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An Efficient Implementation of the Generalized

Labeled Multi-Bernoulli Filter
Ba-Ngu Vo, Ba-Tuong Vo, Hung Gia Hoang

Abstract—This paper proposes an efficient implementation
of the generalized labeled multi-Bernoulli (GLMB) filter by
combining the prediction and update into a single step. In
contrast to an earlier implementation that involves separate
truncations in the prediction and update steps, the proposed
implementation requires only one truncation procedure for each
iteration. Furthermore, we propose an efficient algorithm for
truncating the GLMB filtering density based on Gibbs sampling.
The resulting implementation has a linear complexity in the
number of measurements and quadratic in the number of
hypothesized objects.

Index Terms—Random finite sets, generalized labeled multi-
Bernoulli, multi-object tracking, data association, optimal assign-
ment, ranked assigment, Gibbs sampling

I. INTRODUCTION

Multi-object tracking refers to the problem of jointly es-

timating the number of objects and their trajectories from

sensor data. Driven by aerospace applications in the 1960’s,

today multi-object tracking lies at the heart of a diverse range

of application areas, see for example the texts [1]–[4]. The

most popular approaches to multi-object tracking are the joint

probabilistic data association filter [1], multiple hypothesis

tracking [2], and recently, random finite set (RFS) [3], [4].

The RFS approach has attracted significant attention as a

general systematic treatment of multi-object systems and pro-

vides the foundation for the development of novel filters such

as the Probability Hypothesis Density (PHD) filter [5], Cardi-

nalized PHD (CPHD) filter [6], and multi-Bernoulli filters [3],

[7], [8]. While these filters were not designed to estimate the

trajectories of objects, they have been successfully deployed

in many applications including radar/sonar [9], [10], computer

vision [11]–[13], cell biology [14], autonomous vehicle [15]–

[17] automotive safety [18], [19], sensor scheduling [20]–[23],

and sensor network [24]–[26].

The introduction of the generalized labeled multi-Bernoulli

(GLMB) RFS in [27], [28] has led to the development of the

first tractable and mathematically principled RFS-based multi-

object tracker. Recent extensions and applications [29]–[36],

suggest that the GLMB is a versatile model that offers good

trade-offs between tractability and fidelity. The GLMB filter

exploits the conjugacy (with respect to the standard measure-

ment model) of the GLMB family to propagate forward in time

the (labeled) multi-object filtering density [27]. Each iteration
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of this filter involves an update operation and a prediction op-

eration, both of which result in weighted sums of multi-object

exponentials with intractably large number of terms. The first

implementation of the GLMB filter truncates these sums by

using the K-shortest path and ranked assignment algorithms,

respectively, in the prediction and update to determine the most

significant components [28].

While the original two-staged implementation is intuitive

and highly parallelizable, it is structurally inefficient as two

independent truncations of the GLMB densities are required.

Specifically, in the update, truncation is performed by solv-

ing a ranked assignment problem for each predicted GLMB

component. Since truncation of the predicted GLMB sum is

performed separately from the update, a significant portion of

the predicted components would generate updated components

with negligible weights. Thus, computations are wasted in

solving a large number of ranked assignment problems with

at best cubic complexity in the number of measurements.

In this paper, we present an efficient implementation of

GLMB filter with linear complexity in the number of mea-

surements, i.e. at least two orders of magnitude less than the

original implementation in [28]. In particular, we derive a

joint prediction and update that eliminates inefficiencies in

the truncation procedures of the original two-staged imple-

mentation (this result has been presented at a conference in

[37]). More importantly, we propose an efficient technique

for truncating the GLMB filtering density based on Gibbs

sampling, which also offers an efficient solution to the data

association problem and more generally, the ranked assign-

ment problem. Further, we show that the proposed Gibbs

sampler has an exponential convergence rate. Naturally, in the

joint prediction and update, deterministic ranked assignment

algorithms can also be applied to truncate the GLMB filtering

density. While both implementations are highly parallelizable,

the Gibbs sampler based solution has a linear complexity in

the number of measurements whereas deterministic solutions

are cubic at best.

The paper is organized as follows. Background on labeled

RFS and the GLMB filter is provided in section II. Section

III presents the joint prediction and update formulation and

the Gibbs sampler based implementation of the GLMB filter.

Numerical results are presented in Section IV and concluding

remarks are given in Section V.

II. BACKGROUND

This section summarizes the GLMB filter and its implemen-

tation. The reader is referred to the original works [27], [28]

for detailed expositions.

http://arxiv.org/abs/1606.08350v2
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Throughout this article, we denote a generalization of the

Kroneker delta that takes arbitrary arguments such as sets,

vectors, integers etc., by

δY [X ] ,

{
1, if X = Y
0, otherwise

.

The list of variables Xm, Xm+1, ..., Xn is abbreviated as

Xm:n. For a given set S, 1S(·) denotes the indicator function

of S, and F(S) denotes the class of finite subsets of S. For

a finite set X , its cardinality (or number of elements) is de-

noted by |X |, in addition we use the multi-object exponential

notation fX for the product
∏

x∈X f(x), with f∅ = 1. The

inner product
∫
f(x)g(x)dx is denoted by 〈f, g〉.

A. Labeled RFS

From a Bayesian estimation viewpoint the multi-object

state is naturally represented as a finite set, and subsequently

modeled as an RFS or a simple-finite point process [5]. In this

paper we use Mahler’s Finite Set Statistics (FISST) notion of

integration/density (which is consistent with measure theoretic

integration/density [38]) to characterize RFSs. Treatments of

RFS in the context of multi-object filtering can be found in

[3], [4].

Consider a state space X, and a discrete space L, let L :
X×L → L be the projection defined by L((x, ℓ)) = ℓ. Then

L(x) is called the label of the point x ∈ X×L, and a finite

subset X of X×L is said to have distinct labels if and only

if X and its labels L(X) = {L(x) : x ∈ X} have the same

cardinality. The distinct label indicator is defined by

∆(X) , δ|X|[|L(X)|]

A labeled RFS is a marked simple point process with state

space X and (discrete) mark space L such that each realization

has distinct labels [27], [28]. The distinct labels provide the

means to identify trajectories or tracks of individual objects

since a trajectory is a time-sequence of states with the same

label.

A GLMB is a labeled RFS with state space X and (discrete)

label space L distributed according to [27], [28]

π(X) = ∆(X)
∑

ξ∈Ξ

w(ξ)(L(X))
[

p(ξ)
]X

(1)

where Ξ is a given discrete set, each p(ξ)(·, ℓ) is a proba-

bility density on X, and each w(ξ)(L) is non-negative with
∑

ξ∈Ξ

∑

L∈F(L) w
(ξ)(L) = 1. Each term in the mixture

(1) consists of: a weight w(ξ)(L(X)) that only depends on

the labels of the multi-object state X; and a multi-object

exponential
[
p(ξ)

]X
that depends on the entire multi-object

state. A salient feature of the GLMB family is its closure under

the multi-object Bayes recursion for the standard multi-object

transition kernel and likelihood function [27].

Throughout the paper, single-object states are represented

by lowercase letters (e.g. x, x) while multi-object states

are represented by uppercase letters (e.g. X , X), symbols

for labeled states and their distributions are bolded (e.g. x,

X, π) to distinguish them from unlabeled ones, spaces are

represented by blackboard bold (e.g. X, Z, L).

B. Multi-object system model

Using the convention from [27], an object is labeled by an

ordered pair ℓ = (k, i), where k is the time of birth, and i ∈ N

is a unique index to distinguish objects born at the same time.

Thus, the label space for objects born at time k is Bk,{k}×N,

and an object born at time k has state x ∈ X×Bk. Moreover,

the label space Lk for objects at time k (including those born

prior to k) is given by Lk = Lk−1 ∪ Bk (note that Lk−1 and

Bk are disjoint). A multi-object state X, at time k, is a finite

subset of X×Lk.

For compactness we omit the subscript k for the current

time, the next time is indicated by the subscripts ‘+’.

Given the multi-object state X (at time k), each state

(x, ℓ) ∈ X either survives with probability PS(x, ℓ) and

evolves to a new state (x+, ℓ+) (at time k + 1) with prob-

ability density f+(x+|x, ℓ)δℓ[ℓ+] or dies with probability

1 − PS(x, ℓ). The set Y of new targets born at time k + 1
is distributed according to the labeled multi-Bernoulli (LMB)

∆(Y)
[
1B+ rB,+

]L(Y)
[1− rB,+]

B+−L(Y)
pYB,+, (2)

where rB,+(ℓ+) is probability that a new object with label

ℓ+ is born, and pB,+(·, ℓ+) is the distribution of its kinematic

state [27]. The multi-object state X+ (at time k + 1) is the

superposition of surviving objects and new born objects. It is

assumed that, conditional on X, objects move, appear and

die independently of each other. The expression for the multi-

object transition density can be found in [27], [28].

For a given multi-object state X with distinct labels, each

state (x, ℓ) ∈ X is either detected with probability PD(x, ℓ)
and generates an observation z with likelihood g(z|x, ℓ) or

missed with probability 1−PD(x, ℓ). The multi-object obser-

vation at time k, Z = {z1:|Z|}, is the superposition of the

observations from detected objects and Poisson clutter with

intensity κ. Assuming that, conditional on X (with distinct

labels), detections are independent of each other and of clutter,

the multi-object likelihood is given by [27], [28]

g(Z|X) ∝
∑

θ∈Θ

1Θ(L(X))(θ)
∏

(x,ℓ)∈X

ψ
(θ(ℓ))
Z (x, ℓ) (3)

where: Θ is the set of positive 1-1 maps θ : L → {0:|Z|}, i.e.

maps such that no two distinct labels are mapped to the same

positive value; Θ(I) ⊆ Θ denotes the set of positive 1-1 maps

with domain I; and

ψ
(j)
{z1:|Z|}

(x, ℓ) =

{
PD(x,ℓ)g(zj|x,ℓ)

κ(zj)
, if j ∈ {1, ..., |Z|}

1− PD(x, ℓ), if j = 0
. (4)

The map θ specifies which objects generated which measure-

ments, i.e. object ℓ generates measurement zθ(ℓ) ∈ Z , with

undetected objects assigned to 0. The positive 1-1 property

means that θ is 1-1 on {ℓ : θ(ℓ) > 0}, the set of labels that

are assigned positive values, and ensures that any measurement

in Z is assigned to at most one object.

C. GLMB filter

The GLMB filter propagates the multi-object filtering den-

sity forward in time, analytically, under the multi-object transi-

tion and measurement models. In implementation, the GLMB
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filtering density is expressed in an alternative form1, known

as δ-GLMB

π(X) = ∆(X)
∑

ξ∈Ξ,I∈F(L)

ω(I,ξ)δI [L(X)]
[

p(ξ)
]X

, (5)

where ω(I,ξ) = w(ξ)(I). Each ξ ∈ Ξ represents a history of

association maps ξ = (θ1:k) while each I ∈ F(L) represents a

set of object labels. Collectively, the weight ω(I,ξ) and function

p(ξ) is called component (I, ξ) of the δ-GLMB.

Given the δ-GLMB filtering density (5) at time k, the δ-

GLMB prediction density to time k + 1 is given by [27]2

π̄+(X) = ∆(X)
∑

ξ,J,L+

ω̄
(ξ,J,L+)
+ δJ∪L+[L(X)]

[

p̄
(ξ)
+

]X

(6)

where ξ ∈ Ξ, J ∈ F(L), L+ ∈ F(B+), and

ω̄
(ξ,J,L+)
+ = 1F(B+)(L+) r

L+

B,+ [1− rB,+]
B+−L+

×
∑

I∈F(L)

1F(I)(J)
[

P̄
(ξ)
S

]J[

1−P̄
(ξ)
S

]I−J

ω(I,ξ) (7)

P̄
(ξ)
S (ℓ) =

〈

p(ξ)(·, ℓ), PS(·, ℓ)
〉

(8)

p̄
(ξ)
+ (x+, ℓ+) = 1L(ℓ+)

〈
PS(·, ℓ+)f+(x+|·, ℓ+), p(ξ)(·, ℓ+)

〉

P̄
(ξ)
S (ℓ+)

+ 1B+(ℓ+)pB,+(x+, ℓ+). (9)

Moreover, the δ-GLMB filtering density at time k+1 is [27]3

πZ+(X) ∝ ∆(X)
∑

ξ,J,L+,θ+

ω
(ξ,J,L+,θ+)
Z+

δJ∪L+[L(X)]
[

p
(ξ,θ+)
Z+

]X

(10)

where θ+ ∈ Θ+, and

ω
(ξ,J,L+,θ+)
Z+

= 1Θ+(J∪L+)(θ+)
[

ψ̄
(ξ,θ+)
Z+

]J∪L+

ω̄
(ξ,J,L+)
+ (11)

ψ̄
(ξ,θ+)
Z+

(ℓ+) =
〈

p̄
(ξ)
+ (·, ℓ+), ψ

(θ+(ℓ+))
Z+

(·, ℓ+)
〉

(12)

p
(ξ,θ+)
Z+

(x+, ℓ+) =
p̄
(ξ)
+ (x+, ℓ+)ψ

(θ+(ℓ+))
Z+

(x+, ℓ+)

ψ̄
(ξ,θ+)
Z+

(ℓ+)
(13)

Remark. To be concise, ψ̄
(ξ,θ+)
Z+

(ℓ+) should be understood

as ψ̄
(ξ,θ+(ℓ+))
Z+

(ℓ+) since (12) does not require knowledge

of the entire map θ+, but only its value at ℓ+. Similarly,

p
(ξ,θ+)
Z+

(x+, ℓ+) should be understood as p
(ξ,θ+(ℓ+))
Z+

(x+, ℓ+).

The first implementation of the GLMB filter recursively

computes the predicted and update densities at each time

step [28]. Since the number of components in the δ-GLMB

prediction and filtering densities grows exponentially with

time, these densities are truncated by retaining components

with largest weights to minimize the L1 truncation error [28].

From the δ-GLMB weight prediction (6)-(7), note that

each component (I, ξ) generates a new set of “children”

(I, ξ, J, L+), J ⊆ I , L+ ⊆ B+, with weights proportional

to [P̄
(ξ)
S ]J [ 1 − P̄

(ξ)
S ]I−J r

L+

B,+ [1− rB,+]
B+−L+ . Truncating

1obtained by substituting w(ξ)(J) =
∑

I∈F(L) w
(ξ)(I)δI(J) into (1).

2Eq. (33) with the sum over J ∈ F(I) replaced by the sum over F(L)

weighted by 1F(I)(J), and equating the sum over I with ω̄
(J,L+,ξ)
+ .

3Eq. (13) with the sum over Θ+(J ∪ L+) replaced by the sum over Θ+

weighted by 1Θ+(J∪L+)
(θ+).

the contribution of component (I, ξ) to the predicted density

without exhaustively computing all the children’s weights is

performed by solving two separate K-shortest path problems.

The first finds a prescribed number of surviving label sets

J ⊆ I in non-increasing order of [P̄
(ξ)
S ]J [1 − P̄

(ξ)
S ]I−J ,

while the second finds a prescribed number of new label sets

L+ ⊆ B+, in non-increasing order of r
L+

B,+ [1− rB,+]
B+−L+.

This strategy ensures that components with births, which

usually have very low weights, are retained.

From the δ-GLMB weight update (10)-(11), note that each

prediction component (ξ, J, L+) generates a new set of com-

ponents (ξ, J, L+, θ+), θ+ ∈ Θ+(J ∪ L+), with weights

proportional to [ψ̄
(ξ,θ+)
Z+

]J∪L+ . Truncating the contribution of

component (ξ, J, L+) to the updated density without exhaus-

tively computing all the components is performed by solving

the ranked assignment problem to find a prescribed number of

association maps θ+ in non-increasing order of [ψ̄
(ξ,θ+)
Z+

]J∪L+ .

Separating the truncation of the prediction from the update

only exploits a priori knowledge (e.g. survival and birth

probabilities), consequently, a significant portion of these pre-

dicted components would generate updated components with

negligible weights. Hence, computations are wasted in solving

a large number of ranked assignment problems, which have,

at best, cubic complexity in the number of measurements.

III. EFFICIENT IMPLEMENTATION OF THE GLMB FILTER

To avoid propagating prediction components that would

generate weak updated components, this section proposes a

new implementation of the GLMB filter with a joint prediction

and update. This joint strategy only requires one truncation

procedure per iteration, while preserving the filtering perfor-

mance as well as parallelizability. Further, we detail a δ-

GLMB truncation approach based on Gibbs sampling that

drastically reduces the complexity.

The δ-GLMB joint prediction and update is presented in

subsection III-A, followed by a formulation of the δ-GLMB

truncation problem in subsection III-B. The ranked assignment

and Gibbs sampling solutions to the truncation problem are

given in subsections III-C and III-D, followed by implemen-

tations details in subsection III-E.

A. Joint prediction and update

The following Proposition establishes a direct recursion

between the components of two GLMB filtering densities at

consecutive times (see the Appendix for proof).

Proposition 1. Given the δ-GLMB filtering density (5) at time

k, the δ-GLMB filtering density at time k + 1 is given by

πZ+(X)∝ ∆(X)
∑

I,ξ,I+,θ+

ω(I,ξ)ω
(I,ξ,I+,θ+)
Z+

δI+[L(X)]
[

p
(ξ,θ+)
Z+

]X

(14)

where I ∈ F(L), ξ ∈ Ξ, I+ ∈ F(L+), θ+ ∈ Θ+, and

ω
(I,ξ,I+,θ+)
Z+

= 1Θ+(I+)(θ+)
[

1− P̄
(ξ)
S

]I−I+[

P̄
(ξ)
S

]I∩I+

× [1− rB,+]
B+−I+ r

B+∩I+
B,+

[

ψ̄
(ξ,θ+)
Z+

]I+
(15)

P̄
(ξ)
S (ℓ) =

〈

p(ξ)(·, ℓ), PS(·, ℓ)
〉

(16)
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ψ̄
(ξ,θ+)
Z+

(ℓ+) =
〈

p̄
(ξ)
+ (·, ℓ+), ψ

(θ+(ℓ+))
Z+

(·, ℓ+)
〉

(17)

p̄
(ξ)
+ (x+, ℓ+) = 1L(ℓ+)

〈
PS(·, ℓ+)f+(x+|·, ℓ+), p

(ξ)(·, ℓ+)
〉

P̄
(ξ)
S (ℓ+)

+ 1B+(ℓ+)pB,+(x+, ℓ+) (18)

p
(ξ,θ+)
Z+

(x+, ℓ+) =
p̄
(ξ)
+ (x+, ℓ+)ψ

(θ+(ℓ+))
Z+

(x+, ℓ+)

ψ̄
(ξ,θ+)
Z+

(ℓ+)
. (19)

The summation (14) can be interpreted as an enumeration

of all possible combinations of births, deaths and survivals to-

gether with associations of new measurements to hypothesized

labels. Observe that (14) does indeed take on the δ-GLMB

form when rewritten as a sum over I+, ξ, θ+ with weights

ω
(I+,ξ,θ+)
Z+

∝
∑

I

ω(I,ξ)ω
(I,ξ,I+,θ+)
Z+

. (20)

Hence at the next iteration we only propagate forward the

components (I+, ξ, θ+) with weights ω
(I+,ξ,θ+)
Z+

.

The number of components in the δ-GLMB filtering density

grows exponentially with time, and needs to be truncated

at every time step, ideally, by retaining those with largest

weights since this minimizes the L1 approximation error

[28]. Note from the δ-GLMB recursion (14)-(15) that each

component (I, ξ) generates a set of “children” (I, ξ, I+, θ+),
(I+, θ+) ∈ F(L+) × Θ+(I+) with weights proportional to

ω
(I,ξ,I+,θ+)
Z+

. Truncating the contribution of component (I, ξ)
to the δ-GLMB filtering density, at time k + 1, amounts to

selecting its “children” (I, ξ, I+, θ+) with significant weights.

B. GLMB truncation formulation

In this and the next two subsections, we consider a fixed

component (ξ, I) of the δ-GLMB filtering density at time k,

and a fixed measurement set Z+ at time k + 1. Specifically,

we enumerate Z+ = {z1:M}, I = {ℓ1:R}, and in addition

B+= {ℓR+1:P}. The goal is to find a set of pairs (I+, θ+) ∈

F(L+)×Θ+(I+) with significant ω
(I,ξ,I+,θ+)
Z+

.

For each pair (I+, θ+) ∈ F(L+) × Θ+(I+), we define a

P -tuple γ = (γ1:P ) ∈ {−1:M}P by

γi =

{
θ+(ℓi), if ℓi ∈ I+
−1, otherwise

Note that γ inherits, from θ+, the positive 1-1 property, i.e.,

there are no distinct i, i′ ∈ {1:P} with γi = γi′ > 0. The

set of all positive 1-1 elements of {−1:M}P is denoted by

Γ. From γ ∈ Γ, we can recover I+ and θ+ : I+ → {0:M},

respectively, by

I+ = {ℓi ∈ I ∪ B+ : γi ≥ 0} and θ+(ℓi) = γi. (21)

Thus, 1Γ(γ) = 1Θ+(I+)(θ+), and there is a 1-1 correspondence

between the spaces Θ+(I+) and Γ.

Assuming that for all i ∈ {1:P}, P̄
(ξ)
S (ℓi) ∈ (0, 1) and

P̄
(ξ)
D (ℓi) ,

〈

p̄
(ξ)
+ (·, ℓi), PD(·, ℓi)

〉

∈ (0, 1), we define

ηi(j)=







1− P̄
(ξ)
S (ℓi), 1 ≤ i ≤ R, j< 0,

P̄
(ξ)
S (ℓi)ψ̄

(ξ,j)
Z+

(ℓi), 1 ≤ i ≤ R, j≥ 0,

1− rB,+(ℓi), R+1 ≤ i ≤ P, j< 0,

rB,+(ℓi)ψ̄
(ξ,j)
Z+

(ℓi), R+1 ≤ i ≤ P, j≥ 0.

(22)

where ψ̄
(ξ,j)
Z+

(ℓi)=
〈

p̄
(ξ)
+ (·, ℓi), ψ

(j)
Z+

(·, ℓi)
〉

, and j ∈ {−1:M}

is the index of the measurement assigned to label ℓi, with

j = 0 indicating that ℓi is misdetected, and j = −1 indicating

that ℓi no longer exists. It is implicit that ηi(j) depends

on the given (ξ, I) and Z+, which have been omitted for

compactness. The assumptions on the expected survival and

detection probabilities, P̄
(ξ)
S (ℓi) and P̄

(ξ)
D (ℓi), eliminates trivial

and ideal sensing scenarios, as well as ensuring ηi(j) > 0.

Note from (21) that since θ+(ℓi) = γi, we have ψ̄
(ξ,γi)
Z+

(ℓi)

= ψ̄
(ξ,θ+(ℓi))
Z+

(ℓi) = ψ̄
(ξ,θ+)
Z+

(ℓi), (see (12) and the subsequent

remark), hence it follows from (22) that

R∏

n=1

ηn(γn) =
[

1− P̄
(ξ)
S

]I−I+ [

P̄
(ξ)
S ψ̄

(ξ,θ+)
Z+

]I∩I+

,

P∏

n=R+1

ηn(γn) = [1− rB,+]
B+−I+

[

rB,+ψ̄
(ξ,θ+)
Z+

]B+∩I+

.

Moreover, using (15), we have

ω
(I,ξ,I+,θ+)
Z+

= 1Γ(γ)

P∏

i=1

ηi(γi). (23)

Consequently, finding a set of (I+, θ+) ∈ F(L+) × Θ+(I+)

with significant ω
(I,ξ,I+,θ+)
Z+

is equivalent to finding a set of

positive 1-1 vectors γ with significant
∏P

i=1ηi(γi).

C. Ranked Assignment

Similar to the GLMB update implementation in [28], for

a given component (I, ξ), the T best positive 1-1 vectors

γ in non-increasing order of
∏P

i=1 ηi(γi), can be obtained,

without exhaustive enumeration, by solving the following

ranked assignment problem.

Each γ ∈ Γ can be represented by a P × (M + 2P )
assignment matrix S consisting of 0 or 1 entries with every

row summing to 1, and every column summing to either 1 or

0. Note that S can be partitioned into 3 sub-matrices similar

to the matrix shown in Fig. 1. For (i, j) ∈ {1:P}×{1:M},

Si,j = 1 when γi = j (i.e. ℓi generates the jth measurement).

For (i, j) ∈ {1:P}×{M + 1:M + P}, Si,j = 1 when γi
= 0 and j = M + i (i.e. ℓi not detected). For (i, j) ∈
{1:P}×{M+P+1:M+2P}, Si,j = 1 when γi = −1 and

j =M+P+i (i.e. ℓi does not exist). More concisely,

Si,j = 1{1:M}(j)δγi
[j] + δM+i[j]δγi

[0] + δM+P+i[j]δγi
[−1].

The P×(M+2P ) cost matrix C of this optimal assignment

problem (implicitly depends on (ξ, I) and Z+), is given by

Ci,j =







− ln ηi(j) j ∈ {1 :M}

− ln ηi(0) j =M + i

− ln ηi(−1) j =M + P + i

∞ otherwise

(24)

(see also Fig. 1). The cost of an assignment matrix S is

tr(STC) =

P∑

i=1

M+2P∑

j=1

Ci,jSi,j ,

and is related to the weight of the corresponding positive 1-1

vector γ by exp
(
−tr(STC)

)
=

∏P

i=1ηi(γi).
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survived and detected survived and misdetected died or not born

z1 · · · zj · · · zM s1 · · · sP ∅1 · · · ∅P

(ℓ1, ξ)
...

(ℓi, ξ)
...

(ℓP , ξ)







︷ ︸︸ ︷











− ln η1(1) · · · − ln η1(M)
. . .

... − ln ηi(j)
...

. . .
− ln ηP (1) · · · − ln ηP (M)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

︷ ︸︸ ︷

− ln η1(0) ∞ · · · ∞

∞

...
. . .

...

∞

∞ · · · ∞ − ln ηP (0)

︷ ︸︸ ︷
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

− ln η1(−1) ∞ · · · ∞

∞

...
. . .

...

∞

∞ · · · ∞ − ln ηP (−1)












Fig. 1. The cost matrix C for the joint prediction and update optimal assignment problem of component (ξ, I). The 3 partitions correspond to survived and
detected objects, survived and misdetected objects, and objects that died or not born. The assignment matrix S has the same structure, but with 1’s and 0’s
as entries.

Note that the cost matrix (24) is an extension of the cost

matrix of the GLMB update implementation in [28] to inte-

grate birth, death, survival, detection, misdetection and clutter.

A GLMB filter implementation using Murty’s algorithm to

solve the above ranked assignment problem has been reported

in [37]. The same strategy of solving ranked assignment

problems with joint prediction and update was proposed for

unlabeled multi-object filtering in [39]. Although this approach

does not produce tracks like the GLMB filter, it is still useful

in applications such as mapping [15], [16] where the individual

trajectories of the landmarks are not required.

Solving the ranked assignment problem with cost ma-

trix C, for the T best positive 1-1 vectors can be accom-

plished by Murty’s algorithm [40] with a complexity of

O
(
T (M + 2P )4

)
. More efficient algorithms [41], [42] can

reduce the complexity to O
(
T (M + 2P )3

)
. The main contri-

bution of this article is a much cheaper and simpler algorithm

for generating positive 1-1 vectors with high weights.

D. Gibbs Sampling

The main drawback in using existing ranked assignment

algorithms are the high computational cost of generating a

sequence of positive 1-1 vectors ordered according to their

weights, whilst such ordering is not needed in the δ-GLMB

approximation. In this subsection, we propose a more efficient

alternative by using Markov Chain Monte Carlo (MCMC) to

simulate an unordered set of significant positive 1-1 vectors. In

particular, we exploit the Gibbs sampler to break down a com-

plex high-dimensional problem into simple, low-dimensional

problems to achieve greater efficiency.

The key idea in the stochastic simulation approach is to

consider γ as a realization of a random variable distributed

according to a probability distribution π on {−1:M}P . Can-

didate positive 1-1 vectors are then generated by independently

sampling from π. Asymptotically, the proportion of samples

with probabilities above a given threshold is equal to the prob-

ability mass of points with probabilities above that threshold.

To ensure that mostly high-weight positive 1-1 vectors are

sampled, π is constructed so that only positive 1-1 vectors

have positive probabilities, and those with high weights are

more likely to be chosen than those with low weights. An

obvious choice of π is one that assigns each positive 1-1 vector

a probability proportional to its weight, i.e.

π(γ) ∝ 1Γ(γ)

P∏

i=1

ηi(γi) (25)

where Γ is the set of positive 1-1 vectors in {−1:M}P .

Sampling directly from the distribution (25) is very difficult.

MCMC is a widely used technique for sampling from a

complex distribution by constructing a suitable Markov chain.

Indeed, MCMC simulation has been applied to compute pos-

terior distributions of data association variables in multi-object

tracking problems [43]. However, depending on the proposal,

it could take some time for a new sample to be accepted.

Designing a proposal to have high acceptance probability

is still an open area of research. Furthermore, the actual

distribution of the samples from a Markov chain depends

on the starting value, even if asymptotically the samples are

distributed according to the stationary distribution. Usually,

an MCMC simulation is divided into two parts: the pre-

convergence samples, known as burn-ins, are discarded; and

the post-convergence samples are used for inference [44]. The

key technical problem is that there are no bounds on the

burn-in time nor reliable techniques for determining when

convergence has occurred, see e.g. [44] and references therein.

The Gibbs sampler is a computationally efficient special

case of the Metropolis-Hasting MCMC algorithm, in which

proposed samples are always accepted [45], [46]. Further,

in GLMB filtering, we are not interested in the distribution

of the positive 1-1 vectors. Regardless of their distribution,

all distinct positive 1-1 vectors will reduce the L1 GLMB

approximation error. Thus, unlike MCMC posterior inference,

there are no problems with burn-ins.

Algorithm 1. Gibbs

• input: γ(1), T, η = [ηi(j)]
• output: γ(1), ..., γ(T )

P := size(η, 1); M := size(η, 2)− 2;
for t = 2 : T

for n = 1 : P
γ
(t)
n ∼ πn(·|γ

(t)
1:n−1, γ

(t−1)
n+1:P );

end

γ(t) := [γ
(t)
1 , ..., γ

(t)
P ];

end

Formally, the Gibbs sampler (see Algorithm 1) is a Markov

chain {γ(t)}∞t=1 with transition kernel [45], [46]

π(γ′|γ) =
P∏

i=1

πn(γ
′
n|γ

′
1:n−1, γn+1:P ),

where πn(γ
′
n|γ

′
1:n−1, γn+1:P ) ∝ π(γ′1:n, γn+1:P ). In other

words, given γ = (γ1:P ), the components γ′1, ..., γ
′
P of the
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state at the next iterate of the chain, are distributed according

to the sequence of conditionals

π1(γ
′
1|γ2:P ) ∝ π(γ′1, γ2:P )

...

πn(γ
′
n|γ

′
1:n−1, γn+1:P ) ∝ π(γ′1:n, γn+1:P )

...

πP (γ
′
P |γ

′
1:P−1) ∝ π(γ′1:P ).

Although the Gibbs sampler is computationally efficient with

an acceptance probability of 1, it requires the conditionals

πn(·|·), n ∈ {1:P}, to be easily computed and sampled from.

In the following we establish closed form expressions for

the conditionals that can be computed/sampled at low cost.

Lemma 2. Let n̄ = {1:P}− {n}, γn̄= (γ1:n−1, γn+1:P ), and

Γ(n̄) be the set of all positive 1-1 γn̄ (i.e. γn̄ for which there

are no distinct i, j ∈ n̄ with γi = γj > 0). Then, for any

γ ∈ {−1:M}P , 1Γ(γ) can be factorized as:

1Γ(γ) = 1Γ(n̄)(γn̄)
∏

i∈n̄

(1− 1{1:M}(γn)δγn
[γi]). (26)

The proof is given in the Appendix.

Proposition 3. For each n ∈ {1:P},

πn(γn|γn̄) ∝ ηn(γn)
∏

i∈n̄

(1− 1{1:M}(γn)δγn
[γi]). (27)

Proof: We are interested in highlighting the functional

dependence of πn(γn|γn̄) on γn, while its dependence on all

other variables is aggregated into the normalizing constant:

πn(γn|γn̄) ,
π(γ)

π(γn̄)
∝ π(γ) ∝ 1Γ(γ)

P∏

j=1

ηj(γj)

= ηn(γn)1Γ(γ)
∏

j∈n̄

ηj(γj).

Factorizing 1Γ(γ) using Lemma 2, gives

πn(γn|γn̄)

∝ ηn(γn)
∏

i∈n̄

(1−1{1:M}(γn)δγn
[γi])1Γ(n̄)(γn̄)

∏

j∈n̄

ηj(γj)

∝ ηn(γn)
∏

i∈n̄

(1−1{1:M}(γn)δγn
[γi]). �

For a non-positive j, 1{1:M}(j) = 0, and Proposition 3

implies πn(j|γn̄) ∝ ηn(j). On the other hand, given any j ∈
{1 :M}, Proposition 3 implies that πn(j|γn̄) ∝ ηn(j), unless

j ∈ {γ1:n−1, γn+1:P }, i.e. there is an i ∈ n̄ with γi = j, in

which case πn(j|γn̄) = 0. Consequently, for j ∈ {1 :M}

πn(j|γn̄) ∝ ηn(j)(1 − 1{γ1:n−1,γn+1:P }(j)).

Hence, sampling from the conditionals is simple and inex-

pensive as illustrated in Algorithm 1a, which has an O(PM)
complexity since sampling from a categorical distribution is

linear in the number of categories [47]. Consequently, the

complexity of the Gibbs sampler (Algorithm 1) is O(TP 2M).
Proposition 3 also implies that for a given a positive 1-1

γn̄, only γn ∈ {−1:M} that does not violate the positive

1-1 property can be generated by the conditional πn(·|γn̄),

with probability proportional to ηn(γn). Thus, starting with a

positive 1-1 vector, all iterates of the Gibbs sampler are also

positive 1-1. If the chain is run long enough, the samples are

effectively distributed from (25) as formalized in Proposition

4 (see Appendix for proof).

Proposition 4. Starting from any initial state in Γ, the Gibbs

sampler defined by the family of conditionals (27) converges

to the target distribution (25) at an exponential rate. More

concisely, let πj denote the jth power of the transition matrix,

then

max
γ,γ′∈Γ

(|πj(γ′|γ)− π(γ′)|) ≤ (1− 2β)⌊
j

2⌋,

where β , minγ,γ′∈Γ π
2(γ′|γ) > 0 is the least likely 2-step

transition probability.

Algorithm 1a. γ′n ∼ πn(·|γ′1:n−1, γn+1:P )

c := [−1 :M ]; ηn := [ηn(−1), ..., ηn(M)];

for j = 1 :M

ηn(j) := ηn(j)(1 − 1{γ′
1:n−1,γn+1:P }(j));

end

γ′n ∼ Categorical(c, ηn);

The proposed Gibbs sampler has a short burn-in period due

to its exponential convergence rate. More importantly, since

we are not using the samples to approximate (25) as in an

MCMC inference problem, it is not necessary to discard burn-

in and wait for samples from the stationary distribution. For the

purpose of approximating the δ-GLMB filtering density, each

distinct sample constitutes one term in the approximant, and

reduces the L1 approximation error by an amount proportional

to its weight. Hence, regardless of their distribution, all distinct

samples can be used, the larger the weights, the smaller the

L1 error between the approximant and the true δ-GLMB.

Remark. The proposed Gibbs sampling solution can be di-

rectly applied to the standard data association problem in joint

probabilistic data association and multiple hypothesis tracking.

Further, it can be adapted to solve a ranked assignment prob-

lem with P workers and M jobs as follows. Each assignment

is represented by a positive 1-1 vector γ in {0:M}P , with

γn = j indicating that worker n is assigned job j, which

incurs a cost Fn,j . Note that γn = 0 indicates that worker n is

assigned no job, which incurs a cost of Fn,0 (usually assumed

to be 0). The cost of an assignment γ is given by
∑P

n=1Fn,γn
.

Hence, Algorithm 1 can be used to generate a sequence of

assignments with significant costs by setting c := [0 : M ],
and ηn = [ηn(0), ..., ηn(M)], where ηn(j) = exp(−Fn,j),
in the first line of Algorithm 1a. A sufficient condition for

exponential convergence of the Gibbs sampler (i.e. Proposition

4 to hold) is a finite cost of assigning no job to any worker

(usually this cost is 0, i.e. ηi(0) = 1). The final step is to

remove duplicates and rank the Gibbs samples (according

to their costs), which requires additional computations with

O(T logT ) complexity.
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E. Joint Prediction and Update Implementation

A δ-GLMB of the form (5) is completely characterized by

parameters (ω(I,ξ), p(ξ)), (I, ξ) ∈ F(L)×Ξ, which can be

enumerated as {(I(h), ξ(h), ω(h), p(h))}Hh=1, where

ω(h) , ω(I(h),ξ(h)), p(h) , p(ξ
(h)).

Since the δ-GLMB (5) can now be rewritten as

π(X) = ∆(X)

H∑

h=1

ω(h)δI(h) [L(X)]
[

p(h)
]X

,

there is no need to store ξ(h), and implementing the GLMB

filter amounts to propagating forward the parameter set

{(I(h), ω(h), p(h))}Hh=1.

Estimating the multi-object state from the δ-GLMB parameters

is the same as in [28].

The procedure for computing the parameter set

{(I
(h+)
+ , ω

(h+)
+ , p

(h+)
+ )}

H+

h+=1

at the next time is summarized in Algorithm 2. Note that to

be consistent with the indexing by h instead of (I, ξ), we

abbreviate

P̄
(h)
S (ℓi) , P̄

(ξ(h))
S (ℓi),

p̄
(h)
+ (x, ℓi) , p̄

(ξ(h))
+ (x, ℓi),

ψ̄
(h,j)
Z+

(ℓi) , ψ̄
(ξ(h),j)
Z+

(ℓi)

η
(h)
i (j) ,







1− P̄
(h)
S (ℓi), ℓi∈ I(h), j< 0,

P̄
(h)
S (ℓi)ψ̄

(h,j)
Z+

(ℓi), ℓi∈ I(h), j≥ 0,

1− rB,+(ℓi), ℓi∈ B+, j< 0,

rB,+(ℓi)ψ̄
(h,j)
Z+

(ℓi), ℓi∈ B+, j≥ 0.

(28)

At time k + 1, the three main tasks are:

1) Generate {(I(h+), ξ(h+), I
(h+)
+ , θ

(h+)
+ )}

H+

h+=1, the set of

“children” with significant weights;

2) Compute {(I(h+), I
(h+)
+ , ω

(h+)
+ , p

(h+)
+ )}

H+

h+=1, the inter-

mediate parameter set, as in Proposition 1;

3) Compute {(I
(h+)
+ , ω

(h+)
+ , p

(h+)
+ )}

H+

h+=1, the parameter set

at time k + 1, using (20).

For task 1, using the rationale from subsection III-D, the

set of “children” can be generated by sampling from the

distribution π given by

π(I, ξ, I+, θ+) ∝ ω(I,ξ)ω
(I,ξ,I+,θ+)
Z+

.

This can be achieved by sampling (I(h+), ξ(h+)) from

π(I, ξ) ∝ ω(I,ξ), and then conditional on (I(h+), ξ(h+)),

sample (I
(h+)
+ , θ

(h+)
+ ) from π(I+, θ+|I(h+), ξ(h+)). Equiva-

lently, in Algorithm 2 we draw Hmax
+ samples (I(h), ξ(h))

from π(I, ξ) ∝ ω(I,ξ), and then for each distinct sample

(I(h), ξ(h)) with T
(h)
+ copies4, use the Gibbs sampler (Al-

gorithm 2a) to generate T
(h)
+ samples (I

(h,t)
+ , θ

(h,t)
+ ) from

π(I+, θ+|I(h), ξ
(h)). Note that each (I

(h,t)
+ , θ

(h,t)
+ ) is repre-

sented by the positive 1-1 vector γ(h,t) (see (21) for the

equivalence of this representation).

4Asymptotically T
(h)
+ is proportional to the weight ω(h)

Algorithm 2. Joint Prediction and Update5

• input: {(I(h), ω(h), p(h))}Hh=1, Z+, Hmax
+ ,

• input: {(r
(ℓ)
B,+, p

(ℓ)
B,+)}ℓ∈B+ , PS , f+(·|·), κ+, PD,+, g+(·|·),

• output: {(I
(h+)
+ , ω

(h+)
+ , p

(h+)
+ )}

H+

h+=1

sample counts [T
(h)
+ ]Hh=1 from a multinomial distribution with

parameters Hmax
+ trials and weights [ω(h)]Hh=1

for h = 1 : H
initialize γ(h,1)

compute η(h) = [η
(h)
i (j)]

(|I(h)∪B+|,|Z+|)
(i,j)=(1,−1) using (28)

{γ(h,t)}
T̃

(h)
+

t=1 := Unique(Gibbs(γ(h,1), T
(h)
+ , η(h)));

for t = 1 : T̃
(h)
+

compute I
(h,t)
+ from I(h) and γ(h,t) using (29)

compute ω
(h,t)
+ from ω(h) and γ(h,t) using (30)

compute p
(h,t)
+ from p(h) and γ(h,t) using (31)

end

end

({(I
(h+)
+ , p

(h+)
+ )}

H+

h+=1,∼, [Uh,t])

:= Unique({(I
(h,t)
+ , p

(h,t)
+ )}

(H,T̃
(h)
+ )

(h,t)=(1,1));
for h+ = 1 : H+

ω
(h+)
+ :=

∑

h,t:Uh,t=h+

ω
(h,t)
+ ;

end

normalize weights {ω
(h+)
+ }

H+

h+=1

Algorithm 2a. Gibbs

• input: γ(1), T, η = [ηi(j)]
• output: γ(1), ..., γ(T )

P := size(η, 1); M := size(η, 2)−2; c := [−1:M ]; η̃ := η;
for t = 2 : T
γ(t) := [ ];
for n = 1 : P

for j = 1 :M
η̃n(j) := ηn(j)(1 − 1

{γ
(t)
1:n−1,γ

(t−1)
n+1:P }

(j));

end

γ
(t)
n ∼ Categorical(c, η̃n); γ(t) := [γ(t), γ

(t)
n ];

end

end

In task 2, for each h, after discarding repeated positive

1-1 vector samples via the “Unique” MATLAB function, the

intermediate parameters (I(h), I
(h,t)
+ , ω

(h,t)
+ , p

(h,t)
+ ), t = 1:T̃

(h)
+

are computed from the positive 1-1 vector γ(h,t) by

I
(h,t)
+ = {ℓi ∈ I(h) ∪ B+ : γ

(h,t)
i ≥ 0}, (29)

ω
(h,t)
+ ∝ ω(h)

|I(h)∪B+|∏

i=1

η
(h)
i (γ

(h,t)
i ), (30)

p
(h,t)
+ (·, ℓi) = p̄

(h)
+ (·, ℓi)ψ

(γ
(h,t)
i

)
Z+

(·, ℓi)/ψ̄
(h,γ

(h,t)
i

)
Z+

(ℓi). (31)

Equations (29)-(31) follow directly from (21), (15)-(19) and

(23). Computing p
(h,t)
+ (·, ℓi) (and η

(h,t)
i (j), ψ̄

(h,j)
Z+

(ℓi), P̄
(h)
S )

can be done via sequential Monte Carlo or Gaussian mixture,

5In Algorithm 2 {} denotes a MATLAB cell array of (non-unique) elements
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depending on the representation of the densities p(h) (see

subsections IV.B and V.B of [28] for details).

Finally, in task 3 the intermediate parameters are marginal-

ized via (20) and the weights normalized, to give the new

component set {(I
(h+)
+ , ω

(h+)
+ , p

(h+)
+ )}

H+

h+=1. Note that the

outputUh,t of the “Unique” MATLAB function gives the index

of the GLMB component at time k+1 that (I(h), I
(h,t)
+ , p

(h,t)
+ )

contributes to.

Since we are only interested in samples that provide a

good representation of the δ-GLMB filtering density, increased

efficiency (for the same Hmax
+ ) can be achieved by using

annealing or tempering techniques to modify the stationary

distribution so as to induce the Gibbs sampler to seek more

diverse samples [51], [52]. One example is to initially decrease

the temperature to seek out the nearest mode, and subsequently

increase the temperature for diversity.

In scenarios with small birth weights, δ-GLMB components

that involve births also have small weights, and are likely to

be discarded when Hmax
+ (which depends on the available

computing resource) is not large enough, leading to poor track

initiation. Increasing the temperature does not guarantee the

selection of components with births. Tempering with the birth

model (e.g. by feeding the Gibbs sampler with a larger birth

rate) directly induces the chain to generate more components

with births. Note that the actual weights of the δ-GLMB den-

sity components are computed using the correct birth model

parameters. Similarly, tempering with the survival probability

induces the Gibbs sampler to generate more components

with object deaths and improves track termination. Tempering

with parameters such as detection probabilities and clutter

rate induces the Gibbs sampler to generate components that

reduce the occurrence of dropped tracks. Note that if the

number of significant components exceeds Hmax
+ the filtering

performance will degrade in subsequent iterations.

The Gibbs sampler can be initialized with the highest

weighted 1-1 vector (requires solving an optimal assignment

problem [53], [54]). Alternatively, a trivial initialization is the

all-zeros 1-1 vector (requires no computations). Proposition 4

ensures convergence of the chain to the stationary distribution

at an exponential rate regardless of the initialization.

Remark. It is possible to replace the Gibbs sampler by a de-

terministic ranked assignment algorithm with cost matrix (24)

to generate the T
(h)
+ strongest positive 1-1 vectors, where T

(h)
+

is chosen to be proportional to the weight ω(h) [37]. Note that

such allocation scheme does not necessarily produce the H+

best components at time k + 1. It is possible to discard some

children from weaker parents, which still have higher weights

than some of those from stronger parents. Other schemes for

choosing T
(h)
+ are possible. A ranked assignment problem can

also be formulated to find the H+ best components. However,

the complexity grows and parallelizability is lost. Similar to

the Gibbs sampler based solution, tempering with the multi-

object model parameters can be used to increase efficiency.

Let P , maxh |I(h)∪B| and M , |Z+|. The standard and

fastest ranked assignment algorithms have respective complex-

ities O((2P +M)4) and O((2P +M)3) i.e. at best, cubic in

both the number of hypothesized labels and measurements.

On the other hand, the complexity of the Gibbs sampling

based solution is O(P 2M), i.e. quadratic in the number of

hypothesized labels and linear in the number of measurements.

IV. NUMERICAL STUDIES

This section presents two numerical experiments to verify

the proposed GLMB filter implementation without consider-

ation for parallelization. The first demonstrates its efficiency

via a linear Gaussian scenario. The second demonstrates its

versatility on a very challenging non-linear scenario with non-

uniform detection profile and dense clutter.

A. Linear Gaussian

The linear Gaussian scenario in the experiment of [28] is

used to compare typical speedup in CPU time between the

original implementation in [28] and the proposed implemen-

tation (Algorithm 2). In summary this scenario involves an

unknown and time varying number objects (up to 10 in total)

with births, deaths and crossings. Individual object kinematics

are described by a 4D state vector of position and velocity

that follows a constant velocity model with sampling period

of 1s, and process noise standard deviation σν = 5m/s2. The

survival probability PS = 0.99, and the birth model is an LMB

with parameters {rB,k(ℓi), pB,k(ℓi)}3i=1, where ℓi = (k, i),

rB,k(ℓi) = 0.04, and pB(x, ℓi) = N (x;m
(i)
B , PB) with

m
(1)
B = [0, 0, 100, 0]T , m

(2)
B = [−100, 0,−100, 0]T ,

m
(3)
B = [100, 0,−100, 0]T , PB = diag([10, 10, 10, 10]T)2.

Observations are 2D position vectors on the region

[−1000, 1000]m × [−1000, 1000]m with noise standard de-

viation σε = 10m. The detection probability PD = 0.88 and

clutter is modeled as a Poisson RFS with a uniform intensity

of λc = 1.65 × 10−5 m−2 on the observation region (i.e. an

average of 66 false alarms per scan).

In the original implementation, predicted components are

obtained by combining independently generated surviving and

births components, together with a CPHD look ahead step

for better efficiency (see [28] for full details). To increase

diversity of the GLMB components, the proposed implemen-

tation with Gibbs sampling uses tempered birth, survival and

detection parameters, specifically each rB(ℓi) is increased by

a factor of 10, while PS and PD are reduced by 5%. For

completeness, the implementation via joint prediction and

update with Murty’s algorithm is also considered using the

same tempered parameters. All implementations use Gaussian

mixture representations of the track densities. We compare the

speedup (ratio of CPU times) between the original implemen-

tation and the proposed Gibbs sampler based joint prediction

and update implementation as well as between the original

implementation and the Murty based joint prediction and

update implementation. Three cases are considered for various

values of Hmax (the cap on the number of components)

under which the implementations exhibit approximately the

same tracking performance (it is virtually impossible for the

different implementations to have exactly the same tracking

performance). The results reported below are obtained over

100 Monte Carlo trials.
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Fig. 2. Similar OSPA errors for the three different implementations.

Speedup Case 1 Case 2 Case 3

Murty/Joint 24X 2.5X 185X

Gibbs/Joint 187X 27X 1443X

Fig. 3. Range of CPU time speedup factors compared to the original
implementation obtained for various cases.

1) Case 1: This baseline comparison uses the values of

Hmax where each implementation starts to exhibit reasonable

tracking performance, and have approximately the same av-

erage optimal sub-pattern assignment (OSPA) error [55]. The

original implementation requires Hmax = 104 while the joint

prediction and update implementation with the proposed Gibbs

sampler and Murty’s algorithm both require Hmax = 103.

Fig. 2 confirms that all implementations exhibit approximately

similar OSPA curves, except for several pronounced peaks

between times k = 55 and k = 75 for the original implemen-

tation, due to the latter being slower confirm new births. Fig.

3 shows speedups of about two and one orders of magnitude,

respectively, for the proposed Gibbs based and Murty based

joint prediction and update implementations.

2) Case 2: All implementations are allocated the same

Hmax = 104. Fig. 3 shows a speedup of over one order

of magnitude for the proposed joint prediction and update

implementation with Gibbs sampling while there is a small

improvement in the Murty based joint prediction and update

implementation. Both joint prediction and update implementa-

tions now only show a slightly better average OSPA error than

the original implementation, confirming that Hmax = 103 is a

good trade-off between computational load and performance.

3) Case 3: In an attempt to reduce the peaks in the OSPA

curve observed in case 1, we raise Hmax for the original

implementation to 105 (the experiment takes too long to run

for larger values of Hmax to be useful). However, these

peaks only reduce slightly and are still worse than both joint

prediction and update implementations for Hmax = 103.

Furthermore, the original implementation now only shows a

slightly better average OSPA error than the others. In this

extreme case Fig. 3 shows speedups of roughly three and two

orders of magnitude, respectively, for the Gibbs based and

Murty based joint prediction and update implementations.

It should be noted that in general the actual speedup ob-

served depends strongly on the scenario and testing platform,

and hence the reported speedup figures should be taken only

as broad indication of the range that could be expected. For

an indication of the actual speed and accuracy, on real data,

against some recent algorithms, we refer the reader to [56].

B. Non-linear

This example considers a very challenging scenario in

which previous implementations breakdown, specifically the

non-linear scenario in the experiment of [27], with reduced

detection profile and increased clutter rate. Again there is

an unknown and time varying number of objects (up to

10 in total) with births, deaths, and crossings. Individual

object kinematics are described by a 5D state vector xk =
[ px,k, ṗx,k, py,k, ṗy,k , ωk]

T of planar position, velocity, and

turn rate, which follows a coordinated turn model with a sam-

pling period of 1s and transition density fk|k−1(xk|xk−1) =
N (xk;F (ωk)xk, Q), where

F (ω) =









1 sinω
ω

0 − 1−cosω
ω

0
0 cosω 0 − sinω 0
0 1−cosω

ω
1 sinω

ω
0

0 sinω 0 cosω 0
0 0 0 0 1









, G =







1
2 0
1 0
0 1

2
0 1






,

Q = diag([σ2
wGG

T , σ2
u]), σw = 15m/s2, and σu =

(π/180)rad/s are the process noise standard deviations. The

survival probability PS = 0.99, and the birth model is an LMB

with parameters {rB,k(ℓi), pB,k(ℓi)}4i=1, where ℓi = (k, i),
rB,k(ℓ1) = rB,k(ℓ2) = 0.02, rB,k(ℓ3) = rB,k(ℓ4) = 0.03,

and pB,k(x, ℓi) = N (x;m
(i)
B , PB) with

m
(1)
B = [−1500, 0, 250, 0, 0]T , m

(2)
B = [−250, 0, 1000, 0, 0]T

m
(3)
B = [250, 0, 750, 0, 0]T , m

(4)
B = [1000, 0, 1500, 0, 0]T ,

PB = diag([50, 50, 50, 50, 6(π/180)]T )2.

Observations are noisy 2D bearings and range detections

z = [ θ, r ]T on the half disc of radius 2000m with noise

standard deviations σr = 5m and σθ = (π/180)rad respec-

tively. The detection profile is a (unnormalized) Gaussian with

a peak of 0.95 at the origin and 0.88 at the edge of surveillance

region. Clutter follows a Poisson RFS with a uniform intensity

of λc = 1.6× 10−2 (radm)−1 on the observation region (i.e.

an average of 100 false alarms per scan).

The proposed GLMB filter implementation uses particle

approximations of the track densities to accommodate non-

linearity and state dependent probability of detection. Again,

the birth, survival and detection parameters are tempered,

specifically each rB(ℓi) is increased by a factor of 20, while

PS(x, ℓ) and PD(x, ℓ) are reduced by 5%. Due to the high

uncertainty in the scenario, a large Hmax is needed since there

is a large number of GLMB components with similar weights.

Further, the differences between the weights of significant and

insignificant components are not as pronounced as the original

scenario in [27]. Consequently, the Monte Carlo integration

error should be significantly smaller than these differences for

the computation of (28) and the weights to be useful. Thus

regardless of whether Gibbs sampling or Murty’s algorithm is

used, a very large number of particles per object is needed.

The tracking result with Hmax = 105 and 100000 particles per

object for a single sample run shown in Fig. 4 illustrates that

the proposed GLMB filter implementation successfully track

all objects, and is confirmed by the OSPA curve in Fig. 5.

Previous implementations break down due to the large number

of required components and particles.
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V. CONCLUSIONS

This paper proposed an efficient implementation of the

GLMB filter by integrating the prediction and update into one

step along with an efficient algorithm for truncating the GLMB

filtering density based on Gibbs sampling. The resulting algo-

rithm is an on-line multi-object tracker with linear complexity

in the number of measurements and quadratic in the number of

hypothesized tracks, which can accommodate non-linear dy-

namics and measurements, non-uniform survival probabilities,

sensor field of view and clutter intensity. This implementation

is also applicable to approximations such as the labeled multi-

Bernoulli (LMB) filter since this filter requires a special case

of the δ-GLMB prediction and a full δ-GLMB update to be

performed [29]. The proposed Gibbs sampler can be adapted

to solve the ranked assignment problem and hence the data

association problem in other tracking approaches. It is also

possible to parallelize the Gibbs sampler [57]. A venue for

further research is the generalization of the proposed technique

to more complex problems such as multiple extended object

tracking [31], or tracking with merged measurements [35].

VI. APPENDIX: MATHEMATICAL PROOFS

Proof of Proposition 1: Using the change of variable I+=
J ∪L+, we have J = L∩ I+, L+ = B+∩ I+, and hence (11)

becomes

ω
(J,L+,ξ,θ+)
Z+

= ω
(L∩I+,B+∩I+ξ,θ+)
Z+

= 1Θ+(I+)(θ+)
[

ψ̄
(ξ,θ+)
Z+

]I+
ω̄
(L∩I+,B+∩I+,ξ)
+

= 1Θ+(I+)(θ+)
[

ψ̄
(ξ,θ+)
Z+

]I+

× 1F(B+)(B+∩I+) r
B+∩I+
B,+ [1− rB,+]

B+−(B+∩I+)

×
∑

I

1F(I)(L∩I+)
[

P̄
(ξ)
S

]L∩I+[

1−P̄
(ξ)
S

]I−(L∩I+)

ω(I,ξ)

= 1Θ+(I+)(θ+)
[

ψ̄
(ξ,θ+)
Z+

]I+
r
B+∩I+
B,+ [1− rB,+]

B+−I+

×
∑

I

[

P̄
(ξ)
S

]I∩I+[

1−P̄
(ξ)
S

]I−I+

ω(I,ξ)

where the last equality follows from 1F(B+)(B+ ∩ I+) = 1,

B+ − (B+ ∩ I+) = B+− I+, and L ∩ I+ = I ∩ I+, I−(L ∩
I+) = I−I+ for any I+ such that 1F(I)(L∩ I+) = 1. Further,

substituting the above equation into (10) and noting that J , L+
are disjoint, the sum over the pair J , L+ reduces to the sum

over I+. Hence, exchanging the order of the sums gives the

desired result. �

Proof of Lemma 2: Note that γi = γj > 0 iff

δγi
[γj ]1{1:M}(γi) = 1. Hence, γ is positive 1-1 iff for any

distinct i, j, δγi
[γj ]1{1:M}(γi) = 0. Also, γ is not positive 1-1

iff there exists distinct i, j such that δγi
[γj]1{1:M}(γi) = 1.

Similarly, γn̄ is positive 1-1 iff for any distinct i, j ∈ n̄,

δγi
[γj ]1{1:M}(γi) = 0.

We will show that (a) if γ is positive 1-1 then the right hand

side (RHS) of (26) equates to 1, and (b) if γ is not positive

1-1, then the RHS of (26) equates to 0.

To establish (a), assume that γ is positive 1-1, then γn̄ is

also positive 1-1, i.e., 1Γ(n̄)(γn̄) = 1, and for any i 6= n,

δγn
[γi]1{1:M}(γn) = 0. Hence the RHS of (26) equates to 1.

To establish (b), assume that γ is not positive 1-1. If γn̄
is also not positive 1-1, i.e., 1Γ(n̄)(γn̄) = 0, then the RHS

of (26) trivially equates to 0. It remains to show that even

if γn̄ is positive 1-1, the RHS of (26) still equates to 0.

Since γ is not positive 1-1, there exist distinct i, j such that

δγi
[γj ]1{1:M}(γi) = 1. Further, either i or j has to equal n,

because the positive 1-1 property of γn̄ implies that if such

(distinct) i, j, are in n̄, then δγi
[γj ]1{1:M}(γi) = 0 and we

have a contradiction. Hence, there exists i 6= n such that

δγn
[γi]1{1:M}(γn) = 1, and thus the RHS of (26) equates

to 0. �

Proof of Proposition 4: Convergence of finite state Markov

chains can be characterized in terms of irreducibility and

regularity. Following [48], a Markov chain is irreducible if

it is possible to move from any state to any other state in

finite time, further, an irreducible finite state Markov chain is

regular if some finite power of its transition matrix has all

positive entries.
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Consider the nth conditional πn(γ
′
n|γ

′
1:n−1, γn+1:P ),

with γ′ positive 1-1. Then for each j ∈ {1:n − 1},

1{1:M}(γ
′
j)δγ′

n
[γ′j ] = 0, hence it follows from (27) that

πn(γ
′
n|γ

′
1:n−1, γn+1:P )

=

ηn(γ
′
n)

P∏

j=n+1

(1−1{1:M}(γj)δγ′
n
[γj ])

Kn(γ′1:n−1, γn+1:P )
(32)

where Kn(γ
′
1:n−1, γn+1:P ) denotes the normalizing constant

in the nth sub-iteration of the Gibbs sampler.

Let 0n denotes the n-dimensional zero vector. In addition

(to being positive 1-1), if γ′ = 0P , then for each j ∈ {n+1:P},

1{1:M}(γj)δ0[γj ] = 0, because γj cannot be both positive and

zero. Hence (32) becomes ηn(0)/Kn(0n−1,γn+1:P ) and since

ηi(j) is always positive (see definition (22)), we have

π(0P |γ) =
P∏

n=1

ηn(0)

Kn(0n−1,γn+1:P )
> 0.

On the other hand, if γ = 0P , then for each j ∈
{n + 1:P}, 1{1:M}(γj) = 0. Hence (32) becomes

ηn(γ
′
n)/Kn(γ

′
1:n−1, 0P−(n+1)) and

π(γ′|0P ) =
P∏

n=1

ηn(γ
′
n)

Kn(γ′1:n−1, 0P−(n+1))
> 0.

Consequently, the probability of a 2-step transition from any

γ ∈ Γ to any γ′ ∈ Γ

π2(γ′|γ) =
∑

ζ∈Γ

π(γ′|ζ)π(ζ|γ) > π(γ′|0P )π(0P |γ) > 0.

Hence, the chain is irreducible and also regular since the

square of the transition matrix has all positive elements.

Lemma 1 of [49] asserts that for a finite state Gibbs sampler,

irreducibility (with respect to (25)) is a sufficient condition

for convergence to (25). More importantly, since the chain is

regular, uniqueness of the stationary distribution and the rate of

convergence follows directly from [50, Theorem 4.3.1], noting

that j = 2 is chosen since π2, the square of the transition

matrix, has all positive elements. �
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