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Abstract—Suppose that there is a ground set which consists of a
large number of vectors in a Hilbert space. Consider the problem
of selecting a subset of the ground set such that the projection of a
vector of interest onto the subspace spanned by the vectors in the
chosen subset reaches the maximum norm. This problem is gen-
erally NP-hard, and alternative approximation algorithms such
as forward regression and orthogonal matching pursuit have been
proposed as heuristic approaches. In this paper, we investigate
bounds on the performance of these algorithms by introducing
the notions of elemental curvatures. More specifically, we derive
lower bounds, as functions of these elemental curvatures, for
performance of the aforementioned algorithms with respectto
that of the optimal solution under uniform and non-uniform
matroid constraints, respectively. We show that if the elements in
the ground set are mutually orthogonal, then these algorithms
are optimal when the matroid is uniform and they achieve at least
1/2-approximations of the optimal solution when the matroid is
non-uniform.

I. I NTRODUCTION

Consider the Hilbert spaceL2(µ) of square integrable
random variables withµ the probability measure. LetX be
a ground setof vectors andη be the vector of interest in
L2(µ). Let I be a non-empty collection of subsets ofX ,
or equivalently, a subset of the power set2X . For any set
E ∈ I, we use span(E) to denote the subspace spanned by
the vectors inE. We usePη(E) to denote the projection ofη
onto span(E). The goal is to choose an elementE in I such
that the square norm ofPη(E) is maximized, i.e.,

maximize‖Pη(E)‖2
subject toE ∈ I.

(1)

A. Motivating Examples

The above formulation has vast applications in statistical
signal processing [1] [2] such as maximizing the quadratic
covariance bound, sensor selection for minimizing the mean
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squared error, and sparse approximation for compressive sens-
ing. Here we briefly introduce a few examples.

1) Quadratic Covariance Bound.
Let µθ be the underlying probability measure associated
with parameterθ lying on the parameter spaceΘ. The
problem of interest is to estimateg(θ), whereg : Θ→ R

is a bounded known function. Let̂g ∈ L2(µθ) be an
unbiased estimator ofg(θ) and η = ĝ − g(θ) ∈ L2(µθ)
be the estimation error, which is the vector of interest.
For any setE of score functions, the variance of any
unbiased estimator is lower bounded by the square norm
of the projection of estimation errorη onto span(E). This
fact is also known as quadratic covariance bound [3], [4]:

Variance[ĝ] = ‖η‖2 ≥ ‖Pη(E)‖2, (2)

where ‖η‖2 = Eµθ
[ηη∗] and Eµθ

denotes the ex-
pectation with respect to the measureµθ. The well-
known Cramer-Rao bounds [5], Bhattacharyya bounds
[6], and Barankin bounds [7] are essentially special
cases of the quadratic covariance bound by substituting
E with specific sets of score functions. For example,
the score function for Cramer-Rao bounds is simply
∂ ln d(x; θ)/∂θ, where d(x; θ) denotes the probability
density function of measurementx. While these estab-
lished bounds provide insightful understandings for the
performance of unbiased estimators, the corresponding
score functions do not necessarily provide the tightest
bounds for the estimator variance. Moreover, derivation
of these bounds such as Cramer-Rao bounds requires
the inverse or pseudo-inverseFisher information ma-
trix, which can be computationally impractical for large
number/dimension of unknown parameters [8]. Last, a
necessary condition to compute these bounds is that the
probability density function and its partial derivatives
are well-defined. For these reasons, other score functions
might be more suitable for providing the lower bound.
Suppose that there exists a large setX of candidate score
functions inL2(µθ). We aim to choose an optimal subset
E ⊂ X which maximizes‖Pη(E)‖2 and hence provides
the tightest bound for variances of unbiased estimators.

2) Linear Minimum Mean Squared Error Estimator.
Suppose that there is a large set of sensors, each of
which makes a zero-mean and square-integrable random
sensor observation. These sensor observations are not
necessarily independent. The goal is to select a subset
of the sensors such that the mean squared error for
estimating the parameter of interestη is minimized. It
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is well-known that the orthogonality principle implies
that the Linear Minimum Mean Squared Error (LMMSE)
estimator, denoted byηLMMSE, is the projection ofη onto
the subspace spanned by a selected subsetE [1]. The
problem of interest is how to chooseE from the setX
of all sensor observations such that the mean squared
errorE[(ηLMMSE − η)2] is minimized, i.e., the projection
of η onto span(E) is maximized. Another approach to this
sensor selection problem is to maximize the information
gain and apply submodularity to bound the performance
of greedy algorithms [9]- [11]. When the criterion is
mean squared error, the objective function is in general
not submodular, resulting in difficulty to quantify the
performance of the greedy algorithms.

3) Sparse Approximation for Compressive Sensing.
Compressive sensing is the problem of recovering a
sparse signal using linear compressing measurements
(see, e.g., [13]– [18]). Letη ∈ R

d be the measurement
signal. We assume thatη = Hx whereH ∈ R

d×n is
the measurement matrix. The goal is to findK non-
zero components in then-dimensional vectorx with
K ≪ d < n such thatHx can exactly recover or well-
approximateη, i.e.,

minimize ‖η −Hx‖2
subject to‖x‖0 ≤ K,

where ‖x‖0 denotes theL0-norm of x. The geomet-
rical interpretation of the above problem is to select
K columns of matrixH such that the norm of the
projection ofη onto the subspace spanned by the chosen
columns is maximized. Adaptive algorithms such as those
based on partially observable Markov decision processes
have been proposed to find the optimal solution [19].
The computation complexity for adaptive algorithms is
in general quite high despite the reduction brought by
approximation methods such as rollout.

All the above applications are special cases of the projection
maximization problem defined in (1). In general, problem (1)
is a combinatorial optimization problem and it is NP-hard to
obtain the optimal solution. Alternative algorithms such as
forward regression [12] and orthogonal matching pursuit [20]–
[24] have been studied intensively to approximate the optimal
solution of (1). Each of these two algorithms starts with an
empty set, and then incrementally adds one element to the
current solution by optimizing a local criterion, while the
updated solution still belongs to the set of feasible solutions
I. They are known as greedy approaches due to the nature
of local optimality, although the local criteria are different1.
Details are given in Algorithms 1 and 2, respectively. The
definition of matroid will be given in Section II. Moreover, we
use〈r|s〉 to denote the inner product ofr ands in the Hilbert
space. Notice that neither algorithm achieves the maximum
projection in general. The main purpose of this paper is to
quantify their performance with respect to that of the optimal
solution. We note that another frequently used approach is

1Other variations of greedy approaches have also been proposed and
investigated (see, e.g., [25] [26]).

through convex relaxation schemes based on sparse-eigenvalue
or restricted isometry property [27], although the objective
there is usually to minimize the difference between the actual
and estimated coefficients of sparse vectors (this corresponds
to L0-norm minimization while (1) deals withL2-norm).

Algorithm 1: Forward Regression

Input : Ground setX and an associated matroid(X, I);
vector of interestη.

Output : An elementE ∈ I.
1 begin
2 E ← ∅;
3 for ℓ = 1 to K do
4 s∗ = argmax

s∈X\E,E∪{s}∈I

‖Pη(E ∪ {s})‖2;

5 UpdateE ← E ∪ {s∗};
6 end
7 end

Algorithm 2: Orthogonal Matching Pursuit

Input : Ground setX and an associated matroid(X, I);
vector of interestη.

Output : An elementE ∈ I.
1 begin
2 E ← ∅;
3 Residuer = η;
4 for ℓ = 1 to K do
5 s∗ = argmax

s∈X\E,E∪{s}∈I

|〈r|s〉|;

6 UpdateE ← E ∪ {s∗};
7 Updater ← r − Pη(E);
8 end
9 end

B. Main Contributions

The main purpose of this paper is to provide performance
bounds for forward regression and orthogonal matching pursuit
with respect to the optimal solution. To derive the bounds,
we will define several notions of elemental curvatures, which
are inspired by the elemental curvature introduced in [28].
We also illustrate from a geometric perspective how these
elemental curvatures are related with principal angles, which
are in turn related with the restricted isometry property and
mutual incoherence [29]. It turns out that the (near-)optimality
of the two aforementioned algorithms is closely related with
the mutual (near-)orthogonality of the vectors in the ground
set and the structure of the matroid. Our approach allows
the derivation of sharp approximation bounds for these two
algorithms, in general situations (where the matroid might
be uniform or non-uniform). To the best of our knowledge,
the non-uniform matroid situation has never been investigated
in any previous papers. More specifically, in the special case
where the vectors in the ground set are mutually orthogonal,
these two algorithms are optimal when the matroid is uniform
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and they achieve at least1/2-approximations of the optimal
solution when the matroid is non-uniform.

II. CURVATURES, MATROID, AND RELATED WORK

In this section, we first introduce two new notions of
curvature and review the definition the matroid. Then we
review the related literature to our study. Last, we investigate
the notions of curvature from a geometric perspective.

As we shall see later from this geometric perspective,
curvatures are essentially metrics to capture the mutual near-
orthogonality of the vectors in the ground set. Without lossof
generality, throughout the paper we assume that all elements in
X are normalized, i.e.,‖t‖2 = 1 for anyt ∈ X . Let t⊥(E) and
t̄(E) be the normalized orthogonal and parallel components
of t with respect to span(E) (simplified ast⊥ and t̄ unless
otherwise specified):

t = t⊥ sinϕ+ t̄ cosϕ,

whereϕ denotes the angle betweent and span(E).
We define theforward elemental curvature, denoted bŷκ,

as follows:

κ̂ = max
E,s,t

‖Pη(E ∪ {s, t})‖2 − ‖Pη(E ∪ {s})‖2
‖Pη(E ∪ {t})‖2 − ‖Pη(E)‖2

subject toE ⊂ X, s, t ∈ X \ E, card(E) ≤ 2K − 2,

and‖Pη({s⊥(E)})‖ ≤ ‖Pη({t⊥(E)})‖.
Similarly, we define thebackward elemental curvature, de-
noted byκ̄ as follows:

κ̄ =max
E,s,t

‖Pη(E ∪ {s, t})‖2 − ‖Pη(E ∪ {s})‖2
‖Pη(E ∪ {s})‖2 − ‖Pη(E)‖2

subject toE ⊂ X, card(E) ≤ 2K − 2, s, t ∈ X \ E,

and‖Pη({s⊥(E)})‖ ≥ ‖Pη({t⊥(E)})‖.
Notice that both curvatures are ratios ofdifferencesof the
discrete function, analogous to second-order derivative of a
continuous function. In particular, if all the elements inX are
mutually orthogonal, then̂κ = κ̄ = 1. Moreover, it is easy to
show that the objective function in (1) is always monotone:
Suppose thatS ⊂ T ⊂ X . Then, by definition, span(S) is a
subspace of span(T ). Thus we have

‖Pη(S)‖2 ≤ ‖Pη(T )‖2,
which indicates that̂κ and κ̄ are always non-negative.

Next we state the definition ofmatroid. Let I be a collection
of subsets ofX . We call (X, I) a matroid [30] if it has
the hereditary property: For anyS ⊂ T ⊂ X , T ∈ I
implies thatS ∈ I; and theaugmentationproperty: For any
S, T ∈ I, if T has a larger cardinality thanS, then there
existsj ∈ T \ S such thatS ∪ {j} ∈ I. Furthermore, we call
(X, I) a uniform matroid if I = {S ⊂ X : card(S) ≤ K}
for a givenK, where card(S) denotes the cardinality ofS.
Otherwise,(X, I) is a non-uniformmatroid. The structure of
a matroid captures the feasible combinatorial solutions within
the power set of the ground set. Take the sensor selection
problem as an example, a uniform matroid constraint means
that we can choose any combination ofK sensors from all

the sensors for the solution; a non-uniform matroid constraint
means that only certain combinations ofK sensors are feasible
solutions. Similarly, in many compressed sensing applications
such as [31], we might have some prior knowledge that not
all combinations of sparsity locations are feasible solutions.

A. Related Work

We first review the notion of submodular set function. Let
X be a ground set andf : 2X → R be a function defined on
the power set2X . We call thatf is submodular if

1) f is non-decreasing:f(A) ≤ f(B) for all A ⊂ B;
2) f(∅) = 0 where∅ denotes the empty set (note that we

can always substitutef by f − f(∅) if f(∅) 6= 0);
3) f has the diminishing-return property: For allA ⊂ B ⊂

X andj ∈ X \B, we havef(A∪{j})− f(A) ≥ f(B ∪
{j})− f(B).

The optimization problem that aims to find a set in the
matroid to maximize a submodular function is in general
not tractable. Many papers have studied the greedy algorithm
as an alternative: starting with an empty set, incrementally
add one more element that maximizes the local gain of the
objective function to the current solution, while the updated
solution still lies in the matroid. Existing studies have shown
that the greedy algorithm approximates the optimal solution
well. More specifically, Nemhauseret al. [32] showed that the
greedy algorithm achieves at least a(1− e−1)-approximation
for a uniform matroid. Fisheret al. [33] proved that the greedy
algorithm provides at least a1/2-approximation of the optimal
solution for a non-uniform matroid. Moreover, letκt be the
total curvature of functionf , which is defined as

κt = max
j∈X

{

1− f(X)− f(X \ {j})
f({j})− f(∅)

}

.

Conforti and Cornuéjols [34] showed that the greedy algorithm
achieves at least1

κt
(1 − e−κt) and 1

1+κt
-approximations of

the optimal solution for uniform and non-uniform matroids,
respectively. Note thatκt ∈ [0, 1] for any submodular function,
and the greedy algorithm is optimal whenκt = 0. Vondrák
[35] showed that thecontinuous greedy algorithmachieves at
least a 1

κt
(1 − e−κt)-approximation for any matroid. On the

other hand, Wanget al. [28] provided approximation bounds
for the greedy algorithm as a function of elemental curvature,
which generalizes the notion of diminishing return and is
defined as

κe = max
E⊂X,i,j∈X\E,i6=j

f(E ∪ {i, j})− f(E ∪ {j})
f(E ∪ {i})− f(E)

.

Note that the objective function is submodular if and only
if κe ≤ 1. When κe < 1, the lower bound for greedy
approximation is greater than(1 − e−1). If κe > 1, then
the objective function is not submodular. In this case, lower
bound for the greedy algorithm is derived as a function of the
elemental curvature. In [36] and [37], Zhanget al.generalized
the notions of total curvature and elemental curvature tostring
submodular functionswhere the objective function value de-
pends on the order of the elements in the set. This framework
is further extended to approximate dynamic programming
problems by Liuet al. in [38].
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We use|i〉 to denote the orthonormal bases of the Hilbert
space,i = 0, 1, . . . . The objective function in (1) is not
submodular in general. For example, letη = |0〉, s = |1〉,
and t = 1

2 |0〉+
√
3
2 |1〉. Then we have

‖Pη({t})‖2 − ‖Pη(∅)‖2 =
1

4
;

‖Pη({s, t})‖2 − ‖Pη({s})‖2 = 1 >
1

4
.

Evidently the diminishing return property does not hold in this
case. In fact, the diminishing return property does not always
hold even if all the elements in the ground set are mutually
orthogonal. Therefore, the results from classical submodularity
theory (e.g., [32] [33]) are not directly applicable to our
problem. To address this issue, several notions ofapprox-
imation submodularityare introduced to bound the greedy
algorithm performance. Cevher and Krause [39] showed that
the greedy algorithm achieves a good approximation for sparse
approximation problems using the approach of approximation
submodularity. Das and Kempe [40] improved the approxima-
tion bound by introducing the notion ofsubmodularity ratio.
These are powerful results, but with limited extension to non-
uniform matroid structures. In this paper, we will use the
aforementioned notions of curvature to bound the performance
of forward regression and orthogonal matching pursuit with
respect to the optimal solution even if the matroid is non-
uniform.

B. Geometric Interpretation of Curvatures

To understand the curvatures from a geometric perspective,
we define theprincipal angleas follows:

φ = min
E⊂X,|E|≤2K−2,s∈X\E

arccos‖Ps(E)‖,

where φ ∈ [0, π/2]. Geometrically speaking, this is saying
that the angle between the subspace spanned by any subset
E (with cardinality less than or equal to2K − 2) and any
element in the setX \ E is not smaller thanφ. Note that if
all the elements inX are mutually orthogonal, thenφ = π/2.

We now investigate the relationship between the princi-
pal angle and two widely used conditions in compressed
sensing to quantify the performance of recovery algorithms,
namely restricted isometry and mutual incoherence. Let
H = [h1, h2, . . . , hm] be the matrix associated withE =
{h1, h2, . . . , hm}. It is easy to see that

cosφ = max
E⊂X,|E|≤2K−2,s∈X\E

‖Ps(E)‖

= max
E⊂X,|E|≤2K−2,s∈X\E

‖H(HT
H)−1

H
T s‖

≤ max
E⊂X,|E|≤2K−2,s∈X\E

‖H(HT
H)−1‖‖HT s‖.

The last inequality is by the Cauchy-Schwarz inequality.

Moreover, we have

‖H(HT
H)−1‖ = sup

‖x‖=1

‖H(HT
H)−1x‖

=
√

λmax((H(HTH)−1)TH(HTH)−1

=
√

λmax(HTH)−1

=

(

√

λmin(HTH)

)−1

.

and

‖HT s‖ =
(

m
∑

i=1

〈hi|s〉2
)

1

2

.

Thus, we have

cosφ ≤ (3)

max
E⊂X,|E|≤2K−2,s∈X\E

(

√

λmin(HTH)

)−1
(

m
∑

i=1

〈hi|s〉2
)

1

2

.

Here λmin(H
T
H) denotes the minimum eigenvalue of the

correlation matrixHT
H, which is closely related with the

restricted isometry property. The summation term for the inner
products is upper bounded bym times the squared mutual
incoherence.

Next we present a result that bridges curvatures and princi-
pal angle.

Theorem 1:Forward and backward elemental curvatures
are both upper bounded as:

max(κ̂, κ̄) ≤ 1

1− 2 cosφ
.

The proof is given in Appendix A. This result is important
in the cases where the curvatures are difficult to calculate.
We can use the principal angle, or an upper bound for the
principal angle such as (3) to bound the curvature, which in
turn provides performance bounds for forward regression and
orthogonal matching pursuit.

Next we study the performance of forward regression and
orthogonal matching pursuit with uniform and non-uniform
matroid constraints. We will usef(E) to represent‖Pη(E)‖2
occasionally in the following sections to simplify notation.

III. R ESULTS FOR UNIFORMMATROID

In this section, we will focus on the case where the matroid
is uniform, i.e., I = {S ⊂ X : card(S) ≤ K} for a
givenK. We consider two scenarios depending on the mutual
orthogonality of elements inX .

A. Orthogonal Scenario

We call the setX mutually orthogonal if any two non-
identical elements inX are orthogonal:〈s|t〉 = 0 for any
s 6= t ∈ X . It is easy to show that forward regression and
orthogonal matching pursuit are equivalent given thatX is
mutually orthogonal. It turns out that the optimality of these
two algorithms is closely related with the mutual orthogonality
of X .
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Theorem 2:Suppose thatX is mutually orthogonal. If
(X, I) is a uniform matroid, then forward regression and
orthogonal matching pursuit are optimal.

Proof: Let E = {e1, . . . , eK} be a subset andη be
the vector of interest. By the Hilbert projection theorem and
Pythagoras’ theorem, we have

‖Pη(E)‖2 =

K
∑

i=1

〈η|ei〉2.

It is easy to see that the optimal solution is to chooseK
largest projections among all vectors inX , which is the same
as what the forward regression does. The insight of this result
is closely related withprinciple component analysis.

Theorem 2 implies that to guarantee the optimality of for-
ward regression and orthogonal matching pursuit, we should
find an orthonormal basis forX . The Gram–Schmidt process
can be used to generate an orthonormal basis using the ele-
ments inX . However, this is, in general, intractable especially
when card(X) is large. Moreover, the problem of optimally
selectingK elements inX is different from the problem of
optimally selectingK orthogonalized elements after applying
the Gram–Schmidt process.

Mutual orthogonality depends on the definition of inner
product in the Hilbert space. For example, the Hilbert space
defined on Gaussian measures has an orthonormal basis: Her-
mite polynomials. Some other well-known examples include
Charlier polynomials for Poisson measures, Laguerre polyno-
mials for Gamma measures, Legendre and Fourier polynomials
for uniform measures.

The physical meaning of mutual orthogonality differs de-
pending on the context of the problem. Take the quadratic
covariance bound problem for example and consider the uni-
form distribution parameterized by its meanθ: Uniform[−π+
θ, π + θ]. The Cramer-Rao Bound is not applicable here
because the derivative of the probability density function
is not well-defined. On the other hand, the Fourier basis
{cos(m(x − θ))}∞m=1 is a well-defined orthonormal basis.
These basis functions can be considered as energy eigenstates
for a quantum particle in an infinite potential well. Another
example is the Bhattacharya bound with the following Bhat-
tacharya score functions:

{

∂ ln d(x, θ)

∂φ
,
∂2 ln d(x, θ)

∂φ2
, . . . ,

ln ∂kd(x, θ)

∂φk
. . .

}

,

whered(x, θ) denotes the probability density function for the
measurementx. In general, these score functions are not or-
thonormal. Moreover, the projection of the estimator erroronto
the first order partial derivative is not necessarily the largest,
meaning that the Fisher score is not necessarily the optimal.
However, in the Gaussian measure case, the Bhattacharya
score functions turn out to be the Hermit polynomials and
therefore are mutually orthogonal. For the LMMSE problem,
mutually orthogonality means that all the sensor measurements
are mutuallyuncorrelated. Therefore, if all the sensors gener-
ate independent measurement signals, then forward regression
and orthogonal matching pursuit are optimal in the uniform
matroid case. For the sparse approximation problem, mutual

orthogonality says that all the columns in the measurement
matrix are mutually orthogonal, which cannot be true in the
case of the under-determined system.

B. Non-orthogonal Scenario

When X is not mutually orthogonal, forward regression
and orthogonal matching pursuit are in general not optimal.
We give a counter example for forward regression; a sim-
ilar counter example can be given for orthogonal matching
pursuit. Let X = {s1, s2, s3} where s1 =

√
2
2 (|0〉 + |1〉),

s2 =
√
2
2 (|1〉 + |2〉), and s3 =

√
2
2 (|2〉 + |3〉). Suppose that

η = |0〉+ 2 |1〉+ 2 |2〉+ |3〉, and the objective is to choose a
subsetE of X with card(E) ≤ 2 such that the projection ofη
onto span(E) is maximized. Obviously, the optimal solution
is to chooses1 ands3 and the maximum projection is

‖Pη({s1, s3})‖2 = 〈η|s1〉2 + 〈η|s3〉2 = 9.

Forward regression, however, is fooled into pickings2 first
because alongs2 it has the largest projection. After that, it
chooses eithers1 or s3. By the Gram–Schmidt process, the
normalized orthogonal component ofs1 with respect tos2 is
given by

s⊥1 =
s− 〈s1|s2〉s2
‖s1 − 〈s1|s2〉s2‖

=

√

4

3
(

√
2

2
|0〉+

√
2

4
|1〉 −

√
2

4
|2〉).

Therefore,

‖Pη({s1, s2})‖2 = ‖Pη({s⊥1 , s2})‖2

= 〈η|s2〉2 + 〈η|s⊥1 〉2 = 8 +
2

3
.

Apparently, forward regression is not optimal. Moreover, if
X is not mutually orthogonal, then the two algorithms yield
different results, which we discuss in separate subsections.

1) Forward Regression:We first study forward regression
when the matroid is uniform with the maximal cardinality of
the sets inI equal toK. We useGK to denote the solution
using forward regression and OPT to denote the optimal
solution.

Theorem 3 (Uniform matroid):The forward regression al-
gorithm achieves at least a(1− (1− 1

K̂
)K)-approximation of

the optimal solution:

f(GK) ≥
(

1−
(

1− 1

K̂

)K
)

f(OPT), (4)

whereK̂ =
∑K

i=1 min(κ̄, κ̂)i−1.
The proof is given in Appendix B. Whenmin(κ̄, κ̂) ≤ 1,

the forward regression algorithm achieves at least a(1−1/e)-
approximation of the optimal solution.

2) Orthogonal Matching Pursuit:We first compare the
step-wise gains in the objective function between orthogonal
matching pursuit and forward regression. Recall thatη⊥ andη̄
represent the normalized orthogonal and parallel components
of η with respect to span(E):

η = η⊥ sinϕ+ η̄ cosϕ,

where ϕ denotes the angle betweenη and span(E). The
orthogonal matching pursuit algorithm aims to find an element
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t to maximize|〈η⊥|t〉|. The forward regression algorithm aims
to find an elements to maximize|〈η|s⊥〉|, wheres⊥ denotes
the normalized orthogonal component ofs with respect to
span(E). Suppose that the angle betweens and span(E) is
δ(s). Note thatδ(s) is lower bounded by the principal angle
φ by definition. By the fact that

max
s∈X\E

〈η⊥|s〉2

= max
s∈X\E

〈η⊥|s⊥ sin δ(s)〉2 (5)

≥ sin2 φ max
s∈X\E

〈η⊥|s⊥〉2

≥ sin2 φ max
s∈X\E

〈η|s⊥〉2,

even though orthogonal matching pursuit is not the “greediest”
algorithm, its step-wise gain is still within a certain range of
that of forward regression, captured by the principal angle.
With this observation, we can derive a performance bound
for orthogonal matching pursuit. Again, we assume that the
matroid is uniform with the maximal cardinality of the sets
in I equal toK. We useTK to denote the solution using
orthogonal matching pursuit.

Theorem 4 (Uniform matroid):The orthogonal matching
pursuit algorithm achieves at least a(1 − (1 − sin2 φ

K̂
)K)-

approximation of the optimal solution:

f(TK) ≥
(

1−
(

1− sin2 φ

K̂

)K
)

f(OPT), (6)

whereK̂ =
∑K

i=1 min(κ̄, κ̂)i−1.
The proof is given in Appendix C. Notice that the difference

between Theorem 3 and Theorem 4 is only the principal angle
term sin2 φ. It is easy to see that the lower bound in (6) is
always lower than that in (4), but this does not necessarily
mean thatf(Tk) ≤ f(Gk).

IV. RESULTS FOR NON-UNIFORM MATROID

For non-uniform matroids, the two algorithms are not nec-
essarily optimal even whenX is mutually orthogonal. As
a counter example, suppose thatX = {|0〉 , |1〉 , |2〉 , |3〉}
and I = {{|0〉}, {|1〉}, {|2〉}, {|3〉}, {|0〉 , |1〉}, {|2〉 , |3〉}}. It
is easy to verify that(X, I) is a non-uniform matroid. Let
η =

√
1 + ǫ |0〉 + |2〉 + |3〉 be the vector of interest, where

ǫ > 0. Forward regression ends up with{|0〉 , |1〉} while the
optimal solution is{|2〉 , |3〉}. However, notice that

‖Pη({|0〉 , |1〉})‖2
‖Pη({|2〉 , |3〉})‖2

= (1 + ǫ)/2 > 1/2.

In this section, we will show that1/2 is a general lower bound
of these two algorithms for the non-uniform matroid case when
the ground set is mutually orthogonal. This bound surprisingly
matches the bound in [33]. However, a significant distinction
is that in our paper the submodularity of the objective function
is no longer necessary (which is required by [33]).

Next we derive performance bounds for forward regression
and orthogonal matching pursuit in the situation where(X, I)
is a non-uniform matroid. Before proceeding, we state a lemma
that assists in handling the non-uniform matroid constraint. Let

Gi andTi be the forward regression and orthogonal matching
pursuit solutions up to stepi, respectively. Note that the
cardinalities ofGi andTi are i.

Lemma 1:Any E ⊂ X with cardinalityK can be ordered
into {e1, . . . , eK} such that fori = 1, . . . ,K, we have

f(Gi−1 ∪ {ei})− f(Gi−1) ≤ f(Gi)− f(Gi−1)

and

f(Ti−1 ∪ {ei})− f(Ti−1) ≤ f(Ti−1 ∪ {g∗})− f(Ti−1),

whereg∗ denotes the element added toTi−1 using the forward
regression algorithm.

Proof: We prove this lemma using induction in descend-
ing order on the indexi. First consider the setsE andGK−1,
and notice that|E| = K > |GK−1|. By the augmentation
property of matroids, there exists an element inE, denoted
by eK , such thatGK−1 ∪ {eK} ∈ I. It is easy to see
that f(GK) − f(GK−1) ≥ f(GK−1 ∪ {eK}) − f(GK−1).
Suppose thatf(Gk)−f(Gk−1) ≥ f(Gk−1∪{ek})−f(Gk−1)
for all k ≥ i; we want to show that the inequality holds
for the index i − 1. ConsiderGi−2 and E \ {ei, . . . , eK},
where ek denotes the element inE such that the claim
holds fork = i, . . . ,K. Again by the augmentation property
of matroids, there exists an element inE \ {ei, . . . , eK},
denoted byei−1, such thatGi−2 ∪ {ei−1} ∈ I. By the
property of the forward regression algorithm, we know that
f(Gi−1) − f(Gi−2) ≥ f(Gi−2 ∪ {ei−1}) − f(Gi−2). This
concludes the induction proof.

The proof for the orthogonal matching pursuit follows a
similar argument and it is omitted for the sake of brevity.

3) Forward Regression:In this section, we state the result
for forward regression with the non-uniform matroid con-
straint. We first state a lemma.

Lemma 2:For i = 1, 2, . . . ,K, we have

f(Gi)− f(Gi−1) ≤ κ̄(f(Gi−1)− f(Gi−2)).

Proof: Let Gi = {g1, . . . , gi} where gj denotes the
element added in the forward regression algorithm at stepj.
We know thatGi−2 ∪ {gi} ∈ I because of the hereditary
property of the matroid. Moreover, the projection ofη gains
more by addinggi−1 than gi at stagei − 1 by the property
of the forward regression algorithm. Then, by the definition
of the backward elemental curvature, we obtain the desired
result.

Next we present the performance bound for forward regres-
sion in the non-uniform matroid scenario.

Theorem 5 (Non-uniform matroid):The forward regression
algorithm achieves at least a 1

1+a(κ̂,κ̄)b(κ̂) -approximation of the
optimal solution:

f(GK) ≥ 1

1 + a(κ̂, κ̄)b(κ̂)
f(OPT),

wherea(κ̂, κ̄) = max(κ̂, κ̄) if max(κ̂, κ̄) ≤ 1 anda(κ̂, κ̄) =
max(κ̂, κ̄)K if max(κ̂, κ̄) > 1; b(κ̂) = κ̂K−1 if κ̂ > 1 and
b(κ̂) = 1 if κ̂ ≤ 1.

The proof is given in Appendix D.
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4) Orthogonal Matching Pursuit:Next we derive the bound
for orthogonal matching pursuit for the case where(X, I) is
a non-uniform matroid. To do so, we first define the OMP
elemental curvature as follows:

κ̃ =max
E,s,t

‖Pη(E ∪ {s, t})‖2 − ‖Pη(E ∪ {s})‖2
‖Pη(E ∪ {s})‖2 − ‖Pη(E)‖2 .

subject toE ⊂ X, card(E) ≤ 2K − 2, s, t ∈ X \ E,

and |〈η⊥(E)|s〉| ≥ |〈η⊥(E)|t〉|.

Again, we can provide an upper bound for OMP elemental
curvature using principal angles. Note that|〈η⊥|s〉| ≥ |〈η⊥|t〉|
implies that

|〈η|t⊥〉|
|〈η|s⊥〉| =

|〈η⊥|t⊥〉|
|〈η⊥|s⊥〉| ≤

1

sinφ
.

We can show that̃κ is upper bounded as

κ̃ ≤ (sin−2 φ+ 〈t⊥|s⊥〉)2
1− 〈t⊥|s⊥〉2 .

Similar to the technique in Theorem 1, we can further bound
the curvature using (7). Next we state our result in the non-
uniform matroid case.

Theorem 6 (Non-uniform matroid):The orthogonal
matching pursuit achieves at least a 1

1+a(κ̂,κ̄,η̃)b(κ̂)sin−2 φ
-

approximation of the optimal solution:

f(TK) ≥ 1

1 + a(κ̂, κ̄, η̃)b(κ̂)sin−2 φ
f(OPT),

where a(κ̂, κ̄, κ̃) = max(κ̂, κ̄, κ̃) if max(κ̂, κ̄, κ̃) ≤ 1 and
a(κ̂, κ̄, κ̃) = max(κ̂, κ̄, κ̃)K if max(κ̂, κ̄, κ̃) > 1; b(κ̂) =
κ̂K−1 if κ̂ > 1 andb(κ̂) = 1 otherwise.

The proof is given in Appendix E. Note that whenX is
mutually orthogonal,sinφ = max(κ̂, κ̄, κ̃) = 1. An immediate
result follows.

Corollary 1: Suppose thatX is mutually orthogonal. Then,

1) Forward regression is equivalent to orthogonal matching
pursuit;

2) If I is a non-uniform matroid, then forward regression
achieves at least a1/2-approximation of the optimal
solution.

Recall that whenX is mutually orthogonal, we have shown
in Section II-A that these two algorithms are optimal when
(X, I) is a uniform matroid. For a non-uniform matroid, they
are not necessarily optimal. However, these two algorithms
achieve at least1/2-approximations of the optimal solution.
Our results extend those in [33] from a submodular function
to a more general class of objective functions.

Suppose thatX is not mutually orthogonal but close in the
sense that the principal angleφ almost equal toπ/2. We use
δ = π/2−φ to denote the gap betweenφ andπ/2. Moreover,
we assume thatδ is sufficiently small such that we only have
to keep first order terms for Taylor expansions:

1

1− 2 cos(π/2− δ)
≈ 1 + 2δ,

and
κ̂K−1 ≈ 1 + (K − 1)|κ̂− 1|.

Then, in the case of non-uniform matroid constraints, the lower
bounds in Theorems 5 and 6 for the aforementioned algorithms
scale as

1

2 + 2(2K − 1)δ
,

which indicates that the lower bound scales inverse linearly
with cardinality constraintsK and the principal angle gap
δ with π/2. Fortunately,K is mostly a small number (for
example, the number of sparsity locations in compressive
sensing problem).

V. CONCLUSIONS

In this paper, we have studied the subspace selection prob-
lem for maximizing the projection of a vector of interest.
We have introduced several new notions of elemental cur-
vatures, upper bounded by functions of principal angle. We
then derived explicit lower bounds for the performance of
forward regression and orthogonal matching pursuit in the
cases of uniform and non-uniform matroids. Moreover, we
showed that if the elements in the ground sets are mutually
orthogonal, then these algorithms are essentially optimalunder
the uniform matroid constraint and they achieve at least1/2
approximations of the optimal solution under the non-uniform
matroid constraint.

APPENDIX A
PROOF OFTHEOREM 1

Proof: First consider a subsetE of X , and two elements
s and t in the setX \ E. we know that |〈s|t〉| ≤ cosφ
by definition of the principal angle. We decompose the two
elements into parallel and orthogonal components with respect
to span(E). Let us assume thatφ1 and φ2 are the angles
betweens, t and span(E), respectively, then we have

s = cosφ1s̄+ sinφ1s
⊥,

t = cosφ2 t̄+ sinφ2t
⊥.

We know that

〈s|t〉 = 〈cosφ1s̄+ sinφ1s
⊥| cosφ1 t̄+ sinφ1t

⊥〉
= cosφ1 cosφ2〈s̄|t̄〉+ sinφ1 sinφ2〈s⊥|t⊥〉.

Therefore,

|〈s⊥|t⊥〉| =
∣

∣

∣

∣

〈s|t〉 − cosφ1 cosφ2〈s̄|t̄〉
sinφ1 sinφ2

∣

∣

∣

∣

≤ cosφ+ cos2 φ

sin2 φ
. (7)

For the numerator and denominator in the definitions of
curvature, using Pythagoras’ theorem, it is easy to show that

‖Pη(E ∪ {t})‖2 − ‖Pη(E)‖2 = ‖Pη({t⊥})‖2 = 〈η|t⊥〉2,
and

‖Pη(E∪{s, t})‖2−‖Pη(E∪{s})‖2 = ‖Pη({t̂⊥})‖2 = 〈η|t̂⊥〉2,
wheret̂⊥ denotes the orthonormal component oft with respect
to span(E ∪ {s}). By the Gram–Schmidt process, we know
that

t̂⊥ =
t⊥ − 〈t⊥|s⊥〉s⊥
√

1− 〈t⊥|s⊥〉2
.
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Therefore, we obtain

〈η|t̂⊥〉 = 〈η|t
⊥〉 − 〈t⊥|s⊥〉〈η|s⊥〉
√

1− 〈t⊥|s⊥〉2
.

Hence, using (7) we can provide an upper bound of the forward
elemental curvature usingφ:

κ̂ ≤ (1 + 〈t⊥|s⊥〉)2
1− 〈t⊥|s⊥〉2 =

1 + 〈t⊥|s⊥〉
1− 〈t⊥|s⊥〉 ≤

1

1− 2 cosφ
.

Using a similar argument, we can provide an upper bound for
the backward elemental curvature with the same form. The
proof is complete.

APPENDIX B
PROOF OFTHEOREM 3

Proof: For anyM,N ∈ I and |M | ≤ K and |N | = K,
let J = (M ∪N) \M = {j1, . . . , jr} wherer ≤ |N |. We can
permute the elements inJ such that the elements are ordered
to use the forward elemental curvature. More specifically, let

j̄i = argmin
j∈J\{j̄1,...,j̄i−1}

‖Pη({j⊥(M ∪ {j̄1, . . . , j̄i−1})})‖,

wherej⊥(M∪{j̄1, . . . , j̄i−1}) denotes the normalized orthog-
onal component ofj with respect to span(M∪{j̄1, . . . , j̄i−1}).
Using the definition of forward elemental curvature, we have

f(M ∪N)− f(M)

=

r
∑

i=1

(f(M ∪ {j̄1, . . . , j̄i})− f(M ∪ {j̄1, . . . , j̄i−1}))

≤
r
∑

i=1

κ̂i−1(f(M ∪ {j̄i})− f(M))

Therefore, there exists̄j ∈ X such that

f(M ∪N)− f(M)

≤
|N |
∑

i=1

κ̂i−1(f(M ∪ {j̄})− f(M))

=

|N |
∑

i=1

κ̂i−1(f(M ∪ {j̄})− f(M)).

We useGk to denote the forward regression solution with
cardinalityk and OPT to denote the optimal solution. Using
the properties of the forward regression algorithm and the
monotone property, we have

f(Gi)− f(Gi−1)

≥ 1
∑K

i=1 κ̂
i−1

(f(Gi−1 ∪OPT)− f(Gi−1))

≥ 1
∑K

i=1 κ̂
i−1

(f(OPT)− f(Gi−1)).

Therefore, by recursion, we have

f(GK) ≥ 1
∑K

i=1 κ̂
i−1

f(OPT) + (1− 1
∑K

i=1 κ̂
i−1

)f(GK−1)

=
1

∑K

i=1 κ̂
i−1

f(OPT)
K−1
∑

i=0

(1 − 1
∑K

i=1 κ̂
i−1

)i

= f(OPT)

(

1− (1− 1
∑K

i=1 κ̂
i−1

)K

)

.

Using a similar argument, we can show that

f(GK) ≥ f(OPT)

(

1− (1− 1
∑K

i=1 κ̄
i−1

)K

)

.

Combining these two inequalities, the proof is complete.

APPENDIX C
PROOF OFTHEOREM 4

Proof: For anyM,N ∈ I and |M | ≤ K and |N | = K,
let J = (M ∪N) \M = {j1, . . . , jr} wherer ≤ |N |. We can
permute the elements inJ such that the elements are ordered
to use the forward elemental curvature. More specifically, let

j̄i = argmin
j∈J\{j̄1,...,j̄i−1}

‖Pη({j⊥(M ∪ {j̄1, . . . , j̄i−1})})‖,

where j⊥(M ∪ {j̄1, . . . , j̄i−1}) denotes the normalized or-
thogonal component ofj with respect the span(M ∪
{j̄1, . . . , j̄i−1}). Using the definition of forward elemental
curvature, we have

f(M ∪N)− f(M)

=

r
∑

i=1

(f(M ∪ {j̄1, . . . , j̄i})− f(M ∪ {j̄1, . . . , j̄i−1}))

≤
r
∑

i=1

κ̂i−1(f(M ∪ {j̄i})− f(M))

Therefore, there exists̄j ∈ X such that

f(M ∪N)− f(M)

≤
|N |
∑

i=1

κ̂i−1(f(M ∪ {j̄})− f(M))

=

|N |
∑

i=1

κ̂i−1(f(M ∪ {j̄})− f(M)).

Using a similar argument, we can show that

f(M ∪N)− f(M)

≤
|N |
∑

i=1

κ̄i−1(f(M ∪ {j̄})− f(M)).
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Using the properties of the forward regression algorithm,
the monotone property, and (5), we have

f(Ti)− f(Ti−1)

≥ sin2 φ(f(Ti−1 ∪ {g∗})− f(Ti−1))

≥ sin2 φ

K̂
(f(Ti−1 ∪OPT)− f(Ti−1))

≥ sin2 φ

K̂
(f(OPT)− f(Ti−1)).

Therefore, by recursion, we have

f(GK) ≥ sin2 φ

K̂
f(OPT) +

(

1− sin2 φ

K̂

)

f(GK−1)

=
sin2 φ

K̂
f(OPT)

K−1
∑

i=0

(

1− sin2 φ

K̂

)i

= f(OPT)

(

1−
(

1− sin2 φ

K̂

)K
)

.

APPENDIX D
PROOF OFTHOREM 5

Proof: We use a similar approach as that of the proof
of Theorem 3. LetGi = {g1, . . . , gi} wheregj denotes the
element added in the forward regression algorithm at stagej.
Let OPT = {o1, . . . , oK} and assume that the elements are
already reordered such that we can use the forward elemental
curvature. We know that

f(GK ∪OPT)− f(GK)

≤
K
∑

i=1

κ̂i−1(f(GK ∪ {oi})− f(GK))

≤
{

∑K
i=1(f(GK ∪ {oi})− f(GK)), if κ̂ ≤ 1

κ̂K−1
∑K

i=1(f(GK ∪ {oi})− f(GK)), if κ̂ > 1.

From Lemma 1, we know that OPT can be ordered into
{ô1, . . . , ôK}, such that

f(Gi−1 ∪ {ôi})− f(Gi−1) ≤ f(Gi)− f(Gi−1),

for i = 1, . . . ,K. Moreover, we know thatGi−2 ∪ {gi} ∈ I
because of the hereditary property of the matroid. Moreover,
we know that the projection ofη gains more by addinggi−1

thangi at stagei−1 by the property of the forward regression
algorithm. Using Lemmas 1 and 2 and the definitions of
forward and backward elemental curvatures, we obtain (8).
Therefore, by recursion we have

f(GK ∪ {ôi})− f(GK)

≤ max(κ̂, κ̄)K−i+1(f(Gi)− f(Gi−1)),

for i = 1, . . . ,K. Hence, we obtain

K
∑

i=1

(f(GK ∪ {ôi})− f(GK))

≤
K
∑

i=1

max(κ̂, κ̄)K−i+1(f(Gi)− f(Gi−1))

≤
{

max(κ̂, κ̄)f(GK), if max(κ̂, κ̄) ≤ 1

max(κ̂, κ̄)Kf(GK), if max(κ̂, κ̄) > 1.

Therefore, we have

f(OPT) ≤ (1 + a(κ̂, κ̄)b(κ̂))f(GK),

wherea(κ̂, κ̄) = max(κ̂, κ̄) if max(κ̂, κ̄) ≤ 1 anda(κ̂, κ̄) =
max(κ̂, κ̄)K if max(κ̂, κ̄) > 1; b(κ̂) = κ̂K−1 if κ̂ > 1 and
b(κ̂) = 1 otherwise.

APPENDIX E
PROOF OFTHEOREM 6

Proof: Let OPT= {o1, . . . , oK} be ordered such that the
elemental forward curvature can be used. We know that

f(TK ∪OPT)− f(TK)

≤
{

∑K

i=1(f(TK ∪ {oi})− f(TK)), if κ̂ ≤ 1

κ̂K−1
∑K

i=1(f(TK ∪ {oi})− f(TK)), if κ̂ > 1.

Using Lemma 1 and (5), we know that OPT can be ordered
as{ô1, . . . , ôK}, such that

f(Ti−1 ∪ {ôi})− f(Ti−1)

≤ f(Ti−1 ∪ {g∗})− f(Ti−1)

≤ f(Ti)− f(Ti−1)

sin2 φ
,

for i = 1, . . . ,K. Next we state a lemma and its proof that
we will use.

Lemma 3:For i = 1, 2, . . . ,K, we have

f(Ti)− f(Ti−1) ≤ κ̃(f(Ti−1)− f(Ti−2)).

Proof of Lemma 3: For i = 1, . . . ,K, let Ti = {t1, . . . , ti}
wheretj denotes the element added in the orthogonal matching
pursuit algorithm at stagej. We know thatTi−2 ∪ {ti} ∈ I
because of the hereditary property of the matroid. Therefore,
we have|〈η⊥|ti−1〉| ≥ |〈η⊥|ti〉| by the property of orthog-
onal matching pursuit. Then, by the definition of the OMP
elemental curvature, we obtain the inequality in the lemma.

By the definitions of forward and backward elemental cur-
vatures, we obtain (9). Therefore, by Lemma 3 and recursion,
we have

f(TK ∪ {ôi})− f(TK)

≤ max(κ̂, κ̄, κ̃)K−i+1

sin2 φ
(f(Ti)− f(Ti−1)),

for i = 1, . . . ,K.
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f(GK ∪ {ôi})− f(GK) ≤
{

κ̂(f(GK−1 ∪ {ôi})− f(GK−1)), if ‖Pη(ô
⊥
i )‖ ≥ ‖Pη(ĝ

⊥
K)‖

κ̄(f(GK)− f(GK−1)), if ‖Pη(ô
⊥
i )‖ ≤ ‖Pη(ĝ

⊥
K)‖. (8)

f(TK ∪ {ôi})− f(TK) ≤
{

κ̂(f(TK−1 ∪ {ôi})− f(TK−1)), if ‖Pη(ô
⊥
i )‖ ≥ ‖Pη(t̂

⊥
K)‖

κ̄(f(TK)− f(TK−1)), if ‖Pη(ô
⊥
i )‖ ≤ ‖Pη(t̂

⊥
K)‖. (9)

Therefore, we have

K
∑

i=1

(f(TK ∪ {ôi})− f(TK))

=

K
∑

i=1

max(κ̂, κ̄, κ̃)K−i+1

sin2 φ
(f(Ti)− f(Ti−1))

≤
{

sin−2 φmax(κ̂, κ̄, κ̃)f(TK), if max(κ̂, κ̄, κ̃) ≤ 1

sin−2 φmax(κ̂, κ̄, κ̃)Kf(TK), if max(κ̂, κ̄, κ̃) > 1.

Therefore, we have

f(OPT) ≤ (1 + sin−2 φa(κ̂, κ̄, κ̃)b(κ̂))f(TK),

where a(κ̂, κ̄, κ̃) = max(κ̂, κ̄, κ̃) if max(κ̂, κ̄, κ̃) ≤ 1 and
a(κ̂, κ̄, κ̃) = max(κ̂, κ̄, κ̃)K if max(κ̂, κ̄, κ̃) > 1; b(κ̂) =
κ̂K−1 if κ̂ > 1 andb(κ̂) = 1 otherwise.
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