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Design of PAR-Constrained Sequences for MIMO
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Abstract—PAR-constrained sequences are widely used in com-
munication systems and radars due to various practical needs;
specifically, sequences are required to be unimodular or of low
peak-to-average power ratio (PAR). For unimodular sequence
design, plenty of efforts have been devoted to obtaining good
correlation properties. Regarding channel estimation, however,
sequences of such properties do not necessarily help produce
optimal estimates. Tailored unimodular sequences for the specific
criterion concerned are desirable especially when the prior
knowledge of the channel is taken into account as well. In this
paper, we formulate the problem of optimal unimodular sequence
design for minimum mean square error estimation of the channel
impulse response and conditional mutual information maximiza-
tion, respectively. Efficient algorithms based on the majorization-
minimization framework are proposed for both problems with
guaranteed convergence. As the unimodular constraint is a
special case of the low PAR constraint, optimal sequences oflow
PAR are also considered. Numerical examples are provided to
show the performance of the proposed training sequences, with
the efficiency of the derived algorithms demonstrated.

Index Terms—Unimodular sequence, peak-to-average power
ratio (PAR), channel estimation, majorization-minimization, min-
imum mean square error, conditional mutual information.

I. I NTRODUCTION

PAR-CONSTRAINED sequences, such as unimodular or
low peak-to-average power ratio (PAR), have many ap-

plications in both single-input single-output (SISO) and multi-
input multi-output (MIMO) communication systems. For ex-
ample, theM -ary phase-shift keying techniques allow only
symbols of constant-modulus, i.e., unimodular, to be transmit-
ted [1]. In MIMO radars and code-division multiple-access
(CDMA) applications, the practical implementation demands
from hardware, such as radio frequency power amplifiers and
analog-to-digital converters, require the sequences transmitted
to be unimodular or low PAR [2]–[4]. In this paper, we con-
sider the design of optimal unimodular or low PAR sequences
for channel estimation.

There is an extensive literature on designing single unimod-
ular sequences with good correlation properties such that the
autocorrelation of the sequence is zero at each nonzero lag.
As such properties are usually difficult to achieve, metricsof
“goodness” have been proposed instead where autocorrelation
sidelobes are suppressed rather than literally set to zero,and
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optimization problems are thus formulated and solved with nu-
merical algorithms [5], [6]. Specifically, the work [5] provides
several cyclic algorithms (CA) for either minimizing integrated
sidelobe level (ISL) or maximizing ISL-related merit factor
(MF). In [6], a computationally efficient algorithm called
MISL for minimizing ISL is proposed, and it is demonstrated
that MISL results in lower autocorrelation sidelobes with less
computational complexity.

The good correlation property of a single unimodular se-
quence is also extended to MIMO systems, where multiple
sequences are transmitted. The good autocorrelation is defined
for each sequence as that for a single sequence. Meanwhile,
good cross-correlation demands that any sequence be nearly
uncorrelated with time-shifted versions of the other sequences.
In [3], algorithms CA-direct (CAD) and CA-new (CAN) are
developed to obtain sequence sets of low auto- and cross-
correlation sidelobes. Also [7] proposes some efficient algo-
rithms to minimize the same metric in [3].

The aforementioned ISL and ISL-related metrics are both
alternative ways to describe the impulse-like correlationchar-
acteristics. Sequences with such properties enable matched
filters at the receiver side to easily extract the signals backscat-
tered from the range bin of interest and attenuate signals
backscattered from other range bins [3]. Nevertheless, matched
filters take no advantage of any prior information on the
channel when the unimodular low-ISL sequences are used for
estimation.

The unimodular constraint is actually a special case of the
low PAR constraint, which imposes how the largest amplitude
of the sequence compares with its average power. The low
PAR constraint, as a structural requirement, has been well
studied in the design of tight frames [2]. Although the indi-
vidual vector norms of a frame could be adjusted to maximize
the sum-capacity of DS-CDMA links, the optimality in terms
of any performance measures was not directly considered
therein. Furthermore, the algorithm they proposed is basedon
alternating projection that often suffers a slow convergence.

As far as channel estimation is concerned, many studies
have been conducted for both frequency-flat and frequency-
selective fading channels under minimum mean square error
(MMSE) estimation and conditional mutual information (CMI)
maximization. Most of those obtained optimization problems,
however, only address the power constraint without addressing
the unimodular or low PAR constraints. In [8]–[12], training
sequence design for flat MIMO channels is studied assuming
some special structures, e.g., Kronecker product, on the prior
covariance matrices of channel and noise. It is shown that the
optimization problem can be reformulated as power allocations
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using the majorization theory, and the waterfilling solutions are
obtained. Meanwhile, problems of similar formulations have
also been studied in joint linear transmitter-receiver design
[13], [14]. To deal with arbitrarily correlated MIMO channels,
some numerical algorithms based on block coordinate descent
are proposed in [15]–[17].

More related to our work is training sequence design
for frequency-selective fading channels. Under a total power
constraint, channel capacity is investigated for SISO channels
[18] and MIMO channels [19]. Independent and identically
distributed channel coefficients and noise are assumed to facili-
tate mathematical analysis. As a result, impulse-like sequences
for both types of channel are suggested for optimal estimation.
Optimal design for the MMSE channel estimation has been
studied in [20], where the noise is assumed to be white and
the channel taps are uncorrelated; however, such assumption
is hardly satisfied in practice. And there is no guarantee of
finding an optimal solution for an arbitrary length of training
or channel correlation. More important, their results cannot be
used when the unimodular or low PAR constraint is imposed
on the sequences to be designed.

We formulate the problem as the design of optimal uni-
modular sequences based on the MMSE and the CMI. Both
problems are non-convex with the bothersome unimodular
constraint. Without assuming any amenable structures, e.g.,
Kronecker product, on the prior channel and noise covariances,
the problems are also challenging even if only the power
constraint is imposed. To tackle those issues, the majorization-
minimization (MM) technique is employed to develop effi-
cient algorithms. By rewriting the objective functions in a
more appropriate way, majorizing/minorizing functions can
be obtained for minimization/maximization objective. As a
result, the original problems are solved instead by a sequence
of simple problems, each of which turns out to have a
closed-form solution. Convergence of our proposed algorithms
is guaranteed, and an acceleration scheme is also given to
improve the convergence rate. For low PAR constraints, similar
problems can be formulated, and the developed algorithms
need only a few modifications to be applied.

The rest of this paper is organized as follows. In Section II,
the channel model is described, on which the optimal unimod-
ular sequence design problems are formulated. In Section III,
derivations of algorithms for both the MMSE minimization
and the CMI maximization are presented, followed by a brief
analysis of convergence properties and an acceleration scheme.
The optimal design under the low PAR constraints is discussed
in IV. Numerical examples are presented in Section V. And
conclusion is then given in Section VI.

Notation: Scalars are represented by italic letters. Boldface
uppercase and lowercase letters denote matrices and vectors,
respectively.C is the set of complex numbers. The identity
matrix is denoted byI with the size implicit in the context if
undeclared. The superscripts(·)T , (·)H and(·)∗ denote respec-
tively transpose, conjugate transpose and complex conjugate.
With vec (X), the vector is formed by stacking the columns
of X. The Kronecker product is denoted by⊗. E (·) takes the
expectation of random variable.Tr (·) is the trace of a matrix.
‖ · ‖F is Frobenius norm of a matrix.

II. CHANNEL MODEL AND PROBLEM FORMULATIONS

We consider a block-fading or quasistatic multi-input multi-
output (MIMO) channel. Assume the number of transmit
antennas and receive antennas areNt and Nr, respectively,
and the channel impulse response is described as a length-
(K + 1) sequence of matricesH0, . . . ,HK ∈ CNr×Nt . In
the training period, a length-N sequence is sent through
the channel from each transmit antenna or, equivalently, a
length-Nt vector un from the set of transmit antennas at
the time instantn = 1, . . . , N . For simplicity, we still call
this sequence of vectors as a sequence, which is denoted by
U = [un,m] =

[

u1 · · · uN

]T ∈ CN×Nt . Considering the
unimodular constraint with energy budgetTr

(

UHU
)

= α,
we want to designU ∈ U , where

U =

{

U

∣

∣

∣

∣

|un,m| =
√

α

NNt

, n = 1, . . . , N ;m = 1, . . . , Nt

}

.

(1)
And the received sequence is given by

yn =
K
∑

k=0

Hkun−k + vn, (2)

whereun = 0 whenn ≤ 0 or n > N , andvn is anNr × 1
noise vector. Equation (2) can be written in a matrix form as


















yT
1
...
...
...
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
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
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












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1 0
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. . . uT
1

...
. . .

...

uT
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. . .
...

0 uT
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





















HT
0
...

HT
K






+
















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vT
1
...
...
...

vT
N+K



















. (3)

Let Y =
[

y1 · · · yN+K

]T ∈ C(N+K)×Nr be the received
matrix, and

S = T (U) =



















uT
1 0
...

. . . uT
1

...
. . .

...

uT
N

. . .
...

0 uT
N



















∈ C
(N+K)×(K+1)Nt (4)

be a block Toeplitz convolution matrix with
[

UT 0
]T

be-
ing the first block and remaining blocks are obtained by
a downward circular shift of the previous block. Note that
sinceTr

(

UHU
)

= α, thenTr
(

SHS
)

= α(K + 1). H =
[

H0 · · · HK

]T ∈ C(K+1)Nt×Nr is the channel impulse
response with matrix-form taps, andV is the noise matrix.
Thus, we can write in a compact way the received signal as

Y = SH+V. (5)

It can be easily seen that each column ofY corresponds to
a received sequence for one of theNr receive antennas, i.e., a
multi-input single-output (MISO) channel. Lety = vec(Y) ,
h = vec(H), andv = vec(V), and based onvec (XYZ) =
(

ZT ⊗X
)

vec (Y), we have

y = (INr
⊗ S)h+ v. (6)
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A. Heuristic Existing Methods

Most of the current works on unimodular sequence design
focus on good auto- and cross-correlation properties; see [3]
on MIMO radar unimodular codes and references therein. The
good correlation properties are particularly desired in that the
matched filter is employed in subsequent channel estimation.
As a matter of fact, the obtained channel estimate is closely
related to maximum likelihood (ML) estimation. Assume the
vectorized noise in the channel model (6) follows a circularly
complex Gaussian distribution,v ∼ CN

(

0, σ2I
)

. Minimizing
the mean square error (MSE)E{‖ĥML − h‖2} results in the
ML channel estimate [21]

ĥML =
(

(INr
⊗ S)

H
(INr

⊗ S)
)−1

(INr
⊗ S)

H
y (7)

=
(

INr
⊗ SHS

)−1
(INr

⊗ S)H y, (8)

where the second equality is due to(X⊗Y) (M⊗N) =
XM⊗YN. And the corresponding error is given by

E = Tr

(

(

(INr
⊗ S)H (INr

⊗ S)
)−1

)

(9)

= Tr
(

(

INr
⊗ SHS

)−1
)

(10)

= NrTr
(

(

SHS
)−1
)

. (11)

To minimize the error of ML estimation, the training sequence
should be a solution to the optimization problem

minimize
U,S

E subject to S = T (U) ,U ∈ U . (12)

Lemma 1 [22]. Let X ∈ CM×N be such thatTr
(

XHX
)

≤
µ for some constantµ. The minimum ofTr

(

(

XHX
)−1
)

is

achieved whenXHX = µ
N
I, provided that inverse ofXHX

exists.
An approximation to problem (12) is as follows. According

to Lemma 1, the objective function (11) is minimized when
(Tr
(

SHS
)

= α(K + 1))

SHS =
α

Nt

I(K+1)Nt
, (13)

if only the energy constraint is considered. Therefore, a
heuristic approximation of the ML optimal sequence design
could be formulated as

minimize
U,S

∥

∥

∥
SHS− α

Nt
I

∥

∥

∥

2

F

subject to S = T (U) ,U ∈ U .
(14)

The optimal S satisfying (13) portrays an impulse-like
correlation shape pursued in [3], [7], where the aperiodic
cross-correlation is defined as

rm1,m2(k) =

N
∑

n=k+1

un,m1u
∗
n−k,m2

(15)

for m1,m2 = 1, . . . , Nt and lagsk = 0, . . . , N − 1. Equation
(15) also defines the autocorrelation for the sequence of each
transmit antenna whenm1 = m2. Accordingly, the correlation

matrices for different lagsk = −(N − 1), . . . , 0, . . . , (N − 1)
are given by

Σk =











r1,1 (k) r1,2 (k) · · · r1,Nt
(k)

r2,1 (k) r2,2 (k) · · · r2,Nt
(k)

...
...

. . .
...

rNt,1 (k) rNt,2 (k) · · · rNt,Nt
(k)











, (16)

with rm1,m2(−k) = r∗m1,m2
(k), and Σ−k = ΣH

k . Let us
define the correlation matrix for a sequenceS as

Σ = SHS, (17)

and then we have

Σ =











Σ0 Σ−1 · · · Σ−K

Σ1 Σ0 · · · Σ−(K−1)

...
...

. . .
...

ΣK ΣK−1 · · · Σ0











. (18)

Note thatΣ only describes correlations at lags of interest,
which in this case is determined by the length of the channel
impulse response. To achieve the optimality dictated by (13),
we can rewrite approximation problem (14) as

minimize
U

(K + 1)
∥

∥

∥
Σ0 − α

Nt
I

∥

∥

∥

2

F

+2
K
∑

k=1

(K + 1− k) ‖Σk‖2F
subject to U ∈ U .

(19)

The objective function of (19) is indeed the weighted cor-
relation minimization criterion within the lag intervalk =
0, . . . ,K [3], for which algorithms WeCan and CAD were
proposed. Another formulation is also presented in a similar
attempt to procure the good correlation property as

minimize
U

∥

∥

∥
Σ0 − α

Nt
I

∥

∥

∥

2

F
+ 2

N−1
∑

k=1

‖Σk‖2F
subject to U ∈ U ,

(20)

for which an algorithm called CAN was developed in [5], and
WeCAN can be employed as well. In [7], both problems (19)
and (20) were studied by considering a more general weighted
formulation, and efficient algorithms were proposed.

We can see that sequences with good auto- and cross-
correlation properties are desirable in general as no prior
information on the channel is taken into account in the
ensuing channel estimation task. Channel statistics, however,
are often available on both the transmitter sides and receiver
sides, and incorporating those priors into the design of the
training sequence will improve the performance of channel
estimator. In the following subsections, we will formulatethe
unimodular sequence design problem based on the MMSE
minimization and the CMI maximization, both of which have
been adopted as criteria in various estimation problems. In
order for the channel model (6) to be general, we assume
h ∼ CN (h0,R0), and the noisev ∼ CN (0,W), where
both the channel covarianceR0 and the noise covarianceW
are arbitrary.
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B. Optimal Sequence Design by Minimizing the MMSE Cri-
terion

Given the channel model (6), by minimizing the MSE
E{‖ĥMMSE − h‖2}, the MMSE estimator of the channel
impulseh is given by

ĥMMSE = R0S̃
H
(

S̃R0S̃
H +W

)−1 (

y − S̃h0

)

+h0, (21)

whereS̃ = INr
⊗ S [21]. And the error covariance matrix is

R = E

{

(

ĥMMSE − h
)(

ĥMMSE − h
)H
}

(22)

= R0 −R0S̃
H
(

S̃R0S̃
H +W

)−1

S̃R0 (23)

=
(

R−1
0 + S̃HW−1S̃

)−1

, (24)

where the last equality is due to the matrix inversion lemma
[13]. The MMSE is thus given by

MMSE (S) = Tr (R) , (25)

and the following problem can be formulated

minimize
U,S

MMSE (S) subject to S = T (U) ,U ∈ U ,
(26)

which gives the optimal unimodular training sequence for the
MMSE channel estimation.

C. Optimal Sequence Design by Maximizing the CMI Crite-
rion

Apart from the MMSE criterion, another popular statistical
measure in channel estimation is the conditional mutual infor-
mation (CMI) between the channel impulse response and the
received sequence, e.g., [8]. The CMI is defined as

CMI (S) = I (h;y |S ) (27)

= H (h)−H (h |y,S ) , (28)

whereH (·) is the differential entropy of a distribution [23].
Under the linear model (6) with Gaussian distributed chan-
nel impulse and noise, we have the conditional distribution
h |y,S ∼ CN (ĥ,R). ThenCMI (S) can be written as

CMI (S) =
1

2
log
(

(2πe)(K+1)NtNr det (R0)
)

− 1

2
log
(

(2πe)
(K+1)NtNr det (R)

)

(29)

=
1

2
log det

(

R0R
−1
)

. (30)

By maximizingCMI (S) we reach the following optimization
problem

maximize
U,S

CMI (S) subject to S = T (U) ,U ∈ U .
(31)

Remark: It should be mentioned that channel model (6)
includes the SISO channel as a special case. A lot of efforts
have been made to construct unimodular sequences for SISO
channels via either analytical methods or computational ap-
proaches. Apart from early works on binary sequences and
polyphase sequences, e.g., [24], [25], numerical algorithms are

provided to design unimodular sequences of good correlation
properties [5], [6]. LetNt = Nr = 1 and u denote the
training sequence, thenS = T (u) is a Toeplitz convolution
matrix and expression (16) reduces to a scalar that gives
autocorrelations at different lags for the sequenceu. And
similar formulations as (19) and (20) are proposed in order to
obtain sequences of good autocorrelation properties. However,
as we have seen in the previous discussion, the resulting
channel estimate cannot benefit from the available knowledge
of channel statistics. Therefore, designing optimal training
sequences by minimizing the MMSE criterion or maximizing
the CMI criterion will be beneficial in terms of final estimation
performances. Without any modifications, formulations (26)
and (31) can be deployed in the context of SISO channels.

III. A LGORITHMS FORUNIMODULAR SEQUENCEDESIGN

In this section, we develop efficient algorithms to solve
problems (26) and (31). There is an extensive literature dealing
with optimization problems of similar objective functionswith
only power constraint onS where, assuming some special
structure for the prior covariance matrices of channel and
noise, the problems are reformulated as power allocation with
waterfilling-like solutions. In our formulations, however, it
is not only the Toeplitz structure ofS but also the tough
unimodular constraint that prevents us from adopting the same
approach.

It is worth mentioning that a possible approach to problem
(26) is a two-stage procedure [26] related to correlation
shaping. If the channel noise is independent and identically
distributed, i.e.,W = σ2I for some power densityσ2, the
objective function becomes

MMSE (S) = Tr

(

(

R−1
0 +

1

σ2
S̃H S̃

)−1
)

(32)

= Tr

(

(

R−1
0 +

1

σ2
INr
⊗Σ

)−1
)

, (33)

where the second equality follows from substitution of the
correlation matrixΣ = SHS. Consider only the constraint
Tr (Σ) = (K + 1)α induced by the energy budget in (26),
minimizing (33) with respect toΣ (instead ofS) can be
rewritten as an SDP by resorting to the Schur-complement
theorem [27], which yields the optimal correlation matrixΣ⋆.
OnceΣ⋆ is obtained, the problem boils down to recovering
sequences from its correlation matrix, which is to solve the
following approximation problem

minimize
U,S

‖SHS−Σ⋆‖F
subject to S = T (U) ,U ∈ U ,

(34)

if zero error is achievable. For a single sequence and without
the unimodular constraint, problem (34) can be tackled by
means of filter design [28]. However, constructing a unimod-
ular sequence that presents a prescribed correlation shapeis
challenging. As a special case, [3] and [7] have studied this
problem only when the correlation matrix is an identity. On the
other hand, it is not guaranteed that the objective in (34) can
reach zero when minimized. For example, when the number
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of sequences is relatively large for the training length, itis
impossible to design sequences such that correlation matrix is
an identity, i.e., auto- and cross-correlation cannot be made
small simultaneously [3].

Therefore, it is advisable to solve problems (26) and (31)
directly with the colored noise considered. In the following,
we will devise algorithms for both problems based on the
majorization-minimization framework.

A. Majorization-Minimization Framework

The majorization-minimization, or MM method is a general
framework for solving an optimization problem indirectly.In
this section, we will briefly introduce the idea of the MM
method for a minimization problem, and the details can be
found in [29], [30].

The MM method tackles a difficult optimization problem
by solving a series of simple approximation problems. Given
a minimization problem

minimize
x

f(x) subject to x ∈ X , (35)

and a feasible starting pointx(0) ∈ X , the MM method
minimizes a sequence of surrogate functionsg

(

x,x(t)
)

, t =
0, 1, . . . instead. Each surrogate function is a majorization
function of f(x) at x(t) that satisfies:

g
(

x(t),x(t)
)

= f
(

x(t)
)

, (36)

g
(

x,x(t)
)

≥ f (x) for everyx ∈ X , (37)

and
x(t+1) ∈ argmin

x∈X
g
(

x,x(t)
)

. (38)

According to the rules (36) and (37), we have

f
(

x(t+1)
)

≤ g
(

x(t+1),x(t)
)

≤ g
(

x(t),x(t)
)

= f
(

x(t)
)

,

(39)
and consequently, the MM method produces a sequence of
pointsx(t), for which the original objective function of (35) is
monotonically decreased. Provided that the objective function
is bounded below, it is guaranteed that the MM algorithm will
converge to a stationary point.

The key question is then how to find a good majorization
function g

(

x,x(t)
)

such that the resulting problems (38) are
easy to solve. Although there is no universal rule to determine
the functiong

(

x,x(t)
)

, the structure of the problem at hand
can nevertheless provide helpful hints and some tricks are
suggested in [29].

B. MM-Based Algorithms

Let us introduceP = S̃R0S̃
H + W, and by (23) the

objective function for the MMSE minimization problem (26)
can be written as

MMSE (S) = Tr
(

R0 −R0S̃
HP−1S̃R0

)

. (40)

Lemma 2. The functionf(X,Z) = Tr
(

XHZ−1X
)

is a
matrix fractional function and is jointly convex inZ ≻ 0 and
X [27].

By Lemma 2,MMSE(S) = Tr
(

R0 −R0S̃
HP−1S̃R0

)

is jointly concave in{S̃,P} (recall that S̃ = INr
⊗ S).

Since a concave function is upper-bounded by its supporting
hyperplane,MMSE (S) can be majorized as follows:

MMSE(S) ≤ gMMSE

(

S,S(t)
)

(41)

= MMSE
(

S(t)
)

+Tr

(

(

A(t)
)H

S̃R0S̃
H

A(t)

)

− 2Re

{

Tr

(

R0

(

A(t)
)H

S̃

)}

, (42)

whereS̃(t) = INr
⊗ S(t) with S(t) = T

(

U(t)
)

, andA(t) =
(

S̃(t)R0

(

S̃(t)
)H

+W

)−1

S̃(t)R0. To solve problem (26),

it suffices to solve iteratively the following problem:

minimize
U,S

gMMSE

(

S,S(t)
)

subject to S = T (U) ,U ∈ U ,
(43)

For problem (31), the objective function can be written as

CMI (S) =
1

2
log det

(

R0

(

R0 −R0S̃
HP−1S̃R0

)−1
)

.

(44)
Lemma 3. Given a positive semidefinite matrixM, the func-
tion h(Z,X) = M −MXHZ−1XM is matrix concave over
X of an appropriate size andZ ≻ 0 [27]. Since− log det (·)
is matrix convex and decreasing over positive definite cone,
− log det

(

M −MXHZ−1XM
)

is convex in{Z,X}.
Owing to Lemma 3,CMI (S) is jointly convex in{S̃,P},

and we can obtain the following minorization

CMI (S) ≥ gCMI

(

S,S(t)
)

(45)

= Re

{

Tr

(

R0

(

R(t)
)−1 (

A(t)
)H

S̃

)}

(46)

= −1

2
Tr

(

(

R(t)
)−1 (

A(t)
)H

S̃R0S̃
HA(t)

)

+CMI
(

S(t)
)

, (47)

where

R(t) = R0 −R0

(

S̃(t)
)H
(

S̃(t)R0

(

S̃(t)
)H

+W

)−1

S̃(t)R0 (48)

= R−1
0 +

(

S̃(t)
)H

W−1S̃(t). (49)

As a result, solving the CMI maximization problem (31) is
equivalent to solving the series of minorized problems

maximize
U,S

gCMI

(

S,S(t)
)

subject to S = T (U) ,U ∈ U .
(50)

Notice that problems (43) and (50) share a similar form of
objective function. Let

g
(

S;S(t),V(t)
)

= Tr

(

V(t)
(

A(t)
)H

S̃R0S̃
HA(t)

)

− 2Re

{

Tr

(

R0V
(t)
(

A(t)
)H

S̃

)}

,(51)



6

whereV(t) = I for the MMSE minimization problem and
V(t) =

(

R(t)
)−1

for the CMI maximization problem. After
reversing the sign of objective function of (50) and ignoring
the constants and the scaling factor, the following unified
problem is obtained

minimize
U,S

g
(

S;S(t),V(t)
)

subject to S = T (U) ,U ∈ U .
(52)

Lemma 4. Given HermitianM ∈ Cn×n and Z ∈ Cm×m

and any X(t) ∈ Cm×n, the functionTr
(

ZXMXH
)

can

be majorized by−2Re
{

Tr
(

(

λX(t) − ZX(t)M
)H

X
)}

+

λ ‖X‖2F + const, whereλI � MT ⊗ Z for some constant
λ.

Proof: GivenλI �MT ⊗LLH for some constantλ, we
have

Tr
(

ZXMXH
)

= vecH (X) vec (ZXM) (53)

= vecH (X)
(

MT ⊗ Z
)

vec (X) (54)

≤ −2Re
{

vecH (X)
(

λI−MT ⊗ Z
)

vec
(

X(t)
)}

+ vecH
(

X(t)
)

(

λI−MT ⊗ Z
)

vec
(

X(t)
)

+ λvecH (X) vec (X) (55)

= −2Re
{

Tr
(

λXHX(t) − ZX(t)MXH
)}

+ λ ‖X‖2F + vecH
(

X(t)
)

(

λI−MT ⊗ Z
)

vec
(

X(t)
)

.

(56)

Notice that the third term of the last equation is simply a
constant. And a scalar version of Lemma 4 can be found in
[7, Lemma 1]. �

To solve problem (52), yet a second majorization can be
applied with Lemma 4 (note that‖S̃‖2 = Nr(K + 1)α):

g
(

S;S(t),V(t)
)

≤ −2Re
{

Tr

(

λ(t)S̃H S̃(t) −A(t)V(t)
(

A(t)
)H

S̃(t)R0

S̃H

)}

− 2Re

{

Tr

(

R0V
(t)
(

A(t)
)H

S̃

)}

+ const (57)

= −2Re
{

Tr
(

(

λ(t)S̃(t) −A(t)V(t)
(

A(t)
)H

S̃(t)R0

+A(t)V(t)R0

)H
S̃
)

}

+ const, (58)

whereλ(t)I � RT
0 ⊗ A(t)V(t)

(

A(t)
)H

. The tightest upper

bound will beλ(t) = λmax

(

RT
0 ⊗A(t)V(t)

(

A(t)
)H
)

. But
computing the largest eigenvalue is costly especially whenthe
size of the matrix is large, and thus an alternative is advisable.
Since bothR0 andA(t)V(t)

(

A(t)
)H

are positive semidefinite
matrices, the largest eigenvalues are bounded as

λmax (R0) ≤ ‖R0‖1 , (59)

λmax

(

A(t)V(t)
(

A(t)
)H
)

≤
∥

∥

∥

∥

A(t)V(t)
(

A(t)
)H
∥

∥

∥

∥

1

, (60)

where‖ · ‖1 is maximum column sum matrix norm [31]. With
λmax (X⊗ Z) = λmax (X) λmax (Z), we propose

λ(t) = ‖R0‖1
∥

∥

∥

∥

A(t)V(t)
(

A(t)
)H
∥

∥

∥

∥

1

. (61)

Let B
(

S̃(t),V(t)
)

= λ(t)S̃(t) −A(t)V(t)
(

A(t)
)H

S̃(t)R0

+A(t)V(t)R0, and considering̃S = INr
⊗S with S = T (U),

we have

U(t+1) ∈ argmin
|un,m|=

√
α

NNt

− 2Re

{

Tr

(

(

∑

i,j

B[i, j]
)H

U

)

}

,

(62)
whereB[i, j] is a submatrix ofB with rows from(N+K)(i−
1) + j to (N + K)(i − 1) + N + j − 1 and columns from
Nt(K+1)(i− 1)+Nt(j− 1)+1 to Nt(K+1)(i− 1)+Ntj,
for i = 1, . . . , Nr, and j = 1, . . . ,K + 1. To find the next
updateU(t+1), note that (62) can be equivalently written as

U(t+1) ∈ argmin
|un,m|=

√
α

NNt

∥

∥

∥
U−

∑

i,j
B[i, j]

∥

∥

∥

2

F
. (63)

And the minimum is achieved by projection onto a complex
circle, which is

U(t+1) =

√

α

NNt

ej arg(
∑

i,j
B[i,j]), (64)

wherearg(·) is taken element-wise. The whole procedure is
summarized in Algorithm 1. The iterations of the algorithm
is deemed to be converged, e.g., when the difference between
two consecutive updates forU is no larger than some admitted
threshold.

Algorithm 1 Design of unimodular training sequence for the
MMSE minimization (26) or the CMI maximization (31).

1: Set t = 0, and initialize u
(0)
n,m, n = 1, . . . , N ;m =

1, . . . , Nt.
2: repeat
3: S(t) = T

(

U(t)
)

, andS̃(t) = INr
⊗ S(t)

4: A(t) =

(

S̃(t)R0

(

S̃(t)
)H

+W

)−1

S̃(t)R0

5: V(t) =

{

I, for the MMSE minimization

R(t), for the CMI maximization

6: λ(t) = ‖R0‖1
∥

∥

∥
A(t)V(t)

(

A(t)
)H
∥

∥

∥

1

7: B
(

S̃(t),V(t)
)

= λ(t)S̃(t)−A(t)V(t)
(

A(t)
)H

S̃(t)R0

+A(t)V(t)R0

8: U(t+1) =
√

α
NNt

ej arg(
∑

i,j
B[i,j])

9: t← t+ 1
10: until convergence

C. Convergence Analysis

Algorithm 1 is essentially based on the majorization-
minimization framework, which has been shown to converge to
a stationary point for bounded objective functions. The gen-
erated sequence of pointsU(t), t = 0, 1, . . . , monotonically
decreases or increases the objective function for minimization
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and maximization problems, respectively. In this section,we
give a detailed analysis of the convergence for Algorithm 1.
Without loss of generality, we only consider minimizing the
MMSE criterion.

For a constrained minimization problem with a smooth
objective function, a stationary point is obtained when the
following first-order optimality condition is satisfied.
Proposition 1. Let f : RN → R be a smooth function. A
point x⋆ is a local minimum off within a subsetX ⊂ RN if

∇f(x⋆)Ty ≥ 0, ∀y ∈ TX (x⋆), (65)

whereTX (x⋆) is the tangent cone ofX at x⋆.
Provided Proposition 1, the convergence of our proposed

algorithm is guaranteed as follows.
Theorem 1. By solving the series of problems(62) in Algo-
rithm 1, a sequence of points{U(t), t = 0, . . . } is obtained, of
which every limit point is a stationary point of problem(26).

Proof: A similar proof has been given in [6]. For details
please refer to [6, Theorem 5]. �

D. Accelerated Algorithm

To develop Algorithm 1 for solving problems (26) and
(31), the original function was majorized/minorized twice,
which may result in a loose surrogate function; see (41),
(45) and (57). And the performance of the MM method is
susceptible to the slow convergence as EM-like algorithms.
Then following the same idea in [6], [7], we employ an off-the-
shelf method, called squared iterative methods (SQUAREM)
[32], to accelerate Algorithm 1. SQUAREM was originally
proposed to improve the convergence of EM-type algorithms
and simultaneously keep its simplicity and stability. It can be
easily applied to accelerate the MM algorithms as well. For
details of convergence analysis, also refer to [32]. Without loss
of generality, we only consider acceleration of Algorithm 1for
the MMSE minimization problem. For the CMI maximization
problem, a similar procedure can be followed.

Given the current pointU(t), we call iterative steps 3 to
8 of Algorithm 1 collectively as one MM update, denoted by
MMupdate(U(t)). The accelerated computing scheme is given
by Algorithm 2. The step length is chosen by the Cauchy-
Barzilai-Borwein (CBB) method. And the back-tracking step
is adopted to maintain the monotone property of generated it-
erates. To guarantee its feasibility, projection to the constrained
setU in steps 8 and 9 are applied.

IV. A LGORITHMS FORSEQUENCEDESIGN UNDERPAR
CONSTRAINTS

The unimodular constraint on the training sequence origi-
nates partly from the low peak-to-average power ratio (PAR)
demand, e.g., in MIMO radar systems. Low PAR sequences
have found many applications in practice because they can
mitigate the non-linear effects at the transmitter side while
enabling more flexibility of the designed sequences compared
with unimodular ones. In this section, we consider the problem
of designing optimal sequences with low PAR.

For a sequence of vectorsU ∈ CN×Nt , U:,m denotes
the length-N sequence sent from themth antenna, form =

Algorithm 2 Accelerated scheme for designing optimal uni-
modular training sequence for the MMSE estimation.

1: Set t = 0, and initialize u
(0)
n,m, n = 1, . . . , N ;m =

1, . . . , Nt.
2: repeat
3: U1 = MMupdate

(

U(t)
)

4: U2 = MMupdate(U1)
5: L1 = U1 −U(t)

6: L2 = U2 −U1 − L1

7: Step lengthl = − ‖L1‖F

‖L2‖F

8: U(t+1) =
√

α
NNt

ej arg(U
(t)−2lL1+l2L2)

9: while MMSE
(

S(t+1)
)

> MMSE
(

S(t)
)

do
10: l← l−1

2 , and go to step 8

11: t← t+ 1
12: until convergence

1, . . . , Nt. And PAR is usually defined for each sequence
transmitted by a single antenna as

PAR(U:,m) =
max
n
{|un,m|2}
1
N
αm

, (66)

provided that the training energy for themth antenna is
‖U:,m‖2 = αm. Determining training energy for each
transmit antenna may depend on power distribution among
antennas satisfying

∑Nt

m=1 αm = α. And it follows that
1 ≤ PAR(U:,m) ≤ N . When PAR(U:,m) = 1, PAR
constraint reduces to the unimodular constraint. Given thePAR
constraints for each transmit antenna

PAR(U:,m) ≤ ξm,m = 1, . . . , Nt (67)

the optimal sequence design problem for minimizing MMSE
is then formulated as

minimize
U,S

MMSE (S)

subject to S = T (U)
‖U:,m‖2 = αm

max
n
{|un,m|} ≤

√

αmξm
N

,m = 1, . . . , Nt

(68)
whereMMSE(S) is given by (40). For the CMI maximization,
an optimization problem can be similarly formulated, which
maximizesCMI(S) (44) under the same constraints as that of
(68).

Following the same procedure of applying the MM frame-
work in Section III-B, the following majorized (minorized)
problems can be obtained for problem (68) for the MMSE
minimization (CMI maximization)

minimize
U

∥

∥

∥
U−∑i,j Bi,j

∥

∥

∥

2

F

subject to ‖U:,m‖2 = αm

max
n
{|un,m|} ≤

√

αmξm
N

,m = 1, . . . , Nt

(69)
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It is obvious that problem (69) can be separated intoNt

problems as

minimize
U:,m

‖U:,m − cm‖2

subject to ‖U:,m‖2 = αm

max
n
{|un,m|} ≤

√

αmξm
N

,

(70)

for m = 1, . . . , Nt, where cm is the mth column of
∑

i,j Bi,j . Problem (70) is a nearest vector problem with
low PAR constraint and has been well studied in [2] via
Karush-Kuhn-Tucker (KKT) conditions. By using the well-
developed algorithms in [2] to solve each problem (70), the
overall algorithm is summarized in Algorithm 3. Note that
Algorithm 3 shares the same convergence property as that
of Algorithm 1. Furthermore, the acceleration scheme based
on the SQUAREM method is also applicable here, and the
procedure is similar to Algorithm 2.

Algorithm 3 Design of optimal training sequence for the
MMSE minimization (26) or the CMI maximization (31) under
the PAR constraint.

1: Set t = 0, and initializeU(0) such that max
n
{|u(0)

n,m|} ≤
√

αm

N
,m = 1, . . . , Nt.

2: repeat
3: S(t) = T

(

U(t)
)

, andS̃(t) = INr
⊗ S(t)

4: A(t) =

(

S̃(t)R0

(

S̃(t)
)H

+W

)−1

S̃(t)R0

5: V(t) =

{

I, for the MMSE minimization

R(t), for the CMI maximization

6: λ(t) = ‖R0‖1
∥

∥

∥
A(t)V(t)

(

A(t)
)H
∥

∥

∥

1

7: B
(

S̃(t),V(t)
)

= λ(t)S̃(t)−A(t)V(t)
(

A(t)
)H

S̃(t)R0

+A(t)V(t)R0

8: U
(t+1)
:,m ∈ argmin

maxn{|un,m|}≤
√

αmξm
N

‖U:,m‖2=αm

‖U:,m − cm‖2 ,m =

1, . . . , Nt

9: t← t+ 1
10: until convergence

V. NUMERICAL EXAMPLES

In this section, we employ proposed algorithms to design
unimodular and low PAR sequences for channel estimation.
For SISO channels, we compare the channel estimation er-
ror and the obtained conditional mutual information of our
proposed sequences with that of low sidelobe or random
phases. For MIMO channel estimation, the same performance
metrics are compared for our proposed sequences, sequences
of good auto- and cross-correlation properties, and sequences
of random phases. Then we show the advantage of optimal
low PAR sequences over sequences of random phases in the
MIMO channel estimation.

A. Unimodular Sequences for SISO Channel Estimation

In this subsection, numerical results are presented to illus-
trate the advantage of considering the prior information inthe
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Fig. 1. MSE of SISO channel estimates with different unimodular training
sequences. The results are averaged over 200 Monte Carlo simulations.
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Fig. 2. The CMI with different unimodular training sequences for SISO
channels. The results are averaged over 200 Monte Carlo simulations.

design of unimodular sequences for channel estimation and
conditional mutual information maximization. LetNt = Nr =
1, and we can apply Algorithm 1 and Algorithm 2 to design
optimal unimodular training sequences for a SISO channel. We
compute the MMSE estimates with our proposed sequences,
sequences of low sidelobe, and sequences of random phase,
and then compare the resulting MSE with matched filtering
(MF) using low sidelobe sequences.

The underlying channel impulse response is chosen by
htrue ∼ CN (0K+1,Rtrue) with length K + 1 = 20 , and
(Rtrue)i,j = 0.9|i−j|0.9

i−1
2 0.9

j−1
2 for i, j = 1, . . . ,K+1. The

channel is thus correlated with exponentially decreasing power
with respect to time delay, which corresponds to the correlated
scattering environment with multipath fading in wireless com-
munications [33]. The length of training sequence isN = 10.
The channel noise is set to bev ∼ CN (0N+K ,W) with
(W)i,j = 0.2|i−j| for i, j = 1, . . . , N + K. Considering the
inaccuracy of channel covariance matrix in hand, the optimal
unimodular sequenceu is designed under the assumed prior
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h0 ∼ CN (0K+1,R0) and (R0)i,j = 0.8|i−j|0.8
i−1
2 0.8

j−1
2 .

The mean square error (MSE) of the channel estimator is then

MSE(ĥMMSE) = ‖ĥMMSE − htrue‖22, (71)

where ĥMMSE is given by (21) andS = T (u). Based on
the true channel covariance matrix, the conditional mutual
information obtained with training sequenceu is

CMI (u) =
1

2
log det

(

I+RtrueS
HW−1S

)

. (72)

The signal-to-noise ratio (SNR) is defined as

SNR= 10 log10
‖u‖2 /N

Tr (W) /(N +K)
(dB) . (73)

For different values of SNR, the resulting MSE and CMI
are approximated by running 200 times Monte Carlo simu-
lations. In our simulations, both Algorithm 1 and Algorithm
2 are initialized with unimodular sequences of random phases
uniformly distributed in[0, 2π]. And the algorithms are con-
sidered to be converged when the difference between two
consecutive updates is no larger than10−6, i.e., ‖u(t+1) −
u(t)‖2 ≤ 10−6.

Fig. 1 shows the MSE of different channel estimates after
training with different unimodular sequences. Both CAP and
CAN were proposed to design sequences with low sidelobes,
or good correlation properties, and sequences designed by
CAP was employed to estimate channel impulse response with
the matched filter [5]. It was claimed that MISL could further
reduce the sidelobes of the designed unimodular sequences
[6], with which channel estimate by matched filtering was
also compared herein. The resulting MSE of our proposed
sequence, MMSE-optimal accel., by the accelerated scheme
Algorithm 2 is lower than that of low sidelobes and that of
random phases, especially in the low SNR scenarios. There-
fore, the good correlation properties do not guarantee a good
channel estimate when the length of the training sequence
is limited with respect to the length of the channel impulse
response. Note that sequence MMSE-optimal by Algorithm
1 achieves almost the same performance as that of MMSE-
optimal accel., but the resulting MSE degrades a little bit in
the high SNR case as it needs more iterations to converge. The
convergence of Algorithm 1 and Algorithm 2 will be illustrated
in Section V-D.

The obtained CMI for different unimodular sequences are
shown in Fig. 2. Although by definition (72), the resulting
CMI only depends on the channel statistics without being
affected by the channel realizations, Monte Carlo simulations
are still conducted for 200 times to avoid the effects from
local minima. Expectedly, sequences obtained by CAN and
MISL produces almost the same CMI. By incorporating the
prior channel information into the sequence design, however,
the CMI obtained is improved.

B. Unimodular Sequences for MIMO Channel Estimation

In this subsection, we compare the optimal unimodular
sequences with those of good correlation properties [7] or
random phases for MIMO channels. As in the case of SISO
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Fig. 3. MSE of MIMO channel estimates with different unimodular training
sequences. The results are averaged over 100 Monte Carlo simulations.
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Fig. 4. The CMI with different unimodular training sequences for MIMO
channels. The results are averaged over 100 Monte Carlo simulations.

channels, two performance metrics are considered, namely the
channel MSE and CMI.

Suppose the MIMO channel hasNt = 3 transmit an-
tennas andNr = 3 receive antennas, with the length of
the channel impulseK + 1 = 20. The vectorized channel
impulse responsehtrue is drawn from a circular complex
Gaussian distributionCN

(

0NtNr(K+1),Rtrue

)

. Each channel
coefficient (htrue)i , i = 1, . . . , NtNr(K + 1) is associated
with a triple set (nt, nr, k), where nt = 1, . . . , Nt and
nr = 1, . . . , Nr are indices of transmit and receive antenna,
respectively, andk = 0, . . . ,K is the channel delay. And
each entry(Rtrue)i,j of the covariance matrix describes the
correlation between the channel coefficient of the triple set
(nt1, nr1, k1) and (nt2, nr2, k2). Without loss of generality,
consider

Rtrue = Rr ⊗Rd ⊗Rt (74)

where(Rr)nr1,nr2
= ρ

|nr1−nr2|
1 and (Rt)nt1,nt2

= ρ
|nt1−nt2|
3

characterizes, respectively, the correlation between transmit
antennas and the correlation between receive antennas, and
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(Rd)k1,k2
= ρ

|k1−k2|
2 is an exponentially decaying correlation

with respect to the channel delay. For the true channel impulse
responsehtrue, we setρ1 = ρ3 = 0.9 and ρ2 = 0.7. In
the optimal unimodular training sequence design, the channel
prior h0 is assumed to follow a circularly complex Gaussian
distribution with zero mean and covariance matrixR0 of the
same correlation structure as (74) andρ1 = ρ3 = 0.8 and
ρ2 = 0.6. Each column of noise matrixV in model (5)
corresponds to a MISO channel, and the vectorized noise is as-
sumed to be colored with a Toeplitz correlation andvec (V) ∼
CN

(

0(N+K)Nt
,W

)

, with Wi,j = 0.2|i−j|, i, j = 1, . . . , (N+
K)Nr. The optimal unimodular training sequences, sequences
of good auto- and cross-correlations properties, and sequences
of random phases are transmitted and then the corresponding
MMSE channel estimators can be obtained. The MSE for each
estimate is calculated by (71) withS = T (U). The CMI is
similarly defined by (72). The SNR is defined as

SNR= 10 log10
‖U‖2F /(NNt)

Tr (W) /((N +K)Nr)
(dB) . (75)

The setting for algorithm initialization and convergence are
the same as the unimodular case. And the MSE and CMI are
averaged over 100 times Monte Carlo simulations for different
values of SNR.

Fig. 3 shows the MSE of MMSE channel estimates with
different unimodular training sequences and SNR’s. The length
of sequence for each transmit antenna isN = 10. It is obvious
that the optimal unimodular sequences, both MMSE-optimal
by Algorithm 1 and MMSE-optimal accel. by Algorithm 2,
produce smaller MSE than that of random phases or good auto-
and cross-correlation properties (Good-Corr). Also notice that
there is a gap between two curves of MSE of MMSE-optimal
and MMSE-optimal accel. This is because Algorithm 1 needs
much more iterations to be converged for MIMO channel
training sequence design than that of the SISO case. The
convergence properties are shown in Section V-D.

In the CMI maximization for MIMO channels, the perfor-
mances of different unimodular sequences are shown in Fig.
4 with N = 10. For different SNR, the optimal unimodular
training sequences can achieve larger CMI than sequences of
either random phase or good correlation properties.

C. Low PAR Sequences for MIMO Channel Estimation

Consider the MIMO channel of the same conditions de-
scribed in Section V-B. We employ Algorithm 3 and its accel-
erated scheme to design low PAR sequences for the application
of MMSE channel estimation. In Fig. 5, MMSE-optimal and
MMSE-optimal accel. are obtained by Algorithm 3 and its
accelerated scheme, respectively. It is demonstrated thatboth
optimal training sequences achieve much smaller MSE than
low PAR sequences of random phases. Like the results for
Algorithm 1 and Algorithm 2 in the previous subsections,
MMSE-optimal renders an larger MSE than MMSE-optimal
accel. especially in the high SNR cases. An example of
convergence of both algorithms are shown in Section V-D.
In Fig. 6, we also compare resulting MSE of unimodular
sequences and sequences of different values of PAR.
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Fig. 5. MSE with different low PAR training sequences for MIMO channels.
PAR = {1, 2, 3} with power proportions among three antennas:1 : 2 : 3.
The results are averaged over 100 Monte Carlo simulations.
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Fig. 6. MSE for SISO channel estimation with PAR-constrained sequences
or unimodular sequences. The results are averaged over 100 Monte Carlo
simulations.

D. Convergence of Proposed Algorithms

Experimental results are given to show the convergence
properties of proposed algorithms for the MMSE minimization
problem and the CMI maximization problem with unimodular
constraints or low PAR constraints. The setting for algorithm
initialization and convergence criteria are the same as previous
subsections. First, we experiment with Algorithm 1 and Algo-
rithm 2 for both MMSE minimization and CMI maximization
in SISO channel unimodular training sequence design. Fig. 7
shows the objective values with respect to algorithm iterations.
In both problems, Algorithm 1 converge monotonically to a
stationary point though slowly. With acceleration techniques,
however, Algorithm 2 renders an very fast convergence. The
same convergence properties can be seen in Fig. 8, where
unimodular sequences for MIMO channel estimation are con-
sidered withNt = 3, Nr = 4. Within the same MIMO
channel setting, Algorithm 3 and its accelerated scheme are
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Fig. 7. Convergence of algorithms for optimal unimodular sequence design
for SISO channel estimation,SNR = −5 dB.
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Fig. 8. Convergence of algorithms for optimal unimodular sequence design
for MIMO channel estimation,Nt = 3, Nr = 4, andSNR = −5 dB.

applied to design low PAR sequences. The convergence of
both algorithms are shown in Fig. 9. Note that in those
three examples, the algorithms Algorithm 1 and Algorithm
3 converge slower than the accelerated scheme especially in
designing sequences for MIMO channels with large values of
SNR. This is due to successive majorizations or minorizations
applied in the derivation of algorithms and thus explains the
difference between two training sequences in terms of the
resulting MSE and CMI.

VI. CONCLUSION

In this paper, optimal training sequences with unimodular
constraint and low PAR constraints are considered. The op-
timal sequence design problem is formulated by minimizing
the MMSE criterion and maximizing the CMI criterion. The
formulated problems are nonconvex and efficient algorithms
are developed based on the majorization-minimization frame-
work. Furthermore, the acceleration scheme is derived using
the SQUAREM method. All the proposed algorithms are
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Fig. 9. Convergence of algorithms for optimal low PAR sequence design for
MIMO channel estimation,Nt = 3, Nr = 4, andSNR = −5 dB.

guaranteed to monotonically converge to a stationary point.
Numerical results show that the optimal unimodular sequences
can improve either the accuracy of channel estimate or the
CMI compared with those of sequences with good correlation
properties or random phases. Under the same criteria, the
optimal sequence design with low PAR constraint is also
studied, for which the similar algorithms to unimodular case
are derived. Numerical examples show that the optimal low
PAR sequences perform better than that of random phases.
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