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Abstract—In this paper, we develop an analytical formulation for
the Slepian spatial-spectral concentration problem on the sphere
for a limited colatitude–longitude spatial region on the sphere, de-
fined as the Cartesian product of a range of positive colatitudes and
longitudes. The solution of the Slepian problem is a set of functions
that are optimally concentrated and orthogonal within a spatial
or spectral region. These properties make them useful for appli-
cations where measurements are taken within a spatially limited
region of the sphere and/or a signal is only to be analyzed within a
region of the sphere. To support localized spectral/spatial analysis,
and estimation and sparse representation of localized data in these
applications, we exploit the expansion of spherical harmonics in
the complex exponential basis to develop an analytical formulation
for the Slepian concentration problem for a limited colatitude–
longitude spatial region. We also extend the analytical formulation
for spatial regions that are comprised of a union of rotated limited
colatitude–longitude subregions. By exploiting various symmetries
of the proposed formulation, we design a computationally efficient
algorithm for the implementation of the proposed analytical for-
mulation. Such a reduction in computation time is demonstrated
through numerical experiments. We present illustrations of our
results with the help of numerical examples and show that the rep-
resentation of a spatially concentrated signal is indeed sparse in
the Slepian basis.

Index Terms—Spatial-spectral concentration problem, Slepian
functions, 2-sphere (unit sphere), spherical harmonics.

I. INTRODUCTION

S IGNALS on the sphere appear in a wide range of applica-
tions in diverse fields such as geophysics [1], [2], computer

graphics [3], [4], cosmology [5]–[7], medical imaging [8], [9],
electron microscopy [10] and acoustics [11], [12]. Spherical har-
monics are the archetype set of complete, orthonormal functions
on the sphere. However, spherical harmonics are a global basis
so they do not efficiently represent a signal in a restricted region
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of the sphere; they are also not orthogonal except for when the
region is the whole sphere.

The solution of the Slepian spatial-spectral concentration
problem on the sphere are the Slepian functions which form
an alternative complete basis that is not only orthogonal on the
sphere, but also orthogonal within a given region on the sphere.
Slepian functions are also optimally concentrated within the
region of the sphere on which they are defined [1], [13]. Con-
sequently, Slepian functions on the sphere have been used for
localized spectral and spatial analysis [14]–[16], and signal es-
timation from incomplete measurements [17], [18], and sparse
and efficient representations of spherical in signals in a wide
range of applications found in geophysics [16], [19], [20], cos-
mology and planetary studies [21], [22], optics [18] and com-
puter graphics [23], to name a few.

Slepian functions on the sphere arise as the solution to the
problem, first considered in one-dimension by Slepian, Pollak
and Landau [24]–[27], of finding functions that are band-limited
and maximally concentrated within a closed region on the sphere
(or spatially limited and optimally concentrated within some
band-limit). For an arbitrary region, there is no closed-form
solution to this problem and the Slepian functions for a given
region are calculated numerically. However analytical expres-
sions are desirable as they allow exact computation and the
development of computationally efficient algorithms. Simons
and Dahlen developed an analytical expression for computing
Slepian functions concentrated in a polar cap or a polar gap
region on the sphere [28]. The polar gap region is useful in
geophysics; it appears in satellite data of the gravitational or
magnetic field potential of the earth where the pair of axisym-
metric polar caps do not have data coverage due to the inclined
orbits of the satellite.

Another useful regions on the sphere is the limited colatitude-
longitude region, defined as a Cartesian product of a range
of colatitudes and longitudes. For example, limited colatitude-
longitude regions appear in the following applications: the cos-
mic microwave background radiation observed from earth is
approximately seen within a limited colatitude-longitude re-
gion [29], [30], often a signal of interest in geophysics such
as magnetic or gravitational potential are considered between
lines of co-latitude and longitude [31], the projection of a rect-
angular sound source in acoustics or light source in optics on
the sphere forms a limited colatitude-longitude region on the
sphere [32] and a limited colatitude-longitude region is used to
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describe possible angles of arrival in communications [33], [34].
As the limited colatitude-longitude region is widely applicable,
it would be useful to have an analytical formulation for solving
the Slepian problem in this region.

In this work, we develop an analytical formulation for the
Slepian spatial-spectral concentration problem on the sphere for
a limited colatitude-longitude spatial region on the sphere by ex-
ploiting the expansion of spherical harmonics in the complex
exponential basis. We also extend this analytical formulation to
enable the computation of Slepian functions concentrated within
an arbitrary region of the sphere comprised of a union of rotated
limited colatitude-longitude subregions. By exploiting various
symmetries of the proposed formulation, we develop a compu-
tationally efficient algorithm for computing Slepian functions
over a limited colatitude-longitude region using the proposed
formulation. We demonstrate the reduction in computation time
through numerical experiments. We use further numerical exper-
iments to illustrate our results and show that the representation
of a spatially concentrated signal is indeed sparse in the Slepian
basis.

The remainder of the paper is organized as follows. We
present the necessary mathematical background for signals on
the sphere and their representation in the spherical harmonic
domain in Section II before reviewing Slepian functions on the
sphere. We develop an analytical formulation for the Slepian
spatio-spectral concentrated problem on the sphere for a lim-
ited colatitude-longitude region on the sphere in Section III. We
then extend this analytical formulation for an arbitrary region
on the sphere. In Section III we also present the properties of
Slepian functions concentrated in a limited colatitude-longitude
region and illustrate their use with examples. We then develop
a computationally efficient algorithm for implementation of the
analytical formulation in Section IV and carry out computational
complexity analysis of the proposed algorithm. Concluding re-
marks are then made in Section V.

II. MATHEMATICAL PRELIMINARIES

In order to clarify the notation adopted throughout the
paper, we present the relevant mathematical background for sig-
nals defined on the sphere, their spectral domain representation
and the rotation of signals on the sphere. We also briefly review
Slepian spatial-spectral concentration problem on the sphere.

A. Signals on the Sphere

The spherical domain, also referred as sphere or 2-sphere
or unit sphere, is denoted by S2 and is defined as S2 �
{x ∈ R3 : |x| = 1} ⊂ R3 , where |·| represents Euclidean norm
[35]. A point on S2 is given by a unit vector x̂ ≡ x̂(θ, φ) �
(sin θ cos φ, sin θ sin φ, cos θ)′ ∈ R3 , where (·)′ denotes the
vector transpose operation, θ ∈ [0, π] is the colatitude that is
measured with respect to the positive z− axis and φ ∈ [0, 2π)
is the longitude which is measured with respect to the positive
x− axis in the x − y plane.

We consider the complex-valued square-integrable functions
defined on the sphere. The set of such functions form a Hilbert
space denoted by L2(S2) equipped with the inner product

given by [35]

〈f, h〉 �
∫

S2
f(x̂)h(x̂) ds(x̂), (1)

for two functions f and h defined on S2 . Here ds(x̂) =
sin θ dθ dφ is the differential area element on S2 . The inner prod-
uct induces a norm ‖f‖ � 〈f, f〉1/2 . We refer the functions with
finite energy (finite induced norm) as signals on the sphere. We
also define 〈f, g〉R �

∫
R f(x̂)g(x̂) ds(x̂) as the inner product

on the region R and ‖f‖2
R � 〈f, f〉R as the energy of the signal f

in R.

B. Spherical Harmonic Domain Representation

The spherical harmonic function Y m
� (θ, φ) for integer degree

� ≥ 0 and integer order |m| ≤ � is defined as [35], [36]

Y m
� (x̂) = Y m

� (θ, φ) �
√

2�+1
4π

(�−m)!
(�+m)!

Pm
� (cos θ)eimφ , (2)

where Pm
� denotes the associated Legendre function of integer

degree � and integer order m and is defined as [35]

Pm
� (x) =

(−1)m

2��!
(1 − x2)m/2 d�+m

dx�+m
(x2 − 1)�

P−m
� (x) = (−1)m (� − m)!

(� + m)!
Pm

� (x),

for |x| ≤ 1 and m ≥ 0. Spherical harmonics functions (spher-
ical harmonics for short) are orthonormal over the sphere with
〈Y m

� , Y q
p 〉 = δ�,pδm,q , where δm,q is the Kronecker delta func-

tion: δm,q = 1 for m = q and is zero otherwise. Spherical
harmonics form a complete orthonormal set of basis func-
tions for L2(S2) [35], and therefore we can expand any signal
f ∈ L2(S2) as

f(x̂) =
∞∑

�,m

(f)m
� Y m

� (x̂), (3)

where
∑∞

�,m �
∑∞

�=0
∑�

m=−� , that is, we have expressed the
double summation as a single summation for notational conve-
nience and

(f)m
� � 〈f, Y m

� 〉 =
∫

S2
f(x̂)Y m

� (x̂) ds(x̂) (4)

denotes the spherical harmonic coefficient of degree � and or-
der m which form the spectral (spherical harmonic) domain
representation of a signal.

The signal f ∈ L2(S2) is defined to be band-limited
at degree L if (f)m

� = 0 for � ≥ L. The set of band-
limited signals forms an L2 dimensional subspace of L2(S2),
which is denoted by HL . For the spectral domain repre-
sentation of a band-limited signal f ∈ HL , we define the
column vector containing spherical harmonic coefficients as
f �

(
(f)0

0 , (f)−1
1 , (f)0

1 , (f)1
1 , (f)−2

2 , · · · , (f)L−1
L−1

)′
of size L2 .

C. Rotation on the Sphere

The rotation operator D(ϕ, ϑ, ω) rotates a function on the
sphere by an angle ω around the z-axis, followed by an angle
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Fig. 1. The region R̃ on the sphere, defined in (13), is shaded in red for different parameters: (a) [θ1 , θ2 ] = [0, π/6], [φ1 , φ2 ] = [−π/6, π/6], (b) [θ1 , θ2 ] =
[π/3, 2π/3], [φ1 , φ2 ] = [−π/12, π/12], and (c) [θ1 , θ2 ] = [π/4, π/3], [φ1 , φ2 ] = [−π/6, π/6]. φ = 0 iso-longitude and θ = π/2 iso-colatitude (equator)
lines are shown in blue. As the angle φ is periodic in 2π , −φ is equal to 2π − φ.

ϑ around the y-axis and finally an angle ϕ around the z-axis,
where we use the zyz rotation convention, and the axis and
rotations follow a right-handed convention [35]. Applying the
rotation operator to a function is realised by inverse rotation of
the coordinate system with

(D(ϕ, ϑ, ω)f)(x̂) = f(R−1 x̂), (5)

where R is the 3 × 3 rotation matrix corresponding to the ro-
tation operator D(ϕ, ϑ, ω) [35]. D(ϕ, ϑ, ω)−1 denotes the in-
verse of the rotation operator and is given by D(ϕ, ϑ, ω)−1 =
D(π − ω, ϑ, π − ϕ).

The spherical harmonic coefficient of the rotated output signal
of degree � and order m is a linear combination of different
order spherical harmonic coefficients of the same degree of the
original function with

(
D(ϕ, ϑ, ω)f

)m

�
� 〈D(ϕ, ϑ, ω)f, Y m

� 〉

=
�∑

m ′=−�

Dm,m ′
� (ϕ, ϑ, ω)(f)m ′

� , (6)

where Dm,m ′
� (ϕ, ϑ, ω) is the Wigner-D function given by

Dm,m ′
� (ϕ, ϑ, ω) = e−imϕdm,m ′

� (ϑ)e−im ′ω , (7)

and dm,m ′
� (ϑ) is the Wigner-d function [35].

D. Spatial-Spectral (Slepian) Concentration
Problem on the Sphere

The Slepian spatial-spectral concentration problem [24]–[27]
on the sphere for finding functions that are band-limited (or
space-limited) with maximal energy concentrated in the given
spatial (or spectral) region has been extensively investigated [1],
[13], [14], [37]. In order to maximize the spatial (energy) con-
centration of a unit-energy band-limited signal h ∈ HL within
the spatial region R ⊂ S2 , we seek to maximize the spatial
concentration ratio λ given by [13],

λ =
‖h‖2

R

‖h‖2 , 0 ≤ λ < 1, (8)

which can be equivalently expressed in spectral domain as

λ =

∑L−1
�,m

∑L−1
p,q (h)m

� (h)q
pK�m,pq∑L−1

�,m (h)m
� (h)m

�

, (9)

where

K�m,pq �
∫

R

Y q
p (x̂)Y m

� (x̂)ds(x̂). (10)

The problem to maximize the concentration ratio in (9) can be
solved as an algebraic eigenvalue problem [13]

L−1∑
�=0

�∑
m=−�

K�m,pq (h)q
p = λ(h)m

� , (11)

which can be written in matrix form as

Kh = λh, (12)

where the matrix K has dimension L2 × L2 and contains el-
ements K�m,pq , given in (10), with similar indexing adopted
for h.

III. SPATIAL-SPECTRAL CONCENTRATION PROBLEM FOR

LIMITED COLATITUDE-LONGITUDE SPATIAL REGION

In order to solve the spatial-spectral concentration problem
(11), we are first required to evaluate the matrix K. Since there
are no quadrature rules for evaluating the integral over the region
R in general, K�m,pq , given in (10), must be computed numer-
ically. Analytic expressions have been devised in the literature
to compute K�m,pq for the azimuthally symmetric (polar cap)1

and polar gap regions [28].
Here, we revisit the spatial-spectral concentration problem

on the sphere for limited colatitude-longitude spatial region R̃
defined as a Cartesian product of a range of limited colatitudes
and limited longitudes, that is,

R̃ �
{
(θ, φ) : θ1 ≤ θ ≤ θ2 , φ1 ≤ φ ≤ φ2

}
. (13)

We note that the region R̃ is parameterized by four parameters:
θ1 , θ2 , φ1 and φ2 . For example, the region R̃ is shown in Fig. 1 for

1Since any rotationally symmetric region, that is symmetric with respect to the
rotation around its axis, can be represented as an azimuthally symmetric region
by appropriately rotating the region [35], K�m,pq can be computed analytically
for any rotationally symmetric region.



1530 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 6, MARCH 15, 2017

different values of θ1 , θ2 , φ1 and φ2 , where it can be observed
that a different choice of parameters gives rise to the regions of
different shapes on the sphere.

For the limited colatitude-longitude spatial region R̃, we de-
rive an analytic expression to compute K�m,pq , given in (10)
which consequently, enables the accurate computation of band-
limited functions with optimal concentration in the spatial re-
gion R̃. It is expected that the proposed development would
support the signal analysis in applications [29]–[34] where the
signals/data-sets are measured/concentrated over the limited
colatitude-longitude spatial region R̃.

A. Computation of Matrix K

Theorem 1: For a limited colatitude-longitude spatial region
R̃ defined in (13), the elements of the matrix K given in (10),
have the following analytical expression

K�m,pq =
�∑

m ′=−�

p∑
q ′=−p

F �
m ′,m F p

q ′,qQ(m′+q′)S(q−m), (14)

where

Q(m) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
4
(
2im(θ2 − θ1) + e2imθ1 − e2imθ2

)
, |m| = 1

1
m2 − 1

(
eimθ1 (− cos θ1 + im sin θ1)

+eimθ2 (cos θ2 − im sin θ2)
)
, |m| �= 1,

(15)

S(m) =

⎧⎨
⎩

φ2 − φ1 , m = 0

i

m

(
eimφ1 − eimφ2

)
, m �= 0,

(16)

and

F�
m ′,m = (−i)m

√
2� + 1

4π
Δ�

m ′,m Δ�
m ′,0 , (17)

where

Δ�
m,n � d�

m,n (π/2).

Proof: In order to determine an analytic expression for the
computation of the matrix elements K�m,pq , defined in (10),
for a limited colatitude-longitude region R̃, we first note the
following relation for associated Legendre polynomials

Pm
� (cos θ) =

√
(� + m)!
(� − m)!

d�
m,0(θ), (18)

where d�
m,n (·) denotes the Wigner-d function of degree � and

orders m,n and has the following expansion in terms of complex
exponentials [35], [38]

d�
m,n (θ) = in−m

�∑
m ′=−�

Δ�
m ′,m Δ�

m ′,n eim ′θ . (19)

Using (18) and (19), we write K�m,pq , given in (10) as

K�m,pq =

√
(2� + 1)(2p + 1)

4π

×
∫

R̃

d�
m,0(θ)d

p
q,0(θ)e

i(q−m )φ sin θ dθ dφ

=
�∑

m ′=−�

p∑
q ′=−p

F �
m ′,m F p

q ′,q

×
∫ θ2

θ=θ1

ei(m ′+q ′)θ sin θ dθ

︸ ︷︷ ︸
Q(m ′+q ′)

∫ φ2

φ=φ1

ei(q−m )φ dφ

︸ ︷︷ ︸
S (q−m )

,

(20)

which is equivalent to (14). �
Remark 1 (Fast Computation of K): Using the analytic ex-

pression given in Theorem 1, the matrix K can be computed
exactly. We later show the symmetry relations that hold for
matrix elements K�m,pq and can be exploited to speed-up the
computation of K. We elaborate on this when we discuss the
fast computation of the matrix K later in the paper.

B. Spatial-Spectral Concentration Problem - Analysis

Once the matrix K is computed exactly using the analytic
expression given in Theorem 1, the concentration problem can
be solved using its formulation as an algebraic eigenvalue prob-
lem given in (12), the solution of which gives L2 band-limited
eigenvectors. Each eigenvector represents the spectral domain
representation (spherical harmonic coefficients) of the band-
limited eigenfunction (in spatial domain) and the eigenvalue
associated with each eigenvector represents the concentration
of the associated eigenfunction in the spatial region R̃. Since
K is complex-valued and Hermitian symmetric, by definition,
the eigenvalues are real and the eigenvectors are orthogonal, we
choose them to be orthonormal. Furthermore, the eigenvalues
are non-negative as K is positive-semidefinite which follows
from the numerator in (9) that represents the energy of the
band-limited function in some spatial region.

Let the eigenvectors of K and the corresponding eigenfunc-
tions be denoted byhα and hα (θ, φ) for α = 1, 2, . . . , L2 , where
we index the eigenfunctions such that 0 ≤ λα+1 ≤ λα < 1,
α = 1, 2, . . . , L2 . With this indexing, the eigenfunction h1(θ, φ)
is most concentrated in R̃, while hL2 (θ, φ) is most concentrated
in S2\R̃.

1) Orthogonality of Eigenfunctions: The eigenvectors, by
definition, are orthonormal, that is,

hH
α hβ =

L−1∑
�,m

(hα )m
� (hβ )m

� = δα,β , (21)

hH
α Khβ =

L−1∑
�,m

L−1∑
p,q

(hα )m
� (hβ )q

pKpq,�m = λα δα,β , (22)

where (·)H denotes the Hermitian of a vector or matrix,
which can be equivalently expressed in terms of the associated
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eigenfunctions as

‖h‖2
2 =

∫
S2

hα (x̂)hβ (x̂) ds(x̂) = δα,β , (23)

‖h‖2
R̃

=
∫

R̃

hα (x̂)hβ (x̂) ds(x̂) = λα δα,β . (24)

These relations indicate that the eigenfunctions are not only
orthonormal over the sphere but are orthogonal over the spatial
region R̃. This double orthogonality is one of the important
feature of these eigenfunctions which makes them useful in the
analysis of the signal over the spatial region R̃ [14], [17], [21],
[39]. We note that the properties of eigenfunctions given in
(21)–(24) hold for arbitrary spatial regions [13].

2) Number of Concentrated Eigenfunctions: We also note
that the sum of the eigenvalues of K for the spatial region R̃ is
given by the trace of K [13], [35] with,

N =
L2∑

α=1

λα =
L−1∑
�,m

K�m,�m

=
L2

4π

∫
R̃

sin θdθdφ =
L2

4π
(φ2−φ1)(cos θ1− cos θ2). (25)

If the spectrum of eigenvalues has a narrow transition from
significant (near unity) to insignificant (near zero) eigenvalues,
the sum of the eigenvalues, given by N , well-approximates the
number of significant eigenvalues.

3) Slepian Basis: Since we obtain a set of L2 band-limited
orthonormal eigenfunctions as a solution of the (Slepian) spatial-
spectral concentration problem, these eigenfunctions span the
L2 dimensional subspace HL and therefore serve as a complete
basis, referred to as the Slepian basis [13], for the representation
of any band-limited signal. Any band-limited signal f ∈ HL can
be expressed in the Slepian basis as

f(x̂) =
L2∑

α=1

(f)α hα (x̂), (26)

where

(f)α � 〈f, hα 〉 =
∫

S2
f(x̂)hα (x̂)ds(x̂), (27)

denotes the Slepian coefficient of index α. Since Slepian func-
tions are orthogonal over the spatial region R̃, the Slepian coef-
ficient can also be determined as

(f)α =
1
λα

∫
R̃

f(x̂)hα (x̂)ds(x̂). (28)

The signal f(x̂) within the spatial region R̃ can be well-
approximated by excluding the basis functions with almost zero
concentration within the region in the expansion of the signal
given in (26), that is, the summation in (26) can be truncated at
J such that λJ +1 ≈ 0 as

f(x̂) ≈
J∑

α=1

(f)α hα (x̂), x̂ ∈ R̃. (29)

The quality of approximation of the signal given in (29) within
the spatial region R̃ can be measured by defining the quality
measure as a ratio of the energy concentration of the approximate
representation to the energy of the exact representation within
the spatial region, that is,

Q(J) =

∫
R̃

∣∣∣∣
∑J

α=1
(f)αhα (x̂)

∣∣∣∣
2

ds(x̂)
∫

R̃

∣∣∣∣
∑L2

α=1
(f)αhα (x̂)

∣∣∣∣
2

ds(x̂)

=
∑J

α=1 λα

∣∣(f)α

∣∣2
∑L2

α=1 λα

∣∣(f)α

∣∣2 , (30)

where we have used the orthogonality of Slepian basis over the
spatial region R̃, given in (24), in obtaining the second equality.

Remark 2 (Truncation at N ): Since the number of Slepian
basis that are well concentrated in the region is approximately
represented by sum of the eigenvalues, N , given in (25), the
truncation level in (29) can be chosen as J = N . We note that
such truncation at J = N is based on the assumption that the
eigenvalue spectrum has sharp transition from 1 to 0. If for some
cases this assumption is not fairly supported, N can be used to
estimate the truncation level J > N such that λJ +1 ≈ 0.

The representation of the signal within the region R̃ using N
basis functions and the computation of Slepian coefficients as an
integral over different spatial regions have also been adopted and
studied for multi-dimensional Euclidean domains and various
geometries [13], [14], [17], [40], [41]. We expect that the accu-
rate computation of the Slepian basis using the proposed formu-
lation for the limited colatitude-longitude region is of great use
in applications where the signals are concentrated within some
spatial region R̃ [33] or measurements can only be taken over a
spatially limited region R̃ [23], [29].

C. Arbitrary Region of Interest

For the limited colatitude-longitude region R̃, we noted earlier
that the different choices of parameters of the region give rise to
the regions of different shapes on the sphere (see Fig. 1). This
characteristic of the limited colatitude-longitude region R̃ can be
exploited to compute the Slepian basis for any arbitrary shaped
region. We assume that an arbitrary shaped region R can be
partitioned into M disjoint subregions Ri ∩ Rj = ∅, i �= j, as
R = R1 ∪ R2 ∪ . . . ∪ RM , where each Rn denotes the limited
colatitude-longitude region R̃n rotated by an angle ωn around
the z-axis, followed by an angle ϑn around the y-axis and finally
by an angle ϕn around the z-axis using the rotation operator
D(ϕn , ϑn , ωn ), as described in Section II-C. We note that each
limited colatitude-longitude region R̃n , n = 1, 2, . . . , M may
have different parameters.

Corollary 1: For a given band-limit L and an arbitrary re-
gion R, let the matrix for arbitrary region be denoted by K
with elements K�m,pq given by (10) which can be computed
by incorporating the effect of rotation in the harmonic domain,
given by (6) and using the partition of the region R into disjoint
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subregions, as

K�m,pq =
M∑

n=1

(
�∑

t=−�

Dt,m
� (π − ωn , ϑn , π − ϕn )

×
p∑

r=−p

Dr,q
p (π − ωn , ϑn , π − ϕn )Kn

�t,pr

)
, (31)

where Kn
�t,pr denotes the matrix elements, given by Theorem 1,

for the limited colatitude-longitude region R̃n and depends on
the parameters of the region [θ1 , θ2 ], [φ1 , φ2 ].

Once K is computed using (31), the eigenvalue decompo-
sition of K yields the Slepian basis for the region for a given
band-limit L. We note that the equivalence between (10) and
the formulation in (31) depends on the partition of the region R
into M number of rotated limited colatitude-longitude regions.
The chosen partitioning of R using an optimal tiling of rotated
limited colatitude-longitude regions is the field of finite-element
analysis [42], [43] and is beyond the scope of the current work.

D. Illustration

In Section III we present an analytic formulation for solving
the Slepian spatio-spectral problem for a limited colatitude-
longitude region R̃ and the properties of Slepian functions in R̃.
We here present examples to illustrate the use of Slepian func-
tions in R̃ and demonstrate their properties, using the analytical
formulation in Theorem 1 to calculate the matrix K.

1) Slepian Functions and Eigenvalue Spectrum: We show
the eigenvalue spectrum and Slepian functions band-limited
at L = 25 for the two limited colatitude-longitude regions, R̃
shown in Fig. 1(a) and Fig. 1(b), which we refer to as Exam-
ple A and Example B respectively. Fig. 2(a) and (b) show the
first 60 eigenvalues in the eigenvalue spectrum for Example A
and Example B respectively. The trace of the matrix K given
by (25), which approximates the number of well-concentrated
eigenfunctions in the region, is shown by the black dashed line
in Fig. 2. As Example A has a smaller area than Example B, it
has a smaller number of well-concentrated eigenfunctions with
N = 7, whereas Example B has N = 26.

Fig. 3 shows the magnitude of twelve Slepian functions
on the sphere |hα (x̂)|, α = 1, 2, . . . , 12 that have the high-
est concentration for the region R̃ in Example A. Fig. 4
shows the magnitude of the Slepian functions |hα (x̂)|,
α = 1, 2, 3, 4, 21, 22, 23, 24, 31, 32, 33 and 34 that are well-
concentrated in the region R̃ in Example B.

2) Slepian Basis: We here present an example to illustrate
that the representation of a spatially concentrated band-limited
signal in the Slepian basis is sparse and allows for accurate re-
construction when the basis is truncated at J = N using (29).
We use a test signal f(x̂) obtained from a dark matter distri-
bution of the Universe simulation observed over a partial field
of view. The test signal is extracted from the full-sky Hori-
zon Simulation, a simulation derived from the 3-year Wilkinson
Microwave Anisotropy Probe (WMAP) observations, at radius
r = 20 where the radius has units in Mpc. The partial field of
view is over a limited colatitude-longitude region approximating

Fig. 2. Eigenvalue spectrum λα , α = 1, 2, . . . , 60 for the Slepian functions
with band-limit L = 25 concentrated in the limited colatitude-longitude regions
shown in (a) Fig. 1(a) with N = 7 and (b) Fig. 1(b) with N = 26. The number
of well-concentrated eigenfunctions is well approximated by N which is shown
by the dashed black line.

the Sloan Digital Sky Survey (SDSS) DR7 2 quasar binary mask,
the mask and the outline of the limited colatitude-longitude re-
gion surrounding the mask are shown in Fig. 5. The masked
signal is band-limited at spherical harmonic degree L = 50 to
obtain the spatially concentrated band-limited test signal f(x̂)
shown in Fig. 6(a).

Since Slepian functions form a complete basis for the sub-
space of band-limited signals, f(x̂) can be represented in the
Slepian basis using (26). We plot the spherical harmonic and
Slepian coefficients of f(x̂) in descending order of their mag-
nitude in Fig. 7 where, as expected, the Slepian coefficients de-
cay more quickly than the spherical harmonic coefficients. The
spatially concentrated signal has a sparse representation in the
Slepian basis, it can be represented accurately using N = 546

2http://www.sdss.org/dr7/
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Fig. 3. Magnitude of Slepian functions |hα (x̂)|, α = 1, 2, . . . , 12 concentrated in R̃ in Example A, shown with their corresponding eigenvalue λα , with
band-limit L = 25 (N = 7). The ordering of concentration is left to right, top to bottom.

Slepian coefficients, shown by the red dashed line in Fig. 7,
rather than L2 = 2500 spherical harmonic coefficients. Fig. 6(b)
shows the signal reconstructed by expansion in the truncated
Slepian basis using (29) with J = N = 546 Slepian functions.
The energy ratio given in (30), is Q(N = 546) = 99.7% quan-
tifying that the approximation is sufficiently accurate with the
spatial region of interest.

IV. FAST COMPUTATION OF K

In this section, we devise a formulation for the fast compu-
tation of the matrix K using the analytic expression presented
in Theorem 1 in Section III-A. By exploiting the symmetry re-
lations exhibited by spherical harmonics, we also propose an
implementation to reduce the computation time.

The proposed analytic expression to compute the matrix ele-
ments E�m,pq , given in Theorem 1 can be rewritten as

K�m,pq = S(q−m)
�∑

m ′=−�

p∑
q ′=−p

F �
m ′,m F p

q ′,qQ(m′+q′). (32)

For a given band-limit L, we need to compute L4 elements
of the matrix K, that is, K�m,pq is required to be computed

for each �, p < L, |m| ≤ � and |q| ≤ p. Naively, the computa-
tion complexity to compute L4 elements of K is O(L6) as the
computation of K�m,pq , using (32), requires the evaluation of
two summations, each with the maximum order of L. Using
separation of variables, K�m,pq in (32) can be reformulated as

K�m,pq = S(q − m)B�m,pq , (33)

with

B�m,pq �
∫ θ2

θ1

Y m
� (θ, 0)Y q

p (θ, 0) sin θdθ

=
�∑

m ′=−�

F �
m ′,m Cp

m ′,q , (34)

where

Cp
m ′,q =

p∑
q ′=−p

F p
q ′,qQ(m′ + q′). (35)

We note that each �,m, p, q,m′, q′ has the maximum order or
degree of L. Using (35), Cp

m ′,q can be computed for all p < L,
|q| < p and |m′| < L in O(L4) time. Once we have Cp

m ′,q ,
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Fig. 4. Magnitude of Slepian functions |hα (x̂)|, α = 1, 2, 3, 4, 21, 22, 23, 24, 31, 32, 33 and 34 concentrated in R̃ in Example B, shown with their corresponding
eigenvalue λα , with band-limit L = 25 (N = 26). The ordering of concentration is left to right, top to bottom.

Fig. 5. The limited colatitude-longitude region (outline shown in white) ap-
proximating the SDSS DR7 quasar mask on the sphere (shown in grey).

B�m,pq can be computed using (34) for all �, p < L, |m| ≤
�, |q| ≤ p, that is, a total of L4 elements, with computational
complexity O(L5). E�m,pq is then computed in O(L4) using
(33), resulting in the overall complexity of O(L5), compared to
the naive scaling of O(L6).

Remark 3 (On the use of FFT for the computation of (35)):
For each p < L and |q| < p, the complexity to compute Cp

m ′,q
for all m′ < L is O(L2). Noting that the summation involved in
the computation of Cp

m ′,q using (35), is in the form of a discrete
convolution, which offers an opportunity to employ fast Fourier
transforms (FFT) to carry out this step in O(L log2 L) as

Cp
m ′,q = F−1

(
F(Fp

−q ′,q )F
(
Q(q′)

))
, (36)

where F and F−1 denote FFT and inverse FFT respectively.
The use of FFT reduces the complexity of the computation of
Cp

m ′,q for all p < L, |q| < p and |m′| < L, q from O(L4) to
O(L3 log2 L).

We note that the use of FFT improves the computational com-
plexity to compute Cp

m ′,q and consequently reduces the overall
computation time; however, does not alter the overall complex-
ity O(L5).

Remark 4 (Computation for Arbitrary Region of Interest):
Naively the computational complexity of computing K for an
arbitrary region given by (31) appears to be O(ML6). However
using separation of variables and computing in matrix form
reduces the computational complexity to O(ML5), which is
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Fig. 6. (a) Simulated dark matter test signal on the sphere f (x̂) band-limited
at L = 50 and spatially concentrated within limited colatitude-longitude region
shown in Fig. 5 (b) test signal reconstructed by expansion in the truncated
Slepian basis using N = 546 Slepian functions.

Fig. 7. Spectral decay of the spherical harmonic (SH) (black dashed line) and
Slepian (blue solid line) coefficients of the band-limited spatially concentrated
test signal f (x̂) shown in Fig. 6. The magnitude of the spherical harmonic and
Slepian coefficients are plotted in descending order of magnitude. The sum of
eigenvalues N = 546, given by (25), is shown by the dashed red line.

intuitively the number of regions M times the computational
complexity of computing K for a single limited colatitude-
longitude region R̃.

A. Computation Time Reduction

The overall computation time can be further reduced by ex-
ploiting the symmetry relations exhibited by spherical harmon-
ics. As mentioned earlier, the matrix is Hermitian symmetric,
that is,

Kpq,�m = K�m,pq . (37)

Consequently, we are only required to compute half of the off-
diagonal elements of the matrix K. Furthermore, we note that
the computation of K�m,pq from B�m,pq only requires scaling
by a factor S(q − m) as given by (33) and is therefore can
be carried out quickly in O(L4) for all �,m, p and q. For the
computation of B�m,pq , we also use the following symmetry
relations

B�m,pq = (−1)m B�(−m ),pq = (−1)m+qB�(−m ),p(−q) , (38)

to speed up the computation. These symmetry relations stem
from the following symmetry relation of spherical harmonics3

(and associated Legendre polynomials) [35]

Y m
� (θ, 0) = (−1)m Y −m

� (θ, 0). (39)

For each � < L and p < L, we need to compute B�m,pq for
(2� + 1) × (2p + 1) times, that is, for each |m| ≤ � and |q| ≤ p.
Instead, we compute one fourth of these (2� + 1) × (2p + 1)
elements, that is for each m ≤ � and q ≤ p. The remaining
elements can be computed by exploiting the symmetry relations
in (38). Summarizing, the use of symmetry relations in (37) and
(38) reduces the computation time, approximately, by a factor
of 8.

B. Computation of Wigner-d Functions

In the computation of K using (33)-(35), we still need to
address the computation of F�

m ′,m , given in (17), which, in
turn, requires the computation of Wigner-d functions Δ�

m,n for
all � < L and |m|, |m′| ≤ �. Let Δ� denote the matrix of size
(2� + 1) × (2� + 1) with entries Δ�

m,n for |n|, |m| ≤ �. The
matrix Δ� can be computed for each � = 1, 2, . . . , L − 1 using
the relation given in [44] that recursively computes Δ� from
Δ�−1 . Alternative to the recursion relation proposed in Trapani
and Navaza [44], we note that the recursion relation proposed by
Risbo [38] can also be employed for the computation of Δ�

m,n .
It must be noted that these recursions are stable up to very large
band-limits.

Computation of F�
m ′,m for all � < L, |m′| ≤ � and |m| ≤ �

has computational complexity O(L3), and therefore does not
change the overall complexity of the algorithm. In addition,

3The symmetry relation in (39) follows from the adopted definition of spher-
ical harmonics with Condon-Shortley phase included, due to which we have the
preceding factor (−1)m on the right hand side of (39). For alternative defini-
tions of spherical harmonics that do not include this phase factor, we note that
the modified symmetry relations can be formulated and exploited to speed up
the computation.
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Fig. 8. Computation time τ in seconds to calculate the matrix K for a lim-
ited colatitude-longitude region (solid blue line) using the algorithm presented
in Section IV for band-limits L = 2n , n = 1, 2, . . . 7. The computation time
scales as O(L5 ) (solid black line) rather than O(L6 ) (dashed black line).

as F�
m ′,m does not depend on the limited colatitude-longitude

region parameters it can be precomputed. Precomputation of
F�

m ′,m requires O(L3) storage which is less than the that re-
quired to store K which is O(L4).

C. Computational Time Analysis

We calculated the computation time in seconds, denoted by τ ,
to carry out the algorithm presented in Section IV for calculation
of the matrix K for a limited colatitude-longitude region. Fig. 8
shows the computation time verse band-limit L to calculate K
averaged over 100 iterations for L = 2n ,∀n ∈ [1, 7]. The com-
putation is performed using MATLAB running on a machine
equipped with 3.4 GHz Intel Core i7 processor and 8 GB of
RAM. In Fig. 8 it can be seen that the algorithm scales closer
to O(L5) than O(L6) as was expected from the computational
complexity analysis in Section IV.

Our proposed algorithm has an inherently parallel structure,
therefore parallel computing methods could be used to further
reduce the time required to compute the limited colatitude-
longitude region Slepian functions.

V. CONCLUSION

We have developed an analytical formulation for the Slepian
spatial-spectral concentration problem on the sphere for a
limited colatitude-longitude spatial region on the sphere that
enables accurate computation of the Slepian functions and
eigenvalues for this region. We also extended this analytical
formulation for an arbitrary region on the sphere comprised of a
union of rotated limited colatitude-longitude subregions. In ad-
dition, we have developed a computationally efficient algorithm
for implementation of the proposed analytical formulation. We
perform computational complexity analysis of our algorithm
and use examples to illustrate the use of our algorithm in appli-
cations. Future work includes applying our algorithm to appli-
cations where limited colatitude-longitude regions on the sphere
occur such as modeling the direction of arrival in communica-

tions, direction of sound projected from a rectangular speaker
in acoustics and optics, and the modeling of cosmic microwave
background radiation in astrophysics.
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