)cl−s

)}
. (28)

For any such block violation we need to update z(k).

Proposition 3. The iterative-closed form update procedure
given in Table I converges to the solution of problem (26).

Proof. See Appendix B.

Now, for fixed Λ the problem over U becomes:

minimize
U

Tr
(
SUΛUT

)
+

q∑
j=1

ρj

m∑
i=1

gεp (uij)

subject to UTU = I.

(29)

For the second term we can use the same bound as the one
for problem (6). However, we cannot linearize the first term
as previously since the linear approximation is a lower and
not an upper bound of a convex function.

To minimize the objective function we apply the MM
algorithm and derive a tight upper bound, galt

(
U |U (k)

)
, for

the objective function of (29), denoted by falt (U), at the
(k + 1)-th iteration.

Proposition 4. The function falt (U) is upper bounded by the
surrogate function

galt

(
U |U (k)

)
=2Tr

((
G

(k)
alt +H(k)

)T
U

)
+ c3 + c4, (30)

where

G
(k)
alt =

[(
Λ⊗

(
S − λ(S)maxIm

))
u(k)

]
m×m

, (31)

H(k) =
[
diag

(
w(k) −w(k)

max ⊗ 1m

)
u(k)

]
m×m

, (32)

and c3, c4 are optimization irrelevant constants. Equality is
achieved when U = U (k).

Proof. For the first term of the objective it holds that

Tr(SUΛUT ) = uT (Λ⊗ S)u, (33)

where u = vec(U). In a similar manner as in the proof of
Lemma 1, it is easy to show that the following holds:

uT (Λ⊗ S)u ≤ 2Tr
(
G

(k)
alt

T
U

)
+ c3, (34)

where G(k)
alt =

[(
Λ⊗

(
S − λ(S)maxIm

))
u(k)

]
m×m

and c3 =

2λ
(S)
max1

Tλ− u(k)T (Λ⊗ S)u(k) is a constant.
For the second term it is straightforward from Lemma 1

that an upper bound is the function 2Tr
(
H(k)TU

)
+ c4,

with H(k) =
[
diag

(
w(k) −w(k)

max ⊗ 1m

)
u(k)

]
m×m

and

c4 = 1Tmw
(k)
max − u(k)Tdiag

(
w(k)−w(k)

max ⊗ 1m

)
u(k) a con-

stant.
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Algorithm 2 AOCE - Alternating Optimization for Covariance
Estimation for the problem (11)

1: Set k = 0, choose U (0) ∈ {U |UTU = Iq}
2: repeat:
3: Compute λ(k+1) from Proposition 3
4: Compute G(k)

alt ,H
(k) with (31)-(32)

5: Compute V L, V R, the left and right singular vectors
of −

(
G

(k)
alt +H(k)

)
, respectively

6: U (k+1) = V LV
T
R

7: k ← k + 1
8: until convergence
9: return U (k),λ(k)

Now, we drop the constants and the optimization problem
of every MM iteration takes the following form:

minimize
U

Tr
((
G

(k)
alt +H(k)

)T
U

)
subject to UTU = Im.

(35)

Proposition 5. The optimal solution of the optimization
problem (35) is U? = V LV

T
R, where V L ∈ Rm×m and

V R ∈ Rm×m are the left and right singular vectors of the
matrix −

(
G

(k)
alt +H(k)

)
, respectively.

Proof. The proof comes directly from Lemma 2.

In Algorithm 2 we summarize the above iterative procedure.
We will refer to it as AOCE.

B. Joint Optimization Using the MM Framework

Let us consider again the formulation (11) with the variable
transformation Ξ = Λ−1. The optimization problem becomes:

minimize
U ,Ξ

log det (Ξ) + Tr
(
SUΞ−1UT

)
+

m∑
j=1

ρj

m∑
i=1

gεp (uij)

subject to Ξ < 0,

ξi ≥ ξi+1, i = 1, . . . , q − 1,

ξq ≥ ξq+i, i = 1, . . . ,m− q,
UTU = I.

(36)

Here U ,Ξ ∈ Rm×m, with Ξ = diag(ξ) < 0.
Now, we derive a tight upper bound,

gjnt

(
U ,Ξ|U (k),Ξ(k)

)
, for the objective function of

(36), denoted by fjnt (U ,Ξ), at the (k + 1)-th iteration.

Proposition 6. The function fjnt (U ,Ξ) is upper bounded by
the surrogate function

gjnt

(
U ,Ξ|U (k),Ξ(k)

)
= gξ(Ξ) + gu(U) + c6, (37)

where

gξ(Ξ)=log det(Ξ)+Tr
(
G

(k)
jnt Ξ

)
+λ(S)maxTr

(
Ξ−1

)
, (38)

Algorithm 3 JOCE - Joint Optimization for Covariance
Estimation for the problem (36)

1: Set k = 0, choose U (0) ∈ {U |UTU = Iq}
2: repeat:
3: Compute φ(k+1) from Proposition 7
4: Compute H(k)

jnt with (41)
5: Compute V L, V R, the left and right singular vectors

of −H(k)
jnt , respectively

6: U (k+1) = V LV
T
R

7: k ← k + 1
8: until convergence
9: Set ξ = 1

φ(k)

10: return U (k), ξ

with

G
(k)
jnt = −

(
Ξ(k)

)−1
U (k)T

(
S − λ(S)maxIm

)
U (k)

(
Ξ(k)

)−1
(39)

and

gu(U) = 2Tr

(
H

(k)
jnt

T
U

)
, (40)

with

H
(k)
jnt = H(k) +

(
S − λ(S)maxIm

)
U (k)

(
Ξ(k)

)−1
. (41)

The term H(k) is given by (32) while c6 is an optimization
irrelevant constant.

Proof. Based on Lemma 1 we can upper bound the third term
of the objective with the function 2Tr

(
H(k)TU

)
+ c4, with

H(k) given by (32).
The second term of the objective function of (36), denoted

by f , is jointly convex on U ,Ξ = diag(ξ). One way to
establish convexity of f is via its epigraph using the Schur
complement:

epi(f) =

{
(U , ξ, t)

∣∣∣∣∣diag(ξ) � 0,

[
diag(ξ⊗1m) ũ

ũT t

]
< 0

}
,

where ũ = vec
(
S1/2U

)
. Without loss of generality we have

assumed that all the eigenvalues ξi are strictly positive. The
last condition is a linear matrix inequality in (U , ξ, t), and
therefore epi(f) is convex.

We can subtract the maximum eigenvalue of the sample
covariance matrix S and therefore create a jointly concave
term. An upper bound to this term is its first order Taylor
expansion. It can be shown that

Tr
(
SUΞ−1UT

)
≤2Tr

(
F (k)TU

)
+ Tr

(
G

(k)
jnt Ξ

)
+ λ(S)maxTr

(
Ξ−1

)
+ c5

(42)

where F (k) =
(
S − λ(S)maxIm

)
U (k)

(
Ξ(k)

)−1
and G(k)

jnt =

−
(
Ξ(k)

)−1
U (k)TF (k). The constant c5 is given by c5 =

−Tr
(
F (k)U (k)T

)
− Tr

(
G

(k)
jnt Ξ(k)

)
.
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Case 1 Case 2 Case 3

Conditions

α
(k)
j−1 < α

(k)
j if j > 1 α

(k)
q−r−1 < α

(k)
q−r

α
(k)
i ≤α

(k)
i+1, i∈ [1 :q−1] α

(k)
i ≥ α(k)

i+1, i ∈ [j : j + k − 1] α
(k)
i ≥ α(k)

i+1, i ∈ [q − r : q − 1]

α
(k)
q ≤α

(k)
q+i, i∈ [1 :m−q] if j + k < q if j + k = q α

(k)
q ≥ z(k)ci , i ∈ [1 : k]

α
(k)
j+k<z

(k)
j+k+1 α

(k)
q <α

(k)
q+i, i∈ [1 :m−q] α

(k)
q < α

(k)
q+i, i ∈ [1 : m− q] \ C

Block Updates - α
(k+1)
i = 1

k+1

k∑
i=0

α
(k)
j+i, i ∈ [j : j + k]

α
(k+1)
i = α

(k)
i , i∈C \ A

α
(k+1)
i = 1

r+p+1

r∑
i=0

α
(k)
q−i+

p∑
i=1

α
(k)
ai , i∈ [q−r :q]

⋃
A

Solution φ?=
1+

√
1+4λ

(S)
maxα

(k)

2λ
(S)
max

- -

TABLE II: Updates and optimal solution of the iterative procedure that solves the optimization problem (46).

We observe that now the variables are decoupled. Thus, by
combining the upper bounds for the second and the third term
we can derive the functions gu(·) and gξ(·), with H(k)

jnt =

H(k) + F (k) and c6 = c4 + c5.

Now, in every MM iteration we need to solve the following
optimization problem:

minimize
U ,Ξ

gξ(Ξ) + gu(U)

subject to Ξ < 0,

ξi ≥ ξi+1, i = 1, . . . , q − 1,

ξq ≥ ξq+i, i = 1, . . . ,m− q,
UTU = I.

(43)

Since the variables are decoupled we can optimize each one
of them separately. The optimization problem for Ξ becomes:

minimize
ξ

m∑
i=1

(
log ξi + αiξi + λ(S)max

1

ξi

)
subject to ξi ≥ ξi+1, i = 1, . . . , q − 1,

ξq ≥ ξq+i, i = 1, . . . ,m− q,

(44)

where α = Diag
(
G

(k)
jnt

)
.

The above problem is not convex. We can make it convex
though with the following simple variable transformation:

φ =
1

ξ
. (45)

Now, the problem becomes

minimize
φ

m∑
i=1

(
− log φi + αi

1

φi
+ λ(S)maxφi

)
subject to φi ≤ φi+1, i = 1, . . . , q − 1,

φq ≤ φq+i, i = 1, . . . ,m− q,

(46)

which is in a convex form.
Similar to the alternating optimization case, the problem

(46) does not have a closed form solution. Again, we can find

an iterative closed form update of the parameter α that will
provide the optimal solution.

We start from the corresponding unconstrained problem
whose solution is

φ =
1 +

√
1 + 4λ

(S)
maxα(0)

2λ
(S)
max

, (47)

where α(0) = α. We can distinguish the same three cases as
for problem (26), where the set A now is given by

A=

{
ci

∣∣∣∣∣α(k)
ci ≤

1

r+l−i+1

(
r∑
s=0

α
(k)
q−s+

l−i−1∑
s=0

α(k)
cl−s

)}
. (48)

Proposition 7. The iterative closed-form update procedure
given in Table II converges to the solution of problem (46).

Proof. The proof of Proposition 7 follows the same steps as
the proof of Proposition 3, thus it is omitted.

Having obtained the optimal φ?, it is easy to retrieve ξ?

from (45).
The optimization problem for U is the following:

minimize
U

Tr
(
H

(k)
jnt

T
U

)
subject to UTU = Im.

(49)

Proposition 8. The optimal solution of the optimization
problem (49) is U? = V LV

T
R, where V L ∈ Rm×m and

V R ∈ Rm×m are the left and right singular vectors of the
matrix −H(k)

jnt , respectively.

Proof. The proof comes directly from Lemma 2.

In Algorithm 3 we summarize the above iterative procedure.
We will refer to it as JOCE.

V. NUMERICAL EXPERIMENTS

A. Random Data Drawn from a Sparse PCA Model

In the first experiment, we compare the performance of
the proposed IMRP algorithm with a benchmark algorithm
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GPower`0 proposed in [10]. Note that all four GPower algo-
rithms that are proposed in [10] have very similar performance
in terms of chance of recovery and percentage of explained
variance. Thus, it is sufficient to consider only one of them.

We first examine the orthogonality of the estimated sparse
eigenvectors. We define the angle between eigenvectors i, j as
follows:

θij=min
(
| arccos

(
vTi vj

)
|, 180o−| arccos

(
vTi vj

)
|
)
. (50)

We consider a setup with m = 500 and n = 50. We
construct 100 covariance matrices Σ through their eigenvalue
decomposition Σ = V diag(λ)V T , where the first k = 5
columns of V ∈ Rm×m are of the following form:{

vij 6= 0, for i = 1, . . . , 10, j = 1, . . . , 5,
vij = 0, otherwise,

(51)

where the non-zero values are such that the eigenvectors are
orthonormal. The remaining eigenvectors are generated ran-
domly, satisfying the orthogonality property. The eigenvalues
are set to be λi = 100(k − i + 1) for i = 1, . . . , 5, and the
rest are set to one.

For each of the covariance matrix Σ, we randomly generate
50 data matrices A ∈ Rm×n by drawing n samples from a
zero-mean normal distribution with covariance matrix Σ, i.e.,
i.e., ai ∼ N (0,Σ), for i = 1, . . . , n. Then we employ the two
algorithms to compute the first two and the first five sparse
eigenvectors. In Figure 1 we plot the minimum angle between
any two eigenvectors, i.e., mini,j(θi,j) for a wide range of
the regularization parameter ρ. It is clear that the proposed
IMRP algorithm (after thresholding) is orthogonal1 for any
choice of ρ, while for the GPower`0 algorithm the are cases
that the estimated eigenvectors have angle less than 55o. For
large values of ρ, GPower`0 gives orthogonal results since the
sparsity level is high and the estimated eigenvectors do not
have overlapping support.

Now, to illustrate the sparse recovering performance of our
algorithm we generate synthetic data as in [10], [13], [14].

1Orthogonality in the sense that |uTi uj | ≤ ε, where, in the worst case,
ε is in the order of magnitude of the selected threshold t, and i 6= j. For
example, for t = 10−12, the inner product |uTi uj | is effectively zero for all
practical purposes.
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Fig. 2: Chance of exact recovery vs normalized regularization parameter.

To this end, we construct a covariance matrix Σ through
the eigenvalue decomposition Σ = V diag(λ)V T , where the
first q columns of V ∈ Rm×m have a pre-specified sparse
structure. We consider a setup with m = 500, n = 50 and
q = 2. We set the first two orthonormal eigenvectors to be{

vi1 = 1√
10
, for i = 1, . . . , 10,

vi1 = 0, otherwise,{
vi2 = 1√

10
, for i = 11, . . . , 20,

vi2 = 0, otherwise.

(52)

The remaining eigenvectors are generated randomly, satisfying
the orthogonality property. We set the eigenvalues to be λ1 =
400, λ2 = 300 and λi = 1 for i = 3, . . . , 500.

We randomly generate 500 data matrices A ∈ Rm×n by
drawing n samples from a zero-mean normal distribution with
covariance matrix Σ, i.e., ai ∼ N (0,Σ), for i = 1, . . . , n.
Then, we employ the two algorithms to compute the two
leading sparse eigenvectors u1,u2 ∈ R500. We consider a
successful recovery when both quantities |uT1 v1| and |uT2 v2|
are greater than 0.99.

The chance of successful recovery over a wide range of
the regularization parameters ρi is plotted in Figure 2. The
horizontal axis shows the normalized regularization parameters
that follows the normalization proposed in [14], i.e., ρi =
maxj ‖aj‖22. From the figure we can see that the proposed
algorithm IMRP achieves a higher chance of exact recovery
for a wide range of the parameters.

B. Gene Expression Data

In this subsection we compare the performance of the two
algorithms on the gene expression dataset collected in the
breast cancer study by Bild et al. [30]. The dataset contains 158
samples over 12, 625 genes. We consider the 4, 000 genes with
the largest variances and we estimate the first 5 eigenvectors.

Notice that due to the orthogonality constraints, increasing
the cardinality does not necessarily mean that the CPEV will
increase. To this end, for a fixed cardinality, we depict the
maximum variance being explained from the sparse eigenvec-
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tors up to this cardinality. Thus, the CPEV for cardinality i,
denoted as CPEVi, is being post-processed as follows:

CPEVi = max(CPEVi,CPEVi−1). (53)

In Figure 3 we illustrate the cumulative percentage of
explained variance, computed by Eq. (25) and post-processed
by (53), versus the cardinality for the IMRP and GPower`0
algorithms. For maximum cardinality the percentage of ex-
plained variance becomes 1 for both algorithms. For fixed
cardinality, the two algorithms can explain approximately
the same amount of variance. For comparison we have also
included the simple thresholding scheme which first computes
the regular principal component and then keeps a required
number of entries with largest absolute values.

C. Covariance Estimation

In this experiment we consider again the setting and data
generation process of section V-A, with the only difference
that we reduce the dimension to m = 200. We employ the
AOCE and JOCE algorithms to estimate the covariance matrix
Σ. We compute the relative mean square error (RelMSE) for
each algorithm, defined as

RelMSE(Ŝ) = 1− MSE(Ŝ)

MSE (S)
, (54)

where MSE (X) = ‖X − Σ‖2F , while Ŝ is the estimated
covariance matrix from the two algorithms and S is the sample
covariance matrix.

From Figure 4 we observe that AOCE performs better
for a small number of samples, while after one point the
algorithms have the same performance. Both of the algorithms
improve significantly the estimation of the covariance matrix.
For example, for n = m, the improvement is around 35%.
For n ≤ m, instead of S we use Ssh as defined in (12). The
parameter δ is chosen based on a grid search. For this case, in
order to show that the improvement in estimation is not due
to shrinkage, we include the RMSE for Ssh. It is clear from
the plot that the improvement from shrinkage is around 5%.
This explains the slight estimation improvement of AOCE and
JOCE for n ≤ m.
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VI. CONCLUSION

In this paper, we first proposed a new algorithm for sparse
eigenvalue extraction. The algorithm is derived based on the
minorization-majorization method that was applied after a
smooth approximation of the `0-norm. Unlike all the other
state of the art methods, the resulting sparse eigenvectors from
our proposed method maintain their orthogonality property.
We further formed a covariance estimation problem using
the eigenvalue decomposition of the covariance matrix. We
simultaneously imposed sparsity on some of the principal
eigenvectors to improve the estimation performance. We have
proposed two algorithms, based on the MM framework, to effi-
ciently solve the above problem. Numerical experiments have
shown that IMRP matches or outperforms existing algorithms
while AOCE and JOCE improve significantly the estimation
of the covariance matrix.

APPENDIX A
PROOF OF LEMMA 1

Proof. Following the same approach as [14], we can bound
the function

∑q
i=1 ρi

∑m
j=1 g

ε
p (uij) with a weighted quadratic

one. Based on the results of [14] and by incorporating the
sparsity parameters ρi to the corresponding weights, it holds
that

q∑
i=1

ρi

m∑
j=1

gεp (uij) ≤ vec(U)T diag (w) vec(U),

with the weights w ∈ Rmq+ given by (16). Now, the idea
is to create a concave term and linearize it since the linear
approximation of a concave function is an upper bound of
the function. We define wmax ∈ Rq+, with wmax,i being the
maximum weight that corresponds to the i-th eigenvector. For
convenience we further define u = vec(U), W d = diag(w)
and Wm = diag(wmax ⊗ 1m). Now, we can bound the
weighted quadratic function as follows:

uTW du =uT (W d −Wm)u+ uTWmu

=uT (W d −Wm)u+ 1Tmwmax

≤uT0 (W d −Wm)u0+2uT0 (W d−Wm) (u−u0)

+ 1Tmwmax
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=2uT0 (W d −Wm)u− uT0W du0

+ 2
(
1Tmwmax

)
=2Tr

(
HTU

)
+ 2

(
1Tmwmax

)
− uT0W du0,

where H =
[

(W d −Wm)u0

]
m×q . This completes the

proof.

APPENDIX B
PROOF OF PROPOSITION 3

Proof. For convenience, in all the proofs we drop the super-
script (k) that denotes the current iteration. We denote the
updates of z by z̄, i.e., if z = z(k) then z̄ = z(k+1).

The Lagrangian of the optimization problem (26) is

L(λ,µ,ν) =−
m∑
i=1

log λi+

m∑
i=1

ziλi+

q−1∑
i=1

µi(λi − λi+1)

+

m−q∑
i=1

νq+i(λq − λq+i), (55)

with λ ∈ Rm+ , µ ∈ Rq−1+ and ν ∈ Rm−q+ . Now, we can derive
the following Karush-Kuhn-Tucker (KKT) conditions [31]:

− 1

λ1
+ z1 + µ1 = 0, (56)

− 1

λi
+ zi + µi − µi−1 = 0, i = 2, . . . , q − 1, (57)

− 1

λq
+zq−µq−1+

m−q∑
i=1

νi=0, (58)

− 1

λq+i
+ zq+i − νq+i = 0, i = 1, . . . ,m− q, (59)

λi − λi+1 ≤ 0, i = 1, . . . , q − 1, (60)
λq − λq+i ≤ 0, i = 1, . . . ,m− q, (61)

µi ≥ 0, i = 1, . . . , q − 1, (62)
νq+i ≥ 0, i = 1, . . . ,m− q, (63)

µi(λi − λi+1) = 0, i = 1, . . . , q − 1, (64)
νq+i(λq − λq+i) = 0, i = 1, . . . ,m− q. (65)

As a first result we can state the following lemma:

Lemma 3. The solution of the KKT system (56)-(65) is λi =
1
zi

, for i = 1, . . . ,m, if the following conditions hold:

zi ≥zi+1, i = 1, . . . , q − 1, (66)
zq ≥zq+i, i = 1, . . . ,m− q. (67)

In this case all the Lagrange multipliers are zero.

Proof. It is straightforward that if inequalities (66) and (67)
hold, then the solutions of the primal and dual variables given
in the above lemma satisfy all equations. Since the problem
is convex, this solution is the optimal.

We can interpret Lemma 3 as follows: if the unconstrained
problem has an optimal solution that is inside the feasible
region of the constrained problem, then it is also the optimal
solution of the constrained problem.

Now, if the conditions of Lemma 3 do not hold, the
solution of the unconstrained problem will violate a set of
inequality constraints. We can distinguish two different types
of violations.

a) Violations in the first q eigenvalues: Here, we consider
the case where the solution of the unconstrained problem
violates the ordering constraints of the first q eigenvalues (Case
2 of Table I). In this case, we need to update the parameters
z according to the following Lemma:

Lemma 4. For any block of r consecutive inequality violations
between the first q eigenvalues, i.e., ∀j, r, with j+ r ≤ q, that
the following conditions hold

zj−1 > zj , if j > 1, (68)
zi ≤ zi+1, i = j, . . . , j + r − 1, (69){
zj+r > zj+r+1, if j + r < q,

zq > zq+i, i = 1, . . . ,m− q, if j + r = q,
(70)

where at least one inequality of (69) is strict, the update of
the corresponding block of z is

z̄i =
1

r + 1

r∑
s=0

zj+s, i = j, . . . , j + r. (71)

The new KKT system with the updated parameters has the
same solution as the original one.

Proof. See Appendix C.

b) Violations including a set of the last m−q eigenvalues:
Since we do not impose ordering on the m−q last eigenvalues,
any of them could violate the inequality with λq and not only
the neighboring ones. Thus, we use the indices c1, . . . , ck, with
ci > q, for i = 1, . . . , l, and ci ∈ C, with C the set of indices
of the eigenvalues that violate the inequality constraints with
λq . We further denote by A ⊆ C the set of indices of the
active dual variables ν, i.e., ai ∈ A if νai > 0. We assume
that card(A) = p ≤ l. For this type of violations (Case 3 of
Table I), the solution is given from the following lemma:

Lemma 5. For any block of r + l consecutive inequality
violations between the last r + 1 ordered and a set of l
unordered eigenvalues, i.e., ∀r, l, that the following conditions
hold

zq−r−1 >zq−r, (72)
zq−i ≤zq−i+1, i = 1, . . . , r, (73)
zq ≤zci , i = 1, . . . , l, (74)
zq >zi, i ∈ [q + 1 : m] \ C, (75)

where at least one inequality of (74) is strict, the update of
the corresponding block of z isz̄i= 1

r+p+1

(
r∑
s=0

zq−s+
p∑
s=1

zas

)
, i ∈ [q−r :q]

⋃
A,

z̄i = zi, i ∈ C \ A.
(76)

The set A is given by

A=

{
ci

∣∣∣∣∣zci≥ 1

r+l−i+1

(
r∑
s=0

zq−s+

l−i−1∑
s=0

zcl−s

)}
. (77)



12

The new KKT system with the updated parameters has the
same solution as the original one.

Proof. See Appendix D.

After applying Lemma 4 and/or 5, the new KKT system,
apart from equivalent to the original, it further has the exact
same form. Thus, we can apply Lemmas 3-5 to the updated
system of equations, until we obtain the optimal solution.
Since, the original KKT system has m primal and m− 1 dual
variables and in every iteration we effectively remove at least
one primal and one dual variable (see Appendix D), we need
at most m− 1 iterations.

APPENDIX C
PROOF OF LEMMA 4

Proof. First, we will prove that when an inequality is violated,
then the corresponding eigenvalues become equal. Assume that
zk < zk+1, with j ≤ k < k+ 1 ≤ j+ r. The KKT conditions
for this pair are:

− 1

λk
+ zk + µk − µk−1 = 0, (78)

− 1

λk+1
+ zk+1 + µk+1 − µk = 0, (79)

λk − λk+1≤ 0, (80)
µk ≥ 0, (81)

µk(λk − λk+1) = 0. (82)

If we subtract the first two equations we get:

2µk = zk+1 − zk +
1

λk
− 1

λk+1
+ µk+1 + µk−1. (83)

The right hand side of the above equation is strictly positive
since zk+1 − zk > 0, 1

λk
− 1

λk+1
≥ 0 and µk+1, µk−1 ≥ 0.

Thus, µk > 0 and from (82) it holds that λk = λk+1. In a
similar manner, and using that µk > 0, it is easy to prove
that µi > 0, with i = j, . . . , j + r − 1, which means that
λj = · · · = λj+r.

Having proved the equality of the eigenvalues and that
µ[j:j+r−1] > 0, it is straightforward that the primal feasibility,
dual feasibility and complementary slackness are trivially
satisfied for this block. Further, the r + 1 equations of the
partial derivative of the Lagrangian reduce to

− 1

λi
+z̄i+

1

r + 1
(µj+r−µj−1) = 0, i = j, . . . , j+r, (84)

with z̄i given by (71). We can treat (84) as only one equation
with since it is repeated r + 1 times. Effectively, we have
removed r primal and r dual variables. It is clear that every
solution of the reduced set of KKT conditions, is a solution
for the original set of KKT conditions.

APPENDIX D
PROOF OF LEMMA 5

Proof. We write the KKT conditions for the corresponding
block in the following form:

− 1

λi
+ zi + µi − µi−1 = 0, i = q − r, . . . , q − 1, (85)

− 1

λq
+zq−µq−1+

m−q∑
i=1

νq+i=0, (86)

− 1

λai
+ zai − νai = 0, ai ∈ A, (87)

− 1

λdi
+ zdi − νdi = 0, di ∈ C \ A, (88)

λi − λi+1 ≤ 0, i = q − r, . . . , q − 1, (89)
λq − λai ≤ 0, ai ∈ A (90)
λq − λdi ≤ 0, di ∈ C \ A, (91)

µi ≥ 0, i = q − r, . . . , q − 1, (92)
νq+ai ≥ 0, ai ∈ A, (93)
νq+di ≥ 0, di ∈ C \ A, (94)

µi(λi − λi+1) = 0, i = q−r, . . . , q−1, (95)
νai(λq − λai) = 0, ai ∈ A, (96)
νdi(λq − λdi) = 0, ai ∈ C \ A. (97)

As in the proof of Lemma 4, it is easy to show that µi > 0,
for i = q − r, . . . , q − 1. This means that λq−r = · · · = λq .
Further, assuming that we know the set A, since νai > 0, from
complementary slackness we get that λq = λai , ∀ai ∈ A.

Again, having proved the equality of the eigenvalues, and
that µ[q−r:q−1] > 0, νai > 0 for ai ∈ A, it is straightforward
that equations (89),(90),(92),(93),(95) and (96) are trivially
satisfied.

The equations (85)-(88) reduce to

− 1

λi
+ z̄i +

1

r + p+ 1

 ∑
di∈C\A

νdi − µq−r−1

 = 0, (98)

for i ∈ [q − r : q] ∪ A and

− 1

λdi
+ zdi − νdi = 0, (99)

for di ∈ C \ A, where z̄i is given by (76). Assuming that
card(A) = p, we can treat (98) as only one equation with since
it is repeated r + p + 1 times. Effectively, we have removed
r + p primal and r + p dual variables. It is clear that every
solution of the reduced set of KKT conditions, is a solution
for the original set of KKT conditions.

Now, we will prove that the indices of the active dual
variables ν for this iteration are given by (77).

We consider the case where zq ≤ zc1 ≤ · · · ≤ zcl , where
at least one inequality is strict. We assume that we know the
active set of this and any further iteration. First, we will prove
by contradiction that cl ∈ A.

Assume that cl /∈ A. Since z̄q will be the average of zi’s
that are less or equal to zcl , with at least one zi strictly
smaller, it holds that z̄q < zcl . Now, by adding (86) and
(87), and subtracting the partial derivative of the Lagrangian
corresponding to cl, we get:

− 1

λq
+

1

λcl
+ z̄q − zcl − µq−r−1 = 0. (100)

The last equation implies that µq−r−1 < 0 should hold which
is not valid. Thus, cl ∈ A holds.
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Having proved that cl ∈ A and that µ[q−r:q−1] > 0, if
the average of z[q−r:q−1] and zcl is less or equal to zcl−1

,
following the same arguments we can show that cl−1 ∈ A.
Generalizing this result, ci ∈ A if the following condition is
true:

zci≥
1

r+l−i+1

(
r∑
s=0

zq−s+

l−i−1∑
s=0

zcl−s

)
(101)

Assuming that card(A) = p, the above results states that
only the p largest indices of C will belong in the active set A,
i.e., ci ∈ A, for i = l− p+ 1, . . . , l. Thus, in order to find the
active set, we need to find all the indices that zci ≥ z̄q is true,
where z̄q is the average of z[q−r:q] and z[ci+1:ck], as given in
(76).
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