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Abstract

The minimum mean-squared error (MMSE) is one of the most popular criteria for Bayesian estima-

tion. Conversely, the signal-to-noise ratio (SNR) is a typical performance criterion in communications,

radar, and generally detection theory. In this paper we firstformalize an SNR criterion to design an

estimator, and then we prove that there exists an equivalence between MMSE and maximum-SNR

estimators, for any statistics. We also extend this equivalence to specific classes of suboptimal estimators,

which are expressed by a basis expansion model (BEM). Then, by exploiting an orthogonal BEM for

the estimator, we derive the MMSE estimator constrained to agiven quantization resolution of the noisy

observations, and we prove that this suboptimal MMSE estimator tends to the optimal MMSE estimator

that uses an infinite resolution of the observation. Besides, we derive closed-form expressions for the

mean-squared error (MSE) and for the SNR of the proposed suboptimal estimators, and we show that

these expressions constitute tight, asymptotically exact, bounds for the optimal MMSE and maximum

SNR.
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I. INTRODUCTION

Bayesian estimation of a parameter, a source, or a signal, from noisy observations, is a general

framework in statistical inference, with widespread applications in signal processing, communications,

controls, machine learning, etc. [1]. The minimum mean-squared error (MMSE) is the most popular

criterion in this framework, intuitively connected to the maximum signal-to-noise ratio (MSNR) criterion,

mostly used for communication and detection applications [1], [2]. After the first seminal work in [3],

the connections between the MMSE and the signal-to-noise ratio (SNR) have attracted several research

interests, and there is a quite abundant literature to establish links among them and the mutual information

(see [4]– [8] and the references therein). In the context of signal classification (i.e., detection), [9] has

shown the interdependencies between the mean-squared error (MSE) and other second-order measures of

quality, including many definitions of SNR. However, a thorough investigation of the links between MSE

and SNR, in the context of estimation, is still lacking. Someconnections between MMSE and SNR have

been explored in [3], which proves that the MMSE in the additive noise channel is inversely proportional

to the SNR. However, the SNR of [3] is defined at the input of theestimator, while we are interested in

the SNR at the output of the estimator.

Motivated to further explore the links between SNR and MSE, in this paper we first define the

SNR for the output of a generic estimator, and then we prove the equivalence between the MMSE

and MSNR criteria in the context of estimation design. Actually, when the parameter to be estimated and

the observations are jointly Gaussian, it is well known thatthe MMSE estimator, the maximum likelihood

(ML) estimator, and the maximum a posteriori (MAP) estimator, are linear in the observation and are

equivalent to the MSNR estimator (up to a scalar multiplicative coefficient) [11], [12]: indeed, in this

simple Gaussian case, all these estimators produce the sameoutput SNR, which is both maximum and

identical to the input SNR. Differently, this paper considers a more general case, where the parameter to

be estimated and the observations can be non-Gaussian. In this general case, to the best of our knowledge,

the natural question if the MMSE and MSNR estimation criteria are equivalent or not, is still unanswered1.

While classical estimation typically deals with the MMSE criterion, some authors have been looking for

an MSNR solution, such as [10], ignoring if this solution hasanything to do with the MMSE solution.

Specifically, this paper proves that the equivalence between MMSE and MSNR estimators always holds

1We believe that this question has never been addressed in detail in the context of estimation problems: the investigation done

in [9] for detection cannot be extended to estimation, sincethe SNR definitions used in [9] are quite different from the output

SNR considered in this paper.
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true, even when the parameter to be estimated and the observations are non-Gaussian: in this case, both the

MMSE and the MSNR estimators are usually nonlinear in the observations. This equivalence establishes

a strong theoretical link between MMSE and MSNR criteria, traditionally used in different contexts, i.e.,

estimation and detection, respectively.

Then, we prove that the equivalence between the MSNR and MMSEcriteria holds true also for

any suboptimal estimator that is expressed by a linear combination of fixed basis functions, according

to a basis expansion model (BEM) [13]. Within this framework, we derive the suboptimal MMSE

estimator, and other equivalent MSNR estimators, constrained to a given quantization resolution of the

noisy observations. Notheworthy, each quantization-constrained estimator corresponds to a specific choice

of the set of BEM functions. These quantization-constrained estimators may have practical interest in

low-complexity applications that use analog-to-digital (A/D) converters with limited number of bits,

such as low-power wireless sensor applications. Specifically, we prove that the suboptimal quantization-

constrained MMSE (Q-MMSE) estimator tends to the optimal (unquantized) MMSE estimator that uses

an infinite resolution of the observation. In addition, we derive closed-form expressions for the SNR and

for the MSE of the proposed suboptimal estimators. Note thatthese closed-form expressions can be used

as lower bounds on the SNR of the MSNR estimators, or as upper bounds on the MSE of the optimal

MMSE estimator: indeed, in case of non-Gaussian statistics, analytical expressions for the MMSE value

are difficult to obtain [14]; anyway, we also provide some analytical expressions for the MMSE and

MSNR values.

To provide an example for practical applications, we apply the derived suboptimal estimators to an

additive non-Gaussian noise model, where the noisy observation is simply a signal-plus-noise random

variable. We include a numerical example where the signal has a Laplacian statistic, while the noise

distribution is a Laplacian mixture, bearing in mind that the results in this paper are valid for any signal

and noise statistics. The obtained results show that the proposed suboptimal Q-MMSE and quantization-

constrained MSNR (Q-MSNR) estimators outperform other alternative estimators discussed in Section V.

The numerical results also confirm and that, when the size of the quantization intervals tends to zero, the

MSE (and SNR) of the Q-MMSE estimator tends to the optimal MMSE (and MSNR) value, as expected

by design.

The rest of this paper is organized as follows. Section II proves the equivalence between the MSNR and

MMSE criteria and discusses several theoretical links. In Section III, we derive the equivalence results

for BEM-based estimators, such as the Q-MMSE. Section IV considers the special case of additive

non-Gaussian noise channel, while Section V illustrates a numerical example. Section VI concludes the
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paper.

II. M AXIMUM SNR AND MMSE ESTIMATORS

For real-valued scalar observation and parameters, Bayesian estimation deals with statistical inference

of a random parameter of interestx from a possibly noisy observationy, assuming that the joint probability

density function (pdf)fXY(x, y) is known. The estimator of the scalar parameterx is a functiong(·) that

produces the estimated parameterx̂ = g(y). By a linear regression analysis, for any zero-meanx andy

and any estimatorg(·), it is possible to express the estimator output as

x̂ = g(y) = Kgx+ wg, (1)

where

Kg =
EXY{xg(y)}

σ2
x

, (2)

σ2
x = EX{x2}, andwg is the zero-mean output noise, which is orthogonal to the parameter of interestx

and characterized byσ2
Wg

= EWg
{w2

g}. It is well known that the estimatorgMMSE(·) that minimizes the

Bayesian MSE

Jg = EXY{(g(y) − x)2} (3)

is expressed by [1], [2], [14], [15]

gMMSE(y) = EX|Y{x|y} =

∫ ∞

−∞
xfX|Y(x|y)dx. (4)

However, other Bayesian criteria are possible, such as the MAP, the minimum mean-absolute error,

etc. [2]. Actually we may chooseg(·) that maximizes the SNR at the estimator output in (1), as done

for detection in [10], [16]. In this sense, the definition ofKg in (2) leads to the output SNR

γg =
K2

gσ
2
x

σ2
wg

, (5)

defined as the power ratio of the noise-free signal and the uncorrelated noise in (1). Alternatively, we

may maximize the gainKg in (2) (instead of the SNR), under a power constraint.

Using the orthogonality in (1), the output power is

EY{g2(y)} = K2
gσ

2
x + σ2

wg
, (6)

and hence, using (2) and (5), we obtain

Jg =EY{g2(y)} + (1− 2Kg)σ
2
x (7)

=(1−Kg)
2σ2

x + σ2
wg
. (8)
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From (5) and (8), it is straightforward that the MSEJg and the SNRγg are linked by

Jg = (1−Kg)
2σ2

x +
K2

gσ
2
x

γg
. (9)

A. Equivalence of MSNR and MMSE Estimators

While for jointly Gaussian statistics the equivalence between MSNR and MMSE is easy to establish

(since the MMSE estimator is linear iny), herein we consider the most general case, without any

assumption on the statistics ofx andy.

Theorem 1: Among all the possible estimatorsg(·), the MMSE estimator (4) maximizes the SNR (5)

at the estimator output, for any pdffXY(x, y).

Proof: Let us denote withgMMSE(y) the MMSE estimator (4), and withKgMMSE its associated gain

(2). In addition, let us denote withgMSNR(y) an estimator that maximizes the SNR (5), as expressed by

gMSNR(y) = argmax
g(·)

[

K2
gσ

2
x

EY{g2(y)} −K2
gσ

2
x

]

, (10)

and byKgMSNR its associated gain in (2). This MSNR estimator is not unique, since also any other estimator

ga,MSNR(y) = agMSNR(y), (11)

with a ∈ R \ {0}, maximizes the SNR. Indeed, due to the scaling factora, by means of (10) both the

noise-free powerK2
gσ

2
x and the noise powerσ2

wg
= EY{g2(y)} − K2

gσ
2
x are multiplied by the same

quantitya2, hence the SNR in (5) is invariant witha. By (1) and (2), the gainKga,MSNR of ga,MSNR(y) is

equal to

Kga,MSNR = aKgMSNR. (12)

Conversely, the MMSE estimator is unique and has a unique gain KgMMSE. Thus, we have to prove the

equivalence of the MMSE estimatorgMMSE(y) with the specificga,MSNR(y) characterized byKga,MSNR =

KgMMSE. Therefore, by (12), we have to choose the MSNR estimator with the specific valuea = ã

expressed by

ã =
KgMMSE

KgMSNR

. (13)

The MSNR estimatorgã,MSNR(y) is actually the MSNR estimator that corresponds to an optimization

problem restricted to the subclass of all the estimatorsg(·) characterized by the same gainKg = KgMMSE,

as expressed by

gã,MSNR(y) = argmax
g(·),Kg=KgMMSE

[

K2
gσ

2
x

EY{g2(y)} −K2
gσ

2
x

]

. (14)
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Note that, despite the constraintKg = KgMMSE, we still obtain the unconstrained MMSE estimator (4),

which by definition belongs to the subclass of estimators being characterized byKg = KgMMSE. Using the

constraintKg = KgMMSE, it is clear in (9) that the dependence of the MSE functionalJg on g(·) is only

throughγg, and no longer also throughKg as in the general case: consequently, the MMSE estimator is

gMMSE(y) = argmin
g(·),Kg=KgMMSE

[Jg] = argmin
g(·),Kg=KgMMSE

[

σ2
x

γg

]

= argmax
g(·),Kg=KgMMSE

[γg] = gã,MSNR(y). (15)

Thus, (15) shows that the estimator that maximizes the SNR with a fixedKg = KgMMSE is equivalent to

the estimator that minimizes the MSE, i.e.,gã,MSNR(y) = gMMSE(y).

Basically, Theorem 1 explains that{ga,MSNR(y)} are all scaled versions ofgMMSE(y). In other words,

each scaled version of the MSNR produces the same SNR, but a different MSE: only a unique MSNR

estimator is the MMSE estimator, and, in this sense, the two estimation criteria are equivalent.

B. Theoretical Properties of MSNR and MMSE Estimators

Property 1: The output powerEY{g2MMSE(y)} of the MMSE estimator (4) is equal toKgMMSEσ
2
x. Indeed,

from (2) and (4), we obtain

KgMMSEσ
2
x =EXY{xgMMSE(y)} = EXY{xEX|Y{x|y}}

=

∫ ∞

−∞
EX|Y{xEX|Y{x|y}|y}fY(y)dy

=

∫ ∞

−∞

[

EX|Y{x|y}
]2

fY(y)dy

=EY{g2MMSE(y)}. (16)

Property 2: The MMSEJgMMSE is equal to(1−KgMMSE)σ
2
x. Indeed, from (7) and (16), we obtain

JgMMSE =EY{g2MMSE(y)} + (1− 2KgMMSE)σ
2
x

=(1−KgMMSE)σ
2
x. (17)

Property 3: The power of the uncorrelated noise termwg at the output of the MMSE estimator is

equal toKgMMSE(1−KgMMSE)σ
2
x. Indeed, from (6), (16), and (17), we obtain

σ2
wgMMSE

=EY{g2MMSE(y)} −K2
gMMSE

σ2
x

=KgMMSE(1−KgMMSE)σ
2
x (18)

=KgMMSEJgMMSE.
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Equation (18) confirms thatKgMMSE ∈ [0, 1].

Property 4: The MSNRγgMSNR is equal toKgMMSE/(1−KgMMSE). Indeed, from (5) and (18), we obtain

γgMSNR = γgMMSE =
K2

gMMSE
σ2
x

σ2
wgMMSE

=
KgMMSE

1−KgMMSE

. (19)

By (16)–(19), the MSNR is related to the MMSE by

γgMSNR = γgMMSE =
EY{g2MMSE(y)}

JgMMSE

=
σ2
x − JgMMSE

JgMMSE

. (20)

Property 5: The unbiased MMSE (UMMSE) estimatorgUMMSE(y) maximizes the SNR: therefore, the

UMMSE estimator is a scaled version of the MMSE estimator, i.e.,

gUMMSE(y) =
gMMSE(y)

KgMMSE

. (21)

Indeed, for any estimatorg(y), we can make it unbiased by dividingg(y) by Kg, as expressed by

x̂ = h(y) =
g(y)

Kg
= x+

wg

Kg
. (22)

By (1), h(y) = Khx + wh, thereforeKh = 1 andwh = wg/Kg. Hence, for unbiased estimators, the

minimization overh(·) of the MSEσ2
wh

is equivalent to the minimization overg(·) of σ2
wg
/K2

g , which

coincides with the maximization overg(·) of the SNR (5). As a consequence, the UMMSE estimator is

the unique MSNR estimator characterized byKgMSNR = 1. Since all MSNR estimators are scaled versions

of gMMSE(y), the unique UMMSE estimator coincides with (21).

Property 6: The MSEJgUMMSE of the UMMSE estimator is equal toJgMMSE/KgMMSE. Indeed, from (21),

(16), and (17), it is easy to show that

JgUMMSE =
σ2
wgMMSE

K2
gMMSE

=
1−KgMMSE

KgMMSE

σ2
x =

JgMMSE

KgMMSE

. (23)

SinceKgMMSE ≤ 1, thenJgUMMSE ≥ JgMMSE.

The Properties 1-6, summarized in Table I, show that all the theoretical expressions for both MMSE

and MSNR basically depend onKgMMSE. Since the definition ofKgMMSE in (2) involves a double integration

over the joint pdffXY(x, y), in general the exact value ofKgMMSE is difficult to obtain analytically. Hence,

we introduce some suboptimal estimators that allow for an analytical evaluation of their MSE and SNR.

III. SUBOPTIMAL ESTIMATORS

Suboptimal MMSE and MSNR estimators for non-Gaussian statistics are interesting for several reasons.

For instance, closed-form computation of the MMSE estimator gMMSE(y) in (4) may be cumbersome.

Furthermore, the optimal MMSE nonlinear functiongMMSE(y) may be too complicated to be implemented
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TABLE I

SUMMARY OF THEORETICAL PROPERTIES

# Meaning Expression

1 MMSE output power EY{g
2

MMSE(y)} = KgMMSEσ
2

x

2 MMSE value JgMMSE = (1−KgMMSE)σ
2

x

3 MMSE output noise σ2

wgMMSE
= KgMMSE(1−KgMMSE)σ

2

x

4 MSNR value γgMSNR = KgMMSE/(1−KgMMSE)

5 UMMSE estimator gUMMSE(y) = gMMSE(y)/KgMMSE

6 MSE of UMMSE estim. JgUMMSE = JgMMSE/KgMMSE

by low-cost hardware, such as wireless sensors. Additionally, the MMSE JgMMSE is difficult to compute

in closed form. Consequently, a simpler analytical expression for a suboptimal estimatorg(·) may permit

to compute the associated MSE and SNR, which provide an upperbound on the MMSE and a lower

bound on the MSNR, respectively.

Considering a wide class of suboptimal estimators, we assume thatg(·) is expressed by a BEM ofN

known functionsui(·) andN unknown coefficientsgi:

g(y) =

N
∑

i=1

giui(y). (24)

Each functionui(y) can be interpreted as a specific (possibly highly suboptimal) estimator, andg(y) in

(24) as a linear combination of simpler estimators. We are not interested in the optimization of the basis

functions{ui(·)}: therefore, the design ofg(·) becomes the design of the coefficients{gi}. Actually, we

have no constraints on the choice of{ui(·)}; for instance, saturating or blanking functions, or a mix

of them, are typically beneficial to contrast impulsive noise [10], [16]. However, in Section III.C, we

will show that an orthogonal design simplifies the computation of {gi}, and that the proposed design is

general enough for any context.

In the following two subsections, we show that, for BEM-constrained suboptimal estimators (24), the

MSNR and MMSE design criteria still continue to be equivalent.



9

A. B-MSNR Estimators

Herein we derive the MSNR estimators constrained to the BEM (24), denoted as BEM-MSNR (B-

MSNR) estimators. By (6) and (24), the SNRγg in (5) can be expressed by

γg =
K2

gσ
2
x

EY{g2(y)} −K2
gσ

2
x

=
gT

θθ
Tg

gT (σ2
xR− θθ

T )g
. (25)

where

g =[g1, g2, ..., gN ]T , (26)

θ =[θ1, θ2, ..., θN ]T , (27)

θi =EXY{xui(y)}, (28)

R =











R11 · · · R1N

...
. . .

...

RN1 · · · RNN











, (29)

Rij =EY{ui(y)uj(y)}. (30)

In order to maximize (25), we take the eigenvalue decomposition of the symmetric matrixσ2
xR−θθ

T =

UΛUT , which is assumed to be full rank. Note thatU is orthogonal andΛ is diagonal. Then, we express

the SNR in (25) as

γg =
vTbbTv

vTv
, (31)

wherev = Λ1/2UTg andb = Λ−1/2UT
θ. The ratio in (31) is maximum [17] whenv = vB-MSNR =

cb = cΛ−1/2UT
θ, wherec ∈ R\{0} is an arbitrary constant, and therefore the SNR in (25) is maximum

when the estimator is

gB-MSNR = UΛ−1/2vB-MSNR = c(σ2
xR− θθ

T )−1
θ. (32)

By (25) and (32), using the Sherman-Morrison formula [17], the SNR of B-MSNR estimators is

expressed by

γB-MSNR = θ
T (σ2

xR− θθ
T )−1

θ =
θ
TR−1

θ

σ2
x − θ

TR−1θ
. (33)

B. B-MMSE Estimator

Now we derive the MMSE estimator constrained to the BEM (24),denoted as BEM-MMSE (B-MMSE)

estimator. By (24) and (26)–(30), the MSEJg in (8) becomes

Jg = σ2
x − 2gT

θ + gTRg. (34)
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By taking the derivative of (34) with respect tog and setting it to zero, we obtain the B-MMSE estimator,

expressed by

gB-MMSE = R−1
θ. (35)

By (34) and (35), the MSE of the B-MMSE estimator is

JgB-MMSE = σ2
x − gT

B-MMSERgB-MMSE = σ2
x − θ

TR−1
θ. (36)

Using (36), the SNR (33) can be expressed by

γB-MSNR =
θ
TR−1

θ

JgB-MMSE

=
σ2
x − JgB-MMSE

JgB-MMSE

. (37)

The similarity of (37) and (20) suggests a link between B-MMSE and B-MSNR estimators, as shown in

Theorem 2.

Theorem 2: The B-MSNR estimator (32) coincides with the B-MMSE estimator (35), whenc =

σ2
x − θ

TR−1
θ.

Proof: Using the Sherman-Morrison formula [17], (32) becomes

gB-MSNR =
c

σ2
x − θ

TR−1θ
R−1

θ. (38)

Whenc = σ2
x − θ

TR−1
θ, gB-MSNR in (38) coincides withgB-MMSE in (35).

Theorem 2 proves that the B-MMSE estimator maximizes the SNR(25) among all the BEM-based

estimators: therefore, each B-MSNR estimator is a scaled version of the B-MMSE estimator. Also in

this BEM-constrained case the equivalence between B-MMSE and B-MSNR estimators is valid for any

statistic of the signal and of the noisy observation.

Note that in Theorem 2 the functions{ui(·)} are arbitrary, but fixed. Differently, if we fix the coefficients

{gi} in (24), and perform the optimization over a subset of functions, the equivalence between MMSE

and MSNR solutions may not hold true. Indeed, in case of impulsive noise mitigation by means of a

soft limiter (SL), expressed bygSL(y) = −β if y ≤ −β, gSL(y) = y if −β < y < β, andgSL(y) = β if

y ≥ β, the optimization overβ > 0 generally produces an MMSE solution [15] that is different from the

MSNR solution [16]. Therefore, the equivalence between MMSE and MSNR estimators can be invalid

for non-BEM-based suboptimal estimators.

In addition to MMSE, there exist other criteria that maximize the SNR: as shown in Appendix A, the

BEM-based unbiased MMSE estimator and a BEM-based estimator that maximizes the gain (2) (subject

to a power constraint) both produce the same SNR of B-MMSE andB-MSNR estimators.
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C. Q-MMSE Estimator

Herein we prove that, by choosing convenient basis functions {ui(·)} in (24), the B-MMSE estimator

(35) converges to the optimal MMSE estimator (4). Indeed, the rectangular disjoint (orthogonal) basis

functions

ui(y) =











1, if yi−1 < y ≤ yi,

0, otherwise,
(39)

for i = 1, ..., N , with y0 = −∞ andyN = ∞, greatly simplify the computation of the coefficients{gi}.

Basically, we are approximating the estimatorg(y) by a piecewise-constant function. Using (39),Rij in

(30) becomes

Rij =











FY(yi)− FY(yi−1), if i = j,

0, if i 6= j,

(40)

whereFY(y) is the cumulative distribution function (cdf) of the observationy. In this case, the matrixR

in (29) is diagonal. Therefore, the coefficients of this specific B-MMSE estimator (35), which we refer

to as Q-MMSE estimator, simply become

gi,Q-MMSE =
θi
Rii

, (41)

while the associated MSE (36) is expressed by

JgQ-MMSE = σ2
x −

N
∑

i=1

θ2i
Rii

. (42)

Note that the Q-MMSE estimator (41) can also be interpreted as the MMSE estimator when the

observationy has been discretized usingN quantization intervals(yi−1, yi], for i = 1, ..., N . Moreover,

we should bear in mind that the numberN of quantization levels, as well as the edges of the quantization

intervals, are fixed but arbitrary. Thus, the proposed framework finds a natural application when the

observed signal undergoes an A/D conversion stage.

However, it is important to prove that, in case of infinite number of quantization levels, the Q-MMSE

estimator (41) tends to the optimal MMSE estimator (4) for unquantized observations: hence, the number

N of quantization levels enables a tradeoff between performance and complexity.

Theorem 3: When the interval size∆yi = yi − yi−1 tends to zero fori = 2, ..., N − 1, and wheny1

andyN−1 tend toy0 = −∞ andyN = ∞, respectively, then the Q-MMSE estimator (41) tends to the

MMSE estimator (4).
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Fig. 1. Signal estimation in additive noise channels.

Proof: When∆yi → 0, for i = 2, ..., N − 1, from (39) it is easy to show thatfX|Y(x|y)ui(y) →
fX|Y(x|yi)ui(y); hence, fori = 2, ..., N − 1, (28) gives

θi =

∫ ∞

−∞
x

∫ yi

yi−1

fX|Y(x|y)fY(y)dydx
∆yi→0−−−−→

→fY(yi)∆yi

∫ ∞

−∞
xfX|Y(x|yi)dx. (43)

In addition, from (39) and (40), we have

Rii =

∫ yi

yi−1

fY(y)dy
∆yi→0−−−−→ fY(yi)∆yi. (44)

By taking the ratio between (43) and (44),gi,Q-MMSE in (41) tends togMMSE(yi) = EX|Y{x|yi} in (4),

for i = 2, ..., N − 1. This result can be extended in order to includei = 1 and i = N by noting that,

when y1 → y0 = −∞ and yN−1 → yN = ∞, then fX|Y(x|y) → fX|Y(x|y1) for y ∈ (y0, y1] and

fX|Y(x|y) → fX|Y(x|yN−1) for y ∈ (yN−1, yN ).

Theorem 3 proves that, when the size of the quantization intervals tends to zero, the Q-MMSE estimator

converges to the MMSE estimator, regardless of the statistics of the signal of interestx and of the noisy

observationy. In particular, the SNR of the Q-MMSE estimator converges tothe SNR of the MMSE

estimator. Moreover, since a Q-MMSE estimator is a particular B-MMSE estimator, by Theorem 2, the Q-

MMSE estimator is also a Q-MSNR estimator, for the same set ofquantization thresholds. Noteworthy, if

we would optimize the quantization intervals{(yi−1, yi]} [i.e., the functions{ui(·)} in (39)] by keeping

the coefficientsgi as fixed, we could end up with different quantization thresholds in an MMSE and

MSNR sense.
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IV. Q-MMSE IN ADDITIVE NOISE CHANNELS

Herein we provide further insights on the coefficients (41) of the Q-MMSE estimator, when the

observations are impaired by an additive noisen, independent fromx, as expressed by

y = x+ n (45)

and depicted in Fig. 1. The additive noise model (45) occurs in several applications, especially if the data

are obtained by quantized measurements. Indeed, Q-MMSE estimators are particularly useful in realistic

scenarios where either the source, or the noise, or both, depart from the standard Gaussian assumption.

These scenarios include: (a) additive noise with a high level of impulsiveness [18]– [24]; (b) additive

noise whose pdf is a mixture of statistics caused by the random occurrence of different noise sources

[25]– [29]; (c) source represented by a pdf mixture, such as in applications (e.g., audio, medical, etc.)

that involve effective denoising of sounds or images [30], [31]. The optimal coefficients{gi} obviously

depend on the specific pdfs of source and noise, and the numerical results reported in Section V give

some evidence of the usefulness of Q-MMSE estimation in an additive non-Gaussian observation model.

According to the BEM model, we assume that the quantization thresholds have been fixed by some

criterion. Despite possible criteria for threshold optimization are beyond the scope of this work, in

Section V we give some insights about this issue and considersome heuristic solutions.

To specialize the results of Section III to the additive noise model in (45), we observe that the pdf

fY(y) is the convolution betweenfX(x) andfN(n). Thus, the coefficientsθi andRii defined in (28) and

(30) can be calculated from the first-order statistics ofx andn. Using (45), (28) and (39), we obtain

θi =

∫ ∞

−∞
xfX(x)

∫ yi−x

yi−1−x
fN(n)dndx = D(yi)−D(yi−1), (46)

where

D(y) =

∫ ∞

−∞
xfX(x)FN(y − x)dx. (47)

An alternative expression can be obtained by exchanging theintegration order, which leads to

θi =

∫ ∞

−∞
fN(n)

∫ yi−n

yi−1−n
xfX(x)dxdn = D(yi)−D(yi−1), (48)

where

D(y) =

∫ ∞

−∞
fN(n) [(y − n)FX(y − n)− IX(y − n)]dn, (49)

IX(y) =

∫ y

−∞
FX(x)dx. (50)

Which expression is preferable, between (47) and (49), depends on the expressions offX(x) andfN(n).
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Using (40) and (45), we obtain

Rii =FY(yi)− FY(yi−1), (51)

FY(y) =

∫ ∞

−∞
fX(x)FN(y − x)dx (52)

=

∫ ∞

−∞
fN(n)FX(y − x)dn. (53)

Thus, using (41), either (46) or (48), and (51), the Q-MMSE estimator for the additive noise model (45)

is expressed by

gi,Q-MMSE =
D(yi)−D(yi−1)

F (yi)− F (yi−1)
. (54)

V. A N UMERICAL EXAMPLE

In this section, we want to numerically compare the MSE and the SNR performances of the Q-MMSE

estimator with those of the optimal MMSE estimator, in orderto show the usefulness of Q-MMSE

estimators with a limited number of quantization levels. Therefore, first we derive the mathematical

expressions of the optimal MMSE estimator and of the Q-MMSE estimator, assuming a non-trivial

additive noise model (45) where both the signal and the noiseare non-Gaussian. Specifically, we model

the signalx with a Laplace pdf

fX(x) =
α

2
e−α|x|, (55)

with α =
√
2/σx, and the noisen with a Laplace mixture pdf

fN(n) = p0
β0
2
e−β0|n| + p1

β1
2
e−β1|n|, (56)

with {βm =
√
2/σn,m}m=0,1, R = σ2

n,0/σ
2
n,1, σ

2
n = p0σ

2
n,0 + p1σ

2
n,1, p0 + p1 = 1 and 0 ≤ p0 ≤ 1.

Basically, (56) models a noise generated by two independentsources: each noise source, characterized

by a Laplace pdf with average powerσ2
n,m, occurs with probabilitypm. Similar results can be obtained

by modeling either the noise, or the signal, or both, as a Gaussian mixture, thus covering a wide range

of practical applications of non-Gaussian denoising.

As detailed in Appendix B, direct computation of (4) with (55) and (56) yields the optimal MMSE
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estimator

gMMSE(y) = sgn (y)×

×

1
∑

m=0
pm

[

C1,m(e−βm|y| − e−α|y|)− C2,mβm|y|e−α|y|
]

1
∑

m=0
pmC2,m

(

αe−βm|y| − βme−α|y|
)

, (57)

C1,m =
α2β2

m

(α2 − β2
m)2

, C2,m =
αβm

2(α2 − β2
m)

. (58)

The Q-MMSE estimator can be calculated by solving (47) and (52) using the pdf in (55) and (56): as

detailed in Appendix C, wheny > 0, this calculation leads to

D(y) =

1
∑

m=0

pm
β2
m(3α2 − β2

m)e−αy

2α(α2 − β2
m)2

−
1

∑

m=0

pm
α2βme−βmy

(α2 − β2
m)2

+

1
∑

m=0

pm
β2
mye−αy

2(α2 − β2
m)

, (59)

FY(y) =1−
1

∑

m=0

pm
α2e−βmy − β2

me−αy

2(α2 − β2
m)

, (60)

which inserted into (54) give the final result.

In addition to MMSE and Q-MMSE, other two alternative estimators are included in this comparison:

(a) the sampled MMSE (S-MMSE) estimatorgi,S-MMSE, obtained by sampling the optimal MMSE esti-

mator gMMSE(·) at the midpoint of each quantization interval, e.g.,gi,S-MMSE = gMMSE((yi−1 + yi)/2);

and (b) the optimal quantizer (OQ) obtained by applying the Lloyd-Max algorithm [32] to the signal

pdf fX(x). Note that the Lloyd-Max OQ exploits the statistical knowledge of the parameter of interestx

only, and neglects the noise, while the Q-MMSE estimator-quantizer also exploits the knowledge of the

pdf of noisen: hence, the Q-MMSE estimator is expected to give better performance.

With reference to the choice of theN − 1 thresholds{yi} of the Q-MMSE estimators, a heuristic

approach chooses all theN − 1 thresholds equispaced, such that the overload probabilityPol = P{y ∈
[−∞, y1)∪ [yN−1,∞)} of the quantizer is fixed: this limits the amount of saturating distortion. Another

option is to choose the non-uniform thresholds{yi} given by the Lloyd-Max algorithm [32] applied to

the signal pdffX(x) in (55). For all the quantized estimators, we use the acronymNU for non-uniform

quantization and U for uniform quantization.

Fig. 2 compares the shape of the Q-MMSE estimatorgQ-MMSE(·) with the shape of the optimal

(unquantized) MMSE estimatorgMMSE(·), whenσx = 1, σn = 4, R = 0.001, p0 = 0.9, and theN − 1

thresholds are equispaced betweeny1 = −10 and yN−1 = 10, which induce an overload probability
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Fig. 2. Comparison between the optimal (unquantized) MMSE estimator and Q-MMSE estimators with uniform quantization

(N is the number of intervals).

Pol ≈ 0.0327. Since all the considered MMSE estimators are odd functionsof the inputy, Fig. 2 only

displays the positive half. Fig. 2 confirms that, when the number N of quantization levels increases,

the Q-MMSE estimator tends to the optimal MMSE estimator. Note also that the Q-MMSE estimator

gi,Q-MMSE is different from the staircase curve of the S-MMSE estimator gi,S-MMSE.

Fig. 3 shows the SNR gainGg provided by different estimatorsg(·). The SNR gainGg is defined as

Gg =
γg

σ2
x/σ

2
n

, (61)

whereγg is the SNR at the output of the estimator, andσ2
x/σ

2
n is the SNR at the input of the estimator.

The signal and noise parameters are the same of Fig. 2, exceptfor the variableσn. Fig. 3 compares

the SNR performance of Q-MMSE, S-MMSE, and OQ estimators, assuming uniform and non-uniform
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Fig. 3. SNR gainGg of different estimators as a function of the input SNRσ2

x/σ
2

n.

quantization versions (with labels U and NU in the legend of Fig. 3): the overload regions are the same

for both versions and have been selected by the Lloyd-Max algorithm, which ends up with an overload

probabilityPol ≈ 0.0093 whenσ2
x/σ

2
n = 0 dB andPol ≈ 0.0805 whenσ2

x/σ
2
n = −12 dB. As a reference,

Fig. 3 also includes an optimal Q-MMSE (withN = 127) with uniform quantization obtained by an

exhaustive maximization of the SNR gain over all the possible choices for the overload regions (i.e.,

for all the possible choices ofy1 = −yN−1): this is equivalent to an optimization of the interval size

∆y = (yN−1 − y1)/(N − 2) of the uniform quantization intervals. When the number of quantization

intervalsN is sufficiently high, the SNR of this optimal Q-MMSE estimator basically coincides with the

SNR of the optimal (unquantized) MMSE, whose simulated SNR gain is included in Fig. 3 as well.

Fig. 3 confirms that the SNR gain of the Q-MMSE estimator is larger than for the other quantized

estimators, provided that the quantization intervals are the same. The SNR of the Q-MMSE estimator
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Fig. 4. Comparison between different estimators with non-uniform quantization (N is the number of intervals).

can be further improved by increasing the number of intervals and by optimizing the (uniform) interval

sizes, as shown in Fig. 3 by the curve withN = 127 with optimized overload regions. In addition, Fig. 3

shows that the SNR of the optimal Q-MMSE estimator is very close to the simulated SNR of the optimal

(unquantized) MMSE estimator. Therefore, the proposed Q-MMSE approach permits to obtain analytical

tight lower bounds on the SNR of the optimal (unquantized) MMSE estimator.

Fig. 4 compares the functiong(y) for the estimators of Fig. 3 with non-uniform quantization,when

σ2
x/σ

2
n = −15 dB. Fig. 4 highlightsthat the functiong(y) of the Lloyd-Max OQ is nondecreasing, because

the noise is neglected; differently, the functiong(y) of the (Q-) MMSE estimators can be non-monotonic,

like in this specific example.

Fig. 5 displays the MSE of different estimators, in the same scenario of Fig. 3. It is evident that

the Q-MMSE estimator provides the lowest MSE among all the quantized estimators that use the same
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quantization intervals. Note that the analytical MSE of theQ-MMSE estimator can be used as an upper

bound of the minimum valueJMMSE (obtained in Fig. 5 by simulation). Similarly to the SNR analysis of

Fig. 3, tighter upper bounds on the MMSEJgMMSE can be obtained by increasing the number of intervals

N and by further optimization over all the possible overload regions.

VI. CONCLUSION

In this paper, we have studied a meaningful definition of the MSNR estimator, and we established its

equivalence with the MMSE estimator, regardless of the statistics of the noise and of the parameter of

interest. We have also extended this equivalence to a specific class of suboptimal estimators expressed as a

linear combination of arbitrary (fixed) functions; conversely, we have explained that the same equivalence

does not hold true in general for non-BEM suboptimal estimators.
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The developed theoretical framework has been instrumentalto study Bayesian estimators whose input

is a quantized observation of a parameter of interest corrupted by an additive noise. We have shown

that, when the size of the quantization intervals goes to zero, the Q-MMSE (Q-MSNR) estimator exactly

tends to the MMSE (MSNR) estimator for unquantized observations. Furthermore, by a practical example,

we have shown that, using a fairly limited number of quantization levels, the Q-MMSE estimator can

easily approach the performance of the optimal (unquantized) MMSE estimator: the designed Q-MMSE

estimator, clearly, outperforms in SNR (and in MSE) other suboptimal estimators.

APPENDIX A - OTHER BEM-BASED ESTIMATORS

We detail BEM-based estimators that produce the maximum SNR, similarly to B-MMSE and B-MSNR

estimators: unbiased estimators and a maximum-gain estimator.

Unbiased estimators are defined byEY|X{g(y)|x} = x and hence are characterized byKg = 1 in (1).

By (2), (24), (26)–(28), for the BEM-based estimators we have

Kg =
gT

θ

σ2
x

. (62)

Therefore, the BEM-based unbiased MSNR (B-UMSNR) estimator is obtained by maximizing (25) subject

to the constraintgT
θ = σ2

x, while the BEM-based unbiased MMSE (B-UMMSE) estimator is obtained

by minimizing (34) subject to the same constraint. By inserting the constraintgT
θ = σ2

x into (25) and

(34), both optimizations are equivalent to the minimization of the output powerEY{g2(y)} = gTRg

subject togT
θ = σ2

x, which leads to

gB-UMSNR = gB-UMMSE =
σ2
x

θ
TR−1θ

R−1
θ. (63)

The solution (63) is equivalent to (38) with

c =
σ2
x(σ

2
x − θ

TR−1
θ)

θ
TR−1θ

. (64)

Hence, the B-UMMSE estimator gives the maximum SNR achievable by BEM-based estimators, and is

a scaled version of the B-MMSE estimator (35).

An alternative Bayesian criterion is the maximization of the gainKg (2) or (62), subject to a power

constraint. Using the output power constraintEY{g2(y)} = gTRg = P , the BEM-based maximum-gain

(B-MG) estimator is expressed by

gB-MG =

√

P

θ
TR−1θ

R−1
θ, (65)

which is a scaled version of the B-MMSE estimator and hence anMSNR estimator among the BEM-based

estimators.
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APPENDIX B - DERIVATION OF (57)

Here we show that the computation of (4), when the signal pdf is (55) and the noise pdf is (56), leads

to (57). First, using the Bayes’ theorem, the MMSE estimator(4) is rewritten as

gMMSE(y) =

∫∞
−∞ xfY|X(y|x)fX(x)dx

fY(y)
; (66)

in addition, the noise pdf (56) can be rewritten as

fN(n) =

1
∑

m=0

pmfN,m(n) (67)

fN,m(n) =
βm
2

e−βm|n|. (68)

Using (45), (55), (56), (67), and (68), the numerator of (66), for y > 0, can be rewritten as
∫ ∞

−∞
xfY|X(y|x)fX(x)dx (69)

=

∫ ∞

−∞
xfN(y − x)fX(x)dx (70)

=

1
∑

m=0

pm

∫ ∞

−∞
xfN,m(y − x)fX(x)dx (71)

=I1(y) + I2(y) + I3(y), (72)

where

I1(y) =

1
∑

m=0

pm
αβm
4

e−βmy

∫ 0

−∞
xe(α+βm)xdx, (73)

I2(y) =

1
∑

m=0

pm
αβm
4

e−βmy

∫ y

0
xe(−α+βm)xdx, (74)

I3(y) =

1
∑

m=0

pm
αβm
4

eβmy

∫ ∞

y
xe(−α−βm)xdx. (75)

The three integrals (73), (74), and (75), can be solved using

∫

xeaxdx =











1
a2 [(ax− 1)eax] + C, if a 6= 0,

1
2x

2 + C, if a = 0,

(76)
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whereC is an arbitrary constant. If we assume thatα 6= βm, for m = 0, 1, then (73)–(75) become

I1(y) =−
1

∑

m=0

pm
αβme−βmy

4(α + βm)2
, (77)

I2(y) =

1
∑

m=0

pm
αβm{[(βm − α)y − 1]e−αy + e−βmy}

4(βm − α)2
, (78)

I3(y) =

1
∑

m=0

pm
αβm[(α+ βm)y + 1]e−αy

4(α+ βm)2
. (79)

Hence, the numerator of (66), fory > 0, is equal to

I1(y) + I2(y) + I3(y) = (80)

=

1
∑

m=0

pm

[

C1,m(e−βmy − e−αy)− C2,mβmye−αy
]

, (81)

whereC1,m andC2,m are expressed by (58). If we repeat the same procedure fory < 0, we obtain a

similar equation.

On the other hand, using (45), (55), (67) and (68), the denominator of (66) is equal to

fY(y) =fX(y) ∗ fN(y) = fX(y) ∗
1

∑

m=0

pmfN,m(y) (82)

=

1
∑

m=0

pm[fX(y) ∗ fN,m(y)] =

1
∑

m=0

pmfY,m(y), (83)

where∗ denotes convolution and

fY,m(y) = fX(y) ∗ fN,m(y). (84)

By denoting withCX(u) the characteristic function associated with the pdffX(x), (84) translates into

CY,m(u) = CX(u)CN,m(u) =
α2

α2 + 4π2u2
β2
m

β2
m + 4π2u2

. (85)

If we assume thatα 6= βm, for m = 0, 1, then (85) can be decomposed in partial fractions as

CY,m(u) =
β2
m

β2
m − α2

α2

α2 + 4π2u2
+

α2

α2 − β2
m

β2
m

β2
m + 4π2u2

(86)

=
β2
m

β2
m − α2

CX(u) +
α2

α2 − β2
m

CN,m(u), (87)

which, by means of (82) and (83), leads to

fY,m(y) =
β2
m

β2
m − α2

fX(y) +
α2

α2 − β2
m

fN,m(y), (88)

fY(y) =

1
∑

m=0

pm

[

β2
m

β2
m − α2

fX(y) +
α2

α2 − β2
m

fN,m(y)

]

. (89)
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Therefore, by (89), (55), (56), and (67), the denominator of(66) is equal to

fY(y) =

1
∑

m=0

pm
αβ2

me−α|y|

2(β2
m − α2)

+

1
∑

m=0

pm
α2βme−βm|y|

2(α2 − β2
m)

(90)

=

1
∑

m=0

pmC2,m(αe−βm|y| − βme−α|y|), (91)

whereC2,m is expressed by (58). By inserting (69)–(72), (81), and (90)–(91) into (66), we obtain the

mathematical expression ofgMMSE(y) for y > 0, and, by repeating the same procedure for negative values

of y, we obtain the final expression ofgMMSE(y) reported in (57)–(58), which is valid for all values of

y. Note that, since the signal pdf and the noise pdf are both symmetric, the MMSE estimator is and odd

function of y, and thereforegMMSE(−y) = −gMMSE(y).

APPENDIX C - DERIVATION OF (59) AND (60)

Herein we detail the computation ofD(y) in (59) and ofFY(y) in (60): these two quantities are

derived by calculating (47) and (52), respectively, for theadditive noise model (45), when the signal pdf

is expressed by (55) and the noise pdf is expressed by (56). Indeed, (47) and (52) are necessary in order

to compute the Q-MMSE estimator, expressed by (41), via (46)–(47) and (51)–(53). The derivations of

D(y) andFY(y) are performed only fory > 0 (those fory < 0 are similar).

By (67) and (68), the noise cdf can be expressed as

FN(n) =

1
∑

m=0

pmFN,m(n) (92)

FN,m(n) =











1
2e

βmn, if n < 0,

1− 1
2e

−βmn, if n ≥ 0,

(93)

and therefore, by (55),D(y) in (47) becomes

D(y) =

1
∑

m=0

pm

∫ ∞

−∞
xfX(x)FN,m(y − x)dx (94)

=I4(y) + I5(y) + I6(y) + I7(y) + I8(y), (95)
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where

I4(y) =

1
∑

m=0

pm
α

2

∫ 0

−∞
xeαxdx, (96)

I5(y) =−
1

∑

m=0

pm
α

4
e−βmy

∫ 0

−∞
xe(α+βm)xdx, (97)

I6(y) =

1
∑

m=0

pm
α

2

∫ y

0
xe−αxdx, (98)

I7(y) =−
1

∑

m=0

pm
α

4
e−βmy

∫ y

0
xe(−α+βm)xdx, (99)

I8(y) =

1
∑

m=0

pm
α

4
eβmy

∫ ∞

y
xe−(α+βm)xdx. (100)

By assumingα 6= βm, for m = 0, 1, and by solving the five integrals in (96)–(100) using (76), it is easy

to show thatD(y) in (94) becomes equal to (59).

The cdfFY(y) can be easily calculated from (88) and (93), which lead to

FY,m(y) =
β2
m

β2
m − α2

FX(y) +
α2

α2 − β2
m

FN,m(y) (101)

=1 +
β2
me−αy − α2e−βmy

2(α2 − β2
m)

, (102)

where we have usedFX(y) = 1 − 1
2e

−αy for y > 0. Using (102) with (82)–(83), we obtain the final

expression (60).
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