arxiv:1602.08877v1l [math.OC] 29 Feb 2016

Design of PAR-Constrained Sequences for MIMO
Channel Estimation via Majorization-Minimization
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Abstract—PAR-constrained sequences are widely used in com- optimization problems are thus formulated and solved with n
munication systems and radars due to various practical nees} merical algorithms [5], [6]. Specifically, the work [5] priokes
specifically, sequences are required to be unimodular or ofolw several cyclic algorithms (CA) for either minimizing integed

peak-to-average power ratio (PAR). For unimodular sequene . S .
design, plenty of efforts have been devoted to obtaining gdo sidelobe level (ISL) or maximizing ISL-related merit facto

correlation properties. Regarding channel estimation, hwever, (MF). In [6], a computationally efficient algorithm called
sequences of such properties do not necessarily help produc MISL for minimizing ISL is proposed, and it is demonstrated

optimal estimates. Tailored unimodular sequences for thepecific  that MISL results in lower autocorrelation sidelobes witsd
criterion concerned are desirable especially when the prio computational complexity

knowledge of the channel is taken into account as well. In tigi Th d |ati tv of inal imodul
paper, we formulate the problem of optimal unimodular sequace € good correlation property oI a singie unimodular se-

design for minimum mean square error estimation of the chanel quence is also extended to MIMO systems, where multiple
impulse response and conditional mutual information maxiniza- sequences are transmitted. The good autocorrelation isedefi
tion, respectively. Efficient algorithms based on the majoization-  for each sequence as that for a single sequence. Meanwhile,
minimization framework are proposed for both problems with good cross-correlation demands that any sequence be nearly

guaranteed convergence. As the unimodular constraint is a lated with ti hifted . fthe oth
special case of the low PAR constraint, optimal sequences laiw uncorrelated with ime-shifted versions ot the other seges.

PAR are also considered. Numerical examples are provided to IN [3], algorithms CA-direct (CAD) and CA-new (CAN) are
show the performance of the proposed training sequences, thi developed to obtain sequence sets of low auto- and cross-

the efficiency of the derived algorithms demonstrated. correlation sidelobes. Also [7] proposes some efficienb-alg
Index Terms—Unimodular sequence, peak-to-average power fithms to minimize the same metric in [3]. _

ratio (PAR), channel estimation, majorization-minimization, min- The aforementioned ISL and ISL-related metrics are both

imum mean square error, conditional mutual information. alternative ways to describe the impulse-like correlatibar-

acteristics. Sequences with such properties enable nthtche
filters at the receiver side to easily extract the signal&$eat-
. INTRODUCTION tered from the range bin of interest and attenuate signals

AR-CONSTRAINED sequences, such as unimodular backscattered from other range bins [3]. Nevertheless;madlt

low peak-to-average power ratio (PAR), have many aglters take no advantage of any prior information on the
plications in both single-input single-output (SISO) andltia cha_lnne_l when the unimodular low-ISL sequences are used for
input multi-output (MIMO) communication systems. For ex€stimation. o _
ample, theM-ary phase-shift keying techniques allow only The unimodular constraint is actually a special case of the
symbols of constant-modulus, i.e., unimodular, to be trans low PAR constraint, which imposes how the largest amplitude
ted [1]. In MIMO radars and code-division multiple-acces8f the sequence compares with its average power. The low
(CDMA) applications, the practical implementation demandAR constraint, as a structural requirement, has been well

from hardware, such as radio frequency power amplifiers affdied in the design of tight frames [2]. Although the indi-
analog-to-digital converters, require the sequencesmited vidual vector norms of a frame could be adjusted to maximize

to be unimodular or low PAR [2]-[4]. In this paper, we conthe sum-capacity of DS-CDMA links, the op_timality in te.rms

sider the design of optimal unimodular or low PAR sequenc8§ any performance measures was not directly considered

for channel estimation. therein. Furthermore, the algorithm they proposed is based
There is an extensive literature on designing single unimogit€rnating projection that often suffers a slow convegen

ular sequences with good correlation properties such teat t AS far as channel estimation is concerned, many studies
autocorrelation of the sequence is zero at each nonzero [3gv€ Peen conducted for both frequency-flat and frequency-

As such properties are usually difficult to achieve, metdts sélective fading_channels un_d_er minimum_mean square error
“goodness” have been proposed instead where autocoorelafiMMSE) estimation and conditional mutual information (QMI

sidelobes are suppressed rather than literally set to aeub, maximization. Most of those obtained op_timiz_ation pro_biem
however, only address the power constraint without adargss
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using the majorization theory, and the waterfilling soln@re Il. CHANNEL MODEL AND PROBLEM FORMULATIONS
obtained. Meanwhile, problems of similar formulations éav \we consider a block-fading or quasistatic multi-input riult

also been studied in joint linear transmitter-receiverigtes o,iput (MIMO) channel. Assume the number of transmit
[13], [14]. To deal with arbitrarily correlated MIMO chanise  antennas and receive antennas Aieand N,, respectively,
some numerical algorithms based on block coordinate déscgRq the channel impulse response is described as a length-
are proposed in [15]-[17]. _ o _ (K + 1) sequence of matriceHy, ..., Hx € CN->*Nt In

More related to our work is training sequence desigpe training period, a lengthé sequence is sent through
for frequency-selective fading channels. Under a total @Wne channel from each transmit antenna or, equivalently, a

constraint, channel capacity is investigated for SISQ nb_hm length<V; vector u, from the set of transmit antennas at
[18] and MIMO channels [19]. Independent and identicallyhe time instantn — 1,...,N. For simplicity, we still call

distributed channel coefficients and noise are assumedits fa thjs sequence of vectors as a sequence, which is denoted by
tate mathematical analysis. As a result, impulse-like saqes

for both types of channel are suggested for optimal estomati |, . -.odular constraint with energy budget (UHU) — o
Optimal design for the MMSE channel estimation has begf, \vant to desigrJ e U, where ’

studied in [20], where the noise is assumed to be white and
«
[t m ] :MN—Nt,nzl,...,N;m: 1,...,Nt}.

U= [unm) = [m - uN]T € CN*Ne_ Considering the

the channel taps are uncorrelated; however, such assumpjip_ ) {5
is hardly satisfied in practice. And there is no guarantee of

finding an optimal solution for an arbitrary length of traigi ) o 1)

or channel correlation. More important, their results aare  And the received sequence is given by

used when the unimodular or low PAR constraint is imposed K

on the sequences to be designed. Yn = ZHkun_k + Vi, (2)
We formulate the problem as the design of optimal uni- k=0

modular sequences based on the MMSE and the CMI. Ba{lhereu,, = 0 whenn < 0 orn > N, andv,, is an N, x 1

problems are non-convex with the bothersome unimodulggise vector. Equation (2) can be written in a matrix form as
constraint. Without assuming any amenable structures, e.g

. . . r yT 7] 'uT 0 r VT
Kronecker product, on the prior channel and noise covagisnc 1 1 1
the problems are also challenging even if only the power : : o T | [HT :
constraint is imposed. To tackle those issues, the maj@ira N ) . ) 3)

minimization (MM) technique is employed to develop effi- -
cient algorithms. By rewriting the objective functions in a 5 oL Hy

. Lo ) L. . LN

Emre appropriate way, mgjonzmg./m.lnonzmg func_nonmca G k] L0 u? | R

e obtained for minimization/maximization objective. As a
result, the original problems are solved instead by a sespenet Y = [yl e YN+K}T c CIN+E)xN: pa the received
of simple problems, each of which turns out to have matrix, and
closed-form solution. Convergence of our proposed algorgt rul 0
is guaranteed, and an acceleration scheme is also given to !
improve the convergence rate. For low PAR constraints |aimi o oodf
problems can be formulated, and the developed algorithmsg _ T(U) = € CIN+E)x (K+1)N, (4)
need only a few modifications to be applied.

The rest of this paper is organized as follows. In Section I, ul .o
the channel model is described, on which the optimal unimod- 0 uva_

ular sequence design problems are formulated. In Sectipn Il -

derivations of algorithms for both the MMSE minimizatiorbe a block Toeplitz convolution matrix withU” 0] be-

and the CMI maximization are presented, followed by a briéfg the first block and remaining blocks are obtained by

analysis of convergence properties and an acceleratiemssh @ downward circular shift of the previous block. Note that

The optimal design under the low PAR constraints is disauisssince Tr (U#U) = q, thenTr (S7S) = (K +1). H =

in IV. Numerical examples are presented in Section V. AnEH0 HK]T € CE+DNxN, is the channel impulse

conclusion is then given in Section VI. response with matrix-form taps, aid is the noise matrix.
Notation: Scalars are represented by italic letters. Boldfackhus, we can write in a compact way the received signal as

uppercase and lowercase letters denote matrices and sjector

respectively.C is the set of complex numbers. The identity Y=SH+V. ®)

matrix is denoted byl with the size implicit in the contextif |t can be easily seen that each columrybtorresponds to

. T H *
undeclared. The superscrifgty , ()~ and(-)" denote respec- 3 received sequence for one of thg receive antennas, i.e., a
tively transpose, conjugate transpose and complex cof§uggnulti-input single-output (MISO) channel. Let = vec(Y) ,

With vec (X), the vector is formed by stacking the columng, — vec(H), andv = vec(V), and based orec (XYZ) =
of X. The Kronecker product is denoted by E (-) takes the (Z" © X) vec (Y), we have

expectation of random variabl&r (-) is the trace of a matrix.
| - ||» is Frobenius norm of a matrix. y=(In. ®S)h+v. (6)



A. Heuristic Existing Methods matrices for different lagé = —(V —1),...,0,..., (N —1)

Most of the current works on unimodular sequence desi&ﬁe given by

focus on good auto- and cross-correlation properties; 3ge [ (k) ra(k) - i, (k)

on MIMO radar unimodular codes and references therein. The ron (k) ras(k) o 7w, (k)

good correlation properties are particularly desired at the ¥ = . . ) . , (16)
matched filter is employed in subsequent channel estimation : : ' :

As a matter of fact, the obtained channel estimate is closely e (k) rne2 (k) o g (F)

related to maximum likelihood (ML) estimation. Assume the . I
vectorized noise in the channel model (6) follows a cirdylar it Ty ma (=k) = 75 m, (K), @nd Xy, = 3. Let us
complex Gaussian distribution, ~ CA/ (0, 52I). Minimizing define the correlation matrix for a sequeri@s

the mean square error (MSE) ||hyr, — h||?} results in the ¥ — sts, 17)
ML channel estimate [21]

. . 1 . and then we have
hy, = ((IN,‘ ®8)" (In, ® S)) Iy, ®S)"y (7)

X > X, - Yk
= (In. ®S7S)  (In. ®S)7y, 8 b S o E (ko
(Ix. ) (v, @8)"y ®) o | B (-1 (18)
where the second equality is due (XK@ Y) M@ N) = : : : :
XM ® YN. And the corresponding error is given by Y Bg-r oo o
- -1 Note thatX only describes correlations at lags of interest,
E=Tr (((INT ®8)" (In, ® S)) ) (9)  which in this case is determined by the length of the channel
1 impulse response. To achieve the optimality dictated by, (13
=Tr ((INT ®8"s) ) (10)  we can rewrite approximation problem (14) as

_ H *1) 2
N T ((875) ). (11) minimize (K + 1) Hzo - NiIHF
To minimize the error of ML estimation, the training sequenc

(19)
should be a solution to the optimization problem

K 2
+2 3 (K + 1= k) |2
k=1
mirgnsﬂze € subjectto S=7(U),Ucl. (12) subject to U € .
’ The objective function of (19) is indeed the weighted cor-

Lemma 1[22]. Let X € CM*N pe such thaflr (XHX) < relation minimization criterion within the lag interval =
0,...,K [3], for which algorithms WeCan and CAD were
proposed. Another formulation is also presented in a simila
attempt to procure the good correlation property as

u for some constant. The minimum offr ((XHX)%) is

achieved wheiX X = L1, provided that inverse oK*X
exists.

An approximation to problem (12) is as follows. According
to Lemma 1, the objective function (11) is minimized when

2 N-1
S o 2
minimize HEO - _NtIHF +2 kZ::1 |25 %
(Tr (SHS) = a(K +1)) subjectto U € U,

(20)

(13) for which an algorithm called CAN was developed in [5], and
WeCAN can be employed as well. In [7], both problems (19)

if only the energy constraint is considered. Therefore, &0d (20) were studied by considering a more general weighted

heuristic approximation of the ML optimal sequence desigRrmulation, and efficient algorithm§ were proposed.
could be formulated as We can see that sequences with good auto- and cross-

correlation properties are desirable in general as no prior
information on the channel is taken into account in the
ensuing channel estimation task. Channel statistics, Wene
are often available on both the transmitter sides and receiv

The optimal S satisfying (13) portrays an impulse-likesides, and incorporating those priors into the design of the

correlation shape pursued in [3], [7], where the aperioditaining sequence will improve the performance of channel
cross-correlation is defined as estimator. In the following subsections, we will formulakte

unimodular sequence design problem based on the MMSE
minimization and the CMI maximization, both of which have
been adopted as criteria in various estimation problems. In
order for the channel model (6) to be general, we assume
for mi,me =1,...,N; and lagsk = 0,..., N — 1. Equation h ~ CN (hp,Ry), and the noisev ~ CAN (0, W), where
(15) also defines the autocorrelation for the sequence df edoth the channel covariand®, and the noise covarianc®
transmit antenna whem,; = mo. Accordingly, the correlation are arbitrary.

a
SHs = EI(KJA)NN

2

N Ha _ o

mm@ze HS S NtI’F (14)
subjectto S=7 (U),U € U.

N
Ty, ms (k) = Z Unm Uy e (15)
n=k+1



B. Optimal Sequence Design by Minimizing the MMSE Crprovided to design unimodular sequences of good correlatio
terion properties [5], [6]. LetN, = N, = 1 and u denote the

Given the channel model (6), by minimizing the Msgraining sequence, the® = 7 (u) is a Toeplitz convolution
E{||hymse — h|[2}, the MMSE estimator of the channelmatrix and expression (16) reduces to a scalar that gives
impulseh is given by autocorrelations at different lags for the sequemceAnd

. similar formulations as (19) and (20) are proposed in order t
hyse = RoSY (gROgH n W) (y _ Sho) +hy, (21) obtain sequences of good autocorrelation properties. ewe
as we have seen in the previous discussion, the resulting
whereS = Iy ® S [21]. And the error covariance matrix is channel estimate cannot benefit from the available knoveledg
A R o of channel statistics. Therefore, designing optimal tregn
R=E { (hMMSE - h) (hMMSE - h) } (22) sequences by minimizing the MMSE criterion or maximizing
. the CMI criterion will be beneficial in terms of final estimati
=Ry — RoS” (éRoéH +W) SR, (23) performances. Without any modifications, formulations)(26
. and (31) can be deployed in the context of SISO channels.
- (Rgl + SHw—IS) , (24)
L . . IIl. ALGORITHMS FORUNIMODULAR SEQUENCEDESIGN
where the last equality is due to the matrix inversion lemma

[13]. The MMSE is thus given by In this section, we develop efficient algorithms to solve
problems (26) and (31). There is an extensive literaturérdpa
MMSE (S) = Tr (R), (25)  with optimization problems of similar objective functionsth

only power constraint orS where, assuming some special
structure for the prior covariance matrices of channel and

mirtwjirgize MMSE (S) subjectto S=7(U),UeU, noise, the problems are reformulated as power allocatiom wi

' (26) Wwaterfilling-like solutions. In our formulations, howeyet
which gives the optimal unimodular training sequence fer tiS not only the Toeplitz structure o but also the tough
MMSE channel estimation. unimodular constraint that prevents us from adopting tineesa
approach.

It is worth mentioning that a possible approach to problem
26) is a two-stage procedure [26] related to correlation
shaping. If the channel noise is independent and identicall

Apart from the MMSE criterion, another popular statisticaistributed, i.e.,W = oI for some power density?2, the
measure in channel estimation is the conditional mutualrinf gpjective function becomes

mation (CMI) between the channel impulse response and the

and the following problem can be formulated

C. Optimal Sequence Design by Maximizing the CMI Crit?
rion

received sequence, e.g., [8]. The CMI is defined as MMSE (S) = Tr <<R1 N 1 éHS) 1) 32)
= 0 —
CMI(S) = I (h;y|S) (27) 7
-1
—HMW-HMmy.S), (@9 _Tr<<R01+%INT®z) ) @9)
g

where H (+) is the differential entropy of a distribution [23].
Under the linear model (6) with Gaussian distributed chamtere the second equality follows from substitution of the
nel impulse and noise, we have the conditional distributic@orrelation matrixx> = S¥S. Consider only the constraint

hly,S ~CN(h,R). ThenCMI (S) can be written as Tr (X) = (K + 1)a induced by the energy budget in (26),
1 (K+1)N.N. minimizing (33) with respect toX (instead ofS) can be
CMI(S) = 5 log ((2776) TN det (Ro)) rewritten as an SDP by resorting to the Schur-complement

1 (K+1)N.N. theorem [27], which yields the optimal correlation matix.
—glog ((2776) ©7 det (R)) (29) Oncex* is obtained, the problem boils down to recovering

1 sequences from its correlation matrix, which is to solve the
=3 logdet (RoR™") . (30) following approximation problem
By maximizingCMI (S) we reach the following optimization minimize ||S”S — *||r
problem subjectto S = 7 (U). U € . (34
maé[g‘ize CMI(S) subjectto S=7(U),UcU. if zero error is achievable. For a single sequence and withou

(31) the unimodular constraint, problem (34) can be tackled by
Remark It should be mentioned that channel model (6nheans of filter design [28]. However, constructing a unimod-
includes the SISO channel as a special case. A lot of effouisr sequence that presents a prescribed correlation shape
have been made to construct unimodular sequences for Si§@llenging. As a special case, [3] and [7] have studied this
channels via either analytical methods or computational gproblem only when the correlation matrix is an identity. @a t
proaches. Apart from early works on binary sequences aather hand, it is not guaranteed that the objective in (34) ca
polyphase sequences, e.g., [24], [25], numerical algosthre reach zero when minimized. For example, when the number



of sequences is relatively large for the training lengthisit By Lemma 2, MMSE (S) = Tr (Ro — ROSHP‘1SR0>
impossible to design sequences such that correlationmatri jg jointly concave in{S P} (recall thatS = Iy @ S).

an identity, i.e., auto- and cross-correlation cannot belemasmce a concave function is upper-bounded by its supporting

small simultaneously [3]. hyperplaneMMSE (S) can be majorized as follows:
Therefore, it is advisable to solve problems (26) and (31)y

directly with the colored noise considered. In the follogin  MMSE (S) < gyvsk (S, S(t)) (41)

we will devise algorithms for both problems based on the o

majorization-minimization framework. = MMSE (S(t)) +Tr< (A(“) SRS

A. Majorization-Minimization Framework A(t)) — 2Re {Tr (Ro (A(t))H S) } , (42)

The majorization-minimization, or MM method is a general ~ _
framework for solving an optimization problem indirectip  whereS®) = Ty @ s V\ilth S =T (UMW), andA®) =
this section, we will briefly introduce the idea of the MM« &(t) H - a(t)
method for a minimization problem, and the details can DQS Ro (S ) +W S™Ry. To solve problem (26),
found in [29], [30]. it suffices to solve iteratively the following problem:

The MM method tackles a difficult optimization problem mirtwjinsﬂze gse (S,80)

by solving a series of simple approximation problems. Given _ (43)
a minimization problem subjectto S=7(U),U €U,
minimize f(x) subjectto x € X, (35) For problem (31), the objective function can be written as
1 - - -1
and a feasible starting point® ¢ X, the MM method CMI(S) = 5 log det (Ro (RO —ROSHP‘lsRO) )
minimizes a sequence of surrogate functigr(s, x*)) ,¢ = (44)
0,1,... instead. Each surrogate function is a majorizatiofemma 3. Given a positive semidefinite mati, the func-
function of f(x) atx*) that satisfies: tion h(Z,X) = M — MXH#Z~'XM is matrix concave over
) B _ () X of an appropriate size and - 0 [27]. Since—logdet (-)
g (X X ) ! (X ) ’ (36) is matrix convex and decreasing over positive definite cone,
g (x,xa)) > f(x) for everyx € X, (37) —logdet (M — MX”Z~'XM) is convex in{Z, X}.
Owing to Lemma 3CMI (S) is jointly convex in{S,P},
and and we can obtain the following minorization
x(t ¢ argmin g (x,x(t)) . (38)
xeX CMI(S) > gean (s, s<t>) (45)

According to the rules (36) and (37), we have

-1 H _
() < g (<, x0) < g (<, 1 (<0, _Re{Tr <RO (R®)  (a0) s>} (46)

(39) = —lTr <(R(t)) - (A(t))H gROgHA(t))
and consequently, the MM method produces a sequence of 2
pointsx(®*), for which the original objective function of (35) is + OMI (S(t)) (47)
monotonically decreased. Provided that the objectivetfanc ’

is bounded below, it is guaranteed that the MM algorithm willkhere
converge to a stationary point. i o -1

The key question is then how to find a good majorization R") = Ry — Rg (Q(t)) <§(t)R0 (g(t)) + W)
function g (x,x()) such that the resulting problems (38) are :
easy to solve. Although there is no universal rule to deteemi SR, (48)
the functiong (x,x®), the structure of the problem at hand —R;' 4 (g(t))walg(t)' (49)
can nevertheless provide helpful hints and some tricks are
suggested in [29]. As a result, solving the CMI maximization problem (31) is

equivalent to solving the series of minorized problems

B. MM-Based Algorithms maximize gou (S,SM)
U,s

Let us introduceP = SRS + W, and by (23) the

objective function for the MMSE minimization problem (26)
can be written as Notice that problems (43) and (50) share a similar form of

objective function. Let

H
. yv®)) — @ (AD) SR,STA®
Lemma 2. The functionf(X,Z) = Tr(X”Z7'X) is a g(S’S v ) Ir (V (A ) SRoSTA >

matrix fractional function and is jointly convex i > 0 and H .
X [27]. — 2Re {ﬂ (ROV“) (a®) s) } (51)

T (50)
subjectto S=7 (U),U e U.

MMSE (S) = Tr (RO - ROSHP*1SR0) . (40)



where V(©) = I for the MMSE minimization problem and where|| - ||; is maximum column sum matrix norm [31]. With
v® = (R(t)) for the CMI maximization problem. After Amax (X ® Z) = Amax (X) Amax (Z), we propose
reversing the sign of objective function of (50) and igngrin

H
the constants and the scaling factor, the following unified A = | Roll, HA(t)V(t) (A(t)) (61)
problem is obtained 1
~ ~ H ~
minimize g (S;8M,v®) 2) Let B S<t>,V<t>) =A08® — AOV®H (AM)T SOR,
) (t)\(t) ; [y~ ; _
subjectto S =7 (U),U e . +AWVIR,, and considering = Iy, ®S with S = 7 (U),
we have
Lemma 4. Given HermitianM ¢ C"*" and Z ¢ C™*™ %
and anyX® e C™*", the functionTr (ZXMX*) can U™ e  argmin —2Re{Tr((ZB[z’,j]) U)},
be majorized by—2Re {Tr ((/\X(” - ZX(t)M)HX } + [t m|=V/ N & ©2)
A[IX||7 + const, where AT = M” @ Z for some constant whereBli, j] is a submatrix oB with rows from (N + K)(i —
A _ . . )+jto(N+K)@i-1)+N+j—1and columns from
Proof: Given AL - M" @ LL™ for some constamt, we N, (K +1)(i — 1)+ Ny(j — 1)+ 1 to Ny (K +1)(i — 1)+ Nyj,
have fori =1,...,N,, andj = 1,...,K + 1. To find the next
(t+1) : :
Tr (ZXMXH) updateU , hote that (62) can be equivalently written as
2
= vec!! (X) vec (ZXM) (53) U™ € argmin HU _ Z- ‘BJi, j]H . (63)
= vec (X) (M” @ Z) vec (X) (54) . m|=/ 55 N r
< —9Re {VeCH (X) (\L— M ® Z) vec (X(t))} And the minimum is achieved by projection onto a complex
circle, which is
+vect (XO) (A1 -M" ® Z xX®
vec ( ) ( ) vece ( ) U(t+1) _ (0% e-j arg(Zi,j B[717]])7 (64)
+ Avec! (X) vec (X) (55) NN,
— _QRQ{Tf (,\XHX(t> _ ZX(t)MXH)} wherearg(-) is taken element-wise. The whole procedure is

) summarized in Algorithm 1. The iterations of the algorithm
+ A || X5 + vec? (X(t)) (AI—-M" ® Z) vec (X(t)) . is deemed to be converged, e.g., when the difference between
(56) two consecutive updates f&F is no larger than some admitted

; . L threshold.
Notice that the third term of the last equation is simply a

constant. And a scalar version of Lemma 4 can be found Adgorithm 1 Design of unimodular training sequence for the

[7, Lemma 1]. B MMSE minimization (26) or the CMI maximization (31).
To solve problem (52), yet a second majonzatlon can bq Sett — 0, and initialize ORI Nem —
applied with Lemma 4 (note thaiS||> = N, (K + 1)a): 1 Nt e o
. v (®) 2: repeat )
g (8:80,v0) s SO =T (UMY, and§® = Ly, S
R H . -1
< —2Re{Tr(/\(t)SHS(t) _ADV® (A<t>) SWR, NG <g<t>R0 (gm)H +W) SR,
. H . ot
SH)} _ 9Re {Tr (Rov(t) (A(t)) S) } + const (57) . v I for the MMSE minimization
R®, for the CMI maximization
— _QRQ{TT((/\(US@) _AOYV® (A<t>)H SR, & A =|Rol, HA<t>v<t> (Aa))HHl
B (S0, V) = A\0§® _AOV® (AM)TSOR,
)y () g ’
+ AWV Ro) S)} + const, (58) L AOVOR,
. U+ — /o iarg(3, ; Bligl)
where \WT = Rl @ AOV® (A(“)H. The tightest upper et NN,

bound will be X() = Ay (R @ AV (A(t))HP. But

computing the largest eigenvalue is costly especially wthen
size of the matrix is large, and thus an alternative is adgsa
Since bothRy and AV ®) (A(“)H are positive semidefinite C. Convergence Analysis

10: untll convergence

matrices, the largest eigenvalues are bounded as Algorithm 1 is essentially based on the majorization-
Amax (Ro) < [Roll, » (59) m|n|m_|zat|on fra_mework, which has_ bet_—zn showq to converge to
o . a stationary point for bounded objective functions. The-gen
Amax (A(”V(t) (A(t>) ) < HA(t)V(t) (A(t)) , (60) erated sequence of point§(),t = 0,1,..., monotonically
1 decreases or increases the objective function for minitioiza



and maximization problems, respectively. In this sective, Algorithm 2 Accelerated scheme for designing optimal uni-
give a detailed analysis of the convergence for Algorithm Modular training sequence for the MMSE estimation.
Without loss of generality, we only consider minimizing the ;. set ¢t = 0, and initialize uOen = 1,...,N;m =
MMSE criterion. 1,....N,.

For a constrained minimization problem with a smoothy. repeat
objective function, a stationary point is obtained when the;. U, = MMupdate(U(t))

followin_g_ first-order optimality condition is satisfied. _ 4 U, = MMupdate(U, )
Proposition 1. Let f : RY — R be a smooth function. A 5. L, =U; - U®
pointx* is a local minimum off within a subsett C RV if . L,=U,-U, - L
. _ T
vf(x*)Ty > 0,y € Ta(x"), 65) 7 Step lengthl = — HL;HF
. a: Ut+) — /o jarg(UY —20L,1+1°Ls)
whereTy (x*) is the tangent cone ot at x*. ’ NN

Provided Proposition 1, the convergence of our propose8:  While MMSE (S(+1)) > MMSE (S®) do
algorithm is guaranteed as follows. 10: I+ 5%, and go to step 8
Theorem 1. By solving the series of problen(§2) in Algo- 1;. te—t+1
rithm 1, a sequence of poinfdJ(*), ¢ =0, ...} is obtained, of 15. until convergence
which every limit point is a stationary point of problef@6).
Proof: A similar proof has been given in [6]. For details
please refer to [6, Theorem 5]. |

1,...,Ny. And PAR is usually defined for each sequence

_ transmitted by a single antenna as
D. Accelerated Algorithm

To develop Algorithm 1 for solving problems (26) and mgX{|un,m|2}
(31), the original function was majorized/minorized twice PAR(U.,;m) = — 1. (66)
which may result in a loose surrogate function; see (41), N

(45) and (57). And the performance of the MM method i§gyided that the training energy for theth antenna is
susceptible to the slow convergence as EM-like algorlthn]&lm”z — a,,. Determining training energy for each
Then following the same idea in [6], [7], we employ an off-theyansmit antenna may depend on power distribution among
shelf method, called squared iterative methods (SQUAREM)iennas Satisfyin@Nt a,, = a. And it follows that
[32], to accelerate Algorithm 1. SQUAREM was originally; PAR(U.,,) < m]\:,l When PAR(U.,,) = 1, PAR

proposed to improve the convergence of EM-type algorithmagnsiraint reduces to the unimodular constraint. GiverPte
and simultaneously keep its simplicity and stability. Ind@e .4nstraints for each transmit antenna

easily applied to accelerate the MM algorithms as well. For
details of convergence analysis, also refer to [32]. Withoss PAR(U. ) < &mym=1,..., N, (67)
of generality, we only consider acceleration of Algorithrfoi T T
the MMSE m_|n|_m|zat|on problem. For the CMI maximization,o optimal sequence design problem for minimizing MMSE
problem, a similar procedure can be followed. is then formulated as
Given the current poinU®), we call iterative steps 3 to
8 of Algorithm 1 collectively as one MM update, denoted by mirsjirgize MMSE (S)
t i i i s

E/IMupda_te{U( )). The accelerated gomputlng scheme is given subject to S = T (U)

y Algorithm 2. The step length is chosen by the Cauchy- U2~
Barzilai-Borwein (CBB) method. And the back-tracking step 1O.m | = am

is adopted to maintain the monotone property of generated it mnaX{lun,ml} < O””—Ngm,m =1,..., NV
erates. To guarantee its feasibility, projection to thest@ined (68)
set!/ in steps 8 and 9 are applied. whereMMSE(S) is given by (40). For the CMI maximization,

an optimization problem can be similarly formulated, which
IV. ALGORITHMS FORSEQUENCEDESIGN UNDERPAR maximizesCMI(S) (44) under the same constraints as that of
CONSTRAINTS (68).

The unimodular constraint on the training sequence origi- Following the same procedure of applying the MM frame-
nates partly from the low peak-to-average power ratio (PARYork in Section I1I-B, the following majorized (minorized)
demand, e.g., in MIMO radar systems. Low PAR sequenc®¥blems can be obtained for problem (68) for the MMSE
have found many applications in practice because they daimization (CMI maximization)
mitigate the non-linear effects at the transmitter sidelevhi
enabling more flexibility of the designed sequences conthare  minimize HU -3, Bij
with unimodular ones. In this section, we consider the mobl U ’
of designing optimal sequences with low PAR.

For a sequence of vecto® ¢ CN*M: U, ,, denotes mnax{|un,m|} < \/O””—]\fm,m: 1,...,N;
the lengthA sequence sent from theth antenna, forn = (69)

2
F

subject to | U. ,,|1* = aum,



It is obvious that problem (69) can be separated inp

problems as AP ME
s 2 - =A- CAN MF
minimize [|U. ., — ¢ | MISL MF
U.m X =0~ Random phase MMSE
1 2 __ ~ ——&— CAP MMSE
SUbJeCt to HU,m“ =y (70) ) = ~ —k— MMSE-optimal (proposed)
m€m 10" | -~ —%— MMSE-optimal accel. (proposed)|
mnax{|un-,m|} < \/ Smom N£ s :
for m = 1,...,N;, where ¢, is the mth column of §

Zi,j B, ;. Problem (70) is a nearest vector problem with
low PAR constraint and has been well studied in [2] vie
Karush-Kuhn-Tucker (KKT) conditions. By using the well-
developed algorithms in [2] to solve each problem (70), th
overall algorithm is summarized in Algorithm 3. Note that

Algorithm 3 shares the same convergence property as tr 10 ‘ ‘ ‘ ‘

of Algorithm 1. Furthermore, the acceleration scheme base 10 6 SNR (68) (K = 10, = 10) 6 10

on the SQUAREM method is also applicable here, and the

procedure is similar to AIgonthm 2. Fig. 1. MSE of SISO channel estimates with different unimaddraining

- - _ — sequences. The results are averaged over 200 Monte Carldagons.
Algorithm 3 Design of optimal training sequence for the

MMSE minimization (26) or the CMI maximization (31) under

the PAR constraint. 6 : :
1: Sett = 0, and initialize U® such that max{|u )|} < Random phase 4
O = " 5H - —o— MISL 7
N o= L...,Ng. —a— CMI-optimal (proposed) Y
2: repeat _ =y~ CMI-optimal accel. (proposed) /"
3 SO =T7(UY), andS® =1y, @ SV ar / ]
N _NH -1
6 A= (30R(39)" 4 W) SOR s ,
I, for the MMSE minimization
5: v = R ok 1
R®, for the CMI maximization
H
6 AW =R, HA<t>V<t> (A®) H1 A ]
7: B (S® v®)) = xOSH _A®VE®) (A(t))H SOR,
0 ; i i i
t t = - _
+(‘?_:1§V( )RO ) 10 ° SNR%dB) (K =19, sz 10) ° 10
8: U..,"~ € arg min U.;m —cm|”ym =
maxn{|un,m|];§v cmpm Fig. 2. The CMI with different unimodular training sequescr SISO
0. " =am channels. The results are averaged over 200 Monte Carldagioms.
1,...,N;
9: t—t+1
10: until convergence design of unimodular sequences for channel estimation and

conditional mutual information maximization. L&% = N, =
1, and we can apply Algorithm 1 and Algorithm 2 to design
V. NUMERICAL EXAMPLES optimal unimodular training sequences for a SISO channel. W
In this section, we employ proposed algorithms to desigtompute the MMSE estimates with our proposed sequences,
unimodular and low PAR sequences for channel estimati@equences of low sidelobe, and sequences of random phase,
For SISO channels, we compare the channel estimation and then compare the resulting MSE with matched filtering
ror and the obtained conditional mutual information of oufMF) using low sidelobe sequences.
proposed sequences with that of low sidelobe or randomThe underlying channel impulse response is chosen by
phases. For MIMO channel estimation, the same performangg,. ~ CA (0x+1, Ree) With length K +1 = 20 , and
metrics are compared for our proposed sequences, sequet@p&%e)w — 0.9li-il0.95 0.9% fori,j=1,...,K+1.The
of good auto- and cross-correlation properties, and se@senchannel’is thus correlated with exponentially decreasovggp
of random phases. Then we show the advantage of optingih respect to time delay, which corresponds to the caedla
low PAR sequences over sequences of random phases indb&tering environment with multipath fading in wirelessrs
MIMO channel estimation. munications [33]. The length of training sequencéVis= 10.
The channel noise is set to be ~ CA (Onyx, W) with
A. Unimodular Sequences for SISO Channel Estimation (W)ij =023l for 4,5 = 1,..., N + K. Considering the
In this subsection, numerical results are presented ts—iIILjnacc’Uracy of channel covariance matrix in hand, the ogtima
trate the advantage of considering the prior informatiothen unimodular sequenca is designed under the assumed prior



hy ~ CN (0x+1,Ro) and (Ro), ; = 0.817910.8270.8"%".

The mean square error (MSE) of the channel estimator is tht 10

CAN MF
+=+= MM-Corr MF

MSE(hymse) = [[havise — horuell3, (71) - —— Random phase MusE

L
-~

e —— MMSE-optimal (proposed)
—%— MMSE-optimal accel. (proposed) |

where hypsg IS given by (21) andS = 7 (u). Based on
the true channel covariance matrix, the conditional mutus
information obtained with training sequenaeis

® 10 4
1 _
CMI (u) = 5 logdet (I+ ReueSTWT'S).  (72) b |

The signal-to-noise ratio (SNR) is defined as \'\‘"“""“’“’\A\ﬁ

[uf® /N _ N

SNR=101 dB). 73

Oglo T‘I’(W)/(N‘i‘K) ( ) ( ) 101 ‘ ‘ ; ‘

For different values of SNR, the resulting MSE and CMI e " SNR(GB) (423N =3, K= 10,N=10) 10

are approximated by running 200 times Monte Carlo simu-
lations. In our simulations, both Algorithm 1 and AlgorithnFig. 3. MSE of MIMO channel estimates with different uniméatutraining
2 are initialized with unimodular sequences of random phasigduences. The results are averaged over 100 Monte Carltagons.
uniformly distributed in[0, 27]. And the algorithms are con-
sidered to be converged when the difference between tw

consecutive updates is no larger thair®, i.e., [[u*t!) — Random phase
u®]l; <107, wofl " o
Fig. 1 shows the MSE of different channel estimates afte —+— MMSE-optimal (proposed)
training with different unimodular sequences. Both CAP ani 120 —¥— MMSE-optimal accel. (proposed) 4

CAN were proposed to design sequences with low sidelobe
or good correlation properties, and sequences designed 100¢
CAP was employed to estimate channel impulse response w
the matched filter [5]. It was claimed that MISL could further
reduce the sidelobes of the designed unimodular sequenc
[6], with which channel estimate by matched filtering was

CwMmI

80

60

also compared herein. The resulting MSE of our propose a0} ‘ b
sequence, MMSE-optimal accel., by the accelerated scher =

Algorithm 2 is lower than that of low sidelobes and that of 291%' ~ = s . m
random phases, especially in the low SNR scenarios. Thet SNR (dB) (N, =3, N, =3, K =19, N =10)

fore, the good correlation properties do not guarantee a goo

channel estimate when the length of the training sequerfée 4. The CMI with different unimodular training sequesder MIMO

is limited with respect to the length of the channel impu|5@annels. The results are averaged over 100 Monte Carldaioms.

response. Note that sequence MMSE-optimal by Algorithm

1 achieves almost the same performance as that of MMSfannels, two performance metrics are considered, namely t

optimal accel., but the resulting MSE degrades a little bt ichannel MSE and CMI.

the high SNR case as it needs more iterations to converge. Th&nhose the MIMO channel ha¥, = 3 transmit an-

convergence of Algorithm 1 and Algorithm 2 will be illusteat tennas andy, = 3 receive antennas, with the length of

in Section V-D. the channel impulse< + 1 = 20. The vectorized channel
The obtained CMI for different unimodular sequences ajg\pulse response,.. is drawn from a circular complex

shown in Fig. 2. Although by definition (72), the resultingsayssian distributiod N (Ox, . (K +1)» Rirue) - Each channel

CMI only depends on the channel statistics without beingefficient (hyyue),,i = 1,..., N,N.(K + 1) is associated
affected by the channel realizations, Monte Carlo simoiieti \ith a triple Setl(nt,nr,k), wheren; = 1,...,N, and

local minima. Expectedly, sequences obtai.ned by CAN arrlgspectivew' ands = 0,...,K is the channel delay. And
MISL produces almost the same CMI. By incorporating thgzch entry(Ryue), . Of the covariance matrix describes the

]

prior channel information into the sequence design, howevggrelation between the channel coefficient of the triple se

the CMI obtained is improved. (n¢1, o1, k1) and (nge, ny0, ko). Without loss of generality,
consider
B. Unimodular Sequences for MIMO Channel Estimation Rirue = Ry @ Rg @ Ry (74)
In this subsection, we compare the optimal unimodulavhere(R.), ., = p'ln”_"”‘ and (Re),,,, 1., :p‘;“‘"”'

sequences with those of good correlation properties [7] oharacterizes, respectively, the correlation betweensirét
random phases for MIMO channels. As in the case of SIS&htennas and the correlation between receive antennas, and



10

Ra)g, 1y = p'flsz‘ is an exponentially decaying correlation

with respect to the channel delay. For the true channel isgpul %0

+=0- ' Random phase

responsehy,,., we setp; = p3 = 0.9 and p; = 0.7. In N % MMSE-optimal (propiosed)
p true P1 P3 P2 N —— MMSE-optimal accel. (proposed)| |

the optimal unimodular training sequence design, the ablanr ar
prior hy is assumed to follow a circularly complex Gaussiar
distribution with zero mean and covariance maiiRy of the
same correlation structure as (74) and = p3 = 0.8 and
p2 = 0.6. Each column of noise matriy in model (5)
corresponds to a MISO channel, and the vectorized noise is ¢
sumed to be colored with a Toeplitz correlation aed (V) ~
CN Oy yN, W), With W, 5 = 027914, 5 =1, ... (N+
K)N,.. The optimal unimodular training sequences, sequenc
of good auto- and cross-correlations properties, and segse

of random phases are transmitted and then the correspond o i i i i
MMSE channel estimators can be obtained. The MSE for eax - 2 SNR(B) (N =3 N 4 K== 10) | 10
estimate is calculated by (71) with = 7 (U). The CMI is o
similarly defined by (72). The SNR is defined as Fig. 5. MSE with different low PAR training sequences for MIMchannels.
9 PAR = {1, 2,3} with power proportions among three antennas: 2 : 3.
SNR= 10 logw HUHF /(NNt) (dB) . (75) The results are averaged over 100 Monte Carlo simulations.
Tr (W) /(N + K)N;)
The setting for algorithm initialization and convergenae a Lo | |
the same as the unimodular case. And the MSE and CMI a
averaged over 100 times Monte Carlo simulations for difiere —* PAR-constrained

values of SNR.

Fig. 3 shows the MSE of MMSE channel estimates witl
different unimodular training sequences and SNR’s. Thgtlen
of sequence for each transmit antennd’is= 10. It is obvious 1215 5 10 15 20 2 30
that the optimal unimodular sequences, both MMSE-optim: PAR (€=29,N =30, SNR = 0.dB)
by Algorithm 1 and MMSE-optimal accel. by Algorithm 2, %7 o
produce smaller MSE than that of random phases or good aut 076} —
and cross-correlation properties (Good-Corr). Also reottat 07551 , , , :
there is a gap between two curves of MSE of MMSE-optima X\\\L
and MMSE-optimal accel. This is because Algorithm 1 need  *™[ ‘ : ' '
much more iterations to be converged for MIMO channe  o7ss; : = = -~ o -
training sequence design than that of the SISO case. T PAR (K =29, N = 30, SNR = 10 dB)
convergence properties are shown in Section V-D.

In the CMI maximization for MIMO channels, the perfor-Fig. 6. MSE for SISO channel estimation with PAR-constrdirsequences
mances of different unimodular sequences are shown in F‘s? t?;?gg:'ar sequences. The results are averaged over HbeMCarlo
4 with N = 10. For different SNR, the optimal unimodular '
training sequences can achieve larger CMI than sequences of

either random phase or good correlation properties. D. Convergence of Proposed Algorithms

MSE

MSE

Experimental results are given to show the convergence
properties of proposed algorithms for the MMSE minimizatio

Consider the MIMO channel of the same conditions dgroblem and the CMI maximization problem with unimodular
scribed in Section V-B. We employ Algorithm 3 and its acceleonstraints or low PAR constraints. The setting for aldonit
erated scheme to design low PAR sequences for the appiicaiiaitialization and convergence criteria are the same agques
of MMSE channel estimation. In Fig. 5, MMSE-optimal andubsections. First, we experiment with Algorithm 1 and Algo
MMSE-optimal accel. are obtained by Algorithm 3 and itsithm 2 for both MMSE minimization and CMI maximization
accelerated scheme, respectively. It is demonstratechtitat in SISO channel unimodular training sequence design. Fig. 7
optimal training sequences achieve much smaller MSE thainows the objective values with respect to algorithm itenst
low PAR sequences of random phases. Like the results farboth problems, Algorithm 1 converge monotonically to a
Algorithm 1 and Algorithm 2 in the previous subsectionsstationary point though slowly. With acceleration techus,
MMSE-optimal renders an larger MSE than MMSE-optimahowever, Algorithm 2 renders an very fast convergence. The
accel. especially in the high SNR cases. An example same convergence properties can be seen in Fig. 8, where
convergence of both algorithms are shown in Section V-Dnimodular sequences for MIMO channel estimation are con-
In Fig. 6, we also compare resulting MSE of unimodulasidered with N, = 3, N, = 4. Within the same MIMO
sequences and sequences of different values of PAR. channel setting, Algorithm 3 and its accelerated scheme are

C. Low PAR Sequences for MIMO Channel Estimation
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4 —0— - MMSE-optimal accel. (proposed) 40 —$— - MMSE-optimal accel. (proposed)|
2 —— CMI-optimal (proposed)
I CMI-optimal accel. (proposed) 38 45
I F 4 i
| 40
354 1 361 : 1
o © 35
= | =2
s g S 34p 0 1
[ [
> 3 =
g Q\ 8 3 %
ey Q% % 25
o [}
30} - 20 1
60 80 100|
26l |
26 % N
i i i i i i i i i i

1.5 i i i i i i i i
10 20 30 40 50 60 70 80 90 100 100 20 300 400 500 600 700 800 900 1000

Iteration (K = 29, N = 30) Iteration (K =9, N = 10)

N
i

Fig. 7. Convergence of algorithms for optimal unimodulagusnce design Fig. 9. Convergence of algorithms for optimal low PAR seaqedesign for
for SISO channel estimatiofrsNR = —5 dB. MIMO channel estimationNy = 3, N, = 4, andSNR = —5 dB.

—— ———— guaranteed to monotonically converge to a stationary point
—#— MMSE-optimal (proposed) A ) i
65F —0— - MMSE-optimal accel. (proposed) Numerical results show that the optimal unimodular seqeenc
—*— CMI-optimal (proposed) . . .
60} CMi-optimal accel. (proposed) |1 can improve either the accuracy of channel estimate or the
o / - | CMI compared with those of sequences with good correlation
v sl | properties or random phases. Under the same criteria, the
E &0 optimal sequence design with low PAR constraint is also
2% a0 | studied, for which the similar algorithms to unimodular €as
153 . . .
*5%40’ 9 1 are derived. Numerical examples show that the optimal low
35f 20 1 PAR sequences perform better than that of random phases.
<
30 \/O N
10 20 30 40 50
25¢ —
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