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Abstract

The minimum mean-squared error (MMSE) is one of the most [sofuiteria for Bayesian estima-
tion. Conversely, the signal-to-noise ratio (SNR) is a ¢gpiperformance criterion in communications,
radar, and generally detection theory. In this paper we fomnhalize an SNR criterion to design an
estimator, and then we prove that there exists an equivaléetween MMSE and maximum-SNR
estimators, for any statistics. We also extend this egenad to specific classes of suboptimal estimators,
which are expressed by a basis expansion model (BEM). Theexploiting an orthogonal BEM for
the estimator, we derive the MMSE estimator constrainedden quantization resolution of the noisy
observations, and we prove that this suboptimal MMSE estintands to the optimal MMSE estimator
that uses an infinite resolution of the observation. Besides derive closed-form expressions for the
mean-squared error (MSE) and for the SNR of the proposedpsinfi@l estimators, and we show that
these expressions constitute tight, asymptotically eXamtinds for the optimal MMSE and maximum

SNR.
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. INTRODUCTION

Bayesian estimation of a parameter, a source, or a sigrah fioisy observations, is a general
framework in statistical inference, with widespread aggtdiions in signal processing, communications,
controls, machine learning, etc¢.] [1]. The minimum meanasgd error (MMSE) is the most popular
criterion in this framework, intuitively connected to therimum signal-to-noise ratio (MSNR) criterion,
mostly used for communication and detection applicatidils [P]. After the first seminal work in[]3],
the connections between the MMSE and the signal-to-noise (BNR) have attracted several research
interests, and there is a quite abundant literature to ksttdinks among them and the mutual information
(see [4]- [[8] and the references therein). In the contextigriad classification (i.e., detection),![9] has
shown the interdependencies between the mean-squaredM8&) and other second-order measures of
quality, including many definitions of SNR. However, a thogh investigation of the links between MSE
and SNR, in the context of estimation, is still lacking. Soto@nections between MMSE and SNR have
been explored i [3], which proves that the MMSE in the additioise channel is inversely proportional
to the SNR. However, the SNR dfl[3] is defined at the input of¢kBmator, while we are interested in
the SNR at the output of the estimator.

Motivated to further explore the links between SNR and MSE this paper we first define the
SNR for the output of a generic estimator, and then we proeeetuivalence between the MMSE
and MSNR criteria in the context of estimation design. Aijlavhen the parameter to be estimated and
the observations are jointly Gaussian, it is well known thatMMSE estimator, the maximum likelihood
(ML) estimator, and the maximum a posteriori (MAP) estimatre linear in the observation and are
equivalent to the MSNR estimator (up to a scalar multiphieatoefficient) [11], [12]: indeed, in this
simple Gaussian case, all these estimators produce the @aymet SNR, which is both maximum and
identical to the input SNR. Differently, this paper cons&la more general case, where the parameter to
be estimated and the observations can be non-Gaussiaiis betieral case, to the best of our knowledge,
the natural question if the MMSE and MSNR estimation crderie equivalent or not, is still unansweted
While classical estimation typically deals with the MMSHt@rion, some authors have been looking for
an MSNR solution, such a5 [10], ignoring if this solution teas/thing to do with the MMSE solution.
Specifically, this paper proves that the equivalence betvid®ISE and MSNR estimators always holds

1\We believe that this question has never been addressedsiit idethe context of estimation problems: the investigatitone
in [9] for detection cannot be extended to estimation, sitheeSNR definitions used inl[9] are quite different from thepot

SNR considered in this paper.



true, even when the parameter to be estimated and the obisasiare non-Gaussian: in this case, both the
MMSE and the MSNR estimators are usually nonlinear in theepfadions. This equivalence establishes
a strong theoretical link between MMSE and MSNR criteriaditionally used in different contexts, i.e.,
estimation and detection, respectively.

Then, we prove that the equivalence between the MSNR and MIi8&ria holds true also for
any suboptimal estimator that is expressed by a linear auatibn of fixed basis functions, according
to a basis expansion model (BEM) [13]. Within this framewovke derive the suboptimal MMSE
estimator, and other equivalent MSNR estimators, comschto a given quantization resolution of the
noisy observations. Notheworthy, each quantization-caimed estimator corresponds to a specific choice
of the set of BEM functions. These quantization-constrdiastimators may have practical interest in
low-complexity applications that use analog-to-digit&/@) converters with limited number of bits,
such as low-power wireless sensor applications. Spedyfica prove that the suboptimal quantization-
constrained MMSE (Q-MMSE) estimator tends to the optimalg{uantized) MMSE estimator that uses
an infinite resolution of the observation. In addition, weigke closed-form expressions for the SNR and
for the MSE of the proposed suboptimal estimators. Notettiege closed-form expressions can be used
as lower bounds on the SNR of the MSNR estimators, or as upperds on the MSE of the optimal
MMSE estimator: indeed, in case of hon-Gaussian statjsticalytical expressions for the MMSE value
are difficult to obtain [[14]; anyway, we also provide some lgti@al expressions for the MMSE and
MSNR values.

To provide an example for practical applications, we apply terived suboptimal estimators to an
additive non-Gaussian noise model, where the noisy obenvas simply a signal-plus-noise random
variable. We include a numerical example where the signaléndaplacian statistic, while the noise
distribution is a Laplacian mixture, bearing in mind thag ttesults in this paper are valid for any signal
and noise statistics. The obtained results show that theogem suboptimal Q-MMSE and quantization-
constrained MSNR (Q-MSNR) estimators outperform othesralitive estimators discussed in Section V.
The numerical results also confirm and that, when the sizheofjiantization intervals tends to zero, the
MSE (and SNR) of the Q-MMSE estimator tends to the optimal MMM&nd MSNR) value, as expected
by design.

The rest of this paper is organized as follows. Section Ivpsdthe equivalence between the MSNR and
MMSE criteria and discusses several theoretical links. @éoti®n Ill, we derive the equivalence results
for BEM-based estimators, such as the Q-MMSE. Section IVsictars the special case of additive

non-Gaussian noise channel, while Section V illustratesiraarical example. Section VI concludes the



paper.

Il. MAXIMUM SNRAND MMSE ESTIMATORS

For real-valued scalar observation and parameters, Bayestimation deals with statistical inference
of a random parameter of interesfrom a possibly noisy observation assuming that the joint probability
density function (pdf)fxvy(z,y) is known. The estimator of the scalar parametés a functiong(-) that
produces the estimated parametet g(y). By a linear regression analysis, for any zero-meaandy

and any estimatog(-), it is possible to express the estimator output as

T=g(y) = Kgx + wyg, 1)
where
K, = M’ )

xT

o2 = BEx{z*}, andw, is the zero-mean output noise, which is orthogonal to tharpater of interest
and characterized bey%vg = Ewg{wg}. It is well known that the estimatgyvse(-) that minimizes the

Bayesian MSE
Jg = Exy{(9(y) — =)*} 3)

is expressed by [1]/[2]/14]/115]
gwmse(y) = Exy{rly} = /_OO T fxpy (zly)dz. (4)

However, other Bayesian criteria are possible, such as tA@,Nhe minimum mean-absolute error,
etc. [2]. Actually we may choosg(-) that maximizes the SNR at the estimator output{in (1), as done

for detection in[[10],[18]. In this sense, the definition &f, in (2) leads to the output SNR

Yg = g x7 (5)

defined as the power ratio of the noise-free signal and theruglated noise in({1). Alternatively, we
may maximize the gaids, in (@) (instead of the SNR), under a power constraint.

Using the orthogonality in({1), the output power is
Ey{g*(y)} = Kjoi + o, , (6)
and hence, using{2) andl (5), we obtain
Jg =By{d*(y)} + (1 — 2K,)0? @

=(1- Kg)Zag + J?Ug. (8)



From [8) and[(B), it is straightforward that the MSE and the SNRy, are linked by
K2 2
Jy = (L= Kot + =
g

(9)

A. Equivalence of MSNR and MMSE Estimators

While for jointly Gaussian statistics the equivalence lsw MSNR and MMSE is easy to establish
(since the MMSE estimator is linear in), herein we consider the most general case, without any

assumption on the statistics ofandy.

Theorem 1: Among all the possible estimatogg-), the MMSE estimator{4) maximizes the SNR (5)

at the estimator output, for any pdkvy (x,y).

Proof: Let us denote withyuuse(y) the MMSE estimator{4), and witlx,,,,,.. its associated gain

(@). In addition, let us denote withysnr(y) an estimator that maximizes the SNR (5), as expressed by

K202
g“x
g 1Y) = arg max ,
MsR(Y) g() Ev{g*(y)} — Kgf’:%]

and byK .. its associated gain ifl(2). This MSNR estimator is not unjgirece also any other estimator

(10)

Ja,MsNR(Y) = agmsnr(Y), (11)

with a € R\ {0}, maximizes the SNR. Indeed, due to the scaling faetdny means of[(10) both the
noise-free powerk7o2 and the noise powes;, = Ey{¢*(y)} — K o are multiplied by the same
guantitya?, hence the SNR ir(15) is invariant with By (T) and [2), the gaid{,, .. Of gomsnr(Y) iS
equal to

Kga,MSNR = aKgMSNR‘ (12)

Conversely, the MMSE estimator is unique and has a unique §gj,s.. Thus, we have to prove the
equivalence of the MMSE estimatgiivse(y) with the specificg, msnr(y) characterized by<,, s =
Kguse- Therefore, by[(12), we have to choose the MSNR estimaton wie specific valuer = &

expressed by

~ KQMMSE 1
aqa = —. 3
K ( )

9MSNR

The MSNR estimatow; msnr(y) is actually the MSNR estimator that corresponds to an opétion
problem restricted to the subclass of all the estimagorscharacterized by the same gdif) = Ky,

as expressed by
Kgg2

B g20)) - Kga%] | -

gamsNr(y) =  argmax
gC)J(sz(

IMMSE



Note that, despite the constraifit, = K., we still obtain the unconstrained MMSE estimatalr (4),
which by definition belongs to the subclass of estimatoradgeharacterized b, = K .. Using the
constraint, = K, it is clear in [9) that the dependence of the MSE functiohabn g(-) is only

through~,, and no longer also throughl, as in the general case: consequently, the MMSE estimator is

2
. . o
gumse(y) = argmin [Jy] = argmin [—m}
g(')7Kg:K9MMSE g(')ng:KgMMSE ’Yg
= argmax [y, = gamsNR(Y)- (15)
g(')ng:KgMMSE

Thus, [I5) shows that the estimator that maximizes the SNR avfixed K, = K, IS equivalent to

the estimator that minimizes the MSE, i.8z,usnr(Y) = gmmse(Y)- [ |

Basically, Theorem 1 explains th&g, msnr(y)} are all scaled versions @fumse(y). In other words,
each scaled version of the MSNR produces the same SNR, bifesedt MSE: only a unique MSNR

estimator is the MMSE estimator, and, in this sense, the tstionation criteria are equivalent.

B. Theoretical Properties of MSNR and MMSE Estimators

Property 1: The output poweEy {giuse(v)} of the MMSE estimatoi{4) is equal #,,,,..c>. Indeed,
from (2) and [(4), we obtain

KQMMSEUSZC =Exy{zgumse(y)} = EXY{xEX\Y{$|y}}

_ / " Expy By laly}l} fy (0)dy

_ / " By lel)])? e (w)dy

— 00

=By {gmmse(¥)}- (16)

Property 2: The MMSE J,, is equal to(1 — Ky, )o2. Indeed, from[{I7) and(16), we obtain
JQMMSE :EY{QI%/IMSE(Z/)} + (1 - 2KgMMSE)J:%
:(1 - KQMMSE)U‘%' (7)

Property 3: The power of the uncorrelated noise teuy at the output of the MMSE estimator is
equal toK g6 (1 — Kgyuse )02 Indeed, from[(B),[(16), and(L7), we obtain

leugMMSE =Ev{gimse(v)} — KSMMSEU;%
:KQMMSE(l - KQMMSE)Ug (18)
:KQMMSEJgMMSE'



Equation [[IB) confirms thak,,,.. € [0, 1].
Property 4: The MSNR~,,c\ IS €qual toK .. /(1 — Kgye:)- Indeed, from[(b) and (18), we obtain
K2 o2 K

_ _ TgumsE” T IMMSE
Yousnr = Vgumse = 2 T1-K : (19)
UngMSE IMMSE

By (I6)-[19), the MSNR is related to the MMSE by

Ey{gwse(®)} _ o2 —J,
Yogusnr = Vgumse — JMMSE = xJ JUMSE (20)
IMMSE IMMSE

Property 5: The unbiased MMSE (UMMSE) estimatgpumse(y) maximizes the SNR: therefore, the

UMMSE estimator is a scaled version of the MMSE estimatet, i.

gummse(y) = %LE(y) (21)

IMMSE

Indeed, for any estimatay(y), we can make it unbiased by dividingy) by K,, as expressed by

@:h(y)=%=x+%. (22)

By (), h(y) = Kpz + wy, thereforeK;, = 1 andw;, = wy/K,. Hence, for unbiased estimators, the
minimization overh(-) of the MSEoy, is equivalent to the minimization over(-) of o, /K7, which
coincides with the maximization over(-) of the SNR[(b). As a consequence, the UMMSE estimator is
the uniqgue MSNR estimator characterized&y,. = 1. Since all MSNR estimators are scaled versions
of gumse(y), the unigue UMMSE estimator coincides with {21).

Property 6: The MSE J,,... Of the UMMSE estimator is equal td,,,,s: /K guuse- INdeed, from[(211),

(18), and [(II7), it is easy to show that
2
g,

J _ Wommse __ 1 - KQMMSE 2 JgMMSE (23)
GUMMSE K2 - K Og = K .
IMMSE IMMSE IMMSE

Since K,

guvse < 1o thenJg,use > Jouse-

The Properties 1-6, summarized in TaBle I, show that all ki@®retical expressions for both MMSE
and MSNR basically depend dii,,,.. Since the definition of(,,. in (@) involves a double integration
over the joint pdffxy(z,y), in general the exact value &f,,,,.. is difficult to obtain analytically. Hence,

we introduce some suboptimal estimators that allow for aadydical evaluation of their MSE and SNR.

I1l. SUBOPTIMAL ESTIMATORS

Suboptimal MMSE and MSNR estimators for non-Gaussianssiiediare interesting for several reasons.
For instance, closed-form computation of the MMSE estimaimuse(y) in @) may be cumbersome.

Furthermore, the optimal MMSE nonlinear functigivse(y) may be too complicated to be implemented



TABLE |

SUMMARY OF THEORETICAL PROPERTIES

# Meaning Expression

1| MMSE output power Ev{gumse(¥)} = Koymsc o

2 MMSE value Toumse = (1 — Kgyuse )02

3| MMSE output noise | o3, = Kgyyse(1 = Koyuse) o
4 MSNR value Yousnre = Kowmse/ (1 — Kgyuse )
5 UMMSE estimator gummse(y) = gumse(y) / K gyuse
6 | MSE of UMMSE estim. Jaoumse = Jammse / K aumse

by low-cost hardware, such as wireless sensors. Additigrthe MMSE J,,,,... is difficult to compute
in closed form. Consequently, a simpler analytical expoes®r a suboptimal estimatar(-) may permit
to compute the associated MSE and SNR, which provide an uUppend on the MMSE and a lower
bound on the MSNR, respectively.

Considering a wide class of suboptimal estimators, we asghatg(-) is expressed by a BEM aV

known functionsu;(-) and N unknown coefficientg;:

N
9(y) = _ giui(y). (24)
i=1

Each functionu;(y) can be interpreted as a specific (possibly highly subopjiestimator, and;(y) in
(24) as a linear combination of simpler estimators. We atdmnterested in the optimization of the basis
functions{u;(-)}: therefore, the design af(-) becomes the design of the coefficiefits}. Actually, we
have no constraints on the choice @f;(-)}; for instance, saturating or blanking functions, or a mix
of them, are typically beneficial to contrast impulsive o[40], [16]. However, in Section III.C, we
will show that an orthogonal design simplifies the compotaof {g;}, and that the proposed design is
general enough for any context.

In the following two subsections, we show that, for BEM-cimamed suboptimal estimatoiis {24), the

MSNR and MMSE design criteria still continue to be equivalen



A. B-MSN\R Estimators

Herein we derive the MSNR estimators constrained to the BEHM),(denoted as BEM-MSNR (B-
MSNR) estimators. By[{6) and_(R4), the SNR in (B) can be expressed by
Kjo} g"60"g

S B AP W) - K3 gl (2R 66T )g @)
where

g =[g1, 92, 9n]", (26)
0 =[01,0s,....0n]", (27)
0; =Exy{rui(y)}, (28)

Ry -+ Rain
R=| @ . 11, (29)

Rn1 -+ RnnN
Rij =Ey{ui(y)u;(y)}. (30)

In order to maximize[{25), we take the eigenvalue decomipositf the symmetric matrix2R—067 =
UAUT, which is assumed to be full rank. Note tHatis orthogonal and\ is diagonal. Then, we express
the SNR in[(2b) as

B vIbbTv

Vg = ) (31)

vly
wherev = A'/2UTg andb = A~/2U76. The ratio in [3BL) is maximun [17] whem = vg.ysnr =
¢b = ¢cA71/2UT 0, wherec € R\ {0} is an arbitrary constant, and therefore the SN (25) isimam
when the estimator is

ZB-MSNR = UA_1/2VB—MSNR = C(U%R — 00T)_10. (32)

By (25) and [[3R), using the Sherman-Morrison formulal [1 e tSNR of B-MSNR estimators is

expressed by
6"R'6
_oT( 2p _ ppT\—1p _
YB-MSNR = 0 (O’xR 60 ) 6= o’% _ OTR_lg' (33)

B. B-MMSE Estimator

Now we derive the MMSE estimator constrained to the BEM (8éphoted as BEM-MMSE (B-MMSE)
estimator. By [(Z4) and{26)=(B0), the MSE in (8) becomes

J, =02~ 2¢76 + g"Rg. (34)
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By taking the derivative 0f(34) with respect goand setting it to zero, we obtain the B-MMSE estimator,
expressed by
ge-mmse = R7'6. (35)

By B34) and [[3b), the MSE of the B-MMSE estimator is
JQB-MMSE = O':% - gg—MMSERgB—MMSE = 0';% —6"R'0. (36)

Using [386), the SNRI(33) can be expressed by
'R0 o
JQB-MMSE B JQB-MMSE

The similarity of [37) and[(20) suggests a link between B-MbM&hd B-MSNR estimators, as shown in

2_
VB-MSNR = T TIBMMSE (37)

Theorem 2.

Theorem 2: The B-MSNR estimator[(32) coincides with the B-MMSE estiata33), whenc =
o2 —0TR10.
Proof: Using the Sherman-Morrison formula’J17], {32) becomes

¢
o2 — 0TR-16
Whenec = 02 — 0TR10, gg.msnr in (B9) coincides withgg yvse in 33). m

8B-MSNR = R'0. (38)

Theorem 2 proves that the B-MMSE estimator maximizes the $288} among all the BEM-based
estimators: therefore, each B-MSNR estimator is a scalesiore of the B-MMSE estimator. Also in
this BEM-constrained case the equivalence between B-MMSEBxMSNR estimators is valid for any
statistic of the signal and of the noisy observation.

Note that in Theorem 2 the functiofs;(-)} are arbitrary, but fixed. Differently, if we fix the coefficiesn
{g;} in @24), and perform the optimization over a subset of funti the equivalence between MMSE
and MSNR solutions may not hold true. Indeed, in case of isipalnoise mitigation by means of a
soft limiter (SL), expressed bys (y) = -8 if y < =8, gsi.(y) =y if =8 <y < B, andgs.(y) = S if
y > f3, the optimization ovep > 0 generally produces an MMSE solutidn [15] that is differeninii the
MSNR solution [16]. Therefore, the equivalence between NBVEB\d MSNR estimators can be invalid
for non-BEM-based suboptimal estimators.

In addition to MMSE, there exist other criteria that maximihe SNR: as shown in Appendix A, the
BEM-based unbiased MMSE estimator and a BEM-based estirtt&ib maximizes the gaiml(2) (subject
to a power constraint) both produce the same SNR of B-MMSEBHMISNR estimators.
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C. Q-MMSE Estimator

Herein we prove that, by choosing convenient basis funst{en(-)} in (24), the B-MMSE estimator
(39) converges to the optimal MMSE estimatbl (4). Indeed, ribctangular disjoint (orthogonal) basis
functions

L ifyi <y <y,

ui(y) = (39)
0, otherwise,

fori=1,...,N, with yy = —oco andyy = oo, greatly simplify the computation of the coefficierts; }.
Basically, we are approximating the estimagdy) by a piecewise-constant function. Usifigl(3®), in
(3d) becomes

FY(yZ)_FY(yZ— )7 if ZZ]v
Rij = ' (40)

0, if i # j,
where Fy (y) is the cumulative distribution function (cdf) of the obsatieny. In this case, the matriR
in 29) is diagonal. Therefore, the coefficients of this $fie@-MMSE estimator [[3b), which we refer
to as Q-MMSE estimator, simply become
0;

9iQMMSE = T (41)
while the associated MSIE_(36) is expressed by
2 o~ 07
Jgoumse = O — E RZH' (42)
i=1" "

Note that the Q-MMSE estimatof_(#1) can also be interpretedhe MMSE estimator when the
observatiorny has been discretized using quantization intervalgy; 1, y;], for i = 1, ..., N. Moreover,
we should bear in mind that the numhb¥rof quantization levels, as well as the edges of the quardizat
intervals, are fixed but arbitrary. Thus, the proposed fraonk finds a natural application when the
observed signal undergoes an A/D conversion stage.

However, it is important to prove that, in case of infinite rhenof quantization levels, the Q-MMSE
estimator[(4ll) tends to the optimal MMSE estimaldr (4) foquentized observations: hence, the number

N of quantization levels enables a tradeoff between perfoomand complexity.

Theorem 3: When the interval sizeé\y; = y; — y;_1 tends to zero foi = 2,..., N — 1, and wheny;
andyy_ tend toyy = —oco andyy = oo, respectively, then the Q-MMSE estimatbr(41) tends to the
MMSE estimator[(4).
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x——D g() [

Fig. 1. Signal estimation in additive noise channels.

Proof: When Ay, — 0, for i = 2,.., N — 1, from (39) it is easy to show thafiy (z|y)u:(y) —
fxpy (@lyi)ui(y); hence, fori =2,.., N — 1, (28) gives

o0 Yi -

’ :/ * / Fxpy @ly) fy (y)dyda =2

> Yi—1

S i () Ay / xfxpy (@) de. (43)

—00

In addition, from [[(39) and (40), we have

Yi Ay —0
Ri= | fWdy =2 fy(y) Ay (44)
Yi—1

By taking the ratio betweer (#3) anld {44},o-wmse in (41) tends togumse(vi) = Exy{zly:} in @),
for i = 2,..., N — 1. This result can be extended in order to include 1 andi = N by noting that,
wheny; — yo = —oo andyn—1 — yn = oo, then fxy(zly) — fxyy(zly1) for y € (yo,y1] and
Fxpy(xly) = fxpy(zlyn—1) for y € (yn—1,yn). u
Theorem 3 proves that, when the size of the quantizationvialetends to zero, the Q-MMSE estimator
converges to the MMSE estimator, regardless of the stisti the signal of interest and of the noisy
observationy. In particular, the SNR of the Q-MMSE estimator convergesh SNR of the MMSE
estimator. Moreover, since a Q-MMSE estimator is a paricBFMMSE estimator, by Theorem 2, the Q-
MMSE estimator is also a Q-MSNR estimator, for the same squahtization thresholds. Noteworthy, if
we would optimize the quantization intervaléy; 1, v;]} [i.e., the functions{w;(-)} in (39)] by keeping
the coefficientsy; as fixed, we could end up with different quantization thrédtian an MMSE and

MSNR sense.
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IV. Q-MMSE IN ADDITIVE NOISE CHANNELS

Herein we provide further insights on the coefficieris] (41)tlee Q-MMSE estimator, when the

observations are impaired by an additive naiséndependent from:, as expressed by

and depicted in Fid.]1. The additive noise model (45) ocaurseiveral applications, especially if the data
are obtained by quantized measurements. Indeed, Q-MM%$fatsts are particularly useful in realistic
scenarios where either the source, or the noise, or botlardfpm the standard Gaussian assumption.
These scenarios include: (a) additive noise with a highllefempulsiveness[[18]-[[24]; (b) additive
noise whose pdf is a mixture of statistics caused by the mandocurrence of different noise sources
[25]- [29]; (c) source represented by a pdf mixture, suchnaapplications (e.g., audio, medical, etc.)
that involve effective denoising of sounds or imades [38L][ The optimal coefficient§g;} obviously
depend on the specific pdfs of source and noise, and the rzaheesults reported in Section V give
some evidence of the usefulness of Q-MMSE estimation in aitiael non-Gaussian observation model.

According to the BEM model, we assume that the quantizativesholds have been fixed by some
criterion. Despite possible criteria for threshold opt#iation are beyond the scope of this work, in
Section V we give some insights about this issue and consiol@e heuristic solutions.

To specialize the results of Section Il to the additive poisodel in [45), we observe that the pdf
fv(y) is the convolution betweefix (z) and fx(n). Thus, the coefficient8; and R;; defined in [(28) and
(3d) can be calculated from the first-order statisticsr gfndn. Using [4%), [28) and (39), we obtain

0; = /Z zfx(z) /yy_:: In(n)dndz = D(y;) — D(yi-1), (46)
where .
D) = [ six(@r - . (@7)
An alternative expression can be obtained by exchangingntegration order, which leads to
= [ oo / " px(epdrdn = D) ~ Dlyir), (48)
where )
D) = [ It = )ty )~ sy = ldn, (49)
i) = [ P (50)

Which expression is preferable, betweknl (47) (49), itpen the expressions ¢k (x) and fx(n).
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Using [40) and[(45), we obtain

Ru —FY yz) FY(yz 1) (51)
/ fx(x)Fx(y — x)dz (52)
- / In(n)Fx(y — )dn. (53)

Thus, using[(41), eithef (#6) dr (48), and](51), the Q-MMSkHEnestor for the additive noise modél (45)

is expressed by

D(yi) — D(yi-1)
= .

Flys) = &4

9i,Q-MMSE =

V. A NUMERICAL EXAMPLE

In this section, we want to numerically compare the MSE amdSNR performances of the Q-MMSE
estimator with those of the optimal MMSE estimator, in ordershow the usefulness of Q-MMSE
estimators with a limited number of quantization levelsendfore, first we derive the mathematical
expressions of the optimal MMSE estimator and of the Q-MMSfin®ator, assuming a non-trivial
additive noise mode[(45) where both the signal and the rmisenon-Gaussian. Specifically, we model

the signalz with a Laplace pdf

Q

fx(z) = Ee—alxl, (55)

with o = v/2/0,, and the noisex with a Laplace mixture pdf

Bo

In(n) = po—- 5 ¢ e Polnl +P1B —Palnl, (56)

2

with {8 = V2/0nm}m=01, R = 020/0n 1, 07 = pooay +p1osy, po+p1 = 1 and0 < py < 1.
Basically, [56) models a noise generated by two indepensianices: each noise source, characterized
by a Laplace pdf with average poweﬁ,m, occurs with probabilityp,,,. Similar results can be obtained
by modeling either the noise, or the signal, or both, as a Sansnixture, thus covering a wide range
of practical applications of non-Gaussian denoising.

As detailed in Appendix B, direct computation ¢f (4) witb}{5&nd [56) yields the optimal MMSE
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estimator

gmmse(y) = sgn (y)x

1
Z Pm [CLm(e_ﬁmm _ e—oc‘y|) — Cz’mﬁm|y|e—a|y\]

X m=0 1 | (57)
Z meZm (ae—ﬁm‘?ﬂ — IBme—a|y\)
m=0
Oé2ﬁ2 Oéﬁm
m=—— e = m £g
Cm=Eogy O s ) (58)

The Q-MMSE estimator can be calculated by solving (47) &) (Bing the pdf in[(55) and_(56): as

detailed in Appendix C, whep > 0, this calculation leads to

Z m52 3a _52) —ay

2a(a? — 52, )
« Bme Bmy mye Y
1 2 . —Bmy __ 52 —ay
a‘e - e
FY(y) =1- Z Pm 2(@2 2 ) 9 (60)

which inserted into[{34) give the final result.

In addition to MMSE and Q-MMSE, other two alternative estiora are included in this comparison:
(a) the sampled MMSE (S-MMSE) estimatgrs.wvse, obtained by sampling the optimal MMSE esti-
mator gumse(-) at the midpoint of each quantization interval, e @.s-mvse = gmmse((vi—1 + vi)/2);
and (b) the optimal quantizer (OQ) obtained by applying theyd-Max algorithm [32] to the signal
pdf fx(x). Note that the Lloyd-Max OQ exploits the statistical knodde of the parameter of interest
only, and neglects the noise, while the Q-MMSE estimat@mntizer also exploits the knowledge of the
pdf of noisen: hence, the Q-MMSE estimator is expected to give betteropmdnce.

With reference to the choice of th% — 1 thresholds{y;} of the Q-MMSE estimators, a heuristic
approach chooses all th€ — 1 thresholds equispaced, such that the overload probability- P{y €
[—00,y1) U [yn—1,00)} of the quantizer is fixed: this limits the amount of saturgtdistortion. Another
option is to choose the non-uniform thresholds} given by the Lloyd-Max algorithm[[32] applied to
the signal pdffx(x) in (88). For all the quantized estimators, we use the acrolyhfor non-uniform
guantization and U for uniform quantization.

Fig. [@ compares the shape of the Q-MMSE estimaj@imse(-) with the shape of the optimal
(unquantized) MMSE estimatafyvse(-), wheno, = 1, 0, = 4, R = 0.001, pg = 0.9, and theN — 1

thresholds are equispaced betwegn= —10 andyy_; = 10, which induce an overload probability
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Fig. 2. Comparison between the optimal (unquantized) MMStTr&tor and Q-MMSE estimators with uniform quantization

(N is the number of intervals).

P, =~ 0.0327. Since all the considered MMSE estimators are odd functafribe inputy, Fig.[2 only
displays the positive half. Fid] 2 confirms that, when the bemV of quantization levels increases,
the Q-MMSE estimator tends to the optimal MMSE estimatorteNalso that the Q-MMSE estimator
gi,0-mvise is different from the staircase curve of the S-MMSE estimai®-vvse.

Fig.[3 shows the SNR gai&', provided by different estimatorg(-). The SNR gainG, is defined as

__ Ty
= er ©)

where~, is the SNR at the output of the estimator, arifo? is the SNR at the input of the estimator.
The signal and noise parameters are the same of[Fig. 2, efarefite variables,. Fig.[3 compares

the SNR performance of Q-MMSE, S-MMSE, and OQ estimatorsyaing uniform and non-uniform
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Fig. 3. SNR gainG, of different estimators as a function of the input SN&/c2.

guantization versions (with labels U and NU in the legend igf B): the overload regions are the same
for both versions and have been selected by the Lloyd-Maarigihgm, which ends up with an overload
probability P ~ 0.0093 wheno? /o2 = 0 dB and Py ~ 0.0805 wheno? /02 = —12 dB. As a reference,
Fig. 3 also includes an optimal Q-MMSE (witN = 127) with uniform quantization obtained by an
exhaustive maximization of the SNR gain over all the possitiioices for the overload regions (i.e.,
for all the possible choices af; = —yxn_1): this is equivalent to an optimization of the interval size
Ay = (ynv—1 — y1)/(N — 2) of the uniform quantization intervals. When the number o&mjization
intervals N is sufficiently high, the SNR of this optimal Q-MMSE estimatmsically coincides with the
SNR of the optimal (unquantized) MMSE, whose simulated S gs included in Figl13 as well.

Fig. [3 confirms that the SNR gain of the Q-MMSE estimator igéarthan for the other quantized

estimators, provided that the quantization intervals Aeedame. The SNR of the Q-MMSE estimator
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Fig. 4. Comparison between different estimators with noifeum quantization § is the number of intervals).

can be further improved by increasing the number of intereald by optimizing the (uniform) interval

sizes, as shown in Figl 3 by the curve with= 127 with optimized overload regions. In addition, Fig. 3
shows that the SNR of the optimal Q-MMSE estimator is vergelt the simulated SNR of the optimal
(unquantized) MMSE estimator. Therefore, the proposedIQS¥ approach permits to obtain analytical
tight lower bounds on the SNR of the optimal (unquantized) 8Vestimator.

Fig.[4 compares the function(y) for the estimators of Fid.]13 with non-uniform quantizatievhen
02/02 = —15 dB. Fig.[4 highlightsthat the function(y) of the Lloyd-Max OQ is nondecreasing, because
the noise is neglected; differently, the functigfy) of the (Q-) MMSE estimators can be non-monotonic,
like in this specific example.

Fig. [@ displays the MSE of different estimators, in the samenario of Fig[B. It is evident that

the Q-MMSE estimator provides the lowest MSE among all thentjged estimators that use the same
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Fig. 5. MSE.J, of different estimators as a function of the input SN&/c2.

guantization intervals. Note that the analytical MSE of @&MMSE estimator can be used as an upper
bound of the minimum valuéyyse (obtained in Figlb by simulation). Similarly to the SNR ays$ of
Fig.[3, tighter upper bounds on the MMSE,,,,.. can be obtained by increasing the number of intervals

N and by further optimization over all the possible overloadions.

VI. CONCLUSION

In this paper, we have studied a meaningful definition of tH&NWR estimator, and we established its
equivalence with the MMSE estimator, regardless of thdssied of the noise and of the parameter of
interest. We have also extended this equivalence to a speleifis of suboptimal estimators expressed as a
linear combination of arbitrary (fixed) functions; convegs we have explained that the same equivalence

does not hold true in general for non-BEM suboptimal estimrsat
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The developed theoretical framework has been instrumémistudy Bayesian estimators whose input
is a quantized observation of a parameter of interest ctedupy an additive noise. We have shown
that, when the size of the quantization intervals goes to,z8e Q-MMSE (Q-MSNR) estimator exactly
tends to the MMSE (MSNR) estimator for unquantized obs@mat Furthermore, by a practical example,
we have shown that, using a fairly limited number of quantitralevels, the Q-MMSE estimator can
easily approach the performance of the optimal (unquaditis##MSE estimator: the designed Q-MMSE

estimator, clearly, outperforms in SNR (and in MSE) othdvaptimal estimators.

APPENDIXA - OTHER BEM-BASED ESTIMATORS

We detail BEM-based estimators that produce the maximum,Shiftlarly to B-MMSE and B-MSNR
estimators: unbiased estimators and a maximum-gain dstima

Unbiased estimators are defined By x{g(y)|z} = = and hence are characterized By = 1 in ().
By @), (24), (26)1(2B), for the BEM-based estimators weehav
g'6
o2’
Therefore, the BEM-based unbiased MSNR (B-UMSNR) estimatobtained by maximizind (25) subject
to the constraing” @ = o2, while the BEM-based unbiased MMSE (B-UMMSE) estimator li¢gained

K, — (62)

by minimizing [34) subject to the same constraint. By iriagrthe constraing’ @ = o2 into (28) and

(B4), both optimizations are equivalent to the minimizatif the output powery {¢?(y)} = g’ Rg
subject tog” @ = o2, which leads to

2

g

_ _ T —1
EB-UMSNR = ZB-UMMSE = mR 0. (63)
The solution[(6B) is equivalent t§ (38) with

2052 _ 9TR-19

o= %al% ) (64)
'R0

Hence, the B-UMMSE estimator gives the maximum SNR achievay BEM-based estimators, and is

a scaled version of the B-MMSE estimatbr](35).

An alternative Bayesian criterion is the maximization o tain i, (2) or (62), subject to a power

constraint. Using the output power constraifit{¢?(y)} = g’ Rg = P, the BEM-based maximum-gain
(B-MG) estimator is expressed by

/ P _
gB-MG = mR 197 (65)

which is a scaled version of the B-MMSE estimator and hendd&NR estimator among the BEM-based

estimators.
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APPENDIX B - DERIVATION OF (51)

Here we show that the computation bf (4), when the signal pdE%8) and the noise pdf it (56), leads
to (54). First, using the Bayes' theorem, the MMSE estimé@ris rewritten as

e fyx(yle) fx (@)de
gwmse(Yy) = ) ; (66)
in addition, the noise pdf(%6) can be rewritten as
1
) =" pfrm(n) (67)
m=0
FNm(n) :%’”e—ﬁmln\. (68)

Using [45), [55),[(56),[(87), and (68), the numerator[of (66} y > 0, can be rewritten as

| et fe(eyis (69)
= /_OO zfn(y — ) fx(x)dx (70)
1 00
= o [ ity - )@ (71)
m=0 -0
=Ii(y) + L(y) + I3(y), (72)
where
1
]1 (y) — Z pm%e—ﬁmy /0 xe(a+ﬁm)xd$, (73)
m=0 4 %
1 o8 y
T — y— o =By (—atBm)z g , 74
o) = 3 i e [ - (74)
1 00
L(y) =Y pm aim ey / el =BT g (75)
m=0 Y

The three integral§ (T3)._(F4), arld{75), can be solved using

Lllax —1)e® ]+ C, if a #0,
/xe‘”daz: =l )] ’ (76)

%x2+0, if a=0,
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whereC' is an arbitrary constant. If we assume tha# £3,,, for m = 0,1, then [Z8)-4{7b) become

—Bm
Z P “i ”f — ’ (77)
! B {[(Bm — )y — 1]e™Y 4 ¢=Fmy}
=2 b 1B — ) ’ (78)
abm|(a + Bm)y + ]e™Y
Z a1 3. . (79)

Hence, the numerator df (66), f@r> 0, is equal to

L(y) + Ia(y) + I3(y) = (80)

1
= Z Pm [Cl,m(e_ﬁmy - e—ay) - C2,m5my€_ay 5 (81)

whereC ,,, and Cs,,, are expressed by (58). If we repeat the same procedurg fo10, we obtain a
similar equation.
On the other hand, using (45). {55), (67) ahd] (68), the denatoi of [66) is equal to

fy(y) =rx(y) * In(y meme (82)

1
=3 pmlfx ) * fxml Z Py m( (83)
m=0
wherex denotes convolution and
fym(y) = fx@) * fnm(y). (84)

By denoting withCx (u) the characteristic function associated with the pdfx), (84) translates into
a? 32,
a? + 4m2u? B2, + An?u?’

Cy m(u) = Cx(u)COn m(u) = (85)

If we assume thatv # 3,,, for m = 0, 1, then [8%) can be decomposed in partial fractions as

_ 5 o o B
Cy,m(u) B2 — a?a? 1 Anta T 52 B2 472y (86)
52 2
3 a2 5Ox (u) + ) ———5 Onm(u), (87)
which, by means of (82) and_(B3), leads to
2 2
Fenw) = 22y )+ 23 ) (88)

2

L 2
fy(y) = Z |:52/8 —/x(y) + Oégiiﬁng,m(y) : (89)
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Therefore, by[(89),[(85)[(56), anﬂ]67) the denominatom is equal to

2 p—alyl 25 e~ Bmlyl

me bt +me = (90)

= Z PmCam(ae Prlvl — g, e=ell), (91)

m=0
where Cs ,,, is expressed by ($8). By inserting {69)4(72).1(81), dnd @) into [66), we obtain the
mathematical expression gfiuse(y) for y > 0, and, by repeating the same procedure for negative values
of y, we obtain the final expression gfiuse(y) reported in [(5l7)-£(88), which is valid for all values of
y. Note that, since the signal pdf and the noise pdf are botmmnic, the MMSE estimator is and odd

function of y, and thereforemse(—vy) = —gmmse(v)-

APPENDIX C - DERIVATION OF (59) AND (60)

Herein we detail the computation db(y) in (89) and of Fy(y) in (€0): these two quantities are
derived by calculating(47) an@ (52), respectively, for &ulitive noise mode[(45), when the signal pdf
is expressed by (55) and the noise pdf is expressed by (5eth[(4F) and (52) are necessary in order
to compute the Q-MMSE estimator, expressed[by (41), [via—@&) and [[(GN)-£(33). The derivations of
D(y) and Fy(y) are performed only fog > 0 (those fory < 0 are similar).

By (67) and [(68B), the noise cdf can be expressed as

1
= Z PmENm(n) (92)
m=0
%eﬁm", if n <0,
FNm(n) = (93)

1-— %e‘ﬁmn, if n>0,

and therefore, by((B5)D(y) in (@1) becomes
me | ats@) Pty - a)da (94)

=I4(y) + Is(y) + Is(y) + I7(y) + Is(y), (95)
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where
1 a 0
Ii(y) = Z me/ ze™dx, (96)
m=0 o0
1 a 0
() == . pnGe ™ [ acleiords, (@7)
m=0 o
1 o [V
) =Y pu [ ae . (98)
m=0
1 N Y
F() == 3 pn e [ ae-etiniag, (99)
m=0 0
1 N 0o
Is(y) = Z pmzeﬁmy/ ge~(@tBn)e gy, (100)
m=0 Y

By assumingx # ,,, for m = 0,1, and by solving the five integrals ih (96)=(100) usihgl (76)sieasy
to show thatD(y) in (@4) becomes equal t6_(59).
The cdf Fy(y) can be easily calculated from (88) amd](93), which lead to

%, o
By m(y) ZmFX(y) + WFN,m(y) (101)
,82 e~ _ 0426_57"?4
=1 m 102
ey (102

where we have use#ix(y) = 1 — 2e=*¥ for y > 0. Using [I02) with [BR)-E@83), we obtain the final
expression[(d0).
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