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Abstract—Future mobile networks are facing with exponential
data growth due to the proliferation of diverse mobile equipment
and data-hungry applications. Among promising technology can-
didates to overcome this problem, cloud radio access network
(C-RAN) has received much attention. In this paper, we investi-
gate the design of fronthaul in C-RAN uplink by focusing on the
compression and optimization in fronthaul uplinks based on the
statistics of wireless fading channels. First, we derive the system
block error rate (BLER) under Rayleigh fading channels. In par-
ticular, upper and lower bounds of the BLER union bound are
obtained in closed-form. From these bounds, we gain insight in
terms of diversity order and limits of the BLER. Next, we propose
adaptive compression schemes to minimize the fronthaul transmis-
sion rate subject to a BLER constraint. Furthermore, a fronthaul
rate allocation is proposed to minimize the system BLER. It is
shown that the uniform rate allocation approaches the optimal
scheme as the total fronthauls’ bandwidth increases. Finally, nu-
merical results are presented to demonstrate the effectiveness of
our proposed optimizations.

Index Terms—Cloud radio access networks, adaptive compres-
sion, optimization, Rayleigh fading.

I. INTRODUCTION

AMONG promising technology candidates for future mo-
bile networks, cloud radio access network (C-RAN) has

received much attention [1]. In C-RAN, one centralized pro-
cessor or baseband unit (BBU) communicates with users via
distributed remote radio heads (RRHs). The RRHs are con-
nected to the BBU via high capacity, low latency fronthaul
links and have minimal functioning since most baseband pro-
cessing tasks are centralized at the BBU. In this way, C-RAN
enables adaptive load balancing via virtual base station pool [2]
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and effective inter-cell interference management via multi-cell
processing [3]–[6]. However, since the baseband processing is
executed at the BBU, it requires enormous transmission rate on
the fronthaul links to transfer in-phase/quadrature-phase (I/Q)
samples, which represent the radio signals obtained through
the sampling of complex baseband signals. Reducing this rate
is extremely important in the implementation of C-RAN since
the fronthaul links’ capacity is generally limited by cost and
deployment constraints.

As a result, there are recent interests in tackling the com-
pression issues in C-RAN [7]–[13]. The compression process
is implemented via a test channel and the quantization noise
is modelled as an independent Gaussian random variable with
variance linked to the test channel capacity. It is shown, in gen-
eral, that the joint design of precoding and quantization noise
matrices can significantly improve the system sum rate over
separate design [8]. Such improvement is achieved due to the
correlation among the RRHs when distributed source coding is
applied [3]. The quality of the received signal at one RRH can be
enhanced by exploiting other RRHs’ received signal as the side
information. In [9], a hybrid compression and message-sharing
strategy is proposed for downlinks. It is shown that the hybrid
solution achieves a better rate region than the pure method of
compression or data-sharing. In [11], an optimum compression
scheme is derived for sensor networks. From the practical sys-
tem point of view, various compression techniques have been
studied in both time- and frequency- domains (sub-carrier com-
pression) [1], which exploit the structure of common public
radio interface (CPRI) package to minimize redundancy within
control signal [14]. Lossless compression is proposed to achieve
a good compression ratio by adding two nodes at the fronthaul
ends to optimize the redundancy in both time and frequency do-
mains [15], [16]. Statistical multiplexing gain is achieved since:
i) only information data of active users are transmitted via the
fronthaul links, ii) minimum information needed for the control
signal reconstruction is locally generated, and iii) a reduced set
of the precoding matrix is transferred. A similar time-domain
compression technique is proposed in [17]–[20]. However, a
limitation of all the above works is the assumption that the in-
stantaneous channel state information (CSI) is required for the
design and optimization. This will impose a significant overhead
and delay for large-scale C-RAN deployment.

In this paper, we study compression and the corresponding
performance of C-RAN uplinks in Rayleigh fading channels.
Our first goal is to derive the performance metrics for C-RAN
systems based only on the statistics of the channels. In partic-
ular, block error rate (BLER) under Rayleigh fading channels
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is analysed via union bound analysis, through which some in-
sights of C-RAN are drawn: i) full diversity order of N (number
of RRHs) is achieved with respect to signal-to-compression-
plus-noise ratio; and ii) the BLER is limited by either com-
pression or Gaussian noise. This result is different from our
previous work [21], [22] which derives the system BLER for
a specific channel realization. Given our derived BLER ex-
pressions, we aim at minimizing the transmission rate on the
fronthaul links given an acceptable signal distortion so that the
BBU can support a maximum number of RRHs. Our objec-
tive comes from practical demands where most applications
can tolerate a non-zero BLER. Specifically, we propose two
adaptive compression schemes to maximize compression effi-
ciency while satisfying a predefined BLER. This design crite-
rion is different from that in [3], which aims to fully utilize
the fronthaul link capacity. More importantly, our proposed
framework only requires the statistics of the channels, which
significantly reduces the overhead in terms of the compression
optimization compared to previous works that required instan-
taneous CSI [3], [21]. Such overhead reduction becomes more
important in C-RAN systems which are designed to support a
large number of users. Furthermore, a fronthaul rate allocation
is proposed to minimize the system BLER. Numerical results
are presented to demonstrate the effectiveness of our proposed
schemes.

Notations: [x1 , . . . , xn ] denotes a row vector with elements
x1 , . . . , xn . (.)T , (.)H , erfc(.), and E{.} denote the transpose
operation, conjugate transpose, complementary error function,
and expectation operator, respectively. diag(x) denotes a square
matrix whose diagonal is vector x and all-zero elsewhere. R(x)
and I(x) represent the real and imaginary parts of x, respec-
tively. �x� denotes the smallest integer that is larger than or
equal to x, and �x� denotes the closest integer to x.

The rest of the paper is organized as follows. Section II de-
scribes the system model and the receiver’s structure. Section III
investigates the instantaneous pair-wise error probability (PEP).
Section IV analyses the BLER performance under Rayleigh
fading channels. In Section V, we propose two optimization
schemes to minimize the fronthaul’s transmission rate based on
either a PEP lower- or upper-bound. The minimization of the
BLER is presented in Section VI. Section VII presents numeri-
cal results. Finally, Section VIII concludes our paper with some
remarks.

II. SYSTEM MODEL

The C-RAN under consideration consists of M users m ∈
{1, 2, . . . ,M}, N RRHs n ∈ {1, 2, . . . , N}, and one BBU, as
shown in Figure 1. The users communicate with the RRHs
via wireless medium, while the RRHs connect to the BBU via
optical fibre or wireless fronthaul links. A distinguished feature
of the RRH is that its function is much simpler than that of a
traditional base station since all baseband processing functions
are executed at the BBU. Therefore, a RRH can be seen as a
“soft” relaying node that forwards I/Q signals to the BBU. Each
user and RRH is assumed to equip with a single antenna. In
practical systems, a multiple-antenna RRH can be seen as a

Fig. 1. Block diagram of uplinks in C-RAN. The proposed compression
scheme optimizes sampling rate needed and then feedbacks them to the RRHs.

band of single-antenna RRHs which are subject to a sum rate
constraint. Due to limited capacity on the fronthaul links, I/Q
signals need to be compressed before being sent to the BBU [3].
The BBU decompresses the signals received from the RRHs and
then performs further processing.

We assume that all nodes are time-synchronous and all wire-
less channels are subject to block Rayleigh fading. Denote cm

as a modulated symbol emitted by user m. The modulated
symbol cm , 1 ≤ m ≤ M , belongs to the source codebook S =
{s1 , ..., s|S|}, which has average unit power, e.g., Es∈S|s|2 = 1,
where |S| denotes the cardinality of set S. The symbols
transmitted by the sources are aggregated into a codeword
c = [c1 , . . . , cM ]T . The received signal at RRH n is given by

yn =
M∑

m=1

hnm

√
Pnm cm + zn = hnΛnc + zn , (1)

where Λn = diag([
√

Pn1 , . . . ,
√

PnM ]), Pnm is the average re-
ceived energy at RRH n from user m, including the path loss,
hnm is the channel fading coefficient between user m and RRH
n, which is a complex Gaussian random variable with zero mean
and unit variance, hn = [hn1 , . . . , hnM ] is the channel vector
from all users to RRH n, and zn is independent identically dis-
tributed (i.i.d.) Gaussian noise with zero mean and variance σ2 .

A. Uniform Compression Scheme

Upon receiving analogue signals from the users, each RRH
quantizes and compresses them into digital bits and then forward
these bits to the BBU. In this work, we consider uniform quanti-
zation because of its low-complexity and practical implementa-
tion [24]. This compression method can be realized by flexibly
tuning the analogue-to-digital converter (ADC) resolution.
Therefore, a target compression ratio can be achieved by chang-
ing the ADC’s accuracy. In case of fixed ADC’s resolution due
to some hardware constraints, this compression method can be
performed by truncating some least significant bits in the ADC’s
output. The compression is executed on the real and imaginary
parts separately [1]. The received signal at RRH n is first nor-
malized as ȳn = yn/ηn = R(ȳn ) + iI(ȳn ), where ηn is a scal-
ing factor that restricts R(ȳn ) and I(ȳn ) within [−1, 1] with
high probability. The value of ηn can be calculated for a given
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codebook S and network topology. In this work, we employ
the three-sigma method such that ηn = 3

√
(‖Λn‖2 +σ2)/2,

which is independent from the instantaneous fading channels
and assumed to be known at the RRH n because its overhead is
negligible compared to the data.

In the next step, the normalized signal ȳn is quantized into
ỹn by a Qn -bit uniform quantizer. The compressed signal can
be calculated from the normalized signal as

R(ỹn ) = ηn
�R(ȳn ) × 2Qn �

2Qn
, I(ỹn ) = ηn

�I(ȳn ) × 2Qn �
2Qn

.

The quantization error at RRH n is given as qn = yn − ỹn .
When the absolute value of yn is large compared to quantization
step, R(qn ) and I(qn ) can be well modelled as uniform random
variables with the support [−δn , δn ], where δn = ηn2−Qn −11.
After compression, ỹn is converted into a bit sequence which is
later sent to the BBU via error-free fronthaul links.

B. Decoding at the BBU

The BBU employs a joint decompressing and detecting (JDD)
algorithm [21]. The JDD exploits the structure of the quantizer
and the codebook to perform decompression and detection for
the source codeword simultaneously. The BBU is assumed to
know the CSI of all wireless links. In practical systems, the CSI
can be obtained via pilot-assisted training. Given the compressed
signals, the BBU optimally estimates the source codeword by
using the maximum a posteriori (MAP) receiver as follows:

ĉ = arg max
c

Pr{c}
N∏

n=1

Pr{ỹn |c}, (2)

where (2) results from the fact that Pr{ỹ1 , . . . , ỹN } is constant
for any codeword, and the noise zn ’s and compressed signals
are independent given the source codeword.

In (2), Pr{ỹn |c} is the probability that the quantizer outputs
ỹn from the observation yn . It is worth mentioning that for a real
signal, the linear quantizer outputs y if the distance between the
input and y is less than or equal to the quantization error. For
complex signal yn , the quantizer outputs ỹn if both |R(yn ) −
R(ỹn )| and |I(yn ) − I(ỹn )| are less than the quantization error.
Because the quantization is performed independently for the real
and the imaginary parts, we have

Pr{ỹn |c} = Pr{R(yn ) ∈ Ω1 ∩ I(yn ) ∈ Ω2}
= Pr{R(yn ) ∈ Ω1} × Pr{I(yn ) ∈ Ω2},

where Ω1 = [R(ỹn ) − δn ,R(ỹn ) + δn ] and Ω2 = [I(ỹn ) −
δn , I(ỹn ) + δn ].

To derive the above probability, we remind that for the
given codeword and the fading channels, R(yn ) and I(yn )
are Gaussian distributed with the same variance σ2/2 and
means R(hnΛnc) and I(hnΛnc), respectively. Therefore,
the conditional probability density function (PDF) of R(yn )
and I(yn ) are, respectively, given by f1(x|c) = 1√

πσ
exp

1We observe via intensive simulations that with the three-sigma rule, such
assumption is still feasible even with a small number of quantization bits.

(−|x−R(hn Λn c)|2
σ 2 ), and f2(x|c) = 1√

πσ
exp(−|x−I(hn Λn c)|2

σ 2 ).
By substituting these PDFs into Pr{ỹn |c} we obtain

Pr{ỹn |c}=
∫

Ω1

f1(u|c)du

∫

Ω2

f2(v|c)dv=
1
4

(
erfc

(ϕ1−δn

σ

)

− erfc
(ϕ1 +δn

σ

))(
erfc

(ϕ2− δn

σ

)
−erfc

(ϕ2 +δn

σ

))
, (3)

where ϕ1 = R(ỹn )−R(hnΛnc), ϕ2 = I(ỹn ) − I(hnΛnc).
The derivation of Pr{ỹn |c} in (3) is exact. However, under
high SNR regime and due to the fading effects, the argu-
ment of function erfc(.) in (3) can be very large, resulting in
over buffer and erroneous decoding. In order to avoid such
problem, an approximation using first-order Taylor’s series
can be used instead: f(x) 
 f(x0) + f ′(x0)(x − x0), where
x0 is any feasible point. Applying to the function erfc(.) in
(3) with x0 = (R(ỹn ) −R(hnΛnc))/σ for the real part and
x0 = (I(ỹn ) − I(hnΛnc))/σ for the imaginary part, the prob-
ability Pr{ỹn |c} can be written in a simplified form as follows:

Pr{ỹn |c} 
 δn√
πσ

exp
(
−|ỹn − hnΛnc|2

σ2

)
. (4)

Substituting (4) into (2), we obtain a decoding rule for code-
word ĉ.

III. PAIR-WISE ERROR PROBABILITY ANALYSIS

This section analyses the PEP performance of the receiver de-
rived in the previous section using (4). The PEP will be used for
further analysis in the following sections. Let PEPc→c̃ denote
the probability of receiving codeword c̃ when c was transmitted,
and c̃ being the only candidate. Let ĉ be the detected codeword,
we have

PEPc→c̃ = Pr{ĉ = c̃|c}. (5)

To evaluate the PEP, we model the quantization effect by an
uniformly distributed random variable that is independent of the
input. This assumption can be well justified when the absolute
value of the input is much larger than the quantization step.
Under such assumption, the compressed signal from the RRH
n is modelled as

ỹn = hnΛnc + zn + qn , (6)

where qn = qR
n + iqI

n is the quantization noise at the RRH n
(qR

n � R(qn ), qI
n � I(qn )). Since both qR

n and qI
n are uniformly

distributed in [−δn , δn ] (see Section II for more details), it is
straightforward to verify that qn has zero mean and variance
σ2

qn
= 2δ 2

n

3 .

Denote M(c) =
∏N

n=1 Pr{ỹn |c} as the detection metric for
codeword c, where Pr{ỹn |c} is computed in (4). A pair-wise
error occurs if the metric of the transmitted codeword is smaller
than that of another candidate:

PEPc→c̃ = Pr{M(c) < M(c̃)}. (7)

Substituting (4) into M(c) we obtain M(c)=K exp(−D(c)),
where K =

∏N
n=1 δ2

n/(πσ2)N is a constant and D(c) =∑N
n=1 |ỹn − hnΛnc|2 .
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After some algebraic manipulations and by using (6), the PEP
is expressed as follows:

PEPc→c̃ = Pr{Z1
c→c̃ ,+Z2

c→c̃ − ψ > 0}, (8)

where Z1
c→c̃ �

∑N
n=1[z

H
n hnΛn (c̃ − c) + (c̃ − c)H ΛnhH

n zn ],
Z2

c→c̃ �
∑N

n=1[q
H
n hnΛn (c̃ − c) + (c̃ − c)H ΛnhH

n qn ], and
ψ �

∑N
n=1 |hnΛn (c̃ − c)|2 .

Because each zn is a complex Gaussian random variable with
zero mean and variance σ2 , and zn ’s are mutually independent,
Z1

c→c̃ is also a Gaussian random variable with zero mean and
variance

σ2
Z 1

c→c̃
= 2σ2

N∑

n=1

|hnΛn (c̃ − c)|2 .

On the other hand, the exact computation of the joint PDF of
Z2

c→c̃ is challenging as qn is uniformly distributed. For ease
of analysis and supported by the central limit theorem, we
model Z2

c→c̃ by a Gaussian variable Z̄2 having similar mean
and variance as those of Z2

c→c̃ , i.e., Z̄2 ∼ N (μZ 2
c→c̃

, σ2
Z 2

c→c̃
),

where μZ̄2
= E{Z2

c→c̃} = 0 and

σ2
Z̄2

= E
{
|Z2

c→c̃ |2
}

=
4
3

N∑

n=1

δ2
n |hnΛn (c̃ − c)|2 .

Then the sum Z = Z1
c→c̃ + Z2

c→c̃ is also a Gaussian ran-
dom variable with zero mean and variance σ2

Z = σ2
Z 1

c→c̃
+ σ2

Z̄2
.

Therefore we can compute the PEP as follows:

PEPc→c̃ = Pr{Z > ψ} =
1
2
× erfc

⎛

⎝
∑N

n=1 |hnΛn (c̃ − c)|2√
4σ2

∑N
n=1 |hnΛn (c̃−c)|2 + 8

3

∑N
n=1δ

2
n |hnΛn (c̃−c)|2

⎞

⎠.

(9)

It is observed from (9) that the PEP depends on the relative dis-
tance between c and c̃ distorted by the fading channels, thermal
noise power σ2 , and compression noise power δ2

n .

IV. PERFORMANCE ANALYSIS OVER RAYLEIGH

FADING CHANNELS

This section analyses the BLER of C-RAN uplinks in
Rayleigh fading channels. The BLER is defined as the prob-
ability of receiving codeword ĉ when a codeword c �= ĉ was
transmitted. Note that a block error event occurs when at least
one out of M symbols {cm}M

m=1 is decoded with error. Since
the exact BLER is difficult to investigate (even for single-user,
point-to-point pulse-amplitude modulation), we instead resort
to the union bound on the BLER as follows:

BLER ≤ 1
|S|M

∑∑

c,c̃∈SM ,c̃ �=c

PEPc→c̃ , (10)

where PEPc→c̃ � E{PEPc→c̃} denotes the expectation over
the channel fading coefficients of PEPc→c̃ , which is given in (9).

Before deriving PEPc→c̃ , we observe that
{
hn Λn (c̃ −

c)
}N

n=1 are i.i.d. random variables with CN (0, ‖Λn (c̃ −
c)‖2) distribution. Define Gc→c̃

n tn � |hnΛn (c̃ − c)|2 , where

Gc→c̃
n �‖ Λn (c̃ − c) ‖2 . Thus,

{
tn
}N

n=1 are i.i.d. exponential
random variables each with distribution e−t , 0 < t < ∞. We
express the argument inside function erfc() in (9) as

∑N
n=1 Gc→c̃

n tn√∑N
n=1

(
4σ2 + 8

3 δ2
n

)
Gc→c̃

n tn

=
∑N

n=1 Gc→c̃
n tn√∑N

n=1 βnGc→c̃
n tn

,

where βn � 4σ2 + 8
3 δ2

n .
We will consider two cases: identical quantization noises, i.e.,

δ1 = δ2 = · · · = δN , and non-identical quantization noises.

A. Identical Quantization Noises

In this subsection, we assume identical quantization noise
power δ2

n at every RRH. Such scenario often occurs in symmet-
ric networks with homogeneous fronthauls’ capacity. For ease
of notation, denote δn = δ,∀n, and thus βn = 4σ2 + 8

3 δ2
n =

β,∀n.
The average PEP in this case is computed as follows:

PEPc→c̃ =
1
2

∫
· · ·

∫

{tn }N
n = 1 :0<tn <∞

erfc

×

⎛

⎝ 1√
β

√√√√
N∑

n=1

Gc→c̃
n tn

⎞

⎠× exp

(
−

N∑

n=1

tn

)
dt1 . . . dtN .

(11)

To facilitate the computation of (11), we use a tight approxima-
tion of the error complementary function as [25]

erfc(x) ≈ 1
6
e−x2

+
1
2
e−4x2 /3 . (12)

Applying (12) to (11), we obtain

PEPc→c̃ 
 1
12

∫ ∞

0
...

∫ ∞

0
exp

(
N∑

n=1

(
Gc→c̃

n

β
+ 1

)
tn

)
dt1 . . . dtN

+
1
4

∫ ∞

0
...

∫ ∞

0
exp

(
N∑

n=1

(
4Gc→c̃

n

3β
+ 1

)
tn

)
dt1 . . . dtN

=
1
12

1
∏N

n=1

(
Gc→c̃

n

β + 1
) +

1
4

1
∏N

n=1

(
4Gc→c̃

n

3β + 1
) .

(13)

It is observed from (13) that the average PEP depends on Gc→c̃
n ,

the distance between two codewords scaled by the slow fading
metric, and the aggregated Gaussian and compression noises β.
Substituting (13) into (10) we obtain the union bound for BLER.

B. Non-Identical Quantization Noises

In this general case, βn at the RRHs can be different. By
changing variable tn to vn = βnGc→c̃

n tn , the average PEP over
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the fading channels is evaluated as follows:

PEPc→c̃ =
1

2
∏N

n=1 βnGc→c̃
n

∫ ∞

0
...

∫ ∞

0
erfc

⎛

⎝
∑N

n=1
vn

βn√∑N
n=1 vn

⎞

⎠

× exp

(
−

N∑

n=1

vn

βnGc→c̃
n

)
dv1 . . . dvN . (14)

The exact computation of (14) over the set {vn}N
n=1 is challeng-

ing for arbitrary set {βn}N
n=1 . Therefore, we investigate lower

bound and upper bound of (14).
1) Lower Bound: LetPind denote the set of all permutations

of {1, 2, . . . , N}, i.e.,

Pind =
{
{i1 , i2 , . . . , iN } : im �= iq ,∀m �= q;

{i1 , i2 , . . . , iN } ≡ {1, 2, . . . , N}
}
. (15)

Furthermore, the function f(x) � erfc(αx) exp(−x) is convex
in (0,+∞) for α > 0 (see Appendix A). Therefore, consider
any given value set {vn}N

n=1 , we have

∑

Pi n d

erfc

⎛

⎝
∑N

n=1
vn

βn√∑N
n=1 vn

⎞

⎠ exp

(
−

N∑

n=1

vn

βnGc→c̃
n

)

≥ N ! erfc

⎛

⎝
1

N !

∑
{in }N

n = 1 ∈Pi n d

∑N
n=1

1
βn

vin√∑N
n=1 vn

⎞

⎠

× exp

⎛

⎝− 1
N !

∑

{in }N
n = 1 ∈Pi n d

N∑

n=1

1
βnGc→c̃

n

vin

⎞

⎠

= N ! erfc

⎛

⎝
(

1
N

N∑

n=1

1
βn

)√√√√
N∑

n=1

vn

⎞

⎠

× exp

(
−
(

1
N

N∑

n=1

1
βnGc→c̃

n

)
N∑

n=1

vn

)
. (16)

Combining (14) and (16), we bound the average PEP below as

PEPc→c̃ ≥ 1

2
∏N

n=1 βnGc→c̃
n

∫ ∞

0
...

∫ ∞

0

× erfc

⎛

⎝
(

1
N

N∑

n=1

1
βn

)√√√√
N∑

n=1

vn

⎞

⎠

× exp

(
−
(

1
N

N∑

n=1

1
βnGc→c̃

n

)
N∑

n=1

vn

)
dv1 . . . dvN .

(17)

Similar to the previous subsection, we deploy the approxima-
tion (12) to compute (17) as

PEPc→c̃ ≥

1

2
∏N

n=1 βnGc→c̃
n

∫ ∞

0
...

∫ ∞

0

[
1
6

exp

⎛

⎝−
(

1
N

N∑
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1
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)2 N∑
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vn

⎞

⎠

+
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⎛

⎝−4
3

(
1
N

N∑

n=1

1
βn

)2 N∑

n=1

vn

⎞

⎠
]

× exp

(
−
(

1
N

N∑

n=1

1
βnGc→c̃

n

)
N∑

n=1

vn

)
dv1 . . . dvN

=
1

12
∏N

n=1 βnGc→̃c
n

⎛

⎝
(

1
N

N∑

n=1

1
βn

)2

+
1
N

N∑

n=1

1
βnGc→c̃

n

⎞

⎠
−N

+
1

4
∏N

n=1 βnGc→c̃
n

⎛

⎝4
3

(
1
N

N∑

n=1

1
βn

)2

+
1
N

N∑

n=1

1
βnGc→c̃

n

⎞

⎠
−N

.

(18)

Substituting (18) into (10), we obtain the lower bound of the
union bound in Rayleigh fading channels.

2) Upper Bound: In this subsection, we derive an upper
bound for (14). Denoting βmax = maxn∈{1,...,N } βn , we have

N∑

n=1

vn

βn
≥

√√√√
N∑

n=1

vn

βn

√∑N
n=1 vn

βmax
. (19)

Since erfc(x) is a decreasing function, applying (19) to (14)
we obtain

PEPc→c̃ ≤ 1

2
∏N

n=1 βnGc→c̃
n

∫ ∞

0
...

∫ ∞

0
erfc

(
1√

βmax

×

√√√√
N∑

n=1

vn

βn

⎞

⎠× exp

(
−

N∑

n=1

vn

βnGc→c̃
n

)
dv1 . . . dvN

(a)
≈ 1

2
∏N

n=1 βnGc→c̃
n

∫ ∞

0
...

∫ ∞

0

[
1
6

exp

(
−

N∑

n=1

(
1

βmax
+

1
Gc→c̃

n

)

× vn

βn

)
+

1
2

exp

(
−

N∑

n=1

(
4

3βmax
+

1
Gc→c̃

n

)
vn

βn

)]
dv1 . . . dvN

=
1

12
∏N

n=1

(
Gc→c̃

n

βm a x
+ 1

) +
1

4
∏N

n=1

(
4Gc→c̃

n

3βm a x
+ 1

) . (20)

where (a) results from the approximation (12).
Substituting (20) into (10), we obtain the upper bound of the

BLER in Rayleigh fading channels. We observe from (18) and
(20) that C-RAN achieves full diversity of order N with respect
to signal-to-compression-plus-noise ratio. When the quantiza-
tion noise powers at the RRHs are identical, i.e., δ1 = · · · = δN

and therefore β1 = · · · = βN , the lower bound and upper bound
completely coincide and equal to ( 13) in Section IV-A.
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V. MINIMIZATION OF FRONTHAUL TRANSMISSION RATE

In practical systems, different applications might require dif-
ferent QoS. For example, a voice message can usually tolerate
a higher BLER than a video call. From the service provider’s
perspectives, it is always beneficial to minimize the network
resources as long as the required QoS is satisfied. This moti-
vates us to propose adaptive compression schemes to minimize
the fronthaul transmission rate (maximize the compression effi-
ciency) so that a fronthaul link can support a maximum number
of antennas. Such schemes are desirable for systems which sup-
port large fronthaul feedback and/or require stringent BLER
requirements. We emphasis that the proposed adaptive com-
pressions are based on the average BLER, and require only the
statistics of the fading channels, which reveals the advantages
of the proposed optimizations over the existing C-RAN stud-
ies which require instantaneous CSI [3], [21]. Since the actual
transmission rate at the n-th RRH is equal to the sampling res-
olution at that RRH, we refer Qn as the transmission rate for
convenience.

For a given QoS constraint ζ, we want to minimize the total
fronthauls’ transmission rate. The corresponding optimization
is formulated as follows:

minimize
{Qn : Qn ≥ 1}N

n=1

N∑

n=1

Qn

s.t.
1

|S|M
∑∑

c,c̃∈SM ,c �= c̃

PEPc→c̃ ≤ ζ, (21)

where PEPc→c̃ is given in the previous section. In the following,
we propose two optimization frameworks for (21) based on the
lower and upper bounds of PEPc→c̃ .

A. Lower Bound-Based Minimization

This minimization uses the lower bound of the union bound
(18) as the QoS constraint. Denote L = |S|M (|S|M − 1) and
let {Gl

n}L
l=1 represent ‖Λn (c̃ − c)‖2 , ∀c̃ �= c. Recalling that

βn = 4σ2 + 2
3 η2

n2−2Qn and {ηn}N
n=1 are fixed. The problem of

minimizing
∑N

n=1 Qn subject to the constraint BLER ≤ ζ is
equivalent to

maximize
{βn}N

n=1

N∑

n=1

log
(
βn − 4σ2)

s.t.
1

|S|M
L∑

l=1

⎛

⎝ 1

12
∏N

n=1 βnGl
n

[(
1
N

N∑

n=1

1
βn

)2

+
1
N

N∑

n=1

1
βnGl

n

]−N

+
1

4
∏N

n=1 βnGl
n

[
4
3

(
1
N

N∑

n=1

1
βn

)2

+
1
N

N∑

n=1

1
βnGl

n

]−N
⎞

⎠ ≤ ζ,

0 < βn − 4σ2 ≤ 1
6
η2

n ,∀n. (22)

By introducing auxiliary positive variables {Al}L
l=1 , {Bl}L

l=1 ,
{El}L

l=1 , and D, with Al,Bl, El ,D ∈ R+ , we can further re-
formulate (22) as

maximize
{βn }N

n = 1 ,D ,

{Al ,Bl ,El }L
l = 1

N∑

n=1

log
(
βn − 4σ2) (23)

s.t.
1

|S|M
L∑

l=1

(Al + Bl) ≤ ζ, (23a)

−log(12) −
N∑

n=1

log(Gl
n ) ≤ log(Al)+

N∑

n=1

log(βn ) + N log(D + El),∀l, (23b)

−log(4) −
N∑

n=1

log(Gl
n ) ≤ log(Bl)+

N∑

n=1

log(βn ) + N log
(

4
3
D + El

)
,∀l, (23c)

√
D ≤ 1

N

N∑

n=1

1
βn

, (23d)

El ≤
1
N

N∑

n=1

1
βnGl

n

,∀l, (23e)

0 < βn − 4σ2 ≤ η2
n

6
,∀n. (23f)

The problem (23) is difficult to solve due to the non-convexity
of constraints (23d) and ( 23e). Therefore, we propose to solve
an equivalent problem as given in Theorem 1.

Theorem 1: The problem (23) is equivalent to the following
optimization:

maximize
{βn ,γn }N

n = 1 ,D ,

θ,{Al ,Bl ,El }L
l = 1

N∑

n=1

Θn + 2D − θ2 − D2

θ2

s.t. (23a) − (23c), (23f),

N

2

(
θ +

D

θ

)
≤ 2

N∑

n=1

γn −
N∑

n=1

βnγ2
n ,

NEl ≤ 2
N∑

n=1

γn

Gl
n

−
N∑

n=1

βn

Gl
n

γ2
n ,∀l. (24)

where Θn = log(βn − 4σ2) +
(
2γn − βnγ2

n − 1
βn

)
+
∑L

l=1

1
Gl

n

(
2γn − βnγ2

n − 1
βn

)
.

Proof: See Appendix B. �
We observe that (24) is a convex optimization problem in

{βn}N
n=1 and D for any given set of {γn}N

n=1 and θ. Fur-
thermore, (24) is a convex optimization problem in {γn}N

n=1
and θ for any given set of {βn}N

n=1 and D. This remark mo-
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TABLE I
ALGORITHM TO SOLVE (25)

tivates the adoption of alternating optimization to solve (24).
In particular, for given {γn}N

n=1 and θ, we optimize (24) with
variables {βn}N

n=1 and D and get {β∗
n}N

n=1 and D∗. On the
other hand, given {β∗

n}N
n=1 and D∗, we optimize (24) with

variables {γn}N
n=1 and θ, and obtain γ∗

n = 1
β ∗

n
, θ∗ =

√
D∗ (see

Appendix B). The detail algorithm is given in Table I. Note
that the function g(x) � log(αx2 + y) is concave in x > 0 and
y > 0 for α > 0. Therefore, the problem (25) is convex and thus
can be solved efficiently in polynomial time.

maximize
{βn }N

n = 1 ,D ,

{Al ,Bl }L
l = 1

N∑

n=1

Θn + 2D − θ2 − D2

θ2

s.t. the constraints of (24). (25)

It is worthy noting that (25) is not necessarily equivalent to
the original problem (21) since it is based on the lower bound
of the union bound. However, it will be showed later that this
optimization strategy provides optimum solution when the total
fronthaul bandwidth is sufficiently large.

Remark 1: The integer constraint of the original problem
(21) can be obtained from βn simply by choosing the smallest
integer of Q̂n = 1

2 (log2(
2
3 η2

n ) − log2(βn − 4σ2)), i.e., �Q̂n�.
In general, there is no bound for the optimality loss of such ap-
proximation. However, as the constraint threshold BLER tends
to zero, the loss also converges to zero. The reason is that each
Qn becomes large in such cases, which leads to a small ratio
�Q̂n �−Q̂n

Q̂n
.

B. Upper Bound-Based Minimization

In this subsection, we use the upper bound of the BLER in
(20) as the constraint. The corresponding optimization problem
is formulated as follows:

maximize
{βn}N

n=1

N∑

n=1

log
(
βn − 4σ2)

s.t.
1

|S|M
L∑

l=1

⎛

⎝ 1

12
∏N

n=1

(
Gl

n

βm a x
+ 1

)

+
1

4
∏N

n=1

(
4Gl

n

3βm a x
+ 1

)

⎞

⎠ ≤ ζ,

0 < βn − 4σ2 ≤ η2
n

6
,∀n, (26)

TABLE II
ALGORITHM TO SOLVE (27)

where βmax has been defined in Section IV-B2.
By introducing an auxiliary positive variable A, the above

problem is written equivalently as follows:

maximize
{βn}N

n=1 , A > 0

N∑

n=1

log
(
βn − 4σ2)

s.t.
1

|S|M
L∑

l=1

log

(
1

12
∏N

n=1 (Gl
nA + 1)

+
1

4
∏N

n=1

( 4
3 Gl

nA + 1
)
)

≤ ζ,

βn ≤ 1
A

,∀n,

0 < βn − 4σ2 ≤ η2
n

6
,∀n. (27)

It is observed that for a given A, the problem (27) is convex
and thus efficiently solvable. We therefore resort to bisection
method to solve (27). The steps are detailed in Table II.

C. Optimality of Identical Quantization Noise

In this subsection, we will show that a sampling scheme
{Qn}N

n=1 which leads to identical quantization noise is the op-
timal solution of the problem (21), as the BLER threshold ζ
goes to zero. The formal statement of this result is given in two
following propositions.

Proposition 1: As the QoS threshold ζ → 0, the solution
of (22) based on the PEP lower bound satisfies the identical
quantization noise.

Proof: See Appendix C. �
Proposition 2: As the QoS threshold ζ → 0, the solution

of (26) based on the PEP upper bound satisfies the identical
compression noise.

Proof: See Appendix D. �
Propositions 1 and 2 are not strong enough to state that the op-

timal solution of ( 21) satisfies identical compression noise as the
BLER threshold decreases since (22) and (26) are based on the
PEP bounds. Nevertheless, Propositions 1 and 2 provide a jus-
tification for implementing the sampling that imposes identical
compression noise, especially under delay-constrained systems
where sophisticated adaptive sampling might not be applicable.
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TABLE III
ALGORITHM TO SOLVE (30)

VI. MINIMIZATION OF BLER

In this section, we minimize the BLER for a given total fron-
thaul bandwidth Qsum bits. Specifically, we will optimally al-
locate sampling resolution Qn to RRH n to achieve the smallest
BLER. The optimization problem is formulated as follows:

minimize
{Qn : Qn ≥ 1}N

n=1

BLER

s.t.
N∑

n=1

Qn ≤ Qsum , (28)

where BLER is given in (10).
In order to guarantee an effective optimization in (28), the

BLER is calculated based on the upper bound of PEP given
in (20). By changing variable to βn = 4σ2 + 2

3 η2
n2−2Qn and

recalling that βmax � maxn{βn}, the resulting optimization
problem is as

minimize
{βn}N

n=1

L∑

l=1

(
1
12

N∏

n=1

1
Gl

n

βm a x
+ 1

+
1
4

N∏

n=1

1
4Gl

n

3βm a x
+1

)

s.t.
N∑

n=1

log2(βn − 4σ2) ≥
N∑

n=1

log2

(
2
3
η2

n

)
− 2Qsum ,

0 < βn ≤ 1
6
η2

n ,∀n. (29)

By introducing an auxiliary positive variable A ∈ R+ , the prob-
lem (29) is equivalent to

minimize
{βn :βn >0}N

n = 1
A>0

L∑

l=1

(
1
12

N∏

n=1

1
Gl

nA + 1
+

1
4

N∏

n=1

1
4
3 Gl

nA +1

)

(30)

s.t. βn ≤ 1
A

,∀n (30a)

N∑

n=1

log2(βn − 4σ2) ≥
N∑

n=1

log2

(
2
3
η2

n

)
− 2Qsum ,

(30b)

βn ≤ 4σ2 +
1
6
η2

n ,∀n. (30c)

We observe that (30) is a convex optimization problem on
{βn}N

n=1 for a given A. Therefore, (30) can efficiently be solved
and the steps to solve (30) are given in Table III.

In general, it is difficult to obtain the exact formula for the
optimal solution of (28). Under certain circumstances, however,
a closed-form solution can be derived in the following theorem.

Theorem 2: If there exist {qn : qn ≥ 1}N
n=1 such as

η12−q1 = η22−q2 = · · · = ηN 2−qN and
∑N

n=1 qn = Qsum ,
then the solution of problem (30) satisfies identical quantiza-
tion noises and is given as

β
n = 2

1
N

(
∑N

n = 1 log2 ( 2
3 η 2

n )−2Qs u m

)

+ 4σ2 ,∀n.

Consequently, the optimal fronthaul rate allocation {Q
n}N

n=1 is
given as

Q
n =

1
2

log2

(
2
3
η2

n

)
+

1
N

Qsum − 1
2N

N∑

n=1

log2

(
2
3
η2

n

)
.

Proof: See Appendix E. �
Corollary 1: For symmetric C-RAN systems, i.e., η1 =

η2 = · · · = ηN , which employ the quantization and the receiver
as in Section II, the uniform sampling {Qn = Qsum /N}N

n=1
achieves the minimum BLER.

Proof: The proof is obtained straightforwardly from
Theorem 2 by using η1 = η2 = · · · = ηN . �

VII. NUMERICAL RESULTS

The simulation is evaluated for a C-RAN system under block
Rayleigh fading channel, i.e., hmn ’s are i.i.d. random variables,
each distributed as CN (0, 1). Unless otherwise stated, we as-
sume M = 3, N = 3 and QPSK modulation with the codebook
S = {−1 − 1i,−1 + 1i, 1 − 1i, 1 + 1i}/

√
2. Furthermore,

Pnm = P,∀m,n and the average SNR is defined as P/σ2 . The
BBU is assumed to know CSI of all wireless channels.

A. Accuracy of the Bounds

Figure 2 shows effects of modulation order (a) and the num-
ber of RRHs (b) on the performance of C-RAN. Symmetric
network topology is assumed, i.e., η1 = η2 = · · · = ηN . The
sampling rate is equally allocated, i.e., Q1 = Q2 = Q3 = 6 bits.
Since the quantization noise at every RRH is identical, the upper
and lower bounds of the PEP given in Section IV-A coincide.
Figure 2(a) compares the bounds with simulation results for
N = 3 RRHs and three different modulations, i.e., BPSK,
QPSK, and 16-QAM. For all cases, the derived bounds closely
match simulation results at the medium and high SNR regimes.
It is shown that the bound is closer to the simulation for BPSK
than 16-QAM. This can be explained from the fact that the de-
rived bound’s accuracy depends on both the modulation order
and the operating SNR. Higher modulation order results looser
union bound of the BLER because the compound constellation is
more diverse. Moreover, the approximation in (12) is more tight
in the medium and high SNR regime [25]. Figure 2(b) presents
the theoretical and simulation results for different number of
RRHs under QPSK modulation. Similarly, the derived bounds
closely match the simulations.

Figure 3(a) shows the effect of the fronthaul rate on the
BLER. Figure 3(b) presents the BLER as a function of fronthaul
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Fig. 2. Performance of the C-RAN in Rayleigh fading channels for (a) various modulation orders and (b) different number of RRHs. Solid and marked lines
correspond to analytical upper bound and numerical results, respectively. The system parameters are: M = N = 3, Q1 = Q2 = Q3 = 6 bits.

Fig. 3. Performance of the C-RAN in Rayleigh fading channels for (a) different quantizer’s resolutions and (b) different operating SNRs. Solid and marked lines
correspond to analytical upper bound and numerical results, respectively. The system parameters are: QPSK modulation, M = N = 3, Q1 = Q2 = Q3 = Q.

transmission rate for difference operating SNRs. For all cases,
the theoretical upper bound is close to the simulation.

Figure 4 shows simulation results and the corresponding
bounds under non-identical quantization noise scenario. As SNR
increases, the analysed BLER based on upper bound of the PEP
and based on lower bound of the PEP diverges. Despite of this
mismatch, we will show later that the optimal rate allocation
based on either lower bound or upper bound approaches that of
the identical quantization noise.

B. Performance of the Proposed Optimizations

Figure 5 presents the performance of the proposed adap-
tive compressions versus SNR. For a given BLER target, we
want to maximize the compression efficiency, or equivalently to
minimize the actual fronthaul transmission rate. Two adaptive
compression schemes based on the lower bound and the upper
bound of the union bound in Section V are presented. For ref-
erence, the scheme without QoS constraint which fully utilizes

Fig. 4. Performance of the C-RAN in Rayleigh fading channels with non-
identical quantization noises. System parameters: QPSK modulation, M =
N = 3, {Q1 , Q2 , Q3} = {5, 6, 7}.



VU et al.: ADAPTIVE CLOUD RADIO ACCESS NETWORKS: COMPRESSION AND OPTIMIZATION 237

Fig. 5. Performance of the optimization with QoS constraint proposed in Section V for two schemes based on lower and upper bounds of the APEP. The target
BLER equals 10−2 . The total fronthaul bandwidth Qsum = 30 bits, M = N = 3.

Fig. 6. Performance of the optimal rate allocation with QPSK modulation, M = N = 3: (a) performance versus SNR, Qsum = 15 bit; (b) performance versus
average per-RRH bandwidth, SNR = 15 dB.

the fronthaul bandwidth is also plotted. In addition, to provide
full details on the proposed optimizations, curves corresponding
to exact optimum solutions of (25) and (27) are drawn. These
curves are mark as “- exact” in the figure. Curves correspond-
ing to integer {Qn} are marked as “- integer”. The threshold ζ
is equal to 1e-2. Note that these optimizations are carried out
for each operating SNR only once and does not depend on the
instantaneous CSI. The compression efficiency is presented in
Figure 5(a) and the BLER performance is shown in Figure 5(b).
In the low SNR regime, the BLER does not satisfy the target
QoS because the channel is so poor. Even using all 10 bits for
quantization does not satisfy the target BLER. Therefore, the
optimizations are infeasible and all schemes consume full fron-
thaul bandwidth, as shown in Figure 5(a). When SNR increases,

the optimizations are activated (from 10 dB in the figure). Both
optimization schemes meet the target QoS while significantly
improve the compression efficiency. Because the full-bandwidth
scheme always uses 10 bits for quantization, its fronthaul rate is
10 bits per sample for all SNRs. On the other hand, a compres-
sion efficiency of 330% is observed by both schemes, which
only require 3 bits per sample to achieve a BLER less than 1e-2.
One important observation is that the optimizations based on
lower bound or upper bound achieve identical compression ef-
ficiencies. Such observation is in line with Section V-C, which
shows the optimality of uniform compression noise rate alloca-
tion under asymptotic regimes. Note that the integer constraint
on {Qn}N

n=1 results in lower BLER than the exact value of
Qn because Qinteger

n = �Qexact
n � is the smallest integer that is
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larger than or equal to Qexact
n . The sharp step in BLER curves

of integer Qn results from the �.� operation.
The above results illustrate the minimization of the actual

fronthaul rate with the BLER constraint. Based on the anal-
ysed BLER, a reciprocal problem is how to allocate the fron-
thaul bandwidth {Qn}N

n=1 to minimize the BLER for a given
Qsum =

∑N
n=1 Qn . The optimization problem is described in

Sec. VI. The scaling factors are set as {η1 , η2 , η3} = {3, 6, 9}.
Uniform sampling scheme, e.g., Q1 = Q2 = Q3 = Qsum /3 is
also shown for reference. Figure 6(a) shows the BLER perfor-
mance. The total fronthauls’ bandwidth is Qsum = 15 bits. As
expected, the optimum rate allocation achieves better perfor-
mance (smaller BLER) than the reference scheme. Under the
small SNR regime, both uniform and optimal rate allocations
get similar performance because at this SNR the thermal noise
is dominant. As SNR increases, performance gain provided by
the optimal rate allocation is larger.

Figure 6(b) shows the BLER performance of the optimal rate
allocation versus average fronthaul’s bandwidth per RRH. The
operating SNR is equal to 15 dB. It is observed that the optimal
scheme is more effective for small fronthaul’s bandwidth. As
the fronthaul’s bandwidth increases, the gap between the two
schemes narrows and the two curves eventually coincide. This
result is in line with Theorem 2 since with large Qsum the con-
dition in Theorem 2 is always satisfied. As a result, the optimal
rate allocation {Q∗

1 , Q
∗
2 , Q

∗
3} approaches uniform sampling as

Qsum increases.

VIII. CONCLUSION

In this work, we investigated the design of fronthaul in C-
RAN uplink by focusing on the compression and optimization
in fronthaul links based on the statistics of wireless fading chan-
nels. First, we derived the system BLER under Rayleigh fading
channels. In particular, we derived upper and lower bounds of
the BLER in closed-form. Based on the analysed bounds, we
proposed two adaptive compression schemes to minimize the
fronthaul transmission rate subject to a BLER constraint. Fur-
thermore, a fronthaul rate allocation is proposed to minimize the
system BLER. We showed that the uniform rate allocation ap-
proaches the optimal scheme as the total fronthauls bandwidth
increases. Based on our current work, a promising research di-
rection is to study more realistic compression model applying
to time-domain correlated signal, e.g., OFDM symbols. Beside
BLER, error vector magnitude is also an important performance
measurement to investigate in the future.

APPENDIX A
CONVEXITY OF SEVERAL FUNCTIONS

A. Convexity of f(x) � erfc(αx) exp(−x)

The first and second derivatives of f(x) are given as

f ′(x) = − 2αe−α2 x2

√
π

e−x − erfc(αx)e−x ,

f ′′(x) =
2α√

π
e−α2 x2 −x(2αx + 1) +

2αe−α2 x2

√
π

e−x

+ erfc(αx)e−x .

Since f ′′(x) > 0, ∀x > 0, we conclude that f(x) is a convex
function in x > 0.

B. Concavity of g(x) � log(αx2 + x)

The first and second derivatives of g(x) are given as

g′(x) =
1

αx2 + x
(2αx + 1),

g′′(x) = − 1
(αx2 + x)2 (2αx + 1)2 +

2α

αx2 + x

=
−2α2x2 − 2αx − 1

(αx2 + x)2 .

Since g′′(x) < 0, ∀x > 0, we conclude that g(x) is a concave
function in x > 0.

APPENDIX B
PROOF OF THEOREM 1

We will prove that the optimal value of (23) is achievable by
(24); the optimal value of (24) is also achievable by (23); and
furthermore the optimal solution {β∗

n}N
n=1 is the same for the

two optimizations. To this end, we denote the optimal values of
(23) and (24) as S∗

1 and S∗
2 , respectively, and will prove S∗

1 = S∗
2 .

A necessary fact for the proof is given as follows.
Fact 1: Consider an arbitrary positive number x > 0. We

have

1
x
≥ 2y − xy2 ,∀y ∈ R+ ,

where the equality is achieved if and only if y∗ = 1/x.

A. S∗
1 ≤ S∗

2

First, assume that {{β∗
1,n}N

n=1 , A
∗
l , B

∗
l , D

∗, E∗
l }

is an optimal solution of (23). Consider a set{
{β∗

1,n , γn}N
n=1 , A

∗
l , B

∗
l , D

∗, E∗
l , θ

}
where γn = 1

β ∗
1 , n

and

θ =
√

D∗. It is straightforward to see that the value S∗
1 is

also achieved by (24). Therefore, the optimal value of (24) is
S∗

2 ≥ S∗
1 .

B. S∗
2 ≤ S∗

1

Now assume that
{
{β∗

2,n , γ∗
n}N

n=1 , A
∗
l , B

∗
l , D

∗, E∗
l , θ

∗}

is an optimal solution of (24). Consider a new set{
{β∗

2,n , 1
β ∗

2 , n
}N

n=1 , A
∗
l , B

∗
l , D

∗, E∗
l ,
√

D∗
}

. We note that
{
{β∗

2,n ,

1
β ∗

2 , n
}N

n=1 , A
∗
l , B

∗
l , D

∗, E∗
l ,
√

D∗
}

satisfies all constraints in

(24) since

2
N∑

n=1

γ∗
n

Gl
n

−
N∑

n=1

β∗
2,n (γ∗

n )2

Gl
n

≤
N∑

n=1

1
β∗

2,nGl
n

, (31)

and 2
√

D∗ ≤ θ∗ + D ∗

θ∗ .



VU et al.: ADAPTIVE CLOUD RADIO ACCESS NETWORKS: COMPRESSION AND OPTIMIZATION 239

Furthermore, due to (31) and the fact that 2D∗ ≤ (θ∗)2 +
(D ∗

θ∗ )2 , γ∗
n and θ∗ have to be equal to 1

β ∗
2 , n

and
√

D∗, respectively,

since otherwise S∗
2 would not be the optimal value of (24).

Therefore, from (24) we see that

S∗
2 =

N∑

n=1

log
(
β∗

2,n − 4σ2) , (32)

where β∗
2,n satisfies

− log(12) −
N∑

n=1

log(Gl
n )

≤ log(A∗
l ) +

N∑

n=1

log(β∗
2,n ) + N log

(
D∗ + E∗

l

)
, (33)

− log(4) −
N∑

n=1

log(Gl
n )

≤ log(B∗
l ) +

N∑

n=1

log(β∗
2,n ) + N log

(
4
3
D∗ + E∗

l

)
, (34)

N
√

D∗ ≤
N∑

n=1

1
β∗

2,n

, NE∗
l ≤

N∑

n=1

1
β∗

2,nGl
n

, (35)

β∗
2,n − 4σ2 ≤ η2

n

6
. (36)

As the last step, we observe that due to (33)-(36), the set{
{β∗

2,n}N
n=1 , A

∗
l , B

∗
l , D

∗, E∗
l

}
satisfies all constraints of (23).

Therefore, we see that S∗
2 is achieved by (23) with the set

{β∗
2,n}N

n=1 . That leads to S∗
2 ≤ S∗

1 .
From Section B-A and B-B, we conclude that S∗

1 = S∗
2 , which

also implies that they have the same optimal solution {β∗
n}N

n=1 .
This concludes the proof for Theorem 1.

APPENDIX C
PROOF OF PROPOSITION 1

A. Preliminary Results

Before proceeding, we first note the following facts.
Fact 2: As the QoS threshold ζ → 0, we have βn → 4σ2 ,

∀n.
Proof: Consider the first constraint in (22). As the BLER

target ζ decreases, at least one of βn has to decrease. Note
that each βn can not keep decreasing while the other are fixed
since βn > 4σ2 , ∀n. Therefore, all βn ’s will decrease to 4σ2 as
ζ → 0. �

Fact 3: The function h(x) = log( 1
x − α) with x > 0 is con-

cave when 2αx > 1.
Proof: The first and second derivatives of h(x) are given as

h′(x) =
α

αx − 1
− 1

x
, h′′(x) =

1 − 2αx

x2(αx − 1)2 .

Since h′′(x) < 0 when 2αx > 1 we conclude that h(x) is a
concave function when 2αx > 1. �

B. Proof of Proposition 1

Recalling that βn = 4σ2 + 2
3 η2

n2−2Qn . The optimization
problem (21) therefore can be written as

maximize
{βn}N

n=1

N∑

n=1

log(βn − 4σ2)

s.t.
1

|S|M
∑

∀c �= c̃

PEPc→c̃ ≤ ζ,

0 < βn − 4σ2 ≤ η2
n

6
,∀n, (37)

where PEPc→c̃ is given in (14). Denote {β∗
n}N

n=1 as the optimal
solution of (37), we will prove that β∗

n ’s are identical as ζ is
small.

We consider the following set {β̃n}N
n=1 where

β̃1 = β̃2 = · · · = β̃N = N

(
N∑

n=1

1
β∗

n

)−1

. (38)

From (14) and (17), we have

PEPc→c̃
(
{β∗

n}N
n=1

)
≥ 1

2
∏N

n=1 β∗
nGl

n

×
∫ ∞

0
...

∫ ∞

0
erfc

(
‖ Λn (c̃ − c) ‖

(
1
N

N∑

n=1

1
β∗

n

)√∑N

n=1
vn

)

× exp

(
−
(

1
N

N∑

n=1

1
β∗

nGl
n

)
N∑

n=1

vn

)
dv1 . . . dvN . (39)

Now note that 1
N

∑N
n=1

1
β̃n

= 1
N

∑N
n=1

1
β ∗

n
while

1
∏N

n=1 β̃n

=

(
N

∑N
n=1

1
β ∗

n

)N

≤ 1
∏N

n=1 β∗
n

, (40)

as the geometric mean does not exceed the arithmetic mean.
Combining (39) and (40), it yields:

PEPc→c̃
(
{β∗

n}N
n=1

)
≥ PEPc→c̃

({
β̃n

}N

n=1

)
. (41)

Consider the function log( 1
1

β ∗
n

− 4σ2). As the QoS threshold

ζ approaches 0, from Fact 2 we have β∗
n → 4σ2 and therefore

2 × 4σ2 × 1
β ∗

n
> 1. From Fact 3, we conclude that log( 1

1
β n

−
4σ2) is concave. In the light of Jensen’s inequality, we have

N∑

n=1

log(β∗
n − 4σ2) =

N∑

n=1

log

(
1
1

β ∗
n

− 4σ2

)

≤ N log

(
N

∑N
n=1

1
β ∗

n

− 4σ2

)
=

N∑

n=1

log(β̃n − 4σ2). (42)

Finally, we note that as the QoS threshold ζ approaches 0,
from Fact 2 we have β∗

n → 4σ2 . It is thus straightforward to
prove that

0 < β̃n − 4σ2 ≤ η2
n

6
. (43)
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From (41)-(43), we observe that the set
{
β̃n

}N

n=1 satisfies all
the constraints of (37) while achieves a larger or equal objective
function than the optimal solution {β∗

n}N
n=1 . The equality is

achieved if and only if (41) and (42) have the equalities, i.e.,
β∗

1 = · · · = β∗
N . This concludes the proof of Proposition 1.

APPENDIX D
PROOF OF PROPOSITION 2

Let {β
1 , β

2 , . . . , β
N ,A} denote the optimal solution of

problem (30). We will show that {β
1 = β

2 = · · · = β
N } as

η tends to zero. Assuming that {β
n}N

n=1 do not satisfy identical
quantization noise, without loss of generality, let β

1 ≥ β
2 ≥

· · · ≥ β
N .

As the QoS η tends to zero, A must be very large to sat-
isfy the first constraint of problem (27). As a result, β

n − 4σ2

is strictly smaller than η2
n/6,∀n. Thus, there always exists

β̄
N > β

N such as β̄
N − 4σ2 ≤ η2

N /6 and β̄
N ≤ β

1 . Con-
sider a set {β

1 , . . . , β
N −1 , β̄


N ,A} which satisfies all con-

straints of (27) and thus is a feasible solution. Since log
is a monotonically increasing function, this solution yields
an objective value log(β̄

N − 4σ2) +
∑N −1

n=1 log(β
n − 4σ2) >∑N

n=1 log(β
n − 4σ2), which is in contrast to the optimality

assumption of {β
1 , β

2 , . . . , β
N ,A}. Thus, {β

n}N
n=1 must be

identical.

APPENDIX E
PROOF OF THEOREM 2

Let {β
1 , β

2 , . . . , β
N ,A} denote the optimal solution of

problem (30). We will show that, under the condition in
Theorem 2, then

β
1 = β

2 = · · · = β
N . (44)

Denote F (A) as the objective function of problem (30). By
definition, F (A) is the smallest among all feasible sets of (30).

Now if (44) does not hold, then there is at least one β
n

is strictly larger than the others. Without loss of generality,
assuming that β

1 > β
2 ≥ · · · ≥ β

N . First, we will show that
there will be at least one equality in (30c) does not hold for
2 ≤ n ≤ N . Indeed, let us assume that β

n = 4σ2 + 1
6 η2

n , 2 ≤
n ≤ N . Define Q

n = 1
2 (log2(

2
3 η2

n ) − log2(β
n − 4σ2)). Thus,

we have Q
n = 1 with 2 ≤ n ≤ N and Q

1 = Qsum − N +
1. Consider the set {qn}N

n=1 that satisfies the condition of
Theorem 2. Since qn ≥ 1,∀n, we have q1 = Qsum −∑N

n=2 qn ≤ Qsum − N + 1 = Q
1 . Because βn is a mono-

tonic decreasing function of Qn , it yields β1(q1) = 4σ2 +
2
3 η2

1 2−2q1 ≥ β
1 . For any n ≥ 2, we have βn (qn ) ≤ β

n as
qn :n≥2 ≥ 1 = Q

n :n≥2 . By the condition in Theorem 2, β1(q1) =
· · · = βN (qN ). Consequently, for n ≥ 2, we have β

n ≥
βn (qn ) = β1(q1) ≥ β

1 , which is in contrast to the assumption
of the largest β

1 .
As a result, there is at least one strict constraint in (30c) for

n ≥ 2. Without loss of generality, assume that β
2 < 4σ2 + 1

6 η2
2 .

Then there always exist β̄
1 and β̄

2 such as β
1 > β̄

1 ,
β

2 < β̄
2 ≤ 4σ2 + 1

6 η2
2 , and log2(β

1 − 4σ2) + log2(β
2 −

4σ2) = log2(β̄
1 − 4σ2) + log2(β̄

2 − 4σ2). It is straightfor-

ward to verify that {β̄
1 , β̄

2 , β
3 , . . . , β

N , Ā � 1/β̄
1 } satisfy

all constraints of (30), and thus is a feasible solution of problem
(30) with the objective function F (Ā). Because F (x) is
a monotonic decreasing function, then F (Ā) < F (A) as
Ā > A , which is in contrast to the optimal assumption of
{β

1 , β
2 , . . . , β

N ,A}. Therefore, β
1 = β

2 = · · · = β
N . From

(30b) we obtain

β
n = 2

1
N

(
∑N

n = 1 log2 ( 2
3 η 2

n )−2Qs u m

)

+ 4σ2 , ∀n.

The optimal rate allocation in Theorem 2 thus is obtained di-
rectly from the definition βn = 4σ2 + 1

6 η2
n2−2Qn .
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