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Abstract—Controlling peak side-lobe level (PSL) is of great
importance in high-resolution applications of multiple input
multiple output (MIMO) radars. In this paper, designing se-
quences with good autocorrelation properties are studied. The
PSL of the autocorrelation is regarded as the main merit
and is optimized through newly introduced cyclic algorithms,
namely; PSL Minimization Quadratic Approach (PMQA), PSL
Minimization Algorithm, the smallest Rectangular (PMAR) and
PSL Optimization Cyclic Algorithm (POCA). It is revealed
that minimizing PSL results in better sequences in terms of
autocorrelation side-lobes when compared with traditional in-
tegrated side-lobe level (ISL) minimization. In order to improve
the performance of these algorithms, fast-randomized Singular
Value Decomposition (SVD) is utilized. To achieve waveform
design for MIMO radars, this algorithm is applied to the
waveform generated from a modified Bernoulli chaotic system.
The numerical experiments confirm the superiority of the newly
developed algorithms compared to high-performance algorithms
in mono-static and MIMO radars.

Index Terms—MIMO radar waveform design; Peak side-lobe
level; Chebyshev Distance.

I. INTRODUCTION

WAVEFORM design is a traditional problem in radar and
communication systems. Classically, in these systems,

a matched filter is applied to detect the target or message in
the presence of a background white Gaussian noise (WGN).
In this context, a well-transmitted waveform should have low
autocorrelation side-lobes for preventing false results in detec-
tion. Study of sequences with good autocorrelation properties,
with respect to radar applications in mind, is a classic topic
[1], [3], [4], [9], [10], [12], [28], [33]. In fact, the related
literature covers a wide array ranging from bi-phase and poly-
phase to more recent chaotic and algorithmic methods. For
the bi-phase Barker [2], for poly-phase Golomb [12], Frank
[11] and Chu [6], for chaotic Lorenz [16] and for algorithmic
method cyclic algorithm (CA) [9] and majorization minimiza-
tion (MM) [25] methods are just a few to be enumerated. In
all the aforementioned references, a good sequence is the one
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with impulse-like autocorrelation. In general, there exist two
major merits to measure the resemblance of a sequence with
impulse: integrated side-lobe level (ISL) and peak side-lobe
level (PSL). Minimizing the first was the topic of several recent
publications [15], [24]–[26]. However, much less effort is
made on minimizing the second. On the other hand, generating
a set of sequences with minimized PSL is of great importance
in high-resolution applications of MIMO radars [14]. In fact,
for a radar engineer autocorrelation corresponds to the output
of the matched filter of the radar system. Generally speaking,
the peak of the side-lobes corresponds to the falsely detected
objects (false alarms), while high peak side-lobes result in
masking of the low signature targets next to high signature
targets. Hence, in order to have low false alarms, the peak of
the side-lobes should be lowered as low as possible. In this
regard, the main contribution of this article is to address the
problem of PSL minimization of a sequence and acclimatizing
it to MIMO radars through chaotic waveforms as the initial
sequences.

In [26], authors have solved the problem of ISL mini-
mization for an unimodular sequence (i.e. all elements have
unit absolute value). They derived several cyclic algorithms:
CAN, CAD, CAP, and WeCAN. In [17], by generalizing some
methods given in [26], several algorithms are developed to
generate waveforms appropriate in MIMO radars applications.
In addition to autocorrelation, they minimized the cross-
correlation between the generated waveforms. In [35], the
waveform design in presence of clutter and white Gaussian
noise is assessed. Accordingly, a cyclic algorithm is developed
to maximize signal-to-clutter-plus-noise ratio (SCNR) under
the constant modulus constraint. In [8], through cyclic opti-
mization, a computationally attractive algorithm is introduced
for the synthesis of constant modulus transmit signals with
good auto-correlation properties for MIMO radars. In a recent
work [24], the problem of minimizing lp (for 2 ≤ p < ∞)
norm on the side-lobes of autocorrelation is addressed. They
majorized this problem by an l2 problem, and by solving it,
they minimized the lp-norm of the autocorrelation side-lobes.
Then, by choosing large values for p, they approached l∞
norm, which is indeed The PSL. However, in the case of peak
side-lobe level, their algorithm named “monotonic minimizer
(MM) for lp-metric”, lacks the ability to suppress a specified
part of the autocorrelation. Moreover, this minimizer actually
does not minimize PSL, but minimizes an lp-metric, then by
choosing large p it approaches PSL minimization. As noted
before, like WeCAN and CAP, they lack the ability to suppress
more than half of the autocorrelation side-lobes to “almost
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zero”.
In [18], chaos is introduced to generate phase-coded wave-

forms for MIMO radars. In [30], authors introduced quasi-
orthogonal waveforms for wideband MIMO radars application.
They have established that chaotic waveforms possess many
desirable radar properties. Consequently, in the line of previous
work, in [31], the selection of parameters for Lorenz system
for wideband radars is studied. In this article, the problem
of PSL minimization is formulated and solved. Then, by
applying chaotic waveforms as the initial sequence to the
newly developed algorithms, a set of waveforms proper for
MIMO radars is constructed. The obtained results can be
summarized as follows:

• Problem formulation for PSL minimization and solving
it

• Suppression of more than half of the autocorrelation side-
lobes to “almost zero”

• Better side-lobes both in terms of PSL and ISL
• Ability to generate a large set of waveforms with low

cross-correlation
• Ability to deal with long sequences

Chaotic waveforms have been and are extensively applied to
radar systems [13], [20], [22], [31]. The chaotic systems’ out-
puts are bounded, aperiodic and sensitive to initial conditions,
resulting in low peak to average power ratio (PAPR), low auto-
correlation side-lobes and low cross-correlation, respectively.
Moreover, the simplicity of waveform generation in these
systems enables the design of a set of waveforms with high
cardinality, which is appropriate in MIMO radars [30], [31].
In addition to these properties, chaotic waveforms are noise-
like deterministic signals; therefore, radars which apply these
kinds of waveforms have a low probability of interception.

Bernoulli map is a typical defining example for chaos [5].
This system is one of the simplest systems with the capability
of generating chaos. It has phase space dimensionality of two,
that is, it can produce high cardinality set of waveforms of any
length with very low computational effort [23]. Consequently,
by the juxtaposition of this chaotic system and PSL minimiza-
tion algorithm, it is possible to generate an arbitrary number
of sequences with low cross-correlation, low autocorrelation
low-rank and low probability of interception.

The organization of the article is as follows. The prob-
lem of PSL minimization is formulated based on Chebyshev
distance and solved through some novel cyclic algorithm in
section II. Then, by enhancing the time-consuming parts of
the algorithm, the speed performance of this algorithm is
improved in section III. Consequently, in section IV, imposing
additional constraints on the problem is studied. In section
V, modified Bernoulli map is introduced. It is shown that by
applying our algorithm to the sequences generated by a chaotic
system, a suitable set of waveforms for MIMO radars can be
generated. Accordingly, in section VI, the proposed methods
are evaluated. Afterward, the conclusion is given. The last part
but not the least is the appendix. The presented appendix is to
reveal the fact that the Chebyshev distance indeed defines a
complete normed vector space, known to the mathematicians
as Banach space.

A. Notations
We use bold lower case for column vectors and bold

uppercase for matrices. The symbols AT and AH represent
transpose and conjugate transpose of the matrix A, respec-
tively. ek denotes the k-th canonical vector, a column vector
with zero elements, except for the k-th element, which is one.
|a| indicates the absolute value of the scalar a. ‖ . ‖2 denote
the Frobuinous norm of a vector or matrix. The norm ‖ . ‖∞
for a matrix A is defined according to ‖ A ‖∞= max |Ai,j |,
that is, ‖ A ‖∞ is the norm defined by Chebyshev distance
over the space of all complex valued N × M matrices. In
appendix VIII, it is shown that this operator actually defines a
norm on the vector space of all complex matrices. The symbol
≤d is the lexicographical order or dictionary order on C. That
is, b ≤d a if and only if,

Im{b} ≤ Im{a} ∨
(Im{b} ≤ Im{a} ∧Re{b} = Re{a}), (1)

where, ∨ and ∧ are “logical or” and “logical and”, respectively.
Accordingly, by maxd and mind, the maximum and minimum
under the dictionary order are meant. Note that, ≤d is a total
order on C.

II. PEAK SIDE-LOBE LEVEL MINIMIZATION

Let {xn}Nn=1 represent the sequence to be designed. The
autocorrelation function of this sequence is:

rk =

N∑
n=k+1

xnx
∗
n−k = r∗−k, k = 0, ..., N − 1. (2)

Commonly, two major merits are considered for sequence
performance in the radar; the ISL and PSL. The first is defined
by,

ISL =

N−1∑
k=1

|rk|2. (3)

The PSL is computed by:
PSL = max

k 6=0
|rk|. (4)

The matrix X for the sequence {xn}Nn=1, is defined according
to:

X =



x1 0 · · · 0

...
. . . . . .

...
...

...
. . . 0

xN
...

... x1

0
. . .

...
...

...
. . . . . .

...
0 · · · 0 xN


(2N−1)×N

(5)

Having defined X , the autocorrelation of the sequence
{xn}Nn=1 is represented by,

XHX =


r0 r∗1 . . . r∗N−1

r1 r0
. . .

...
...

. . . . . . r∗1

rN−1 . . . r1 r0

 . (6)
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Considering the fact that a good autocorrelation is the one
with r0 > 0 and ri = 0, i 6= 0, a sequence could be designed,
where XHX ∼= NI . Accordingly, let

‖ A ‖∞= max
i,j

|Ai,j | (7)

be the norm defined by Chebyshev distance for matrix A
(refer to appendix for the proof that it is actually a norm).
Minimizing the PSL of the sequence {xn}Nn=1 is equivalent
to minimizing:

‖XHX −NI ‖∞ . (8)
It is assumed that coping this quadratic problem is unapproach-
able, therefore, with an argument to be followed, minimizing
the following equation instead is considered,

‖X −
√
NL ‖∞, (9)

where the matrix L with the dimensionality of (2N − 1)×N
satisfies LHL = I , and X is of the form defined in (5),
indicating that the problem of minimizing PSL is equivalent
to the following minimization problem,

min ‖X −
√
NL ‖∞

s.t. LHL = I
(10)

Argument: The normed space (CN×M , ‖ . ‖∞) is a
Banach space (for the proof refer to Appendix A) and topo-
logically equivalent to the Euclidean space (CN×M , ‖ . ‖2).
Hence, the norm is a continuous function and space is com-
plete. Therefore, although (8) and (9) are not equivalent, they
are almost equivalent. That is, (9) is zero if and only if (8) is
zero. Hence, from the continuity, if the global minimum of (9)
is sufficiently small, then the sequence where (9) is minimized,
is arbitrary close to the solution of (8) �.

Before trying to find the solution of (9), consider the
situation where not all {rk}N−1k=0 but some part of them is
required to be made small, as considering rk, k = 1, . . . Q−1,
where Q ≤ N . That is just Q − 1 first autocorrelation
coefficients are of importance. Accordingly, Eq. (5) should
be altered properly, that is, let

X̃ =



x1 0 · · · 0

...
. . . . . .

...
...

...
. . . 0

...
...

... x1

xN
...

...
...

0
. . .

...
...

...
. . . . . .

...
0 · · · 0 xN


(N+Q−1)×Q

. (11)

Then we have,

X̃
H
X̃ =


r0 r∗1 . . . r∗Q−1

r1 r0
. . .

...
...

. . . . . . r∗1

rQ−1 . . . r1 r0

 . (12)

Indeed, by considering this configuration, the PSL of se-
lected autocorrelation coefficients rk, k = 1, . . . Q − 1, can
be minimized through solving the following minimization
problem,

min ‖ X̃ −
√
NL ‖∞

s.t. LHL = I
(13)

where, L is a (N +Q− 1)×Q matrix. Like any other cyclic
algorithm, finding the solutions of X̃ and L from each other
in a cyclical manner would suffice. However, because of the
infinity norm, it is not possible to find the L. To mitigate this
problem, here, just an approximate solution of L is sufficient.
In fact, because of the cyclic nature of this algorithm, it is
sufficient to have an enhancement at each step. A proper
approximate solution of (13) with respect to L can be obtained
by singular value decomposition, accordingly, first let

X̃
H

= U1ΣUH
2 (14)

be the economy-sized singular value decomposition (SVD) of
the conjugate transpose of the matrix X̃ , then,

L = U2U
H
1 , (15)

is the solution of the Euclidean version of the problem in
(13) (see [17], [19], [26] and the references therein). Fig. 1
illustrates the conceptual solution of Euclidean and Chebyshev
norm version of the problem in (13), for two dimensions. In
this figure, the 8 points for X̃ and their projection on the
feasible set LHL = I under the Euclidean and Chebyshev
distance are illustrated. The length of the dotted and solid
lines, which connect each point and its projection on the
circle, describes the Chebyshev and Euclidean distance in
this figure, respectively. Almost all other configurations of
the X̃ are symmetrically equivalent to these 8 points. It is
deduced from Fig. 1 that the error in this approximation is
less than 1/8 of the circle in all configurations. In this figure,
the solutions of the Chebyshev distance problem (i.e. (13)), are
obtained such that by relocating the solution on the circle, the
triangle side with the maximum length can not be shortened.
Note that, in 4 of the 8 configurations, the approximation
errors are zero. Besides, as the dimensionality of the problem
increases the approximation error occupies less proportion of
the corresponding hyper-ball. The second step in the cycle is
to solve (13) with respect to {xn}Nn=1 for a given L. In order
to accomplish this let x be an arbitrary element of {xn}Nn=1

and {µk} be the corresponding elements of the matrix
√
NL

the positions of which are the same as x in X̃ . Then, the
generic form of minimization in (13) becomes,

min
x

max
k
|x− µk| . (16)

This problem is a well-acknowledged problem known as
the smallest enclosing circle problem, which has matured
algorithms in order to find exact solution (for instance refer
to [34]). First, note that the problem in (16) can be converted
to,

min
xR, xI

R

s. t.

√
(xR −Re {µk})2 + (xI − Im {µk})2 ≤ R,

k = 1, ..., Q− 1,

(17)

where, xR and xI are the real and imaginary parts of x.
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Fig. 1: Conceptual illustration for comparison of the solution of (13)
with the solution of Euclidean version of it in 2 dimension

Consider the following problem for a fixed R ≥ 0,
min θ

s.t. (xR −Re {µk})2 + (xI − Im {µk})2 − θ ≤ R2

k = 1, ..., Q− 1.

(18)

Then, the problem in (18) becomes equivalent to the problem
in (17) in a sense that (x∗R, x

∗
I , R

∗) is an optimal solution
of (17) if and only if (x∗R, x

∗
I , 0) is an optimal solution of

(18) for R∗ = R (see the proof of the theorem 2 in [34]).
Having established this equivalency, the problem in (18) can be
converted into a series of constrained quadratic programming
problems, accordingly, define z := x2R + x2I − θ. Then, (18)
can be reformulated as

min x2R + x2I − z
s. t. − 2xRRe {µk} − 2xIIm {µk}+ z

≤ R2 − (Re {µk} )2 − (Im {µk})2 , k = 1...Q− 1

(19)

This problem is a quadratic programming with linear con-
straints, where, if its optimal value is zero, then R is the
optimal value for the problem in (17), otherwise, reduce R
and solve the newly obtained quadratic problem. Accordingly,
one may follow the following steps in order to get the exact
solution of (17).

Sub-algorithm 1:
1) Start from an appropriate point e.g.,

x =
maxd {µk}+mind {µk}

2
. (20)

and compute,
R = max

k

√
(xR −Re{µk})2 + (xI − Im{µk})2 (21)

2) Solve (19) and find z, xR and xI .
3) If

∣∣ x2R + x2I − z
∣∣ < δ then stop. Else, re-compute R in

(21) and go to step 2.
Consequently, the PSL minimization algorithm based on
quadratic approach is introduced through Algorithm 1. In
addition to this approach, other methodologies for solving the
smallest circle problem in (16) can be adopted. Two other such
methodologies for exact solution of the problem are introduced

connecting mind to maxd
       

       

Fig. 2: Conceptual illustration for comparing solutions to the smallest
circle, smallest rectangular problems and the one introduced in (24)

in appendix B. Nevertheless, most of these solutions are com-
putationally very expensive for our application. For instance,
the cone optimization approach requires O(Q3.5 | log δ|) arith-
metic operations to find the optimal solution of (16), where δ
is a user specified parameter for accuracy. Similarly, in the best
case scenario, the Sub-algorithm 1 requires at least O(Q2) op-
erations. Since the solution of (16) is required in “every itera-
tion”, the preference is to find an approximate but fast solution.

Algorithm 1: PMQA (PSL Minimization
Quadratic Approach)
1 Set {xn}Nn=1 to an initial sequence. (Initialization)
2 Constitute the matrix X̃ and compute L according

to equation (14)
3 For each xn constitute the sequence{µk}Q−1k=1 ,

solve the smallest circle problem in (16) by fol-
lowing steps 1,2,3 as in Sub-algorithm 1

4 Go to step 2 till some stop criterion is satisfied
(e.g. ‖ X̃new − X̃old ‖∞< ε)

III. ACCELERATION SCHEMES

In order to accelerate the algorithm, the first step is to avoid
the iterative Sub-algorithm 1 by some wise guess. Accord-
ingly, instead of solving the problem in (16), the following
approximated problem is considered

min
x

max
k
|x− µk|∞ , (22)

wherein |a|∞ := max{Re(a), Im(a)}. In fact, given the
sequence {µk}, the above mentioned problem is the smallest
enclosing rectangular for this sequence. Fig. 2 depicts the
smallest rectangular and smallest circle problems for a random
sequence. In fact, in almost all cases the solution to the small-
est rectangular is a good approximation to the smallest circle
problem. Moreover, the smallest rectangular has a closed-form
solution in the form,

x∗ =
max{Re{µk}}+min{Re{µk}}

2

+jmax{Im{µk}}+min{Im{µk}}
2 .

(23)

This solution consumes O(Q) logic and O(1) arithmetic
operations (additions and multiplications) in each iteration,
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hence saving a considerable amount of time. Furthermore,
as a rougher and more fast approach one may consider the
following approximate solution to (16),

x∗ =
maxd {µk}+mind {µk}

2
. (24)

It is worth mentioning that if one confines problem in (16) to
real sequences then the exact solution of (16) will be of the
similar form (see end of appendix B (IX) for proof.),

x∗ =
max {µk}+min {µk}

2
. (25)

Consequently, the following two algorithms are obtained for
generating sequences with good autocorrelation shapes.

Algorithm 2: PMAR (PSL Minimization Algo-
rithm where the smallest Rectangular)
1 Set {xn}Nn=1 to an initial sequence. (Initialization)
2 Constitute the matrix X̃ and compute L according

to equation (14)
3 For each xn constitute the sequence{µk}Q−1k=1 ,

solve the smallest rectangular problem in (22)
using (23) to achieve the new xn

4 Go to step 2 till some stop criterion is met
(e.g. ‖ X̃new − X̃old ‖∞< ε)

Algorithm 3: POCA (PSL Optimization Cyclic
Algorithm)
1 Set {xn}Nn=1 to an initial sequence (Initialization)
2 Constitute the matrix X̃ and compute L according

to equation (14)
3 For each xn constitute the sequence{µk}Q−1k=1 , find

the maximum and minimum of this sequence under
the dictionary order and set xn to arithmetic mean
of them

4 Go to step 2 till some stop criterion is satisfied
(e.g. ‖ X̃new − X̃old ‖∞< ε)

Alongside the enclosed iteration, the most computationally
intensive part of our algorithms and those that minimize
autocorrelation related factors like CA, CAP, CAD, is SVD.
This is just the problem when large values of N is of
concern. Reminding aforementioned argument that even an
approximate value of L works very well, fast low rank
SVD algorithms can be applied ( [32] and [27]) to improve
the complexity costs of the algorithms. Specifically, let
S � Q ≤ N and Ω be a Gaussian random matrix of the size
(N +Q− 1)× S. Constitute,

Y = X̃
H

Ω. (26)
where Y is of the size Q× S. Next, let

Y = QR (27)
be the QR factorization of the matrix Y , such that Q be Q×S
unitary matrix. Then, form matrix,

B = QHX̃
H
. (28)

Note that B has much lower dimensions (S × (N +Q− 1))
compared to original X̃ , that is, SVD of this matrix is
computationally cheaper. Compute the SVD of this thiner

matrix,
B = Û1Σ̂UH

2 . (29)
Finally, form the orthonormal matrix Û1, and compute U1

according to
U1 = QÛ1 (30)

It is known that, if the value of S is chosen large enough, then
the initial matrix X̃

H
can be approximated arbitrarily close

by (see [27], [32] and references therein),

X̃
H ≈ U1Σ̂UH

2 , (31)
In fact, as observed in the aforementioned references even for
small values of S this works well. The experiments run here
indicate that for S values as small as 4 suffice.

By applying this technique, those versions of CA algo-
rithm where SVD is involved (see, e.g. [17], [26]) can
be made faster. Regarding the algorithm introduced here,
i.e. the POCA, this enhancement results in the follow-
ing algorithm, where it is named RPOCA for random-
ized PSL optimization cyclic algorithm. The other SVD
based cyclic algorithms, like PMQA, PMAR, CA, CAP, and
CAD can be dealt with similarly. To avoid unnecessarily
lengthening of the article, they are not developed here.

Algorithm 4: RPOCA (Randomized PSL Opti-
mization Cyclic Algorithm)
1 Set {xn}Nn=1 to an initial sequence. Choose S �

Q ≤ N and set Ω to a Gaussian random matrix.
(Initialization)

2 Constitute the matrix X̃ (equation(11)) and com-
pute the low rank SVD of it using the equations
(31) then form L according to equation (14)

3 For each xn constitute the sequence {µk}Q−1k=1 ,
find lexicographic maximum and minimum of this
sequence according to (24) and set xn to their
arithmetic mean.

4 Go to step 2 till some stop criterion is satisfied.

Note that the computational cost of low-rank SVD is in
the order of O((N + Q − 1)QS). Besides, RPOCA needs
no random access to matrix X̃ , that is, it can be implemented
simpler (see [27], [32]). In fact, in computing a low-rank SVD
version of X̃ (equation (31)), just the matrices of the size
S×Q should be fitted in the random access memory (RAM).
On the contrary, the conventional SVD needs all the X̃ , with
dimensions of (N +Q− 1)×Q, to be fitted in RAM.

IV. SOLVING THE PROBLEM WITH CONSTRAINTS

No additional constraint was assigned to the develope-
ment of the above algorithms. However, based on practical
requirements some constraints can be added to this kind
of development. Such constraints have been and are being
adopted by many authors, like [15], [24]–[26]. One of such
requirements is the unimodularity constraint. The sequence
{xn}Nn=1 is called unimodular if and only if,

|xn| = 1, n = 1, ..., N. (32)
Unimodular sequences have the lowest possible peak to av-
erage power ratio (PAPR). Alternatively, one might consider
restricting PAPR itself. In order to enforce such a restriction
define x = [x1, ..., xn]

T . Since in our developed XHX ∼= NI
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the average power is 1
NxHx ∼= 1. Hence, in order to restrict

PAPR it is sufficient to restrict peak power or equivalently
adding the following constraints to each problem in the
development of previous sections.

‖|x|‖∞ ≤ a (33)
wherein |.| denotes the element-wise absolute value of the
complex vector x and ‖.‖∞ denotes the Chebyshev norm
of x. In order to preserve brevity, we avoid rewriting the
whole problems again. Nevertheless, such constraints should
be added to the equations (8), (10), (13), (16), (17), (18),
(19),(21). This alteration, illustrates itself in the sub-algorithm
1, Eq. (21), where the equation becomes,

R = max
k

√
(xR −Re{µk})2 + (xI − Im{µk})2 (34)

x2I + x2R = 1

for unimodularity constraint and
R = max

k

√
(xR −Re{µk})2 + (xI − Im{µk})2 (35)

x2I + x2R ≤ a
for constraining the PAPR. It is interesting to mention that the
development of acceleration schemes (Sec. III) subject to the
above-mentioned constraints are also possible. Accordingly,
(22) should be solved subject to the these constraints.

min
x

max
k
|x− µk|∞ ,

|x| = 1 or |x| ≤ a (36)
where the first constraint is for unimodularity and the second
is for constraining PAPR. Regarding unimodularity constraint,
finding an approximate and fast solution can be achieved
by solving it without constraint and then project it to unit
circle. Accordingly, the alteration on the algorithms PMAR,
POCA and RPOCA can be achieved by introducing following
intermediate step between steps 3 and 4.

3.5 Project xn to unit circle.
Similarly, in the case of restricted PAPR, it is sufficient to

solve (22) without any constraints and if the solution satisfies
the constraint (i.e. |x| ≤ a), mission accomplished, else the
projection onto |x| = a circle will restrict the PAPR. There-
fore, the alteration for algorithms PMAR, POCA and RPOCA
can be made by introducing the following intermediate step
between steps 3 and 4.

3.5 If xn > a then project xn to the |x| = a circle.
Remark. By introducing unimodularity constraint, a trade-
off involving cross-correlation and autocorrelation are derived
[29]. Consider the uni-power set of sequences {xmn }, n =
1, ..., N,m = 1, ...,M , where

N∑
n=1

|xmn |2 = 1,m = 1, ...,M. (37)

It is known that for such a sequence the following lower-bound
exists.

cmax ≥

√
M − 1

M(2N − 1)− 1
, (38)

where, cmax is the maximum of the correlation side-lobes
(consisting of all cross-correlation and all autocorrelation lags
except zero). When sequences are unimodular, each sequence
will be of power N , (i.e.

∑N
n=1 |xmn |2 = N,m = 1, ...,M ).

1.

1.

0

xn+1

xn1− λ

−1. 1.0

xn+1

xn

A
B

−A
B

A

−A

Fig. 3: Comparison of the phase space of modified Bernoulli system
(right), with phase space of Bernoulli System (left)

Therefore, the correlation scales up by a factor of N . Accord-
ingly, the lower-bound in this case is of the form,

cmax ≥ N

√
M − 1

M(2N − 1)− 1
. (39)

Nevertheless, all the above algorithms generate sequences
with good autocorrelation. In the next section, by applying
the modified Bernoulli system, an “arbitrarily large” set of
sequences with low cross-correlation is generated. By com-
bining these two approaches, one can design large set of
sequences with low cross-correlation and arbitrary shape of
autocorrelation.

V. MODIFIED BERNOULLI MAP

Bernoulli shift map belongs to a family called piecewise
linear maps, where its elements consist of a number of
piecewise linear segments [5], [22]. Due to its chaotic nature,
sequences generated from this map are highly sensitive to
initial conditions. Therefore, by changing its initial condition,
very different sequences can be produced (see [30]). Bernoulli
map is renowned for its simple structure consisting of two
linear segments as follows:

xn+1 =

{
xn

λ 0 < xn < 1− λ
xn−(1−λ)

λ 1− λ < xn < 1
(40)

The system defined above is commonly acknowledged as
Bernoulli system in its special case of λ = 1/2, represented
in the form,

xn+1 = 2 xn mod 1, x0 ∈ (0, 1) . (41)
The classical form of Bernoulli map given in (40) is not

appropriate to be applied here, since it is observed that,
the signals generated from this map are all positive which
result in a non-uniform high cross-correlation. To alleviate this
phenomenon, the origin of the phase space of this dynamical
system to is changed

(
1
2 , 1− λ

)
, hence the following dynam-

ical system, a modified version of Bernoulli system.

xn+1 =

{
Bxn +A, −BA < xn < 0

Bxn −A, 0 < xn <
B
A

(42)

Fig. 3 illustrates the phase space of the modified Bernoulli
system along with original Bernoulli system. Note that in
addition to the change in the center of the phase space, the
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Fig. 4: Baseband processing block diagram of MIMO radar at each antenna

slopes of the lines are altered as well. In Theorem V.1, it
is revealed that the modified Bernoulli system can indeed
produce chaos.
Theorem V.1. The modified Bernoulli system is a chaotic
system for B > 1.

Proof. In order to maintain that the one-dimensional system
xn+1 = f (xn) , x ∈ I (43)

is chaotic, its being of positive Lyapunov exponent, defined
by (see [7] and references therein) must be proved,

λ = lim
n→∞

1

n
log | d

dx
fn(x)|, (44)

where fn(x) ,

n times︷ ︸︸ ︷
f(f...(f(x))). In case of modified Bernoulli

system by successive substitution,
fn(x) = Bnx+K, (45)

is yield, where, K is a constant depending solely on B, A and
n. Therefore,

λ = lim
n→∞

1

n
log | d

dx
fn(x)| = log |B|. (46)

Now, by selecting B > 1, the system’s Lyapunov exponent
becomes positive.

Chaotic waveforms possess many appropriate radar proper-
ties. In fact, the autocorrelation and cross-correlation, due to
their aperiodicity and sensitivity to the initial condition, are
usually low. Besides, they can be generated with a very low
computational burden for any length and quantity.

By choosing different initial conditions, modified Bernoulli
system can produce waveforms with very low cross-
correlation. By applying the algorithms introduced in the
previous section, the autocorrelation side-lobes levels of the
waveforms can be enhanced. In order to have a proper set of
sequences, it is sufficient to generate random sequences from
the modified Bernoulli system beginning different initial con-
ditions and then applying one of the algorithms introduced in
previous sections (i.e. PMQA, PMAR, POCA or RPOCA). A
block diagram is proposed for baseband waveform generation
at the transmitter side in each antenna in Fig. 4.

VI. SIMULATION RESULTS

A. Autocorrelation Performance

In this section, the proposed methods in previous sections
are evaluated. Subsequently, in order to be able to compare
the autocorrelation, some metrics are defined herein. The
normalized autocorrelation is defined according to,

NormalizedAutocorrelation = 20 log10

∣∣∣∣rkr0
∣∣∣∣ ,

k = 1, ..., N. (47)

This metric resembles the correlation level given in [24], [26].
The name “Normalized Autocorrelation” is preferred here to
avoid confusion with cross-correlation. Afterwards, the peak
correlation level (PCL) is,

PCL = 20 log10

∣∣∣∣max rk
r0

∣∣∣∣ . (48)

When suppressing a specified part of the autocorrelation is
of concern, in [26] a useful metric named the modified merit
factor (MMF) is developed,

MMF =
N2

2
∑Q−1
i=1 |ri|2

. (49)

The equivalent merit factor of the suppressed part of the
autocorrelation is measured through this metric. Similarly, a
modified peak correlation level (MPCL) is defined according
to

MPCL =

∣∣∣∣max{ri|i = 1, ..., Q− 1}
r0

∣∣∣∣ . (50)

Note that MPCL is similar to PCL when suppressing all
autocorrelation side-lobes is of concern. The merits defined
in (47) and (49) are chosen from [17], [24], [26] in order
to compare newly developed algorithms with theirs on their
footings. The merits in (48) and (50) are defined here to
minimize peak side-lobe level. Hereafter, we compare POCA
and RPOCA with other methods. The CAN and WeCAN are
selected from [26], the “Monotonic minimizer for Weighted
ISL” (MWISL) and the “monotonic minimizer (MM) for
lp” are chosen from [24]. The CAN, WeCAN and MWISL
minimize ISL, and “MM for lp” minimizes lp-norm on side-
lobes. Like [24], very large p is considered for “MM for lp” in
order to approximate the Chebyshev norm, with p set at 10000
in specific. For both the “MM for lp” and MWISL the iteration
counter is set to 106 (which is way beyond the suggestions in
[24]) to ensure the convergence. Unless specified otherwise,
all the algorithms are initialized by Golomb sequence, defined
by,

G(n) = e(j(n−1)nπ/N), n = 1, ..., N. (51)
Finally, it should be mentioned that all the following simu-
lations are implemented through MatLab on an i7 3.2 GHz
machine with 6 GBytes of RAM.

1) Comparison with Barker
One of the widely embraced sequences in the context of the

good autocorrelation sequences is Barker. Barker is the most
acknowledged member of the bi-phase sequences. Although
it is not fair to compare a bi-phase sequence to a polyphase
sequence, due to its prevalent application, comparison with
Barker is illustrative. The longest Barker sequence is of the
length 13 and is as follows,

x = [1 1 1 1 1 − 1 − 1 1 1 − 1 1 − 1 1]. (52)
The comparison between the autocorrelation of Barker 13,
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PMQA and PMAR is depicted in Fig. 5 for parameters
ε = 10−12, N = 13, Q = 12. The fact that both algorithms
can suppress the autocorrelation side-lobes to almost zero in
wide range of correlation lags is revealed by this figure. Here,
the difference is in the consumed time, since 2.26 sec and
1.87 sec are consumed by PMQA and PMAR to generate this
figure. In the experimentations hereafter the focus is on POCA
and RPOCA, the reason is being the degree of approximations
applied in deriving them. Accordingly, their applicability is
asserted through various scenarios.
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Fig. 7: Comparison of PCL of CAN, POCA and MWISL algorithms
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Fig. 8: Comparison between the Normalized Autorotation of mono-
tonic minimizer (MM) for PSL minimization, RPOCA, and Chu
sequence, for N = 100

2) Suppressing all side-lobes

First, consider a scenario where suppressing all the side-
lobes of the sequence is of equal importance. For instance,
consider a case where designing a sequence with length N =
100 is required, thus, {

Q = 100

N = 100
, (53)

In this scenario, T = IN×N . The comparison between
POCA and CAN algorithms for N = 100 is depicted in
Fig. 6. The CAN algorithm is the best performing algorithm
amongst several algorithms developed in [26]: CAP, CAN, and
WeCAN, while, it lacks the ability to suppress some specified
part of the autocorrelation, where, WeCAN is developed there
to accomplish this task. Note that WeCAN and CAN have
the same functionality when suppression all side-lobes is
contemplated.

The CAN, POCA and MWISL are compared in terms of
the PCL in Fig. 7 for different lengths for the same scenario
as in (53). It is observed that POCA easily beats MWISL and
CAN with respect to PCL, where, the supremacy of POCA
over CAN is of order 5 dB. This figure is generated by setting
equal terminating points for both CAN and POCA.

Golomb sequence belongs to the family of polyphase se-
quences. Another member of this family is the so-called Chu
sequence, which is considered to be the best amongst them
ISL (refer to [21] and references therein). This sequence is
defined according to

C(n) =

{
e(j(n−1)

2π/N) if n is even

e(j(n−1)nπ/N) if n is odd
, n = 1, ..., N.

(54)
The comparison between “MM for lp”, RPOCA, and Chu
sequence is demonstrated in Fig. 8 for the same scenario
as above (i.e. equation (53)), indicating that, in terms of
autocorrelation side-lobe levels RPOCA defeats state-of-the-
art methods. Like in [24], the p is set at 10000 in order to
approximate the PSL minimization.

3) Suppressing Less Than Half of the Side-lobes

In the second scenario, a situation is considered, where, sup-
pressing a specified part of the autocorrelation is of concern.
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Consider the example given in equation (66) of [26], where
suppression of r1, ..., r39 is required when N = 100, that is,{

Q = 39

N = 100
. (55)

In [26], the CAP+WeCAN is revealed to be the best-
performing configuration (Refer to Fig. 4.b of [26]. Re-
picturing is avoided to preserve brevity). The POCA’s out-
put initialized by modified Bernoulli is illustrated in Fig. 9
in companion with MWISL’s output for the same scenario,
where, the smallest correlation level and the peak correlation
level in the suppressing region for POCA is -340 dB and -308
dB, respectively. In comparison, the corresponding figures for
CAP+WeCAN are -320 and -280 dB, respectively, indicating
an improvement of more than 20 dB. In this figure the number
of iterations for MWISL is set to 106 to ensure convergence.
In comparison, the required number of iterations for POCA
algorithm in Fig. 9 is 341(ε = 10−14). It is obvious that the
supremacy of POCA to MWISL is more than 40 dB.

The comparison of the MMF and MPCL figures for We-
CAN initialized by CAP (CAP+WeCAN), POCA and RPOCA
initialized by Modified Bernoulli (POCA+Modified Bernoulli
and RPOCA+Modified Bernoulli) as well as the CAP algo-
rithm are tabulated in Table I. In this table MPCL and MMF
(Eq. (49),(50)) numbers are in magnitude. From numbers
in Table I it is deduced that, although POCA and RPOCA
minimize PSL they show superior merit factors or equivalently
ISL, that is, by decreasing peak of the side-lobes (or PSL), all
the side-lobes and therefore their power integration (or ISL)
would be decreased. This phenomenon is proved by authors
for asymptotic case (i.e. for very large sequences) in [13].
The table provides a comparison between consumed time in
seconds for each one of the aforementioned methods, as well.
The RPOCA and POCA both consumes less than 3 sec, in
comparison with more than 140 sec by the other methods. Note
that the number for RPOCA is not less than POCA since the
sequence is not long enough. In fact, the RPOCA is superior
to POCA regarding time for large values of matrix dimension
where the speedup of the fast SVD dominates time added by
the additional steps in RPOCA.

4) Suppressing More Than Half of the Side-lobes

As mentioned in [26], the CAP and CAP+WeCAN algo-

TABLE I: Comparison of MPCL and MMF for the scenario given
in (55)

WeCAN
+CAP

POCA
+Modified
Bernoulli

RPOCA
+Modified
Bernoulli

CAP

MPCL 1.12 ×
10−14

2.96 ×
10−15

3.096 ×
10−15

2.23 ×
10−13

MMF 2.37× 1026
5.20 ×
1032

4.54 ×
1032

1.08 ×
1023

Consumed
Time (s) > 140 2.36 2.607 140.06
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Fig. 10: Comparison between POCA with random initializa-
tion and POCA initialized with modified Bernoulli

rithms are able to provide ”almost zero” autocorrelation side-
lobes ”just” when suppressing less than half of the side-lobes
are of concern. And if suppression of more than half is taken
into account, then the side-lobes for either CAP or WeCAN
becomes higher. According to the assessment made here, this
holds for MWISL as well. The reason behind this phenomenon
is that the problem is formulated with unimodularity (a desir-
able but limiting) constraint. This additional constraint results
in the elimination of the half of the degrees of freedom in
nullifying autocorrelation values. Luckily, this limitation does
not hold for PMQA, PMAR, POCA, and RPOCA, except
when suppressing all the side-lobes is of concern, where the
newly developed algorithms cannot provide almost zero side-
lobes as well. Note that the scenario in Fig. 5 affirms this fact
for the first two algorithms. To illustrate this fact for POCA
and RPOCA, several scenarios are contemplated here. In the
first, suppression of r1, ..., r64 at N = 100 is envisioned and
bearing in mind that typical surveillance pulse Doppler radars
commonly utilize short or medium-size sequences for pulse
compression, in the additional scenarios, the suppression of
r1, ..., r32 at N = 40 and suppression of r1, ..., r17 at N = 20
are examined. Fig. 10 illustrates these scenarios.

The question at hand now is that how much is the effect
of chaotic sequence initialization on the autocorrelation side-
lobes. To answer this question, a ’suppressing more than half
of the side-lobes’ scenario is contemplated due to the fact
that it has more practical value. Accordingly, the comparison
for N = 20, Q = 18 is illustrated in Fig. 10. From this
comparison, it is observed that the POCA initialized by
modified Bernoulli performs slightly better (about 4 dB) for
most of the suppression lags.

5) Dealing With Large N
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Another drawback of the CAP and WeCAN is that they
cannot easily cope with large sequences (i.e. the lengths more
than N ∼ 1000). In these situations, POCA and its fast
version, RPOCA, can be applied. It should be noted that due to
their iterative nature, the POCA and RPOCA have restrictions
as well. In fact, the superiority of these algorithms compared
to their predecessors is of order one, two or three decades.
That is, POCA is restricted to lengths up to N ∼ 104 and
RPOCA cannot be applied for sequences more than N ∼ 106.
The application of this algorithm on Golomb sequence with
lengths N = 103 and N = 104 are illustrated in Fig 12a and
12b, when suppression of r1, ..., r64 is required (Q = 65).
The experiments here indicate that for RPOCA S as low as 4
would suffice.

6) Imposing PAPR restriction and Unimodularity constraint
Generally speaking, imposing additional restrictions like the
ones introduced in section IV projects time burden on the
algorithm for total convergence. In another perspective, for a
certain amount of iteration, PAPR restriction results in higher
side-lobe levels. In order to show this fact, iteration num-
bers for POCA algorithm implemented with unimodularity
and PAPR constraints are restricted. In order to assess that
the constrained version of the algorithm can suppress the
side-lobes down to almost zero, the POCA constrained to
unimodularity for N = 100, Q = 20 is simulated, where,
the number of iterations is set to 10000 in order to assure
convergence. The result is depicted in Fig. 13 along with other
scenarios. Furthermore, in order to study the effect of PAPR
bound, the POCA with constrained PAPR is examined, and
to distinguish this case from others, the simulation parameters
are N = 100, Q = 30. Nevertheless, for a certain amount of
iterations (1000 iterations) the POCA with constrained PAPR
is simulated in three cases: unimodularity, a = 1.02, and
a = 1.2, Fig. 13, where it is observed that less suppression
(higher side-lobe levels) is reached when restriction on PAPR
tightens.

B. Cross-Correlation Performance
From the above arguments, it is clear that the autocorrelation

related metrics are improved. However, the cross-correlation
between the transmitted waveforms should be as low as
possible in MIMO radars, hence, to quantify the goodness

TABLE II: Comparison of Computational burden when con-
sidering CCP

Consumed Time in seconds LengthAlgorithm 10 100 300

POCA initialized by modified Bernoulli 0.1 1.3 20.3
MIMO-CAN initialized by modified Bernoulli 0.1 3.2 83
MIMO-CAN random sequence initialization 0.02 2.54 67.1

of the cross-correlation, the cross-correlation peak (CCP) is
defined according to,

CCP = max (rxy (k)) , (56)
where, rxy (k) is the cross-correlation between the sequences
{xn}Nn=1 and {yn}Nn=1,

rxy(k) =

N∑
n=k+1

xny
∗
n−k = r∗xy(−k) , k = 0, ..., N − 1.

(57)
By this definition, the CCP goes to zero whenever all the
cross-correlation values tends to zero. The comparison of
cross-correlation peaks for Bernoulli system before and after
modification is depicted in Fig. 14a. This figure is generated by
averaging CCP over 100 instances of the sequences generated
by equations (40) and (42) initialized by different initial
values. The parameters of the systems in (40) and (42) are
λ = 1.9 and B = 1/λ. Hence, the modification of the
Bernoulli system results in the generation of a set of sequences
with low cross-correlation. The comparison between the CCP
of POCA + Modified Bernoulli is presented in Fig. 14b,
when initialized by different initial values and MIMO-CAN
algorithm [17], where the number of antenna’s in MIMO-CAN
is set to M = 40. The MIMO-CAN is the generalization of
CAN approach to MIMO radars by considering the cross-
correlation in addition to autocorrelation. In Fig. 14b, the
superiority of the POCA + Modified Bernoulli compared to
MIMO-CAN is at least 12 dB. Furthermore, by comparing
14a and 14b it is inferred that, when using POCA algorithm
in order to suppress the autocorrelation of the modified
Bernoulli, the cross-correlation degenerates (i.e. increases).
This fact indicates the existence of a trade-off of obtaining
good autocorrelation and reduced cross-correlation.

C. Time performance

One of the advantages of the POCA algorithm over the
monotonic minimizer is its low time consumption. Therefore,
the MWISL [24], which is able to suppress the desired part of
the autocorrelation is chosen as a benchmark and the scenario
in (55) is contemplated to compare consumed time and the
MPCL. These two parameters are depicted in Fig. 15 in an
x-y plot, where it is observed that for an equal amount of
consumed time, the suppression level for POCA, measured by
MPCL, is considerably more.

VII. CONCLUSION

The waveform generation for MIMO radars has been ex-
amined. Our idea was that by juxtaposition of the chaotic
systems and cyclic algorithms, it is possible to design large
set of sequences which,
• have very low autocorrelation side-lobes.



11

-1000 -500 0 500 1000
lag k

-350

-300

-250

-200

-150

-100

-50

0
A

ut
oc

or
re

la
tio

n 
(d

B
)

(a)

-1 -0.5 0 0.5 1
lag k ×104

-350

-300

-250

-200

-150

-100

-50

0

A
ut

oc
or

re
la

tio
n 

(d
B

)

(b)
Fig. 12: Autocorrelation of POCA for N = 1000, Q = 65 and N = 10000, Q = 65
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• can have “almost zero” side-lobes in specified regions of
autocorrelation.

• maintain low cross-correlation between the elements of
the sets.

In the way of obtaining the aforementioned set, the problem of
minimizing peak side-lobe level is formulated. Consequently,
several algorithms are developed namely, PMQA, PMAR,
POCA, and RPOCA. The self-applied algorithms to mono-
static pulse Doppler (PD) radars outperform their predecessors
both in the terms of implementation time and their generated
side-lobe level of the sequences. Moreover, the Bernoulli
chaotic system is modified to have low cross-correlations.
By juxtaposition of the previously mentioned algorithms and
modified Bernoulli, appropriate waveforms for MIMO radar
applications can be generated.

VIII. APPENDIX A

Throughout the paper, the notion that (CN×M , ‖ . ‖∞) is a
Banach space has been used extensively. In order to maintain
the entirety of the article, the credibility of this fact should
be verified. Consider the vector space of all N ×M matrices
over the field of complex numbers, or CN×M . Let A and B
be two arbitrary elements of this vector space. Moreover, let
α be an arbitrary complex number. In order to maintain that
(CN×M , ‖ . ‖∞) is a normed space, it is sufficient to prove
that,

• Positive definiteness:
‖ A ‖∞> 0 for all nonzero vectors and

‖ A ‖∞= 0
¯
if and only ifA = 0

¯
(58)

• Linearity:
‖ αA ‖∞= α ‖ A ‖∞ (59)

• Triangle inequity:
‖ A+B ‖∞≤ ‖ A ‖∞ + ‖ B ‖∞ . (60)

The two first properties, (58) and (59) are straightforward.
To prove that last note that
‖ A+B ‖∞= max |Ai,j +Bi,j |
≤ max(|Ai,j | + |Bi,j | )= max |Ai,j | +max |Bi,j |
= ‖ A ‖∞ + ‖ B ‖∞,

(61)

where, triangle inequity for complex numbers is used in
forming (61). For a normed space to be Banach space an
additional condition known as “completeness” is essential. In
specific terms, given any Cauchy series in the space, it should
converge. The completeness of (CN×M , ‖ . ‖∞) is revealed
here through Theorem VIII.1. Before that, the term “Cauchy
series” is defined,

Definition: Consider a normed vector space (X, ‖ . ‖), a
series {xn}∞n=1 with its elements in X is a Cauchy series if,

∀ε > 0 ∃N0 ; ∀m,n > N0 |xn − xm| < ε. (62)

Theorem VIII.1. The metric space defined by the ‖ . ‖∞
norm over CN×M is complete.

Proof. Let, {An}∞n=0 be a Cauchy series. Note that in this
notation n is just a superscript and does not denote the power.
For any ε > 0, there exists an integer positive N0 such that
for every n,m > N0,

‖ Am −An ‖∞≤ ε. (63)
In order to show that such a sequence converges, it is sufficient
to prove that there exists a matrix like A such that for any
ε > 0, there is an integer N0 > 0 such that

‖ An −A ‖∞≤ ε. (64)
From (63), it is revealed that

max
∣∣Ani,j −Ami,j∣∣ < ε (65)

Therefore, for any ε > 0, there exists a positive integer,
N such that for any n,m > N and for every i and j the
inequality

∣∣Ani,j −Ami,j∣∣ < ε is guaranteed. Alternatively, for
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every i and j the complex sequence generated by
{
An

i,j

}∞
n=0

is a Cauchy series in (C, |.|) normed vector space, where |.|
denotes the absolute value. Note that, ( C, |.|) is known to
be a complete normed vector space, indicating that, every
Cauchy series in it converges. For the sequences

{
Ani,j

}∞
n=0

assume, they converge to fi,j for every i and j. Mathematically
speaking,
∀ε > 0 ∃N0 ; ∀n > N0 ∀i,j

∣∣Ani,j − fi,j∣∣ < ε. (66)
Note that, the inequality holds for every i and j. Therefore,
it also holds when “every” is changed to “max”. That is, the
statement in (66) is equivalent to,
∀ε > 0 ∃N0 ; ∀n > N0 max

∣∣Ani,j − fi,j∣∣ < ε. (67)
Hence,
∀ε > 0 ∃N0 ; ∀n > N0 ‖ An − F ‖∞≤ ε. (68)

where, F is defined according to the following equation.
F = [fi,j ] , i = 1, ..., N, j = 1, ...,M. (69)

The statement in (68) states that the sequence {An}∞n=0

converges to F in the Chebyshev distance sense, resulting in
the completeness of the proof.

IX. APPENDIX B

In this appendix alternative approaches to exact solution
of the smallest circle problem in (16) is developed. For any
complex sequence {µk}Q−1k=1 consider the following problem,

min
x

max
k
|x− µk|

= min
xR, xI

{
max
k

√
(xR −Re {µk})2 + (xI − Im {µk})2

}
.

(70)
First, notice that this unconstrained problem is equivalent to
the following constrained problem,

min
xR, xI

R

s. t.

√
(xR −Re {µk})2 + (xI − Im {µk})2 ≤ R,

(71)

where, xR and xI are real and imaginary parts of x. Then,
by defining yk := xI − Im {µk}, wk := xR − Re {µk}, k =
1, . . . , Q− 1 this problem can be restated as,

min
xR, xI ,{wk},{yk}

R

s. t. wk + xR = Re {µk} , k = 1, . . . , Q− 1

yk + xI = Im {µk} , k = 1, . . . , Q− 1

R ≥
√
w2
k + y2k , k = 1, . . . , Q− 1.

(72)

The problem in (72) is a cone optimization problem and can
be solved through interior point method with an arithmetic
cost of O(n3.5 | log δ|), where δ is the user defined accuracy
parameter.

Another approach to solving (70) is obtained through notic-
ing that this problem is also an unconstrained nondifferentiable
convex programming, solvable through subgradient method.
Accordingly, one may follow the following steps in order to
find the exact solution.

1) Start form an appropriate point, for instance

x0 =
maxd {µk}+mind {µk}

2
. (73)

2) Compute the subgradient of
f(xR, xI) =

max
k

√
(xR −Re {µk})2 + (xI − Im {µk})2,

(74)

at (xiR, x
i
I)
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3) Determine the step size by using line search. To this end,
let

K = {k : f(xR, xI) =√
(xR −Re{µk})2 + (xI − Im{µk})2},

(75)

be the active functions index set. Then, constitute the set,
∂f(xR, xI) =

co



 xR −Re {µk}
xI − Im {µk}


√

(xR−Re{µk})2+(xI−Im{µk})2
|k ∈ K

 ,
(76)

where ”co” and ∂f(xR, xI) denote the convex hull and
the sub-differential of f(xR, xI), respectively. Therefore,
any member of this set is a sub-gradient of f . Accord-
ingly, if ∂f(xR, xI) has just one member, it means f is
differentiable and the steepest decent direction (i.e. the
negative of the sole member of ∂f(xR, xI)) should be
taken as search direction vector. Otherwise, the negative
sub-gradient with the smallest norm should be taken.

4) Set i = i+1 and go to step 2 unless the step size is less
than a specified threshold.

It should be noted that there may be other solutions to
the smallest enclosing circle problem, which are beyond the
topic of this paper. Moreover, like the solutions given in
this appendix all the solutions for smallest circle problem
involve iteration, and thus utilizing them yields to approximate
solution after some iterations. This fact is the reason behind
finding a heuristic approximate solution in (24). Note that, if
the problem in (16) is confined to real sequences, the solution
in (24) is exact solution. This fact is revealed in the following
Lemma.
Lemma IX.1. The smallest circle problem for real-valued
sequence has a solution of the form,

x∗ =
maxµk +minµk

2
(77)

Proof. First, notice that the feasible set is not empty. Divide
the feasible set into two following subsets:

1) The elements of feasible set that are greater than x∗. That
is,

x ≥ maxµk +minµk
2

(78)

This inequality implies that,
x− minµk ≥ |x− µk| , ∀k (79)

where the equality holds for those k where minimum of
µk occurs. From (79) it is easy to deduce that,

max
k
|x− µk| = x− minµk (80)

So the problem in (16) is equal to the minimization
problem:

min
x

(x− minµk)

s.t. x ≥ maxµk+minµk

2

(81)

Obviously, the solution to this problem is:

x∗ =
maxµk +minµk

2
. (82)

2) The elements of feasible set that are less than x∗, that is,

x ≤ maxµk +minµk
2

. (83)

Similarly, here we have:
max µk − x ≥ |x− µk| , ∀k (84)

or,
max
k
|x− µk| = max µk − x. (85)

Thus, in this case the minimization problem in (16) is
equal to the following problem:

min
x

(max µk − x)

s.t. x ≤ maxµk+minµk

2

. (86)

With the change of variable z = −x, this problem can
be restated as:

min
z

(z + max µk)

s.t. z ≥ −maxµk+minµk

2

, (87)

which is the same problem as in (81) with,

z∗ = −
maxµk +minµk

2
(88)

Finally, note that the inclusion of the x∗ in both subsets
does not alter the integrity of the proof.
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