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Abstract

There are two fundamentally different fronthaul techngjue the downlink communication of cloud radio
access network (C-RAN): thdata-sharing strategy and thecompression-based strategy. Under the former strategy,
each user’'s message is multicast from the central procéS&rto all the serving remote radio heads (RRHs) over
the fronthaul network, which then cooperatively serve thers through joint beamforming; while under the latter
strategy, the user messages are first beamformed then zpdhati the CP, and the compressed signal is unicast
to the corresponding RRH, which then decompresses itsvegtasignal for wireless transmission. Previous works
show that in general the compression-based strategy doitpey the data-sharing strategy. This paper, on the other
hand, points out that in a C-RAN model where the RRHs are adeddo the CP via multi-hop routers, data-sharing
can be superior to compression if the network coding teakig adopted for multicasting user messages to the
cooperating RRHs, and the RRH'’s beamforming vectors, teeBRH association, and the network coding design
over the fronthaul network are jointly optimized based oae thchniques of sparse optimization and successive
convex approximation. This is in comparison to the compoasbased strategy, where information is unicast over
the fronthaul network by simple routing, and the RRH’s coegsion noise covariance and beamforming vectors,
as well as the routing strategy over the fronthaul netwokk jaintly optimized based on the successive convex
approximation technique. The observed gain in overall ndtwhroughput is due to that information multicast is
more efficient than information unicast over the multi-hopnthaul of a C-RAN.

Index Terms

Cloud radio access network (C-RAN), cross-layer desigma-dharing strategy, compression-based strategy,
beamforming, network coding, routing, fronthaul consttai sparse optimization, successive convex approximatio

. INTRODUCTION

As a promising candidate for the 5G cellular roadmap, cl@dilaraccess network (C-RAN) enables a centralized
processing architecture, using multiple relay-like bas¢giens (BSs), named remote radio heads (RRHSs), to serve
mobile users cooperatively under the coordination of araéprocessor (CP). In the downlink, the benefit of the
C-RAN architecture arises from the ability to cooperagviansmit signals from RRHs to minimize the effect
of interference. It is worth noting that messages intendwddffferent users in the network originate from the
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CP. As a result, a key question is to decide the most effeetiag to convey the useful information about the
user messages to the RRHs over the finite-capacity frontimdsl for wireless transmission so as to minimize the
unwanted interference seen by the users.

In the literature, a considerable amount of effort has besficdted to the efficient utilization of the fronthaul
capacities in the downlink communication in C-RAN (see dj. and the references therein). Among them, the
data-sharing strategy and compression-based strategyaltia&cted a great deal of attention. Specifically, under th
data-sharing strategy, the CP shares user messages wiRtHg over the fronthaul network, which then encode
the user messages into wireless signals and cooperatieglgnit them to users|[2]-[4]. Generally speaking, due
to the finite-capacity fronthaul links, the message of easr gan only be sent to a subset of RRHs for cooperative
transmission. Consequently, the user-RRH associatiategly plays an essential role on the downlink throughput
achieved by the data-sharing strategy.[In [3], the rewe@ht-norm based technique is employed to optimize the
RRH’s beamforming vectors and user-RRH association so dml@mnce between the cooperation gain over the
wireless network as well as the data traffic over the frontinatwork.

Instead of sharing direct user messages, another approagtnébling cooperation is to centrally compute
the beamformed signals to be transmitted by the RRHs at theUG&er the compression-based strategy, the
CP compresses these beamformed signals and sends the ssetpsignals to the corresponding RRHs over the
fronthaul links for wireless transmission. However, thanpoession process at the CP introduces quantization
noises that limit the system performance. [In [5], the trabhsmvariance for the users and compression noise
covariance for the RRHs are jointly optimized to maximize tlweighted sum-rate of the users subject to the
fronthaul capacity constraints.

Most previous works in this area focus on the beamformingarmbmpression designs across the RRHs alone.
However, besides the transmission strategy in the phykgal, the routing strategy in the network-layer can
significantly affect the throughput of downlink C-RAN as Wwedspecially when the fronthaul network consists of
edge routers and network processors over multiple hop#uasated in Fig[lL. This paper aims to jointly optimize
the transmission and routing strategies in the downlinktinmalp C-RAN under both the data-sharing strategy and
compression-based strategy and investigate which syratelgieves better throughput performance subject to the
fronthaul capacity constraints. The main contributionghié paper are summarized as follows.

« This paper proposes a cross-layer framework to improvehtraughput performance of the downlink muilti-

hop C-RAN, where the resources available in the physigadflaand network-layer are jointly optimized.

Under the date-sharing strategy, a key observation is it a cross-layer design provides an opportunity



Fig. 1. System model of downlink multi-hop C-RAN.

to leverage the network coding techniqué [6] for multicagtuser data to the corresponding RRHs over the
multi-hop fronthaul network. A weighted sum-rate maxintiga problem is thus formulated, where RRH’s
beamforming vectors, user-RRH association, and netwodingobased routing are optimized in an overall
design. Under the compression-based strategy, simplangoistused to unicast the compressed signal to each
RRH. Weighted sum-rate maximization is formulated such the RRH’s compression noise covariance and
beamforming vectors and the routing strategy are jointl§inoiged.

« Efficient algorithms with monotonic convergence are prepo® solve the formulated weighted sum-rate max-
imization problems under the data-sharing strategy andpcession-based strategy, respectively. Specifically,
under the data-sharing strategy, we propose a two-stageithly to efficiently solve the studied problem by
applying the techniques of sparse optimization and suseessnvex approximation: first, we approximate
each user-RRH'’s discrete association indicator functpa bontinuous function and obtain a user-RRH asso-
ciation solution; then we fix this user-RRH association and fhe corresponding beamforming and network
coding strategy. Furthermore, under the compressiondbstsgtegy, a successive convex approximation based
algorithm is proposed to solve the weighted sum-rate mastitin problem. Both of the proposed algorithms
are proved to yield locally optimal solutions that satisfie tkarush-Kuhn-Tucker (KKT) conditions of the
studied problems.

o By numerical results, it is shown that in the downlink miigp C-RAN, the data-sharing strategy can
outperform the compression-based strategy in terms obiffimput. This is because in the multi-hop fronthaul
network, information multicast under the data-sharingtstyy is more efficient than information unicast under

the compression-based strategy. This complements thdusimts in [7], [8] which show that if the routing



strategy is not considered, the compression-based stratageneral outperforms the data-sharing strategy in

the downlink C-RAN in terms of the spectral efficiency and rggeefficiency.

It is worth noting that under the data-sharing strategy,joime beamforming and user-RRH association design
in the downlink C-RAN has been previously investigated[if [t without considering the optimization of the
routing strategy. Further,_[9] proposes to jointly desige transmission and routing strategies in the downlink
C-RAN, but in the model of [9] each user is solely served by BfRH, and the CP unicasts the data of each user
to its associated RRH. Our paper differs frdm [8], [9] in allng cooperative beamforming among RRHs and in
the utilization of network coding technique over the frathnetwork for information multicast. Finally, under the
compression-based strategy, the cross-layer design ontfiehop C-RAN has been studied in the uplink in][10],
where the RRHSs utilize a compress-and-forward strategweder, to the authors’ best knowledge, the cross-layer
design in the downlink multi-hop C-RAN has not been investiggl prior to this work.

The rest of this paper is organized as follows. Secfibon Ikenés the system model for the downlink multi-
hop C-RAN. Sectiong 1l and IV introduce the transmit andtiogy strategies under the data-sharing scheme
and compression-based scheme, respectively. Séctionnvufates the weighted sum-rate maximization problems
subject to the routing constraints for both schemes. Sesfd and VIl present the proposed solutions for the two
formulated problems, respectively. Secfion VI provigesnerical results to verify the effectiveness of the pregbs
cross-layer design and compares the performance betweedata-sharing and compression-based strategies.

Finally, SectiorL . IX concludes the paper.

[l. SYSTEM MODEL

Consider the downlink communication in C-RAN whefé RRHs, denoted by the se¥ = {1,--- , N},
cooperatively servé( users, denoted by the s€t= {1,--- , K}, under the coordination of the CP. It is assumed
that each RRH is equipped withd > 1 antennas, while each user is equipped with one single aatdfor
the wireless network, it is assumed that tNeRRHs communicate with th& users over quasi-static flat-fading
channels over a given bandwidth BfHz. The channel from RRHt to userk is denoted by, € CM*1, vn, k.

In this paper, it is assumed that the channels to all kheisers are perfectly known at the CP. Moreover, we
assume that the CP and RRHs communicate over a multi-hogh&rohnetwork consisting of routers, denoted
by the set7 = {1,---,J}, andL digital fronthaul links, denoted by the sét= {1,--- , L}, as shown in Fig.]1.
The capacity of each link € £ is denoted byC; bits per second (bps).
This paper considers two fundamentally different fronthachniques, namely data-sharing strategy and compressio

based strategy, in the downlink multi-hop C-RAN. Under tlaagsharing strategy, the CP multicasts each user’s



message to all the serving RRHs via the multi-hop fronthaativork using the network coding technique [6],
and each RRH then encodes the user messages into wirelesdssignd sends them to the users. Under the
compression-based strategy, the CP first pre-forms andtigaarthe beamformed signal for each RRH in an
independent manner, then unicasts each RRH’s compregg®al 8 the corresponding RRH by routing over the
fronthaul network. Each RRH then decompresses its recaiggtl and sends it to the users. In the following, we
introduce in detail the proposed cross-layer architedimuréhe downlink multi-hop C-RAN under the data-sharing

strategy and compression-based strategy, respectively.

[1l. DATA-SHARING STRATEGY

In this section, we derive the throughput achieved by tha-gdhtairing strategy in the downlink multi-hop C-RAN.

A. Beamforming in the Physical-Layer

With the data-sharing strategy, user messages are traegrtotthe RRHs by the CP via the fronthaul network

(refer to Sectiom II-B for more detail). The equivalent bhand transmit signal of RRH is

K
Ty = Zwk,n8k> VTL, (1)
k=1

where s, ~ CN(0,1) denotes the message intended for usewhich is modeled as a circularly symmetric
complex Gaussian (CSCG) random variable with zero-meanuaitevariance, andoy, ,, € CM*! denotes RRH

n’s beamforming vector for uset. Suppose that RRh has a transmit sum-power constraif; from (1), we

have
K
Elzn,zl] = [lwgnl® < Po,  n. 2)
k=1
The received signal of usér can be expressed as
N N N
Ue =Y _hi @+ 2= bl weasi+> RIS winsi+ oz, VE, 3)
n=1 n=1 n=1 i#k

wherez;, ~ CN(0,0?) denotes the additive white Gaussian noise (AWGN) at éser

The signal-to-interference-plus-noise ratio (SINR) feetk is expressed as
2

N
Z hlgnwk,n H 2
DS n=1 _ |h’k ’LUk| Vi 4
Yo = 2 - H 2 97 ) ( )
N H Z |hk wl| to
Y12 i win| +0% ik
i#k In=1
wherehy, = [k |, , hi y]T denotes the effective channel from all RRHs to Usendwy, = [w} |,--- ,w} \]*

denotes the effective beamforming vector for ukeacross all RRHs. The achievable rate of ukén bps under



the data-sharing strategy is given by

DS < Blogy(14+142%), V. 5)

B. Network Coding in the Network-Layer

Next, consider the data transmission from the CP to RRHs theedigital multi-hop fronthaul network. It is
worth noting that ifw ,, # 0, then userk is served by RRH:; otherwise, usek is not served by RRH:. As a
result, we can define the user-RRH association indicatastiom oy, ,, (wy, ,,) as follows:

L, if [lwgnl* # 0,

Yk, n. (6)
0, otherwise,

ak,n(wk,n) = {

If user k is served by RRH, i.e., a; (wy,) = 1, the CP needs to send the messageéo RRH n over the
multi-hop fronthaul network at a rate o’F,QS bps; otherwise, the CP does not need to sendo RRH n. To
summarize, there ar& multicast sessions in the multi-hop fronthaul network,, isg, - - - , sk, and each session
s, has a seDy, = {n: ajp(wiy,) =1,n=1,--- ,N} of destinations.

The traditional approach for information multicast is to kmaeach router replicate and forward its received
information to the downstream routers. However, the optation of such multicast routing is equivalent to the
Steiner tree packing problem, which is NP-hardl[11],| [12]Jorkbver, this replicate-and-forward based routing
strategy is suboptimal since the coding operations at rewtee necessary to achieve the multicast capacity [6].
In this paper, we propose to apply the network coding tealitp multicast each session to its destinations
independently, but do not code between different sessiobnthé following reasons. First, this strategy results in
an easy characterization of the routing region, therefaa&ing the optimal multicast routing problem polynomial
time computable. Second, intersession coding providegimarthroughput gains over this approachl/[11],/[12].

Network coding allows flows for different destinations of altitast session to share network capacity by being
coded together. The pioneering woriK [6] shows that for eanples multicast session, the maximum multicast
rate can be achieved for the entire multicast session if g ibit can be achieved for each multicast receiver
independently. Moreover, with coding the actual physicaivflon each link need only be the maximum of the

individual destinations flows. As a result, the routing domigts for the multi-hop fronthaul network can be



formulated as[[11],[[12]

ak,n(wk,n)rl?s < Z df’na Vk, n, (7)
IET(N)
>oodit= > 4", Vkon.j, ®)
1€0(T,;) I€T(T;)
deL S flka vna ka l7 (9)
K
<o, W, (10)
k=1
fE>0, 4" >0, Vkn,l, (11)

wheredf’" denotes the conceptual flow rate on lihk £ for the k&th multicast session to its potential destination
RRH n, fl’f denotes the actual flow rate on linkor multicast sessiow, N, and J; denote RRH» and routery,
respectively,Z(N;,) denotes the set of links that are incoming to RRHandZ(7;) and O(7;) denote the set of
links that are incoming to and outgoing from rougerespectively. The first constraint guarantees that éf Dy,
then thekth session must flow at ratg’® to its destination RRH:.. The second constraint represents the law of
flow conservation for conceptual flows. Note that the flow ewwation constraint for the CP is not considered
because it is automatically guaranteed by constrdintsn@)&). The third constraint indicates that the actual flow
rate of thekth multicast session at each liiis the maximum rate of the conceptual flows of that link to aé# t
destinations, which is the benefit of network coding. Thettoonstraint guarantees that the overall information
flow rate at each link does not exceed the link capacity. Teedanstraint guarantees a positive flow rate for all

the multicast sessions on all the lirtks.

IV. COMPRESSIONBASED STRATEGY

In this section, we derive the throughput achieved by thepression-based strategy in the downlink multi-hop

C-RAN.

A. Joint Beamforming and Quantization in the Physical-Layer

Different from the above data-sharing strategy for whiahubler messages are sent to the RRHs for beamforming,
under the compression-based strategy, the CP pre-formsetii@formed signal for each RRH instead. Similar to
(@), the beamformed signal for RRH can be expressed as, = Zle wy, 5K, Yn. Then, the CP compresses
the beamformed signals and sends the quantization indiciee tcorresponding RRHs over the fronthaul network

1Given any flow rate solution satisfying constrairfis (7]=)(tfe code design which determines the content of each fling bensmitted
across the network can be found according td [13]] [14].



(please refer to Sectidn TViB for more information). The goession noise is modelled as a Gaussian random

vector, i.e.,
K
T, =T, +e, = wak,nsk +e,, Vn, (12)
k=1

wheree,, ~ CN(0,Q,,) € CM*1 andQ,, = 0 denotes the covariance of the compression noise at RRH

Next, RRH~n transmitsxz,, to the users\jn The transmit power constraint for RRklis then expressed as
Elz,x2 Z |wnl? +tr(Q,) < P, Vn. (13)

The baseband received signal at ukes

Yk = thnmn + 25 = thnwknsk + thnzwlnsl +thn€n + 2k, V. (14)
n=1 i#£k
The SINR of uselk is thus expressed as
N 2
Z thwk,n
COM _ s — i wl” vk 15
Z Z thme,n + Z thanhk,n + 0'2 % ’thsz + Zl hgnthk,n + 02
i#k In=1 n=1 7 n=

The achievable rate of usérin bps under the compression-based strategy is given by
rCOM < Blogy(1 +~FOM), V. (16)
B. Routing in the Network-Layer

In this paper we assume that the compression process is ddapendently across RRHs. According to the
rate-distortion theory, the fronthaul capacity in bps lieggito convey the compressed sigagl given in [12) to

RRH n is expressed as

T, = BI(xy;&,) = Blog, <

K
k=1

Note that instead of multicasting the information to the R4 in the data-sharing strategy, under the compression-
based strategy, the CP merely unicasts each compressatlsign its destination, i.e., RRH. As a result, a simple
routing strategy can be adopted for the information unioast the fronthaul network. The routing constraints for

the multihop fronthaul network; can then be formulated as

K
Blog2<2wk,nw£n+czn /\%) < > dp, vn, (18)
k=1 IET(N,)
dodp= Y dp, Vn,j, (19)
leO(J;) IeZ(T;)
N
dodp<ay, Vi, (20)

d? 2 07 vn7l7 (21)



whered;' denotes the flow rate on linke £ for the nth unicast session , i.ex,,. The first constraint guarantees
that thenth unicast session must flow at rdfg to its destination RRH:.. The second constraint represents the
law of flow conservation at each router. Note that the flow eovetion constraint for the CP is not considered
because it is automatically guaranteed by constrdinisda8)(19). The third constraint guarantees that the overall
information flow rate at each link does not exceed the linkacity. The last constraint guarantees a positive flow
rate for all the unicast sessions on all the links.

Remark 1: By comparing Sectioris1ll ard 1V, it can be observed that the difference between the data-sharing
strategy and compression-based strategy lies in how taeutihe fronthaul network. On one hand, user messages
are transmitted over the fronthaul network with the formeresne, while compressed signals are transmitted with
the latter scheme. On the other hand, the data-sharinggyraequires information multicast over the fronthaul
network since each user’'s message is sent to all the RRHmgehis user, while the compression-based strategy
merely requires information unicast since each RRH’s casged signal is sent to this RRH alone. Such different
approaches generate different traffic in the fronthaul netwthus leading to different throughput in the considered

multi-hop C-RAN, as will be shown in Sectign VlII.

V. PROBLEM FORMULATIONS

In this paper, we aim to maximize the throughput of downlinkltirhop C-RAN via a joint optimization
of the resources available in the physical-layer and néthayer under both the data-sharing strategy and the

compression-based strategy.

A. Data-Sharing Strategy

For the data-sharing strategy introduced in Sedfion IIl,design the beamforming vectors at all RRHs, i.e.,
wy, 'S, and network coding strategy, i.df,’"'s and f;"'s, to maximize the weighted sum-rate of all the users subjec
to each RRH’s transmit power constraint over the wireledsvoik as well as the network coding constraints in

the multi-hop fronthaul network, i.e.,

K
o DS
maximize kT (22a)
{wk,mTszvd?'nvfzk} kzzl
subject to ([zDa ([5])7 (m) - (Dj]), (22b)

where i, > 0 denotes the positive rate weight for uger
It is worth noting that without the routing constraints given (4) — (11), each user should be served by all

the RRHs, i.e.oy ,(wy ) = 1. However, with the constraints given inl (7) E{11), in geheach RRH cannot
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support all the users in the downlink transmission, and &salt; from [(6), for each RRH, only a subset of users
are associated with it, for which the corresponding useo@aton functioney, ,,(wy ,) and beamforming vector
wy, , are non-zero. Moreover, the user association functions(wy, ,)'s also affect the network coding design
since they determine the destinations of each multicastimesTherefore, the RRH's beamforming, user-RRH
association, and network coding are coupled together aad teebe jointly optimized in problend (22), which is
a challenging problem in general.

It is also worth noting that constrairil (7) induces a spaesniforming solution to problerh (R2). In the literature,
sparse optimization technique has been previously usethédownlink beamforming design problem [€], [15].
Problem [(2R) differs from prior work in two aspects. Fird],[[15] encourage a sparse beamforming solution by
penalizing the objective function with a sparsity term. Hwer, problem[(22) considered in this paper imposes a
set of sparsity constraints which need to be strictly satisfsecond, in_[8]/[15] the sparsity penalty is independent
of the beamforming solution, but in constraint (7) of ourdiéa problem they are coupled. As a result, the existing
sparse optimization techniques, e.g., least-absoluiaksiye and selection operator (LASSO), cannot be applied

in this paper.

B. Compression-based Strategy

For the compression-based strategy introduced in Secdpbwé design the beamforming vectors at all RRHSs,
i.e., wy 'S, compression noise covariance across the RRHs().gs, and routing strategy, i.ed;'’s, to maximize
the weighted sum-rate of all the users subject to each RR&l'sIit power constraint over the wireless network

as well as the fronthaul capacity constraints in the muf-fronthaul network, i.e.,

K
.. COM
maximize HETE (232)
{wk,wlyr]SOMinﬂdin} ;
subject to (@3), (@), ([@8) - @&D. (230)

It is worth noting that both the user rates given[inl(16) arel filonthaul rates given in_(17) are non-concave
functions over the beamforming vectous;, ,,’s and the compression noise covariar@g’s. As a result, prob-
lem (23) is a non-convex optimization problem, and cannosdleed by the conventional convex optimization
technigques.

In the following two sections, we propose efficient algarithto obtain locally optimal solutions to the non-

convex problemd (22) an@ (23), respectively.
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VI. OPTIMIZATION OF DATA-SHARING STRATEGY

In this section, we propose an efficient algorithm to solvebfem [22) based on the techniques of sparse
optimization as well as successive convex approximatiame @ain challenge for solving problern_{22) is the
discrete indicator functiomy, ,(wy ) defined in [(6). By applying standard sparse optimizatiomnégue, in this

paper we use the following continuous function to approtens, ,,(wy, ,):
go(wy,) =1— e_q)Hw’“’"Hz, Vk,n, (24)

where ® > 1. It can be observed that whefwy ,[|?> = 0, then go(wy,) = agn(wk,) = 0. Otherwise, if
|wg.n]|? > 0, we havege (wy.n) — apn(wi,) =1 with & > 1.

By usingge (wy, ,,) to approximatey, ,(wy ), Vk, n, problem [22) becomes the following continuous problem.

K
maximize Z S (25a)
{wk,mrszdfmvfzk} k=1
subject to  gg(wg,)rE> < Z df’", Vk,n, (25b)
leET(N,,)
(@)7 ([5])7 (BD - @) (250)

However, sincege(wy.,) is strictly less than one whefwy ,||*> > 0, the solution to problem{25), which
satisfies constrainf (2bb), may not satisfy constraiht i7prioblem [(2R). As a result, in this paper we propose to
solve problem[(22) in two steps as follows. First, we solvebfgm [25) and obtain the beamforming solution,
denoted byw,, ,,’'s. The user-RRH association solution is then obtained bews:

~ 17 if g@(ﬁ)k,n) > T;Z)>
A (Whpn) =

vk, n, (26)
0, otherwise,

where(0 < ¢ < 1 is a threshold to control the user association soliti@econd, we fix this user association

solution in problem[(Z22) and solve the following simplifietbplem to refine the beamforming and network coding

strategy:
K
maximize Z ukr,?s (27a)
{wk,mrkDSvd?Yn’ka} k=1
subject to ak,n(ﬁ)k,n)r,?s < Z df’", Vk,n, (27b)
IEZ(N,)
|wi.nll? =0, ¥V agn(Wrn,) =0, (27¢)

In the following, we show how to solve problenis (25) ahd| (2ékpectively.

2In our simulation, we se® = 50 andv = 0.5.
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A. The First Sage: Solution to Problem (25)

Problem [(2b) is a non-convex problem due to constraldts ) (5D). As a result, the conventional convex
optimization technique cannot be directly applied. In thection, we propose an efficient algorithm to solve
problem [25) suboptimally based on the technique of suaeessnvex approximation.

First, we consider constrairitl(5), which is equivalent to

hH 2 DS
| Ij;'“”f' >9% 1, Vk. (28)
> by wil* + 02
i#k
By introducing a set of auxiliary variableg > 0's, k = 1,--- , K, it can be shown that constraift{28) is equivalent

to the following two constraints:

RHw, >\ (275 — ), Vk, (29)

> Ihffwil? + 02 < /o, VE (30)
itk
As a resulty), can be interpreted as the interference constraint for uséonstraint[(30) can be further transformed

into the following convex second-order cone (SOC) constrai

|hiwn, - hwy—1, b wigr, - b wi] " || < Ve — 02, Vk. (31)

For constraint[{29),/(2%°/B — 1)1, is not a convex function. However, given amy, the following convex

function is an upper bound foy/(27+°/8 — 1)n:
EXT ot S o o
P3R5, m) =25 + o= >V (275 — L, Yk, (32)

where the equality holds if and only , = V(278 — 1) /n.. As aresult, we use the following convex constraint

to approximate constraint (29):

DS

3 275 1
> Brme 25 2L, (33)

T2 2034,

After approximating the non-convex constraini (5) by thenax ones[(31) and (B83), we come to constraint

thwk

(250). First, we take the natural logarithm of the left-haide (LHS) and right-hand side (RHS) of inequality
constraint[(25b), which results in

log(1 — e_q)”w’“””z) + log(r,?S) <log Z df’" , Vk,n. (34)
lEZ(N,)

It can be shown thalog(} -7, d"™) is a concave function ovel”"’s. However, the LHS of constrainf{34)

is still non-convex. Sincéog(1 — e~®*) is a concave function over, its first-order approximation serves as its
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upper bound. Specifically, given any the first-order approximation dbg(1 — e~®*) can be expressed as

Pe~¥%(z — )

log(1 —e™™) < —— -

+ log(1 — e~ %), (35)
where the equality holds if and only if = #. By substitutingz with ||wy.,||?, given anywy, ,, & convex upper
bound forlog(1 — e~ ®IW«1*) is expresses as

(I)e—<1>||tbk,n|\2”wk H2
log(1 — e~ ®IWel?) < llwrn
Og( (& ) — 1— e—¢||wk,n”2

+ qb(ﬁ)k,n)v Vkv n, (36)

where

e NPy |2

b ) = — — Wi
O(Whn) =~ Tlosll—e ).

The equality holds if and only itvy, ,, = wy, 5.
Similarly, given any pointf,?s, the concave functioﬂbg(r,?S) can be approximated by its first-order approxi-

mation as follows:

DS TI?S - 7:1?8 ~DS
log(ry,”) < fT—HOg(Tk ), Vk, (37)

k

where the equality holds if and only iS5 = 7PS.

With (38) and [(3V), the non-convex constraintl(34) can be@pmated by the following convex constraint:

et | S — 7S

~ ~DS k,n
g s $(Wpn) +1og(FP®) <log [ > d" |, Vk,n. (38)
1ET(N,)
To summarize, giverrS's, 1wy, ,’s, and f;’s, the non-convex constraintg] (5) add_(25b) in problém (@%)
approximated by the convex constraints given[in (3I)] (38 [38). As a result, with any giver}S's, wy.,,’s,

and §;'s, problem [25) is approximated by the following convex tgem.

K
maximize Z ,ukrl?s (39a)
{wkﬂHT’kDSvnkvd;c’nvflk} k=1
SllbjeCt to @7@7@7(@)7@)_@)' (39b)

Since problem[(39) is a convex problem, it can be globallywesdlby CVX [16]. The successive convex ap-
proximation method based algorithm to probldml (25) is sunmed in Algorithm[1, which iteratively updates
f,?s’s, Wy 'S, andf3;’s based on the solution to problem [39) as shown in Step &).cHmvergence behaviour of
Algorithm [1 is guaranteed in the following proposition.

Proposition 1: Monotonic convergence of Algorith 1 is guaranteed, §ép._; pix (rP%)® > ST | i (rPS) 1),
Moreover, the converged solution satisfies all the conssas well as the KKT conditions of problem25).

Proof: Please refer to Appendix/A. [ |
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Algorithm 1 Proposed Algorithm for Solving Problerin (25)
Initialization: Set the initial values fowwy, ,,’s, f,?s’s, andB,'s and sett = 1;

Repeat:
1) Find the optimal solution to probleri{39) using CVX @®}",, (rP%)®, 0\ (af™)®, (f)®};
2) Updatewy,,, = w,(f)n P8 = (rP%)®, and By = \/(2("58)(“/3 — )/77k , Yk, n;
3) t—t+1.

Until convergence

Algorithm 2 Proposed Algorithm for Solving Problern (27)
I nitialization: Set the initial values foBk’s and sett = 1;

Repeat:
1) Find the optimal solution to probleri{40) using CVX f®," , (rP%)®, 0t (aF™)®, (fF)®};
2) Updated, = \/(20)/8 — 1) /), v, m;
3) t=t+1.

Until convergence

B. The Second Stage: Solution to Problem (27)

Given the user association in problemn1(27), constrdint (2¥comes convex. By using (31) arid](33) to
approximate the non-convex constraink (5), given @pig, problem [27) can be approximated by the following

convex problem.

maximize e (40a)
{wk nvrkD 7dkn7fl } ;

SUbjeCt to Hwk,nH2 < 07 vak,n(ﬁ’k,n) = 07 (4Ob)

@)7@7@)7(@7(@_@)' (400)

Since problem[(40) is a convex problem, it can be efficientliyesd. The successive convex approximation based
algorithm to problem[{27) is summarized in Algoritith 2. Samnito Propositiori 11, the convergence behaviour of
Algorithm [2 is guaranteed in the following proposition.

Proposition 2: Monotonic convergence of Algorithi 2 is guaranteed, E,:H pk (1P $)®) > Zk 1 (TP S)(t=1),
Moreover, the converged solution satisfies all the conssas well as the KKT conditions of problem27).

The overall two-stage algorithm to problem¥22) is sumnetim Algorithm[3.

Remark 2: It is worth noting that[[3] studies a similar problem of jdinbptimizing the user-RRH association
with the beamforming vectors. To deal with the discrete 4RRH association indicator functionls| (6), inl [3] the
reweighted/;-norm technique is employed to approximate the fronthanstraint [7) by a set of weighted per-RRH

power constraints. Then, an alternating optimization datative algorithm is proposed to find a beamforming
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Algorithm 3 Overall Algorithm for Solving Probleni (22)
1) Solve problem[(25) based on Algoritih 1 and obtain the-B$&H association according tb (26);

2) Solve problem[(27) based on Algoritith 2 and obtain the eaning and network coding solution.

and user-RRH association solution. Although the algorithri8] works well in practice, a rigorous convergence
proof is not available. In contrast, the algorithm proposedhis paper always converge, but the performance

depends on the tuning of the approximation paramebeasd ).

VIl. OPTIMIZATION OF COMPRESSIONBASED STRATEGY

In this section, we propose an efficient algorithm to solvebfgm [23) based on the technique of successive
convex approximation. There are two challenges to solvblpno [23): the non-convex user rate constraint given in
(@8) and fronthaul constraint given in_(18). In the follogirwe show how to circumvent the above two challenges.

First, similar to Sectiof VI, by introducing a set of auxiliavariablesn, > 0's, k = 1,--- , K, it can be shown

that constraint[(116) is equivalent to the following two ctramts:

hiw, >\ (275 — 1), Vk, (41)
N

ST inflwil2 + Y B Quhin + 0 < i, k. (42)
1#k n=1

Constraint[(4R) can be further transformed into the follogvconvex SOC constraint:

N
[h w1, hffwp—y, hf wpg, - R wi] || < (e = D tr(He nQ,,) — 02, VE, (43)

n=1
whereHy, ,, = hmhkf{n. Moreover, since the non-convex constrainil (41) has theedamm as constrainf (29) in
Section[V], we can use the convex constraint giveriin (33)pjaraximate it, where:DS is substituted by-COM,
As a consequence, the non-convex constraint (16) is apped&d by the convex constrainis 33) ahd (43).

Next, we deal with the non-convex constraintl(18). Siheg, | X ,,| is a concave function oveK,, = 0, its
first-order approximation function at any poif, > 0 is an upper bound for it, i.e.,

- 1 - -
log, | X 1| < logy | Xn| + mtr(an(Xn ~ X)), (44)

where the equality holds if and only iX,, = X,. By setting X,, = ZlewmwkH,n + Q,,, at any point
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Algorithm 4 Proposed Algorithm for Solving Problerin (23)
Initialization: Set the initial values foB’s, W.,'S, and@n’s, and sett = 1;

Repeat:

1) Find the optimal solution to probleri §47) using CVX fis'" . (r,SOM)(t) (@ ®, QP

2) Updateg;, = \/( (reoMY() /B _ )/77k ,Xn_z lwkn(wkn) + QY. Vk,n;
3) t—t+1.

Until convergence

Xy =Y WipWh, + Qn, we have

et Qn
=1
T =loss g
tr< <Zwknwkn+Q X))
<logy | X | + Ty ~log, Q|
(Z wan wkn—l—tr(X Q ))
=log, | Xn| + == 5 ~log,Q,[. V. (45)

As a result, in this paper we approximate the non-convexteains (18) by the following convex one:

K
1 - —1 o —1 "
10g2 |X | +i5 n?2 <Z wkH,an Win + tr(Xn Qn - I)) - 10g2 |Qn| < Z dl ) vn. (46)

k=1 IET(Ny)

To summarize, givers;’s, Wy.,'S, andQ,’s, problem [ZB) is approximated by the following convex lgem.

COM
maxnnlze HUET S (47a)
{wk,mrk 777k7dz 7Q Z
SUbJeCt to (I-Iz])a(m)a@a([m)am)_(m' (47b)

Since problem[{47) is a convex problem, it can be globallyesdlby CVX. The successive convex approximation
method based algorithm to problef¥23) is summarized in Adgm @, which iteratively updates;’s, wy, 'S, and
Q,,’s based on the solution to problem147) as shown in Step B)il&@ito Sectior VI, the convergence behaviour
of Algorithm[4 is guaranteed in the following proposition.

Proposition 3: Monotonic convergence of Algorith@ 4 is guaranteed, Fép,_; pux (rSOM)® > ST 4 (rTOM) (1),
Moreover, the converged solution satisfies all the conssas well as the KKT conditions of problem23).

Remark 3: It is worth noting that a similar problem to problem [23) isdied in [5], where the RRHs are
assumed to be directly connected to the CP via fronthaus limkhout routers, and the users are assumed to be
equipped with multiple antennas. The successive convamiattion technique is also used to jointly optimize the

transmit covariance for each user and compression nois&iaoce for each RRH so as to maximize the weighted
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TABLE |
SYSTEM PARAMETERS OF THENUMERICAL EXAMPLE

Channel Bandwidth 10 MHz
Cluster Radius 1 km
Number of RRHs 5
Number of Antennas per RRH 2
Number of Users 10
RRH Transmit Power Constraint 43 dBm
Antenna Gain 15 dBi
Path Loss Model 128.1 4 37.61og;,(D) dB
Log-Normal Shadowing 8 dB
Rayleigh Small Scale Fading 0 dB
AWGN Power Spectrum Density —169 dBm/Hz

sum-rate of all the users subject to the fronthaul link capamnstraints. Note that in this paper, each uker

is assigned with one data streap since it is equipped with one antenna, and the transmit @wvee for each
user is thus of rank one. As a result, if we optimize the trahsovariance as in_[5] instead of the beamforming
vectors, it is necessary to add the rank-one constrainthéotransmit covariance matrices, which are non-convex.
On the contrary, in this paper we directly optimize the beamfng vector for each user as shown in Algorithm

4. The obtained solution is shown to satisfy the KKT condisi@f problem[(23).

VIII. NUMERICAL RESULTS

In this section, we evaluate the performance of the propostdork coding based data-sharing strategy and
routing-based compression-based strategy in the downiulki-hop C-RAN. In this numerical example, there are
N = 5 RRHSs, each equipped with/ = 2 antennas, and{ = 10 users randomly distributed in a circle area
of radius1000m. The bandwidth of the wireless link iB = 10MHz. The channel vectors are generated from
independent Rayleigh fading, while the path loss model efwireless channel is given a88.1 + 37.6log, (D)
in dB, whereD (in kilometer) denotes the distance between the user anRfté. The transmit power constraint
for each RRH isP, = 43dBm, Vn. The power spectral density of the AWGN at each user recésvassumed
to be —169dBm/Hz, and the noise figure due to the receiver processifigBs The above simulation parameters
are summarized in Tablé I. Moreover, the fronthaul netwopgotogy together with the capacities of the fronthaul
links (denoted by2C' or C//2) are shown in Figl]2. Last, for convenience, the rate weighésassumed to be one
for all the users in both problems{22) andl(23), i.e., suta-raaximization is considered for the data-sharing

strategy and compression-based strategy.
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Fig. 2. The multi-hop fronthaul topology for C-RAN.

A. Effectiveness of the Proposed Data-Sharing Strategy

First, we verify the effectiveness of our algorithm propese Sectiori VI to the weighted sum-rate maximization
problem [(22) under the data-sharing strategy. Fig. 3 shbsconvergence behaviour of the proposed iterative
algorithms to problemd_(25) an (27), i.e., Algorithids 1 &dvhenC = 200Mbps andC' = 400Mbps in Fig.

[2. Monotonic convergence is observed for both Algoritirhsndl [@ with different values of”, which verifies
Propositions 1 anfd] 2. Moreover, it is observed that bothrélgos converge withinl0 iterations. Last, for both
values ofC, the converged sum-rate of Algorithimh 2 is very close to tHafgorithm [I, which verifies that the
continuous functiorys (wy, ,) given in [24) is a good approximation to the discrete useHRRsociation function
a(wy, ,,) given in [6) such that the solution to the relaxed problen) (%ery close to the original problern_(22).

Next, we verify the effectiveness of our proposed dataisbastrategy. Towards this end, we consider the
following three benchmark schemes for performance corapariFor the first benchmark scheme, we consider a
strategy where each user is only served by one RRH, as prbpog8]. Specifically, we first allocate each user
to the RRH with the strongest channel power, i.e.,

1, if n=arg max |hy,|?
l<n<N &7 Yk, n. (48)

Qp.n =
0, otherwise,

Given the above user-RRH association solution, the CP sisi@ach user’s data to its associated RRH via routing

over the fronthaul network. Note that in a unicast netwohie hetwork coding constraints given inl (7) [=1(11)
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Fig. 3. Convergence behaviour of Algorithmisand 2 in the first and second stages for solving the weighted suenfreaximization
problem [22) under the data-sharing strategy.

reduce to the unicasting constraints. As a result, the suen-of all the users achieved by this scheme can be
obtained by solving problend (27) with the user-RRH assamasolution given in[(4B).

For the second benchmark scheme, we allow each user to bEidgnmultiple RRHs. Specifically, we let each
user be served by thi2 RRHs with the first three strongest channel power. Given boeva user-RRH association
solution, the sum-rate of all the users achieved by this reehean be obtained by solving problem1(27) using
Algorithm [2.

For the third benchmark scheme, we still let each user beeddny the3 RRHs with the first three strongest
channel power. However, instead of encoding the receiviednivation, in this scheme we assume that each router
simply replicates and forwards its received informatiorttie other routers in the multi-hop fronthaul network.
Note that with the above replicate-and-forward schemeydging constraints (27b)[1(8) £ (1L1) in problem27)
need to be modified. Specifically, the multicast of each asmessage is built by Steiner trees. Defifjeas the
set of all the Steiner trees for multicasting ugé message, which is determined by the user-RRH assocjation
and £, as the set of all the fronthaul links in a Steiner treé\ccording to [17], the routing constraints for the

replicate-and-forward scheme can be formulated as

S <> Tk VE, (49)
teTr
Z Tk < Cp, VI, (50)

kel teTy leL,
Ttk > 07 vt7 k7 (51)
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Fig. 4. Throughput versus fronthaul link capacity of theadslharing strategy.

whereT; ;, denotes the rate for multicasting useés message via Steiner treeVia replacing the linear constraints
(Z2718), [8) —[(11) by the linear constraints (49) =](51) in peob (27), we are able to obtain the sum-rate achieved
by the replicate-and-forward based data-sharing strategy

Fig.[4 shows the users’ sum-rate achieved by different seBamder the data-sharing strategy versus different
values of C'. It is observed that our proposed data-sharing strategieah much higher throughput than its
counterpart without cooperation between RRHs, especvalign the value ofC is large. This is because our
proposed scheme provides a joint beamforming design gais.also observed that the proposed network coding
based scheme provides up30% throughput gain as compared to the scheme when each usevés 38/ three
RRHs with strongest channel power. This shows that the RB#- association plays a significant role on the
throughput performance and thus should be carefully opénhiLast, it is observed that when each user is served
by three RRHs with strongest channel power, the sum-ratéewaath by the replicate-and-forward based data-
sharing strategy is very close to that achieved by its copate based on network coding. This implies that for
the information multicast over the fronthaul network, trergof the network coding technique over the optimized
replicate-and-forward scheme is not significant. (Note #irailar observations are also found in the literature, e.g
[18].) However, as shown in Sectign 11l-B, the Steiner treelgng problem arising from the replicate-and-forward

scheme is NP-hard, thus from the algorithm design point efyihe network coding technique is preferred.

B. Effectiveness of the Proposed Compression-based Strategy

In this subsection, we evaluate the performance of the pegh@ompression-based strategy in the downlink

multi-hop C-RAN. Fig[b shows the convergence behaviour lgfoAithm[4 for problem[(2B) whei®' = 200Mps
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Fig. 6. Performance comparison between the data-shaniategy and compression-based strategy for the multi-hpplaegy of Fig.[2
versus the single-hop topology of F[g. 7.

and 400Mbos. Similar to Fig[B, monotonic convergence is obsenardAgorithm[4, which verifies Proposition

[3. Moreover, it is observed that Algorithim 4 converges irsl#san10 iterations for both values af'.

C. Comparison between Data-Sharing Strategy and Compression-based Strategy

It is worth noting that the data-sharing strategy and cosgiom-based strategy are two fundamentally different

approaches to utilize the fronthaul network in the downlitHRAN. Under the former strategy, user messages
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Fig. 7. The single-hop C-RAN.

are multicast to the RRHSs, while under the latter strategghecompressed signal is unicast to the corresponding
RRH. In this subsection, we aim to answer the following gioedby simulation results: in the downlink multi-hop
C-RAN, which strategy is more efficient for the utilizatiohthe limited capacity in the fronthaul network? Fig. 6
provides a performance comparison between the data-ghstristegy and compression-based strategy in terms of
the sum-rate of all the users versus the fronthaul link c@pdeor the purpose of illustration, we also provide the
throughput performance of the data-sharing strategy antboession-based strategy in the case when each RRH
is directly connected to the CP via a fronthaul link with ceipaC, as shown in Figld7. Note that in both the
setups in Figd]2 and 7, the capacity of the information floveach RRH isC, while the difference is that the
routing strategy also influences the throughput perforreandhe first setup.

It is observed from Figl16 that in the multi-hop C-RAN, the state achieved by the data-sharing strategy
is higher than that achieved by the compression-baseegyraimost for all the values af'. Note that this is
in sharp contrast to the previous results [in [7], [8], whidtows that if the routing strategy over the fronthaul
network is not considered, in general the compressionebsisategy outperforms the data-sharing strategy in terms
of both spectral and energy efficiency. Specifically, in thisnerical example, it is observed that in the single-hop
C-RAN, the compression-based strategy can provide W5t performance gain over the data-sharing strategy.
By comparing the cases of multi-hop and single-hop C-RAN @oncluded that although sending the compressed
signals is a better option than sending the user messad®s libtiting strategy is not considered, the data-sharing
strategy can utilize the information multicast techniquerothe fronthaul network, which is more efficient than

information unicast of the compression-based strategmd&e up the above disadvantage.
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IX. CONCLUSION

This paper investigates two fundamentally different téghes for the downlink multi-hop C-RAN, namely
data-sharing strategy and compression-based strateffigredit from prior works, apart from the resources in the
wireless link, the routing strategy over the multi-hop fiteaul network is considered as well for maximizing the
achievable throughput of the downlink C-RAN under bothtsges. Specifically, under the data-sharing strategy,
the network coding technique is utilized to multicast eacleris messages to all the RRHs serving this user,
while under the compression-based strategy, a simplengtgichnique is used to unicast each RRH's compressed
signal to the destination. Efficient algorithms with mormatoconvergence are proposed under the above cross-layer
optimization framework for each strategy, and the obtais@dtions are proved to satisfy the KKT conditions of
the problems of interests.

Prior works show that if the routing strategy is not conséderthe compression-based strategy generally
outperforms the data-sharing strategy in terms of speeffi@iency. The main contribution of this paper is that if
the routing strategy is jointly optimized with the transgiim strategy, the data-sharing strategy can achieverbette
system throughout than the compression-based stratedyeimldwnlink C-RAN, since information multicast is
more efficient than information unicast over the multi-hepnthaul network. This implies that the data-sharing

strategy is also a promising candidate for the downlink camication of the emerging C-RAN.

APPENDIX

A. Proof of Proposition [l

First, it can be shown that in thi¢h iteration of Algorithm[l, the solution obtained in tiie— 1)th iteration is

(t—1)

also feasible to probleni (B9) given,, , = w,(f’;l), DS = (rP9)=D and By, = \/(2% - 1)/77,?_1), Vk,n. In
other words,ZkK:l 1k (r29)#=1) is achievable to probleri (B9) in thh iteration. As a result, the optimal weighted
sum-rate to probleni (39) in thi¢h iteration, i.e.,ZkK:1 e (r2$)®, is no smaller than the optimal weighted sum-
rate achieved in th¢t — 1)th iteration, i.e.,Zf:1 1k (rPS)*=1). Monotonic convergence of Algorithil 1 is thus
proved.

Next, since in Algorithniil we use upper-bound to approxinta& non-convex functions in problerm {25), as
shown in [(32), [(3b), and (37), any feasible solution to peabl[39) satisfies all the constraints of probléml] (25).
As a result, the solution from Algorithid 1 must be feasibleptoblem [25).

Last, according to[[19, Theorem 1], if in an optimization Iplem, each non-convex constraifitx) < 0 is

iteratively approximated by a convex constrafp, (x, ) < 0, wherez is the optimal solution to the approximated
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problem in the previous iteration, anfd,,(x, ) is a convex function satisfying

fopp(®, ) > f(2), (52)
fopp(i7i) = f(i)v (53)
V fopp (€, Z) | =i = V[ (@) o=z, (54)

then the successive convex approximation algorithm caayawield a solution satisfying the KKT conditions of the
problem. In the following, we show that constraintl(33) isegproximation to constraint (R9) satisfying the above

conditions. First, the inequality (82) implies thﬁgk (TES,nk) is an upper bound tq/(27%°/B — 1)n,,, where the
equality holds if and only iff;, = \/(27%°/B — 1) /n;,. Moreover, in Algorithnil 3, is set as\/(2(’”sz>“>/B — 1)/77,(5)

in each iteration. As a result, the conditiofis](52) dnd (58)satisfied. Next, it can be shown that

O, (8% me) B VETTE =Ty _ 0/ @F 7 = 1)y (55)
Onk, 2 2 Ong '

Similarly, it can be shown thaif; (r®, ) /0rp® = 0+/(27"/5 — 1)y, /0rp®. As a result, constrainE(83) is an
approximation to constrainf_(29) satisfying the constsigiven in [52) —[(54). Moreover, it can be shown that
constraint[(3B) is an approximation to constralntl (34)ségitig the conditions given if_(52) £ (b4). As a result,

the solution obtained by the successive convex approximdtased Algorithmill must satisfy the KKT conditions

of problem [25).
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