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A Pessimistic Approximation for

the Fisher Information Measure
Manuel S. Stein and Josef A. Nossek

Abstract—The problem of determining the intrinsic quality
of a signal processing system with respect to the inference of
an unknown deterministic parameter θ is considered. While the
Fisher information measure F (θ) forms a classical tool for such
a problem, direct computation of the information measure can
become difficult in various situations. For the estimation theoretic
performance analysis of nonlinear measurement systems, the
form of the likelihood function can make the calculation of
the information measure F (θ) challenging. In situations where
no closed-form expression of the statistical system model is
available, the analytical derivation of F (θ) is not possible at
all. Based on the Cauchy-Schwarz inequality, we derive an
alternative information measure S(θ). It provides a lower bound
on the Fisher information F (θ) and has the property of being
evaluated with the mean, the variance, the skewness and the
kurtosis of the system model at hand. These entities usually
exhibit good mathematical tractability or can be determined
at low-complexity by real-world measurements in a calibrated
setup. With various examples, we show that S(θ) provides a
good conservative approximation for F (θ) and outline different
estimation theoretic problems where the presented information
bound turns out to be useful.

Index Terms—Cramér-Rao lower bound, estimation theory,
Fisher information lower bound, smooth limiter, minimum Fisher
information, nonlinear systems, squaring loss, worst-case noise.

I. INTRODUCTION

Suppose we are given a parametric system, characterized

by a probability density or mass function q(y; θ), and face

the problem of having to infer the deterministic but unknown

system parameter θ ∈ Θ from measurements at the system

output Y . The output Y takes random values y ∈ Y , where

Y denotes the support of the random variable Y . In such

a situation, estimation theory [1] [2] provides a variety of

useful tools. On the one hand, we have guidelines for the

design of estimation algorithms [3], and on the other hand,

corresponding performance bounds [4] [5] [6] [7] [8] [9].

While the latter have originally been derived to benchmark

estimation algorithms, identify potential for further improve-

ments, or to establish their efficiency, these error bounds

have also become popular as a figure of merit for the design

and optimization of the measurement system q(y; θ). Such a

problem frequently arises in the field of signal processing,

where not only the efficient extraction of information from

noisy data is in the interest of engineers, but also the design of

the physical measurement system q(y; θ) itself. Note that the

M. S. Stein is with the Digital Mathematics Group (DIMA), Mathe-
matics Department (DWIS), Vrije Universiteit Brussel, Belgium (e-mail:
manuel.stein@vub.ac.be). J. A. Nossek is with the Department of Telein-
formatics Engineering, Universidade Federal do Ceará, Brasil, and with the
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layout of the measurement sensors can significantly influence

technical properties such as computational complexity, power

consumption, production cost, reliability, processing delay and

system performance. Therefore, given the ability to modify the

data gathering system q(y; θ) to an alternative design p(z; θ)
with the altered output Z exhibiting realizations z ∈ Z , a rig-

orous method is required in order to draw a precise conclusion

about the achievable performance of the two systems when

operating with optimum estimation procedures θ̂(y) or θ̂(z).
Note that here y ∈ YN denotes a collection of N independent

realizations of the system outputs Y , such that

q(y; θ) =

N
∏

n=1

q(yn; θ), ∀y ∈ YN . (1)

A. Estimation Theory and the Fisher Information Measure

In order to motivate the use of an information measure, in

the following, the performance of the estimator θ̂(y) is ana-

lyzed. We restrict the discussion to the problem of performing

unbiased estimation
∫

YN

θ̂(y)q(y; θ)dy = θ. (2)

Further, we assume that the system q(y; θ) is differentiable in

θ ∈ Θ for every y ∈ YN , where the parameter set Θ is an

open subset on the real line. All considered system models

exhibit regularity, such that the statement

∂

∂θ

∫

YN

f(y)q(y; θ)dy =

∫

YN

f(y)
∂q(y; θ)

∂θ
dy (3)

holds for any function f(·) which does not present θ as an

argument. Applying (3) to (2) we can set
∫

YN

θ̂(y)
∂q(y; θ)

∂θ
dy = 1. (4)

With the requirement
∫

YN

q(y; θ)dy = 1, ∀θ ∈ Θ, (5)

it follows that

∂

∂θ

∫

YN

q(y; θ)dy = 0, ∀θ ∈ Θ, (6)

such that multiplying (6) by θ and expanding (4), we have
∫

YN

(θ̂(y)− θ)
∂q(y; θ)

∂θ
dy = 1. (7)

Using the fact that

∂ ln q(y; θ)

∂θ
=

1

q(y; θ)

∂q(y; θ)

∂θ
, (8)
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equation (7) is manipulated, resulting in
∫

YN

(θ̂(y)− θ)
∂ ln q(y; θ)

∂θ
q(y; θ)dy = 1. (9)

For two real-valued functions f(·), g(·) and a random variable

X ∈ R
N , the Cauchy-Schwarz inequality [10] states that

∫

YN

f2(x)p(x)dx

∫

YN

g2(x)p(x)dx

≥
(
∫

YN

f(x)g(x)p(x)dx

)2

, (10)

where p(·) is a probability distribution function. By setting

f(·) = θ̂(y)− θ, (11)

g(·) = ∂ ln q(y; θ)

∂θ
(12)

and p(·) = q(y; θ), this allows us to derive the inequality
∫

YN

(θ̂(y)− θ)2q(y; θ)dy

≥
(
∫

YN

(∂ ln q(y; θ)

∂θ

)2

q(y; θ)dy

)−1

(13)

from expression (9). As long as the observations are indepen-

dent (1) and each element Yn follows the identical statistical

model

q(yn; θ) = q(y; θ), ∀n ∈ {1, 2, . . . , N}, (14)

the right hand side of (13) simplifies to
∫

YN

(

∂ ln q(y; θ)

∂θ

)2

q(y; θ)dy

= N

∫

Y

(

∂ ln q(y; θ)

∂θ

)2

q(y; θ)dy. (15)

The left hand side of (13) is identified as the mean squared-

error mseY (θ) of the estimator θ̂(y), such that the Cramér-

Rao inequality [4] [5] for unbiased estimators

mseY (θ) = varY (θ)

≥ 1

NFY (θ)
(16)

is obtained. Note that an estimator θ̂(y), which asymptotically

in N attains equality with respect to (16), is called asymp-

totically efficient. Estimators designed along the principle of

maximum-likelihood are known to exhibit efficiency in the

asymptotic regime [3, App. 7B] under mild conditions. Con-

sequently, when N is sufficiently large, the Fisher information

FY (θ) =

∫

Y

(

∂ ln q(y; θ)

∂θ

)2

q(y; θ)dy (17)

is a measure on the amount of intrinsic information about

the unknown deterministic parameter θ contained in average

within each observation of the random output Y . Note that

the Fisher information measure also plays an important role

for performance bounds in the Bayesian setting [11] [12] [13]

[14] [15], where the parameter θ is considered to be a random

variable. A comprehensive overview on this topic, which is

out of the scope of this article, can be found in [16].

B. Relative Inference Capability

As the inequality (16) holds for all estimation procedures

satisfying (2), the relative estimation theoretic quality of the

modification p(z; θ) with respect to the reference system

q(y; θ) can be assessed by the information ratio

χ(θ) =
FZ(θ)

FY (θ)
. (18)

Note that FZ(θ) is the Fisher information (17) evaluated on

Z with respect to the parametric probability function p(z; θ).

C. Fisher Information Lower Bound

Using the information ratio (18) for the design and the

optimization of the measurement system p(z; θ) requires com-

puting (17) for the benchmark experiment q(y; θ) and all

modifications p(z; θ) which are of interest. If due to the

alteration the probability distribution p(z; θ) takes a compli-

cated form, this can become difficult. In a situation where

the parametric probabilistic model p(z; θ) which defines the

statistical behavior of the random output Z is unknown, a

direct analytical formulation of the information measure (17)

becomes impossible. However, if the mean

µ1(θ) =

∫

Z

zpz(z; θ)dz (19)

of the system output Z and the variance

µ2(θ) =

∫

Z

(

z − µ1(θ)
)2
pz(z; θ)dz (20)

are known and are differentiable in θ, it can be shown that the

Fisher information F (θ) is in general bounded from below

[17] [18]

F (θ) ≥ 1

µ2(θ)

(

∂µ1(θ)

∂θ

)2

. (21)

While in [18] the example of a hard-limited Gaussian model

was given where the information bound (21) holds with

equality, a simple counter example is immediately constructed.

To this end, consider the system output to follow the generic

parametric Gaussian distribution

p(z; θ) =
1

√

2πµ2(θ)
e
−

(z−µ1(θ))2

2µ2(θ) . (22)

The exact Fisher information is [3, pp. 47]

F (θ) =
1

µ2(θ)

(

∂µ1(θ)

∂θ

)2

+
1

2µ2
2(θ)

(

∂µ2(θ)

∂θ

)2

(23)

and is equal to the right-hand side of (21) only for the special

case where

∂µ2(θ)

∂θ
= 0. (24)

Obviously, the inequality (21) does not take into account the

contribution of the variance µ2(θ) to the Fisher information

measure F (θ).
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D. Contribution and Outline

Motivated by the insight obtained in the preceding section,

we aim to improve the lower bound (21). We achieve this

by utilizing the Cauchy-Schwarz inequality (10) with a more

general approach than in [18] and subsequently maximizing

the resulting expression. This leads to an alternative informa-

tion measure S(θ), which forms a pessimistic approximation

for F (θ) and exclusively contains the mean, the variance, the

skewness, and the kurtosis of the system output model in

parametric form. A discussion on situations where the deriva-

tive of the variance vanishes (24) shows that the inequality

(21) is contained in the presented result as a special case.

Using various examples with continuous and discrete system

outputs, we verify the quality of the alternative information

measure S(θ). In order to demonstrate possible applications

of the result and to provide further insights through S(θ), we

approximately determine the estimation theoretic information

loss when squaring a standard Gaussian input distribution and

advance the discussion concerning minimum Fisher informa-

tion [18] [19] [20] [21] [22] [23] [24]. Finally, we mimic a

situation of practical relevance. Measuring the output moments

of a smooth limiting device with standard Gaussian input, we

demonstrate how to conservatively establish the intrinsic infer-

ence capability F (θ) of a nonlinear signal processing system

through the information measure S(θ), when the analytic form

of the parametric output model p(z; θ) is not available.

II. IMPROVED FISHER INFORMATION BOUND

For the discussion, we additionally require the central output

moments

µ3(θ) =

∫

Z

(

z − µ1(θ)
)3
p(z; θ)dz, (25)

µ4(θ) =

∫

Z

(

z − µ1(θ)
)4
p(z; θ)dz (26)

and their normalized versions

µ̄3(θ) =

∫

Z

(

z − µ1(θ)
√

µ2(θ)

)3

pz(z; θ)dz

= µ3(θ)µ
− 3

2
2 (θ), (27)

µ̄4(θ) =

∫

Z

(

z − µ1(θ)
√

µ2(θ)

)4

pz(z; θ)dz

= µ4(θ)µ
−2
2 (θ). (28)

Note that µ̄3(θ) is refered to as the skewness, an indicator for

the asymmetry of the output distribution p(z; θ), while µ̄4(θ)
is called the kurtosis, a characterization for the shape of the

output distribution p(z; θ). Both moments stand in relation via

Pearson’s inequality [25]

µ̄4(θ) ≥ µ̄2
3(θ) + 1, (29)

for which a compact and elegant proof can be found in [26].

A. Derivation of the Information Bound

We apply the inequality (10) with

f(z; θ) =
∂ ln p(z; θ)

∂θ
(30)

and

g(z; θ) =

(

z − µ1(θ)
√

µ2(θ)

)

+ β(θ)

(

z − µ1(θ)
√

µ2(θ)

)2

− β(θ),

(31)

β(θ) ∈ R, in order to derive a lower bound on the Fisher

information

F (θ) =

∫

Z

f2(z; θ)p(z; θ)dz, (32)

which takes into account the contribution of the variance to

the Fisher information measure. With the manipulations
∫

Z

(

z − µ1(θ)
√

µ2(θ)

)

∂ ln pz(z; θ)

∂θ
pz(z; θ)dz =

=
1

√

µ2(θ)

(

∫

Z

z
∂pz(z; θ)

∂θ
dz − µ1(θ)

∫

Z

∂pz(z; θ)

∂θ
dz

)

=
1

√

µ2(θ)

(

∂

∂θ

∫

Z

zpz(z; θ)dz − µ1(θ)
∂

∂θ

∫

Z

pz(z; θ)dz

)

=
1

√

µ2(θ)

∂µ1(θ)

∂θ
(33)

and
∫

Z

(

z − µ1(θ)
√

µ2(θ)

)2
∂ ln pz(z; θ)

∂θ
pz(z; θ)dz =

=
1

µ2(θ)

(

∫

Z

z2
∂pz(z; θ)

∂θ
dz − 2µ1(θ)

∫

Z

z
∂pz(z; θ)

∂θ
dz

+ µ2
1(θ)

∫

Z

∂pz(z; θ)

∂θ
dz

)

=
1

µ2(θ)

(

∂

∂θ

∫

Z

z2pz(z; θ)dz − 2µ1(θ)
∂

∂θ

∫

Z

zpz(z; θ)dz

)

=
1

µ2(θ)

(

∂

∂θ

(

µ2(θ) + µ2
1(θ)

)

− 2µ1(θ)
∂µ1(θ)

∂θ

)

=
1

µ2(θ)

∂µ2(θ)

∂θ
, (34)

where we use the fact that
∫

Z

z2pz(z; θ)dz = µ2(θ) + µ2
1(θ), (35)

the identity
∫

Z

f(z; θ)g(z; θ)p(z; θ)dz =

=
1

√

µ2(θ)

∂µ1(θ)

∂θ
+

β(θ)

µ2(θ)

∂µ2(θ)

∂θ
, (36)

is obtained. Note that
∫

Z

β(θ)
∂ ln p(z; θ)

∂θ
p(z; θ)dz =

= β(θ)

∫

Z

∂ ln p(z; θ)

∂θ
p(z; θ)dz

= β(θ)
∂

∂θ

∫

Z

p(z; θ)dz

= 0. (37)
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Taking into account that
∫

Z

(

z − µ1(θ)
√

µ2(θ)

)

p(z; θ)dz = 0, (38)

∫

Z

(

z − µ1(θ)
√

µ2(θ)

)2

p(z; θ)dz = 1, (39)

we get
∫

Z

g2(z; θ)p(z; θ)dz =

= 1 + 2β(θ)µ̄3(θ) + β2(θ)µ̄4(θ)− β2(θ). (40)

Therefore, from (10), (32), (36) and (40) it can be shown that

the Fisher information can in general not fall below

F (θ) ≥

(

∫

Z
f(z; θ)g(z; θ)p(z; θ)dz

)2

∫

Z
g2(z; θ)p(z; θ)dz

=
1

µ2(θ)

(

∂µ1(θ)
∂θ

+ β(θ)√
µ2(θ)

∂µ2(θ)
∂θ

)2

1 + 2β(θ)µ̄3(θ) + β2(θ)(µ̄4(θ)− 1)
(41)

for any β(θ) ∈ R.

B. Optimization of the Information Bound

The factor β(θ) can be used to optimize the lower bound

(41). For the trivial choice β(θ) = 0, the expression (41)

degenerates to

F (θ) ≥ 1

µ2(θ)

(

∂µ1(θ)

∂θ

)2

, (42)

which turns out to be the bound in (21). In order to improve

this result, note that the problem

x⋆ = argmax
x∈R

h(x) (43)

with

h(x) =
(a+ xb)2

1 + 2xc+ x2d
, (44)

and bc− ad 6= 0 has a unique maximizing solution

x⋆ =
ac− b

bc− ad
. (45)

Consequently, the tightest form of (41) is given by

F (θ) ≥ S(θ), (46)

where

S(θ) =
1

µ2(θ)

(

∂µ1(θ)
∂θ

+ β⋆(θ)√
µ2(θ)

∂µ2(θ)
∂θ

)2

1 + 2β⋆(θ)µ̄3(θ) + β⋆2(θ)(µ̄4(θ) − 1)
(47)

with the optimization result

β⋆(θ) =

∂µ1(θ)
∂θ

µ̄3(θ) − 1√
µ2(θ)

∂µ2(θ)
∂θ

1√
µ2(θ)

∂µ2(θ)
∂θ

µ̄3(θ)− ∂µ1(θ)
∂θ

(µ̄4(θ)− 1)

=
∂µ1(θ)

∂θ

√

µ2(θ)µ̄3(θ) − ∂µ2(θ)
∂θ

∂µ2(θ)
∂θ

µ̄3(θ)− ∂µ1(θ)
∂θ

√

µ2(θ)(µ̄4(θ)− 1)
. (48)

Note that for the case where it holds that

∂µ1(θ)

∂θ

√

µ2(θ)µ̄3(θ) =
∂µ2(θ)

∂θ
, (49)

the optimization of (47) results in

β⋆(θ) = 0 (50)

and the approximation obtains the compact form (21). The

inequality (46) states that the derived information measure

S(θ) is always dominated by the Fisher information measure

F (θ). Therefore, S(θ) gives a cautious approximation for

F (θ). The Fisher information F (θ) requires integrating the

squared score function

f2(z; θ) =

(

∂ ln p(z; θ)

∂θ

)2

, (51)

while in contrast, the alternative information measure S(θ)
exclusively needs the mean µ1(θ), the variance µ2(θ), the

skewness µ̄3(θ), and the kurtosis µ̄4(θ) in parametric form.

These entities are usually analytically tractable, can be deter-

mined by simple measurements in a calibrated setup and are

well studied for various probability laws. Note that based on

raw moments and cumulants, an alternative to the bound (46)

is found in [27].

C. Positiveness of the Information Bound

To ensure that the approximation (47) is always positive, it

has to hold that

1 + 2β(θ)µ̄3(θ) + β2(θ)(µ̄4(θ)− 1) ≥ 0, ∀β(θ). (52)

In order to demonstrate that this is the case, consider the fact

that by construction

(

1 + β(θ)
√

µ̄4(θ) − 1
)2

= 1+ 2β(θ)
√

µ̄4(θ)− 1 + β2(θ)(µ̄4(θ)− 1)

≥ 0, ∀β(θ). (53)

With Pearson’s inequality (29), we have

√

µ̄4(θ)− 1 ≥ |µ̄3(θ)| , ∀θ, (54)

such that with (53) the inequality

1 + 2β(θ) |µ̄3(θ)| + β2(θ)(µ̄4(θ)− 1) ≥ 0, ∀β(θ) (55)

is obtained. As (55) holds irrespectively if β(θ) is positive or

negative, we equivalently have

1 + 2β(θ)µ̄3(θ) + β2(θ)(µ̄4(θ)− 1) ≥ 0, ∀β(θ) (56)

and the information bound S(θ) is always positive.

III. SPECIAL CASES OF THE INFORMATION BOUND

In order to derive simplified forms of the derived informa-

tion measure (47), let us consider some special cases in the

following.
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A. Constant Mean

For the situation where the mean µ1(θ) does not vary with

the system parameter θ, i.e.,

∂µ1(θ)

∂θ
= 0, ∀θ ∈ Θ, (57)

we obtain

β⋆(θ) = − 1

µ̄3(θ)
, (58)

such that a pessimistic approximation for F (θ) is

S(θ) =
1

µ2(θ)

(

− 1

µ̄3(θ)
√

µ2(θ)

∂µ2(θ)
∂θ

)2

1− 2 + (µ̄4(θ)−1)
µ̄2
3(θ)

=
1

µ2
2(θ)

(

∂µ2(θ)
∂θ

)2

µ̄4(θ)− µ̄2
3(θ)− 1

. (59)

B. Constant Variance

When the variance µ2(θ) is constant with respect to θ, i.e.,

∂µ2(θ)

∂θ
= 0, ∀θ ∈ Θ, (60)

it holds that

β⋆(θ) = − µ̄3(θ)

(µ̄4(θ)− 1)
. (61)

In this situation

S(θ) =
1

µ2(θ)

(

∂µ1(θ)
∂θ

)2

1− 2
µ̄2
3(θ)

(µ̄4(θ)−1) +
µ̄2
3(θ)

(µ̄4(θ)−1)

=
1

µ2(θ)

(

∂µ1(θ)
∂θ

)2

1− µ̄2
3(θ)

(µ̄4(θ)−1)

. (62)

Note that (62) equals the expression in (21) whenever the

skewness µ̄3(θ) vanishes. In general, the relation (29) between

skewness and kurtosis makes (62) larger than the unoptimized

bound (21).

C. Symmetric Probability Distributions

For symmetric output distributions with zero skewness, i.e.,

µ̄3(θ) = 0, (63)

we verify that the optimization of the information bound

derived in (47) results in

β⋆(θ) =
∂µ2(θ)

∂θ
∂µ1(θ)

∂θ

√

µ2(θ)(µ̄4(θ) − 1)
, (64)

such that

S(θ) =
1

µ2(θ)

(

∂µ1(θ)
∂θ

+

(

∂µ2(θ)
∂θ

)2

∂µ1(θ)

∂θ
µ2(θ)(µ̄4(θ)−1)

)2

1 +
( ∂µ2(θ)

∂θ
∂µ1(θ)

∂θ

√
µ2(θ)(µ̄4(θ)−1)

)2

(µ̄4(θ) − 1)

=

(

∂µ1(θ)
∂θ

)2

µ2(θ)(µ̄4(θ) − 1) +
(

∂µ2(θ)
∂θ

)2

µ2
2(θ)(µ̄4(θ) − 1)

=
1

µ2(θ)

(

∂µ1(θ)

∂θ

)2

+
1

µ2
2(θ)(µ̄4(θ)− 1)

(

∂µ2(θ)

∂θ

)2

.

(65)

IV. APPROXIMATION QUALITY - CONTINUOUS OUTPUTS

In order to demonstrate the tightness of the derived infor-

mation bound S(θ), we use different examples where F (θ)
can be derived in a compact form. First, we discuss several

well-studied distributions with continuous support Z .

A. Gaussian System Model

Consider the system output Z which follows a generic

Gaussian distribution of parametric form

p(z; θ) =
1

√

2πν2(θ)
e
−

(z−ν1(θ))2

2ν2(θ) . (66)

The exact Fisher information measure is given by [3, p. 47]

F (θ) =
1

ν2(θ)

(

∂ν1(θ)

∂θ

)2

+
1

2ν22(θ)

(

∂ν2(θ)

∂θ

)2

. (67)

As the mean, variance, skewness, and kurtosis of p(z; θ) are

µ1(θ) = ν1(θ), (68)

µ2(θ) = ν2(θ), (69)

µ̄3(θ) = 0, (70)

µ̄4(θ) = 3, (71)

with (65) we get the approximation

S(θ) =
1

µ2(θ)

(

∂µ1(θ)

∂θ

)2

+
1

µ2
2(θ)(µ̄4(θ)− 1)

(

∂µ2(θ)

∂θ

)2

=
1

ν2(θ)

(

∂ν1(θ)

∂θ

)2

+
1

2ν22(θ)

(

∂ν2(θ)

∂θ

)2

. (72)

Comparing (72) to the original information measure in (67) it

is obvious that here S(θ) forms a tight lower bound for F (θ).

B. Exponential System Model

As another example, we analyze the situation where samples

from a parametric exponential distribution

p(z; θ) = ν(θ)e−ν(θ)z , (73)

with ν(θ) > 0 and z ≥ 0 can be collected at the random

system output Z . The score function under this model is

∂ ln p(z; θ)

∂θ
=

1

ν(θ)

∂ν(θ)

∂θ
− z

∂ν(θ)

∂θ
, (74)
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such that the Fisher information is evaluated to be

F (θ) =

∫

Z

(

∂ ln p(z; θ)

∂θ

)2

p(z; θ)dz

=
1

ν2(θ)

(

∂ν(θ)

∂θ

)2

+

(

∂ν(θ)

∂θ

)2 ∫

Z

z2p(z; θ)dz

− 2

ν(θ)

(

∂ν(θ)

∂θ

)2 ∫

Z

zp(z; θ)dz

=
1

ν2(θ)

(

∂ν(θ)

∂θ

)2

(75)

by using

∫

Z

zp(z; θ)dz =
1

ν(θ)
, (76)

∫

Z

z2p(z; θ)dz =
2

ν2(θ)
. (77)

For the approximation S(θ) the required mean, the variance,

the skewness, and the kurtosis are

µ1(θ) =
1

ν(θ)
, (78)

µ2(θ) =
1

ν2(θ)
, (79)

µ̄3(θ) = 2, (80)

µ̄4(θ) = 3, (81)

such that

∂µ1(θ)

∂θ

√

µ2(θ)µ̄3(θ) = − 2

ν3(θ)

∂ν(θ)

∂θ

=
∂µ2(θ)

∂θ
, (82)

producing the optimization result β⋆(θ) = 0 as noted in (49).

The approximation is therefore given by the simplified form

S(θ) =
1

µ2(θ)

(

∂µ1(θ)

∂θ

)2

= ν2(θ)

(

− 1

ν2(θ)

∂ν(θ)

∂θ

)2

=
1

ν2(θ)

(

∂ν(θ)

∂θ

)2

, (83)

which matches the Fisher information F (θ) in (75) exactly.

C. Laplacian System Model

For a third example, we assume that the output Z follows

a parametric Laplace distribution with zero mean, i.e.,

p(z; θ) =
1

2ν(θ)
e−

|z|
ν(θ) , (84)

with ν(θ) > 0. The score function is given by

∂ ln p(z; θ)

∂θ
= − 1

ν(θ)

∂ν(θ)

∂θ
+

|z|
ν2(θ)

∂ν(θ)

∂θ
(85)

and the exact Fisher information is found to be

F (θ) =

∫

Z

(

∂ ln p(z; θ)

∂θ

)2

pz(z; θ)dz

=
1

ν2(θ)

(

∂ν(θ)

∂θ

)2

. (86)

The first four moments of the output Z are

µ1(θ) = 0, (87)

µ2(θ) = 2ν2(θ), (88)

µ̄3(θ) = 0, (89)

µ̄4(θ) = 6. (90)

As the first moment is constant with respect to the system

parameter θ, the approximation takes the form (59)

S(θ) =
1

µ2
2(θ)

(

∂µ2(θ)
∂θ

)2

(µ̄4(θ) − 1)

=
1

4ν4(θ)

(

4ν(θ)∂ν(θ)
∂θ

)2

5

=
4

5

1

ν2(θ)

(

∂ν(θ)

∂θ

)2

. (91)

In contrast to the other examples, the information bound S(θ)
is loose under the Laplacian system model.

V. APPROXIMATION QUALITY - DISCRETE OUTPUTS

In the following, we extend the discussion on the tightness

of S(θ) to the case where the system output Z takes values

from a discrete alphabet Z .

A. Bernoulli System Model

As a first example for such kind of system outputs, obser-

vations from a parametric Bernoulli distribution with

p(z = 1; θ) = 1− p(z = 0; θ)

= ν(θ) (92)

are considered, where 0 < ν(θ) < 1, ∀θ ∈ Θ. The Fisher

information measure under this model is

F (θ) =

∫

Z

(

∂ ln p(z; θ)

∂θ

)2

p(z; θ)dz

=
∑

Z

(

∂p(z; θ)

∂θ

)2
1

p(z; θ)

=

(

∂p(z=1;θ)
∂θ

)2

p(z = 1; θ)
+

(

∂p(z=0;θ)
∂θ

)2

p(z = 0; θ)

=
1

ν(θ)(1 − ν(θ))

(

∂ν(θ)

∂θ

)2

. (93)

The mean and the variance are

µ1(θ) = ν(θ), (94)

µ2(θ) = ν(θ)(1 − ν(θ)), (95)
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with their derivatives

∂µ1(θ)

∂θ
=

∂ν(θ)

∂θ
, (96)

∂µ2(θ)

∂θ
=
(

1− 2ν(θ)
)∂ν(θ)

∂θ
. (97)

The skewness is

µ̄3(θ) =
∑

Z

(

z − µ1(θ)
√

µ2(θ)

)3

p(z; θ)

=
1− 2ν(θ)

√

ν(θ)(1 − ν(θ))
(98)

and the kurtosis

µ̄4(θ) =
∑

Z

(

z − µ1(θ)
√

µ2(θ)

)4

p(z; θ)

=
1

ν(θ)(1 − ν(θ))
− 3. (99)

As

∂µ1(θ)

∂θ

√

µ2(θ)µ̄3(θ) =
(

1− 2ν(θ)
)∂ν(θ)

∂θ

=
∂µ2(θ)

∂θ
(100)

and consequently the optimization of the information bound

results in β⋆(θ) = 0, the approximation takes its simplified

form (21)

S(θ) =
1

µ2(θ)

(

∂µ1(θ)

∂θ

)2

=
1

ν(θ)(1 − ν(θ))

(

∂ν(θ)

∂θ

)2

. (101)

It becomes clear that for a binary system output Z following a

parametric Bernoulli distribution, the derived expression S(θ)
is a tight approximation for the original inference capability

F (θ) given in (93).

B. Poisson System Model

As a second example with discrete output, we consider

the Poisson distribution. The samples z at the output Z are

distributed according to the model

p(z; θ) =
νz(θ)

z!
e−ν(θ), (102)

with Z = {0, 1, 2, . . .} and ν(θ) > 0, ∀θ ∈ Θ. The derivative

of the log-likelihood is given by

∂ ln p(z; θ)

∂θ
=

z

ν(θ)

∂ν(θ)

∂θ
− ∂ν(θ)

∂θ
, (103)

such that we calculate

F (θ) =

∫

Z

(

∂ ln p(z; θ)

∂θ

)2

p(z; θ)dz

=

∫

Z

(

z

ν(θ)

∂ν(θ)

∂θ
− ∂ν(θ)

∂θ

)2

p(z; θ)dz

=
1

ν2(θ)

(

∂ν(θ)

∂θ

)2 ∫

Z

z2p(z; θ)dz

− 2

ν(θ)

(

∂ν(θ)

∂θ

)2 ∫

Z

zp(z; θ)dz +

(

∂ν(θ)

∂θ

)2

=
1

ν(θ)

(

∂ν(θ)

∂θ

)2

, (104)

where we have used

∫

Z

zp(z; θ)dz =

∞
∑

z=0

z
νz(θ)

z!
e−ν(θ)

= ν(θ), (105)
∫

Z

z2p(z; θ)dz =

∞
∑

z=0

z2
νz(θ)

z!
e−ν(θ)

= ν(θ) + ν2(θ). (106)

In order to apply the approximation S(θ), we require the mean

and the variance

µ1(θ) = µ2(θ) = ν(θ), (107)

the skewness and the kurtosis

µ̄3(θ) =
1

√

ν(θ)
, (108)

µ̄4(θ) =
1

ν(θ)
+ 3. (109)

As these quantities exhibit the property

∂µ1(θ)

∂θ

√

µ2(θ)µ̄3(θ) =
∂ν(θ)

∂θ

=
∂µ2(θ)

∂θ
, (110)

we obtain β⋆(θ) = 0 and the approximation for this example

S(θ) =
1

µ2(θ)

(∂µ1(θ)

∂θ

)2

=
1

ν(θ)

(∂ν(θ)

∂θ

)2

(111)

is tight when comparing it to (104).

VI. APPLICATIONS OF THE INFORMATION BOUND

Finally, we want to outline possible applications of the

presented result and the opportunities provided by an informa-

tion bound like (46). To this end, we present three problems

for which S(θ) provides interesting and useful insights. The

problems discussed cover theoretic as well as practical aspects

in statistical signal processing.
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A. Worst-Case Noise and Minimum Fisher Information

An important question in signal processing is to specify

the worst-case noise distribution under the considered system

model [28]. A common assumption in the field is that noise

affects technical receive systems in an additive way. Therefore

a model of high practical relevance is

Z = x(θ) +W, (112)

where x(θ) is a deterministic pilot signal modulated by the

unknown parameter θ (for example attenuation, time-delay,

frequency-offset, etc.) and W is additive independent random

noise with zero mean

E [W ] = 0. (113)

If in addition the noise has the property

E
[

W 2
]

= ν, (114)

i.e., the second central moment of Z is constant, it is well-

understood that assuming the noise component W to follow

the Gaussian probability density function

p(w) =
1√
2πν

e−
w2

2ν , (115)

leads to minimum Fisher information F (θ) [19] [20]. There-

fore, under an estimation theoretic perspective, Gaussian noise

is the worst-case assumption for an additive system like

(112) with constant second output moment [24]. The pre-

sented bounding approach (46) allows us to generalize these

statements. If for any system p(z; θ) (including non-additive

systems) the output Z exhibits the characteristic

µ1(θ) = E [Z]

= x(θ), (116)

µ2(θ) = E
[

(

Z − µ1(θ)
)2
]

= ν, (117)

the presented result (62) shows that F (θ) cannot violate

F (θ) ≥ 1

µ2(θ)

(

∂µ1(θ)
∂θ

)2

1− µ̄2
3(θ)

(µ̄4(θ)−1)

. (118)

This lower bound is minimized by a symmetric distribution,

i.e., µ̄3(θ) = 0. The resulting expression

F (θ) ≥ 1

µ2(θ)

(

∂µ1(θ)

∂θ

)2

, (119)

reaches equality under an additive Gaussian system model

p(z; θ) =
1√
2πν

e−
(z−x(θ))2

2ν , (120)

such that the worst-case model assumption with respect to

Fisher information under the considered restrictions (116) and

(117) is, in general, additive and Gaussian. In the more general

setting, where also the output variance exhibits a dependency

on the system parameter θ,

µ1(θ) = E [Z]

= x(θ), (121)

µ2(θ) = E
[

(Z − µ1(θ))
2
]

= ν(θ) (122)

and additionally the output distribution is symmetric, i.e.,

µ̄3(θ) = 0, (123)

the presented result allows us to conclude that the Fisher

information is in general bounded from below by

F (θ) ≥ 1

ν(θ)

(

∂x(θ)

∂θ

)2

+
1

ν2(θ)(µ̄4(θ) − 1)

(

∂ν(θ)

∂θ

)2

.

(124)

As the system model

p(z; θ) =
1

√

2πν(θ)
e−

(z−x(θ))2

2ν(θ) (125)

exhibits the inference capability

F (θ) =
1

ν(θ)

(

∂x(θ)

∂θ

)2

+
1

2ν2(θ)

(

∂ν(θ)

∂θ

)2

, (126)

by comparing (124) and (126) it can be concluded that for all

cases where

µ̄4(θ) ≤ 3, (127)

a conservative system model p(z; θ) under an estimation

theoretic perspective is the Gaussian model (125).

B. Information Loss of the Squaring Device

Another interesting problem in statistical signal processing

is to characterize the estimation theoretic quality of nonlinear

receive and measurement systems. The Fisher information

measure F (θ) is a rigorous tool which allows us to draw

precise conclusions. However, depending on the nature of the

nonlinearity, the exact calculation of the information measure

F (θ) can become complicated. As an example for such

a scenario, consider the problem of analyzing the intrinsic

capability of a system with a squaring output (power sensor)

Z = Y 2, (128)

to infer the mean θ of a Gaussian input

p(y; θ) =
1√
2π

e−
(y−θ)2

2 (129)

with unit variance. In such a case, the system output Z follows

a non-central chi-squared distribution with a single degree of

freedom parameterized by θ. As the analytical description of

the associated probability density function p(z; θ) includes a

Bessel function, the characterization of the Fisher information

F (θ) in compact analytical form is not trivial. We short-cut
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the derivation by using the approximation (47). The first two

moments of the output (128) are found to be given by

E [Z] = E
[

θ2 + 2θW +W 2
]

= θ2 + 1

= µ1(θ), (130)

E
[

(Z − µ1(θ))
2
]

= E
[

(θ2 + 2θW +W 2 − θ2 − 1)2
]

= 2(2θ2 + 1)

= µ2(θ), (131)

where we have introduced the auxiliary random variable

W = Y − θ. (132)

The third output moment is

E
[

(Z − µ1(θ))
3
]

= E
[

(θ2 + 2θW +W 2 − θ2 − 1)3
]

= 8(3θ2 + 1)

= µ3(θ), (133)

while the fourth moment is

E
[

(Z − µ1(θ))
4
]

= E
[

(θ2 + 2θW +W 2 − θ2 − 1)4
]

= 12
(

(2θ2 + 1)2 + 4(4θ2 + 1)
)

= µ4(θ). (134)

Therefore, the skewness and the kurtosis are

µ̄3(θ) = µ3(θ)µ
− 3

2
2 (θ)

=
8(3θ2 + 1)

2
√
2(2θ2 + 1)

3
2

=
2
√
2(3θ2 + 1)

(2θ2 + 1)
3
2

, (135)

µ̄4(θ) = µ4(θ)µ
−2
2 (θ)

=
12
(

(2θ2 + 1)2 + 4(4θ2 + 1)
)

4(2θ2 + 1)2

=
12(4θ2 + 1)

(2θ2 + 1)2
+ 3. (136)

With the derivatives

∂µ1(θ)

∂θ
= 2θ, (137)

∂µ2(θ)

∂θ
= 8θ, (138)

we obtain

β⋆(θ) =
∂µ1(θ)

∂θ

√

µ2(θ)µ̄3(θ)− ∂µ2(θ)
∂θ

∂µ2(θ)
∂θ

µ̄3(θ)− ∂µ1(θ)
∂θ

√

µ2(θ)(µ̄4(θ)− 1)

= −θ2
√
2
√

(2θ2 + 1)

(4θ4 + 16θ2 + 3)
(139)

and the approximation is finally given by

S(θ) =
1

µ2(θ)

(

∂µ1(θ)
∂θ

+ β⋆(θ)√
µ2(θ)

∂µ2(θ)
∂θ

)2

1 + 2β⋆(θ)µ̄3(θ) + β⋆2(θ)(µ̄4(θ) − 1)

=
2θ2
(

4θ4 + 12θ2 + 3
)2

(

4θ4 + 12θ2 + 3
)(

8θ6 + 24θ4 + 18θ2 + 3
)

=
2θ2
(

4θ4 + 12θ2 + 3
)

(

8θ6 + 24θ4 + 18θ2 + 3
) . (140)

Fig. 1 depicts the conservative approximation

χ̃(θ) =
SZ(θ)

FY (θ)
(141)

of the information loss (18) when squaring the random input

variable Y . Note that Fig. 1 indicates that for small values

of θ the squaring operation results in a strong degradation of

the estimation capability. As a comparison, the corresponding

0 0.5 1 1.5 2
−15

−10

−5

0

θ

χ̃
(θ
)

in
d

B

Squaring

Hard-limiting

Fig. 1. Performance Loss of Two Nonlinear Systems.

loss for a symmetric hard-limiter [29]

Z = sign (Y ) (142)

is visualized in Fig. 1. Note that for hard-limiting the Gaussian

model (129), it was shown in [18] that (21) forms a tight

lower bound for the Fisher information measure. It can be

observed that for small values of θ, the information about the

algebraic sign (hard-limiting) of the system input Y conveys

more information about the input mean θ than the amplitude

(squaring). For θ ≥ 0.75, the situation changes as the statistics

of the hard-limiter output vary slower with the parameter

θ and therefore the squaring receiver outperforms the hard-

limiter when it comes to estimating the mean θ of the system

input Y from samples at the system output Z . Note that

for the squaring device (128), Fig. 1 depicts a conservative

approximation (141) of the exact squaring loss (18).

C. Measuring the Inference Capability with a Smooth Limiter

A situation that is often encountered in practice is that

the analytical characterization of the system model p(z; θ) is
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difficult. If the appropriate system model p(z; θ) is unknown

[30], the direct consultation of an analytical tool like the Fisher

information measure F (θ) becomes impossible. However, in

such a situation, an information bound like S(θ) allows us

to numerically approximate the information measure F (θ) at

low-complexity. To this end, the moments of the system output

Z are measured in a calibrated setup, where the parameter θ

can be controlled, or determined by Monte-Carlo simulations.

We demonstrate this validation technique by using a smooth

limiter model, i.e., the system input Y is transformed by

Z =

√

2

πζ2

∫ Y

0

e
− u2

2ζ2 du

= erf

(

Y
√

2ζ2

)

, (143)

where ζ ∈ R is a constant model parameter and

erf (x) =
2√
π

∫ x

0

e−t2dt (144)

is the error function. This nonlinear model [31] can be used

in order to characterize saturation effects in analog system

components like amplifiers [32] [33]. In Fig. 2, the input-to-

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y

z

ζ = 0.10
ζ = 0.25
ζ = 0.50

ζ = 0.75
ζ = 1.00

Fig. 2. Input-to-Output Relation of the Smooth Limiter.

output mapping of the model (143) is depicted for different

setups ζ. As input, we consider a Gaussian distribution with

unit variance like in (129). The output mean µ1(θ), variance

µ2(θ), skewness µ̄3(θ), and kurtosis µ̄4(θ) are measured by

109 independent Monte-Carlo simulations of the nonlinear

system output Z for each considered value of the input mean θ.

The result is shown in Fig. 3. After numerically approximating

the required derivatives
∂µ1(θ)

∂θ
,
∂µ2(θ)

∂θ
, which are depicted in

Fig. 4, the approximation S(θ) is calculated. In Fig. 5, the

measured information loss χ̃(θ) of the smooth limiter model

is shown, where the dotted line indicates the exact information

loss χ(θ) with a hard-limiter (142) (as depicted in Fig. 1),

which is equivalent to a smooth limiter with ζ → 0.

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

θ

µ1(θ)

µ2(θ)

µ̄3(θ)

µ̄4(θ)

Fig. 3. Measured Moments (ζ = 0.5) of the Smooth Limiter.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

θ

∂µ1(θ)
∂θ

∂µ2(θ)
∂θ

Fig. 4. Measured Derivatives (ζ = 0.5) of the Smooth Limiter.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

θ

χ̃
(θ
)

in
d

B

ζ = 1.00
ζ = 0.75

ζ = 0.50
ζ = 0.25
ζ = 0.10

ζ→0.00

Fig. 5. Measured Information Loss of the Smooth Limiter.
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VII. CONCLUSION

We have established a generic and compact lower bound for

the Fisher information measure. By various examples we have

shown that the derived expression has the potential to provide

a good approximation in a broad number of cases. This makes

the presented information bound a versatile mathematical tool

for a variety of problems encountered in the design and opti-

mization of signal processing systems. Further, the pessimistic

nature of the attained alternative information measure allows

us to strengthen insights on worst-case noise and to generalize

classical results on Gaussian system models which exhibit

minimum Fisher information. Finally, we have outlined how to

use the presented information bound in order to benchmark the

estimation capability of physical measurement systems with

output statistics of unknown analytical form.
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