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Variational Bayesian Inference of Line Spectra
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Abstract—In this paper, we address the fundamental problem
of line spectral estimation in a Bayesian framework. We targt
model order and parameter estimation via variational inference
in a probabilistic model in which the frequencies are contiuous-
valued, i.e., not restricted to a grid; and the coefficients g gov-
erned by a Bernoulli-Gaussian prior model turning model order
selection into binary sequence detection. Unlike earlier arks
which retain only point estimates of the frequencies, we unertake
a more complete Bayesian treatment by estimating the poster
probability density functions (pdfs) of the frequencies amnl com-
puting expectations over them. Thus, we additionally captte
and operate with the uncertainty of the frequency estimates
Aiming to maximize the model evidence, variational optimiation
provides analytic approximations of the posterior pdfs andalso

We are given the vectoy containing M < N noisy
measurements of those componentsxofwith indices in
M C {0,...,N — 1}, IM| = M. Defining the function
a:[-mm) = CM w— aw) = (" | me M)T and
the vectore representing additive noise, we write

K
y = apa(w)+e. (2)
k=1
The problem of LSE involves estimating the numbg&r
of sinusoidal components, also referred to as model order
selection, and their associated parametersand w;. Even

gives estimates of the additional parameters. We propose an if the model orderK is given, LSE is still nontrivial because

accurate representation of the pdfs of the frequencies by mtures

of von Mises pdfs, which yields closed-form expectations. &/
define the algorithm VALSE in which the estimates of the pdfs
and parameters are iteratively updated. VALSE is a gridless
convergent method, does not require parameter tuning, canasily

include prior knowledge about the frequencies and provides
approximate posterior pdfs based on which the uncertainty m

line spectral estimation can be quantified. Simulation reslis show
that accounting for the uncertainty of frequency estimatesrather

than computing just point estimates, significantly improves the

performance. The performance of VALSE is superior to that of
state-of-the-art methods and closely approaches the CraenrRao

bound computed for the true model order.

Index Terms—Line spectral estimation, complex sinusoids,
model order selection, Bayesian inference, von Mises didgution,
super-resolution, Bernoulli-Gaussian model, sparse estiation

I. INTRODUCTION

of the nonlinear dependency of (2) on the frequenties.

A. Prior Work

Under the assumption of knowi, thew’s are traditionally
estimated using the maximum-likelihood (ML) technique or
subspace methods, such as [2], [3]. The ML method involves
the hard task of maximizing a nonconvex function that has a
multimodal shape with a sharp global maximum. The maxi-
mizer is typically searched using iterative algorithmg (g4]—

[6]) which, however, require accurate initialization aatlbest,

are guaranteed to converge to a local optimum. Nonetheless,
the performance of the ML technique is superior to that of sub
space methods, the difference being evident especialljnwhe
the sample sizeV/ or alternatively the signal-to-noise ratio
(SNR) are small. Sinc& is typically unknown in practice, the

The problem of line spectral estimation (LSE) [1], i.emodelorderis conventionally selected based on an infoomat

extracting the parameters of a superposition of complex exiterion, which comprises a data term representing thieditt
ponential functions from noisy measurements is fundanhenfi"or and a penalty term that increases with the model order
in numerous disciplines in engineering, physics, and mhtufSee [7] and references therein). Assuming a range of patent
sciences. To quote a few examples, solutions to this problé@del orders, the parameters corresponding to each pessibl
have applications to range and direction estimation in sorffder are estimated using, e.g., one of the aforementioned
and radar, channel estimation in wireless communicatiomgethods. Finally, the tradeoff between fitting error and etod
speech analysis, spectroscopy, molecular dynamics, pok@fmplexity is made by selecting the configuration that mini-

electronics, geophysical exploration.
In LSE, the original signak = (x,...,zny_1)T € CV is
a superposition of complex sinusoids, i.e.,

K
T, = E apel
k=1

1)

whereay, € C andwy, € [—m, 7) are the complex amplitude
and (angular) frequency, respectively, of thid component.
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mizes the criterion. Scanning a range of model orders can be
computationally expensive. Also, in non-asymptotic regsm
(particularly limited M or SNR), information criteria tend to
provide a wrong model order. A comprehensive review of
classical approaches can be found in [1].

A more recent approach to LSE is dictionary-based model
estimation, see [8] and the references therein. In this ap-
proach, nonlinear estimation of the frequencies is avoided
by discretizing the rangé—=, ) into a finite set (grid) of
samples that represent the candidate frequency estinTdtes.
signal model (2) is then approximated with a linear system
comprising a so-called dictionary matrix (whose columre ar

lwhen K and the frequencies are given, the complex amplitudes can be
easily estimated with the linear least-squares method.
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given bya(-) evaluated at the grid samples) and a vector diie total variation norm), which is the continuous analoghef
weights. Thus, the original nonlinear problem is replacgd ; norm and allows for working with an infinite, continuous
a linear inverse problem to which a sparse solution is sougtictionary. In this way, it is shown that for the noiselesseca
The nonzero entries of the sparse estimate of the weightvedhe frequencies can be perfectly recovered from compldte da
encode the model order and parameter estimates. Theré)s = N) [23] or incomplete dataX/ < N) [24], as long
a plethora of techniques that can be used for sparse sigaslthey are well separated. In [25], the atomic norm soft
representation, see the detailed survey [9]. Howeverjegsg thresholding (AST) method, which solves a convex program,
the candidate frequency estimates to a discrete grid irsduce proposed for LSE from noisy, complete data. AST is
spectral leakage due to the model mismatch. Consequantlygeneralized to the incomplete data case in [26]. Given that
can admit only an approximately sparse representation &yr mAST requires knowledge of the noise variance, the grid-tase
be even incompressible) in a finite dictionary [10], [11]. tbe SPICE method [27] (which minimizes a covariance matrix
one hand, a denser grid provides a better sparse approamafitting criterion) is extended in [26] to gridless SPICE (GLS
and higher accuracy of frequency estimation. On the oth@LS is applicable to both complete and incomplete data cases
hand, increasing the grid density makes the dictionarymoki without knowledge of the noise power and is equivalent to
highly coherent, which might affect the sparse reconsuact atomic-norm-based methods; however, it has the limitatimin
capability, and boosts the computational complexity. Tie-al frequency splitting and inaccurate model order estimd26i.
viate the mismatch issues, several approaches are codgceife overcome the two drawbacks, a GLS-based framework
e.g.: in [11], the concept of structured sparsity is utdize is proposed in [26], in which: GLS is used as a method to
inhibit closely-spaced frequency estimates; the methdd2h estimate the covariance matrix ¢f based on which the model
starts with a coarse grid and heuristically iterates betweerder is selected using the SORTE algorithm [28] and the
estimating the weights and placing a finer grid around thHeequencies are estimated with MUSIC [2].
location of the non-zero weight estimates; in [13]-[16]eas  An important limitation of atomic-norm-based techniques i
fine grid is used as a baseline and the dictionary matrix tisat they require the frequencies be sufficiently sepaiiated
modified to include auxiliary interpolation functions. der to be recovered. Enhanced matrix completion (EMaC) [29]
In the quest for gridless methods which work directland reweighted atomic-norm minimization (RAM) [30] are
with continuously parameterized dictionaries, i.e., idicaries two recent algorithms that are reported to improve the res-
whose parameter ranges [rm,w), several works depart olution capability of atomic-norm methods.
from using a static dictionary given by a fixed grid. By
including the parameters that dictate the dictionary in the o
estimation problem, they obtain dynamic dictionary altforis B. Contribution
in which the candidate frequencies and hence the dictionaryin this paper, we propose a method for LSE from the
columns are gradually refined. In [8], two such algorithmes ameasurement model (2) by following the approach of sparse
designed based on tlig regularized least squares objective byayesian inference including estimation of continuoulstee
adding a penalty term to prohibit closely spaced frequencigequencies. The key development that sets our work apart
and respectively imposing a hard constraint on the minimuftom the related methods [19]-[22] is that, instead of re-
distance between frequencies. The algorithms approxiynateining only point estimates of the frequencies, we seek a
solve the involved nonlinear estimation and still require amore complete Bayesian treatment by estimating pdfs of the
initial grid [8]. A different line of works adopts the Bayesi frequencies and computing expectations over them. Ouc basi
framework and augments the probabilistic model of spars@otivation is that, in general, a fully Bayesian approach is
Bayesian learning (SBL) [17], [18] to incorporate the candexpected to show benefits, especially in the situations evher
date frequencies. In SBL, a sparse weight vector is promotegimple sizes or SNRs are limited. The fully Bayesian ap-
by selecting a parameterized/hierarchical prior modelit®or proach naturally allows for representing and operating wit
entries [17], [18]. Estimation in the augmented model ihe uncertainty of the frequency estimates, in additionrtly o
performed using variational inference methods [19]-[2d] dhat of the weights as considered so far. In particular, our
maximization of the marginalized posterior pdf [22]. Commoapproach involves computing expectations81°, rather than
to all existing SBL-based approaches is that they restoict just evaluating the phasor at a certain point estimate. The
compute point estimates of the frequencies (i.e., MAP/Muncertainty impacts all other estimates and also the miter
estimates), which implies nontrivial maximization of high for accepting a component in the estimated model (through
multimodal functions (similar to classical ML frequencyties the estimates involved) and therefore the model order esti-
mation) in each iteration. The maximization is accomplishenate. Our results show that accounting for the uncertaifity o
approximately by using a grid followed by refinement witlirequency estimates with the fully Bayesian approach move
Newton’s method or interpolation. Another limitation isath to be essential for improving model estimation performance
while providing good reconstruction performance, the SBLA second distinction from related works is that we employ
based methods reportedly overestimate the model order, izBernoulli-Gaussian hierarchical model for the weights] [3
they consistently output additional spurious componegutis-( instead of the typical SBL prior model [17], [18]. By analgagi
facts) of small power [19], [21]. the component-acceptance criteria induced by the two repdel
A different gridless approach that avoids the frequenaye observe that the Bernoulli-Gaussian model is more eggili
discretization issues is based on the atomic norm (equithgle to insertion of small spurious components.



We provide our probabilistic formulation of LSE in Sectiorand pg, (s;) = p* (1 — p)(!=%). Since S; = 0 implies
Il. Since exact inference in the proposed model requires-cothat 1W; = 0, the probability p controls how likely it is
putations that do not admit closed-form analytical expoess for the ith component to be “active” (i.e. its weight to be
we take the variational approacho: compute approximate nonzero). In (4),W; | S; = 1 has a zero-mean Gaussian
posterior pdfs of the frequencies and weights; attempt MARIf with variancer.® In this paper,fcn(-; 1, X) denotes the
detection of the binary vector of the hierarchical modekl arcomplex univariate/multivariate Gaussian pdf with meaand
target ML estimation of the noise variance and parametargvarianceX. The frequencie® = [©1,...,0y]T have the
of the Bernoulli-Gaussian model. The variational optirtima prior pdfpe (8) =[], pe, (¢:). As justified in Section IVpe,
problem consists in maximizing a lower bound on the modi& a von Mises pdf, or a mixture of such pdfs if one wants to
evidence over the pdfs and parameters of interest. In $ectmodel a more sophisticated, possibly multimodal distidnt
[, we derive implicit expressions for local maximizershish the lack of prior knowledge can be represented by setting the
are to be updated iteratively. To enable closed-form expectoncentration parameter of the von Mises pdf to zero. We
tions over the approximate pdfs of the frequencies, we sh@ssume that the components of the ndisere iid complex
in Section IV that these pdfs can be very well represent&@hussian with mean zero and variancewhich gives the
by mixtures of von Mises pdfs (see also Appendices B atitelihood
C). In Section V, we propose a specific initialization and
schedule of iterations that define the variational LSE (VE)LS pyiew(y [ 0, wiv) = fon(y; Z wia(0y),v1). ()
algorithm. VALSE has several attractive features: it igyful ‘
automated (i.e., does not include parameters to be tundfe model parameters are collectively denoted By =
as all necessary parameters are learned from the data){’fﬁtPaT}- o
converges because each step increases the lower bound on tMée can relate model (3) to a sparse approximation prob-
model evidence; it has the ability to easily incorporateopri €M in which, given the frequencie® = 6, A(6) =
knowledge about the frequencies (through a von Mises pdf of#{01) - - -a(fy)] is the dictionary matrix and we need to
mixture of such pdfs); it provides posterior distributidressed infer the weightsW' from M < N data samples. Using
on which uncertainty in LSE can be quantified. In Section \AParsity-promoting hierarchical models f&¥" is a common
the performance of VALSE is evaluated and compared agaif@yesian approach to find sparse solutions to ill-posed-prob
state-of-art methods through computer simulations. Emaﬂems in compressed sensing. While the Bayesian treatment of

Section VII concludes the paper. LSE [19]-{22] typically uses the SBL prior model [17], [18],
the Bernoulli-Gaussian model [31], [33] has not been used

in the LSE context before. In the Bernoulli-Gaussian model,

the binary vectorS = [Sy,...,Sy]T represents the support

of the weightsW. Contrary to the standard sparse estimation
Given the difficulty of not knowing the model ordgl problem, in our context the dictionary is parameterizedhsy t

in (2), for the design of our Bayesian estimator we proposefrzquencies that are to be inferred as well.

probabilistic model consisting of a superpositiondf(i.e. the We would like to compute mean and circular mean estimates

dimension of the original signat in (1)) complex sinusoids of W and ®, respectively, based on the posterior pdf

that have random frequencies and weights. Since we want that

eventually onlyK of those components have nonzero weights, pe w sy (6, w,s | y; 3) =

we use a sparsity-promoting prior model for the weights. Py (y:B)

Inference in the following model ideally would recover the In (6), the joint pdf in the numerator is the likelihood (Snts

true frequencies and corresponding nonzero weights aid yithe prior pdfs defined above, i.e.

zero weights for the excessivé— K components. Concretely,

we assume that the measurement vegtas a realization of

a random process described by

II. BAYESIAN FORMULATION AND VARIATIONAL
APPROACH

pY7G‘)7W1S(y,07W,S;/@> (6)

pY,G),W,S(y7 01 W, S; ﬂ)
N

=pylew(y | OaW;V)HPGi(ei)pWJSi(wi | si)ps, (si),

N i=1
Y =) Wa(®;)+U. (3) (7)
=1 while the denominatopy (y; 3), called the model evidence
The complex weightdV = [Wy,..., Wy]T are governed by (or marginal likelihood of3), is the marginal of the joint
independent Bernoulli variableS =[S, ..., Sy]T such that pdf and acts as a normalizing constant. Fig.1 illustrates th
the elements oW | S are independent an@S;, W;) has a factor graph representation of (7). The sought estimatés-un
Bernoulli-Gaussian distribution. That is, tunately require operations (high-dimensional integraisn-

mation over2Y possible values o) that cannot be performed
pwils;(wi | si37) = (1= si)0(w;) + sifen(wi; 0,7) () analytically. Therefore we use variational inference tmpate

2Variational methods are deterministic inference techesqwhich pro- Swhile Pw;|s; (Wi | si = 1) should model some prior knowledge about
vide analytical approximations of posterior pdfs, unlike stochastic method the amplitudes, for the design of our estimator we select@mean Gaussian
of Markov chain Monte Carlo (MCMC) sampling. The convergeiod MCMC  pdf mainly for computational convenience (see Sec. lll-B).fact, in the
methods can be prohibitively slow and difficult to diagndg€cMC sampling simulation experiments we generate the complex amplitudgd) from a
has been previously used for LSE, see [32] and the referaheesin. distribution different than Gaussian.



only if ge, |y is the Dirac delta distribution. A broagy, v
signifying high uncertainty gives a small magnitude, anckevi
versa. Those estimates with indices give the elements
of &; = Ey |, [a(0;)]; similarly, |a;||3 < M. The mean and
covariance estimates of the weights are defined as

(W] andC =E

w

E —wwil. (12)

= Saqw |y WWH]

qw |y [

Given thatgsy = d(s — 8), the posterior pdf oM is

awiy (W | y) = qw|y.s(W | y,8). (13)

Fig. 1. Factor graph representation of the joint pdf (7). Intuitively, the closeye w 5|y IS t0pe,w sy, the better the
estimates (11) and (12) approximate the estimates which we
. would have computed from (6), if we could. The forms of the
a surrogate pdfie w sy that should approximate (6) well ) :
2 N pdfs and the support estimaien the r.h.s. of (10) result from
and at the same time enable tractable estimation. L .
maximizing the lower bound. When the parameters j are

The variational approach builds on the fact that, for an ) . o
. nknown, we target their ML estimates also by maximizing
postulated pdfge w sy, the log model evidence can bet

expressed as [34, Ch. 10]

Inpy (y; B) = Dk (ge.w.s1v|lPe.w,s)y) + L(ge.w s1v)-
(8)

he lower bound to the log marginal likelihodd py (y; 3).

Finally, based orf and w, we define the estimates of the
quantities in the original superposition (1). L&tbe the set
of indices of the non-zero componentssfi.e.

The first term in (8) is the Kullback-Leibler divergence of

Pe,w,s|y from q®7W75|y,4 while the functionall reads

pY,@,W,S(y7 91 W7 S7 ﬂ):|
o.w.s)y(®,W,S |y) @

Given thatpy (y; 3) is constant w.r.tge w,sjy andDxL > 0,
minimizing the divergence is equivalent to maximizidgand

E(Q@,W,SD’) = qu,W,S\Y In

S={i|1<i<N,s; =1}.

Analogously, we defineS based ons. The estimate of the
model order is the cardinality af:

K =8| (14)

We define the reconstructed signal = (21, .. as

'7':EN)T

tightening it as a lower bound to the log model evidence. Thee expectation of the signal part in the r.h.s. of (3) over

KL divergence vanishes only wheps w sjy = pe,w,s|y
in which casef attains its maximum valueln py (y; 3).

Nonetheless, as we already mentioned, working with the &5, :Zuii quﬂy[ej”@i],

posterior pdf (6) is intractable so we have to restrict theifia
of candidate pdfs.
We postulate thaye w sy factors as

q@,W,S|Y(07 w, S | Y)
N

= HQG)7;|Y(91' |Y)awy,s(W |y,s)qsiy(s|y).
=1

(10)

That is, we assume that the frequencies argosteriori
independent (mutually and of the other variabe®urther-
more, we consider thaggy has all its mass a8, i.e.,
qs|y (s | y) = 0(s — 8), where the functiord equalsl when

s = § and 0 otherwise. The simplifying restrictions define a
family of pdfs and our goal is to search for the member WhicI

maximizes the lower bound.

The estimates of interest are computed frggiw sy as
follows. Since®; is an angle, its estimate is defined so as
to give the mean direction af©: [35]:

b = ang (Bgo oy [/%]), i€ {l,...,N}.  (11)

ge,w,s|y Which gives

ne{l,...,N}. (15)
icS

The components of) and w with indices in S give the

estimates of the frequencies and amplitudes in (1).

IIl. SOLUTION TO THE VARIATIONAL OPTIMIZATION
PROBLEM

We now turn to maximizing the lower bounf{¢e w . s|y)
in (9) with ge w sy of the form (10). Except for restrict-
ing gs|y to give probability one to some sequengewe

do not impose any constraints on the forms of the factors

in (10). That is, the forms of the approximate posterior pdfs
result from variational optimization and are dictated by th
ikelihood (5) and prior pdfs. As maximizingC over all
factors simultaneously is not viable, we perform altemgti
optimization:£ is maximized over each of the factars, sy,
ge,|y,» 1 = 1,..., N, in turn while keeping the others fixed.
Consequently, the form of each factor is implicit because it
depends on the other factors.

Upon their initialization, we iteratively cycle througheh

The .eStima'teg‘K—)?\Y [ejn@?-]’ n€{0,..., N~ 1} are f:entral factors and replace them one by one with a revised expression

in this work. Their magnitudes ar€ 1 with equality if, and Such a scheme is guaranteed to converge to some local

4The KL divergence of a pdp from a pdfq (both defined on some set maximum Ofﬁ.[34, Ch. 10]. In the following .We der.lve the

X) is Dic (qllp) = Jy a(x) m%dx' factor expressions that correspond to the fixed-point of the
5The assumed factorization 9b)y is also referred to as a naive meanSCheme' A Sp_eCIflc initialization and scheduling of updates

field approximation. are proposed in Sec. V.



A. Inferring the frequencies ©® Let us introduce the pdf

Foreachi = 1,..., N, maximizingL in (9) w.r.t. the factor R 1 R
do./v gives [34, Ch. 10, p. 466] Hwi8) = 75 P {Faory mpv.0.w.s(y, O, .5 6)]}

Inge, |y (0: | y) = Evo, [npy.ew, s(y,0i,©~i, W,5;8)]  wherepy o w.s is given by (7) andZ () is the normalizing
+ const. constant obtained by integrating the exponential ovei\Ve

o can now write
where the expectation is taken ovg§ sy H#i e,y the

joint pdf py @ w s is given by (7) and the constant ensures L(qw |y s,8) = —DkL (qw|y,sl|t) +1n Z(8) + const. (18)

normalization of the pdf. We further write only the termsttha ] .
depend orv;, i.e. Inspecting (18), for any the maximum ofL over gw |y s

is attained when the KL divergence vanishes. Thlifias its
Inge, )y (0; | y) = Evo, [Inpyjew (v | 6i, @i, W3] maximum at

Inpe. (0; const.
+ Inpe, (0;) + qw|y,s(W|y,8) =t(w;8) and § = argmaxlInZ(s).

Plugging the Gaussian form of the likelihood (5) in the above s (19)
e_xpression. and carrying out the required expectations, g computeEq,, , [Inpy 0.w,s(y, ©, w,s; 8)] required for
finally obtain t(w;8) andZ(s) in (19), we use (7), together with (5) and (4),

o 1y (0; x po. (6;) exp { R (na(b; 16) and obtain an expression that is quadratisvingiven that all
0.1y (0: 1) o< po. (B:) exp {R (n a(0:)) } (16) pw,|s: (wq | s; = 1) are Gaussian. We define the matfixvith

where the complex vectay; is given by elementsJ;; = M and J;; = al'4;, 4,5 = 1,...,N, j # i,
) ) and tgle.vectmh = [ally,... ,é?,y]T. From (13) and (19),
;= = _ Ao | ax 2 ¢ 4 17) We obtain
mi= |y Z way | by = Z a4 (17) )
les\{i} tes\{i} awiy (W | y) = fen (Wg;Wg, Cg) H5(wi),
wheni € S, and n; = 0 otherwise. The second factor i¢S

in the rh.s. of (16) is an approximation of the margingyhere the mean and covariance matrix of the Gaussian poste-
likelihood of 6;; it is an extremely multimodal function, seerjor pdf of W are

Sec. IV. According to (17), the likelihood favors valuesépf

for which the angle betweet;a(;) and the residual signal ¢ . — ,-'&.h. and Ca =1 (J . ZI)’ . (20)
(after canceling the interference from the other compa)jent s ss s s

is small® Interestingly, the likelihood corresponds to coherenthe mean is the LMMSE estimate W assumings = 8. For
estimation of©; from the residual signal when the weight; ¢ § the measurements are noninformative and, conveniently,
is fixed to w;. At the same time, it penalizes (to an eXteW}W“y(wi |Y) = pw,|s; (wi | 55 =0) = 6(w;), i.e.,w; = 0.

given by the cross-variance of the weights) values thatiresu g, (19), the sequence (which determinesS) is the

in small angle betweea(6;) and 4, pf the other components maximizer of

in the model. Naturally, when ¢ S (i.e. §; = 0), only the

prior information comes into play in (16). In Z(s) = Indet (JS + 51)_1 + lhg (JS + ZI)_I hs
The pdf (16) does not yield analytic expressions for pZ v T
Eqe, v [a(©:)]. In Section IV, we show thage,y in (16) + |Is[lo In = + const. (21)
is well approximated by a mixture of von Mises pdfs, which
gives a closed-form approximation &f,,, . [a(6;)]. Since maximizing the nonlinear function (21) is NP-hard, in

Appendix A we propose a suboptimal procedure which is
guaranteed to converge to a local maximumwof (s).

o According to Appendix A, a sinusoidal component (we drop
We next maximizel W.rt. qw sy (w,s | y) Whenge, |y, the indexi for the moment) is admitted only if the posterior

B. Inferring the weights W and support S

i =1,...,N, are kept fixed. Sincew sy(W,s | ¥) IS meanw and variance’ of its weight (fors = 1) satisfy
restricted in (10) to give the marginal pmky(s | y) = ,

d(s —§), we cannot anymore use the factor-update expression || > 1 A 41 L—p 29
corresponding to free-form optimization [34, Ch. 10, p. Y66 > . (T/ ) T ’ (22)

So we will explicitly carry out the maximization of.

. . . 2 ot .
Plugging the postulated pdf (10) in (9) we obtain It is interesting to relate (22) to the telst|*/C > 1 obtained

in [36] for the SBL prior model of the weights [17], [18],
L(qw|y,s,8) = const—Eg, o {m awy.s(W | y,8) vv_hgre@ and C are the mean and.variance o_f the posterior
divided by the prior. The SBL prior model is often used
— Egoy Inpy 0w s(y,®, W,8;8)] } for estimating superimposed signals [19]-[22] and, regutiyt
the resulting estimators output additional spurious comepts
S{The angles between two complex vectons and v satisfiescos(¢) =  (artifacts) of small power. Sincan|?/C can be viewed as

TR an SNR of the component, the threshold can be heuristically




solutions that correspond to the global maximum (the second
order derivatives are strictly negative). Specifically, el#ain

o1 .1 R
V:Mlly—zwiail|2+MtY(J$C$)
€S

+ )l (1 Jlaill3/M). (24)

ies

Threshold

Thus, 7 takes into account not only the fitting error, but also
the uncertainty of weight estimation (througﬁjs) and of
frequency estimation (vi&;). Regarding the latter, the sharper
go, |y the closer|4; |3 is to M and therefore the smaller the
contribution to?. For p andr we obtain the estimates

Fig. 2. Activation thresholds vs. weight variance for: theroulli-Gaussian

~H.a ~
model (solid curves) withr = 1 and different values op, and for the SBL . ||§||0 R WsWs +tr (Cs)
prior model (dashed line). The activation test is satisfigdhe points lying p=— and T = = (25)
above the given curve. N HS”O

Naturally, p is given by the number of nonzero components

§ and 7 is the averaged second-moment of the weights
increased such that a higher SNR is required [19], [36]. F@brrespondlng to those components.

the Bernoulli-Gaussian prior model we express (22) as

2 IV. APPROXIMATING gg,|y BY A MIXTURE OF VON MISES

> (1 + 6/7) In {(1 n r/é) Q} (23) PDFS

g In this section, after providing some background on the
where we useqoms(w | s = 1) = fCN(w 0,7), which von Mises distribution, we show that any pdf of the form
gvesC~' = C' + 71 and C~'w = C~ . Thus, the exp (R (n™a(d))), such asje,y in (16), can be well repre-
threshold (23) is not constant but dependsn and also sented by a mixture of von Mises pdfs (MVM). The proposed
C. The latter dependence makes the method more resilienfgproximation enables easy computation of expectatioas ov
insertion of artifacts, because, as shown in Fig. 2, thestiolel such pdfs. We exploit the MVM approximation in the initial-
increases with smaller variance, unlike for the SBL modé&ation of our algorithm as well, since the exponential af th
where it stays the same. periodogram also has the said form.

||

c

A. The von Mises distribution

Among the distributions on the unit circle, the von Mises
The noise variance is often unknown in practice. Also, (VM) distribution is of significant importance, its role logj
it might be unclear how to set the parametgrandr of the similar to that of the Gaussian distribution on the line [35]
Bernoulli-Gaussian prior model. We show that learning thehe pdf of the VM distribution of a random angte is
parameters can be easily included in the variational agproa
The lower bound (9) now additionally depends Bn= Fom (05 11, K) = 5— )
{v,p,7}. We alternate between maximizind(qe w sy, ) ’ L
over ge.w sy for B fixed to 3 (according to the previous The parameterg andx are the mean _dlrectlon ar_1_d concentra-
subsections) and ovet for fixed ge w sjy-- In the latter step, tion parameter, _resp_ecnvely, adg(-) is the rn_od|f|ed Bessel
function of the first kind and order. The pdf is symmetrical

L(B) =Eqq 1y oy Inpy.0.w.s(y,® W,S;B8)] + const. about its single mode, which is & = - The VM pdf can
s B also be parameterized in termspt= kel#:

C. Estimating the model parameters

K cos(0—p)

where we write only the term depending @n The joint pdf 1 . if

and the approximate posterior pdf are given by (7) and (10), fwm(8;m) = 21 1o(n)) exp (R{n"e’"}) .
respectively. Based on the forms of the likelihood (5) aridrpr ) )

pdfs defined in Sec. II, we obtain The properties of circular distributions are completelyetde

mined by the characteristic functios, = E[e/?®], p €

R 7 [35]. The characteristic function of the VM distribution is
L(B) = [23‘3( ) W JSWS yly —tr (JSCS)}

L (R)
1 . L YA 26
~ M-~ [wgws +tr (CS)} —|llloInT v Tor) P (26)
+18llolnp+ (N — ||8]lo) In(1 — p) + const. The moments of circular distributions are the moments’6f

i.e., values of the characteristic function. The first motn
We can carry outargmaxg £(3) independently over eachthe VM distribution,p; = e/ A(x), gives the mean direction
parameter. Equating the partial derivatives to zero givegue 1 and the mean resultant length(x) = I1 (k) /Iy (k).



The multiplication of two VM pdfs gives

5} a
Sum (03m1) fum (05 m2) o< fum (051) (27) S 1
D
with n = n1+19. That s, the result is proportional to a VM pdf o5
with mean directiorarg(rn; +172) and concentratiofy; + 72| E
Thus, the family of VM pdfs is closed under multiplication. 0 3 o 1 0 1 5 3

B. The proposed MVM approximation

In the following, we drop the frequency indéxor conve-
nience. We write (16) as

gory (0 1y) xpe(d) [] exp (R{nj,e™™"}),  (28)
meM

where the entries o have the polar formy,, = x,, e/*m.
When0 € M the factor in (28) corresponding ta = 0 is
a constant, so we can J_USt remove this index frém Also, Fig. 3. lllustration of the approximation (30). The pfifi (360; x e7°0) of a 3-
when1 € M, the factor indexed byn = 1 has the form of a fold wrapped VM distribution (dashed curve) is approxindiaby a mixture of
von Mises (VM) pdffvm (9; 771) with mean directiom1 and _?)V(?)n Mises ?dfs (ﬁ_olri]d curve); in~(aa) = 10 for which (31) givess = 85.78;
concentrations;. Furthermore, the factors indexed by > 1 in (b) e =2 for which (31) givess ~ 13.02.

have the form ofm-fold wrapped VM pdfs. Thus, we can

0 (rad)

write (28) as in (29) we obtain thayey (0 | y) is an MVM. Specifically,
o (6 - 0 m0: 1) og) let us write M = {my,ma,...,my} C{1,...,N —1} and
doty (6] 3) ocpo( )mgwfvm( im) (29) defineR = {1,...,m1}x...x{1,...,mup}. Using the multi-

In Appendix B we show that a wrapped VM pdf can bd"d€XT = (r1,...,7) € R, we have

very well approximated by an appropriate MVM obtained _ 1 x_j6
by matching their characteristic functions. Employing the derv (0]y) = Zy ZeXp{%@re )} (33)

result (52), we approximate each of thefold wrapped VM rer
pdfs in (29) by a mixture ofn VM pdfs, i.e., with ) i
m—1 1 gr = na+ TIma,re +.+ WY R Y (34)
S (mb; ) =y — fom (6; 7). (30) and the normalizing constarty = 273", Io(|&]). We
r=0

explicitly express (33) as an MVM where the amplitude, mean
where i, , = Eme’fmr. The m components of the MVM and concentration of each of the mixture’s components are
have equal amplitudes and concentrations. The vajjeof given by the corresponding parameggr
the latter is the solution to 2o (&)
L(Rm)  Li(Km) (31) gory(0y) = vam (0 &) (35)
Io(Fm) — To(Km) rer

wherel,(-) is the modified Bessel function of the first kind and”t]e nturt:}berle tT] XM O'; cqtr;po(;lexntshm (35) can be
orderp. We show in Appendix B that an approximate solutiof'tractable. For tné component with Indexo have an impor-

to the transcendental equation (31) can be easily found. .Ilﬁgthpohntrlbutlongo f35), |tsBamzl|tud?handbconcintramt |
meansjin.,, r = 0,....m — 1, are given by e high, i.e. & be large. Based on the observation that only

a small fraction of them contribute significantly to the mass
[y = P + 27”"’ (32) of gy, in the following we propose two heuristic methods
' m for representing (35) by a limited number of components.
i.e., they are evenly distributed around the cir@e/m apart.
The higher the concentration parameter of the wrapped VM Heuristic 1
pdf, the better its approximation (30). As illustrated iy F3, , o o i
the approximation is very tight even for moderate values of 1ne first heuristic is a greedy procedure aiming to find and
the concentration and still good for small concentrations. €Presenlye|y by only the D most dominant components:
The proposed approximation enables us to exploit the fdBt (35)- The idea is to progressively construct an approxi-
that the family of VM pdfs is closed under multiplication.mation of (28) by sweeping through the index set and
To that end, we conveniently choose the prior pdféfto including in the approximation one addlthnal mdex_ in each
be pe(0) = fum(6;1a), With 12 = kae’#=.7:8 Replacing (30) s’gep. In step, 1 <p g M, we _haye a “partial” postenqr pdf
given by the factors in (28) with indicegn,,...,m,}, i.e.,
"When we do not have any prior information abdat we can set the only p measurements are taken into account. The partial pdf
concentrationsa = 0, in which case the prior pdf becomes the uniformic 54 MV/M with m1 X ...Xm, components parameterized by
circular pdfpe (0) = 1/(27). ~ - b= . ) .
8Alternatively, we can select an MVM prior, if we wish to use ala®7lmirit-- FTmy, - As outlined in Algorithm 1, in each
multimodal distribution. step the heuristic procedure retains from the “partial"teasr




Algorithm 1 Heuristic 1 Algorithm 2 Heuristic 2

Input: M, n, no and D Input: M, n andng
Output: & Output: 6 and
1: Compute allij,, , = fmelfmr in (31) and (32) 1: Compute allij,, , = fmelfmr in (31) and (32)
2: &0 < (na+ iy | 0 <7 <y — 1) 2: &0 < (Ma+ iy |0 <7 <y — 1)
3: for p=2to M do 3: for p=2to M do
4: £®) « D elements of{fff‘l) +ﬁmp’r}d with 4. forl=1tomy do(p ,
largest magnitudés 7 5: r? = |22 drg(ﬁl% ) Hmp]
5: end for )
6: return & = ¢£(M) 6: ¢ PV 4R exp (J%)
7:  end for

8: end for
(at most)D components having the highest concentration pay: Determinel* = arg max, |51(M)| and setd = arg fz(*M)

rameters. The complexity of the greedy searc®I®DMN). 15 return d =0 — L@ andi — A1 (exp (0 5/f"(9_)))
. 7 (0) .

The algorithm outputs thé® parameters irf which give i
D
o 2mlo(l€al) _
gory (0]y) ~ ; Z Fom(0:€a) (36) . Then we use the properties of the wrapped normal dis-

) tribution [35, p. 50] and its similarity to the von Mises
where Zy = 27 Zle Ip(]€4]). Now we can compute expec-distribution [35, p. 38] to arrive at

tations in closed-form. Using (36) and (26), we obtain .
qely (0 |y) = fum(0;1)

D
A 2m : O .
a= 20" ding (L, (&al). - s, (o)) alang(&a)- with 7 = #e?, 0 = 9 — £ and s = A1 (057",
P =1 A useful approximation of the inverse of the functidd-) =
Similarly, the frequency estimatedefined in (11) is given by 11(-)/Io(-) is given in [35, pp. 85-86]. Finally, we can easily
b obtain the expected value af©),
. ot .
0 =a — I jarg(€a) | N . Ly (R) Ly, (R) A
rg<ZOdX_; 1(|€al)e a:d1ag( om0 Tt )a(@).
D. Heuristic 2 E. lllustrative examples

The second approach is to search for the most domi-To illustrate the effectiveness of the proposed approxima-
nant component of the mixture (35), i.e., that with indefion, we give a few simple examples where exact pdf$©of
arg max,. |&|. Then, we represent (35) by a single vof the formexp { (n"a(f))}, i.e., as in (16), occur.

Mises pdf based on a second-order Taylor approximationl) Coherent estimation: Let us consider the estimation of
around the mead of that component. The intuition is that,the frequency of a single sinusoid when we know its weight
with sufficient SNR and numbei/ of measurements, thew. In this case, the posterior pdf is

pdf (35) would peak somewhere in the neighborhood.of 9

Given that for eachn, |7,,, | does not depend an see (30), pojy,w(f | y,w) o< exp {éR (—waa(b‘)) } : (37)
to maximize || we have to look for that for which the v
phases of the terms of (34) are best aligned. Such an alignmely. 4a and 4b display snapshots of the pdf (37) and its
is searched in a greedy way by Algorithm 2 whose complexigpproximations for different settings 0¥ and SNR. When
is O(MN). Without loss of generality we assumg > ... > the number of measurements and SNR are low (Fig. 4a top),
ms. The algorithm maintains a number; of candidates and the pdf is spread across its domain. The MVM approxima-
proceeds in a progressive manner. In sieghe /th candidate tion (35) hasl x2 = 2 components; Heuristic 1 follows closely
¢, 1 <1< mj, is obtained by adding the term whose phadée exact pdf by keeping both components of the mixture,
is closest to that ofl(”_l), i.e., having the index while the single VM pdf given by Heuristic 2 captures the

dominant mode. Increasing the SNR (Fig. 4a bottom) makes
the pdf more concentrated and both approximations are tight
(in Heuristic 1, one component of the MVM has amplitude
The closed-form update is given by linésand 6 of Al- almost one and therefore the other is irrelevant). The pdf
gorithm 2 where[] is the nearest-integer function. We sebecomes more concentrated also by increasing the number of
9 — arggl(f”) with 1* = argmax, ;. |51(M)|- Denoting the Measurements, even though the SNR is low (Fig. 4b top). Even
exponent of (28) byf(6) = R (ni e’ + 0, v ™), though the approximation (35) had$! components, among
we make a second-order Taylor approximatiory¢f) around he D = 1000 components output by Heuristic 1 only one
is relevant. In the case of incomplete data (Fig. 4b bottom),
9¢(®) has less tharD components whemn; X ... X my < D. the pdf (37) can have several significant modes. Among the

rl(p) = argmax ’§l(p_1) + R, €Xp (jium‘;:%?d) .
0<r<m,—1 P
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Fig. 4. (a) Snapshot of the pdf (37) and its approximationséfe= 0.5, M = {1,2} and SNR= 0 dB (top), SNR= 10 dB (bottom). (b) Snapshot of the
pdf (37) and its approximations fd@r = 0.5, SNR= 0 dB and M = {1,...,10} (top), M = {1,7,10} (bottom). (c) Snapshot gfg v in (38) and its
approximations fork = 3, §; = —2.28, 3 = —0.04, 63 = 1.39, M = {0,...,9}, SNR= 3 dB (top); using a log scale (bottom).

D =1x7x 10 = 70 components provided by Heuristic 1 V. THE VALSE ALGORITHM

(with this setting ofD, all components in (35) are kept), only
. 3 e

12 have amplitudes larger thaih—. Heuristic 2 captures the of gow.syy and estimatess, p, + derived in Sec. Il

largest mode and misses the mass containing thedtrue N .
o ) i and propose an initialization of the schefeThe resulting
2) Noncoherent estimation: Without knowing the weight 4150rithm, which we dub variational line spectral estiroati

of the Si”‘ﬂsc’ig' we can marginalizg vy and, assuming an a| Sg), is outlined in Algorithm 3. Since each step incress
improper “flat” prior of W, obtain the lower bound (9), the algorithm converges to some local
maximum of L. The stopping criterion can be defined in terms

pojy (0] y) = /fCN(y'wa(G) V) dw o exp <|yHa(9)|2> _of the relative change of some quantity (e.g), from one
’ ’ vM (49) iteration to the next or a maximum number of iterations.

The exponent of (38) is in fact the periodogram scaled by.  Algorithm 3 Outline of the VALSE algorithm
We write (38) in a form favorable for the MVM approximation.npyt;~ Signal vectory, set M of measurement indices

First, let us defineM’ = {m —n [ m,n € M,m >n} with  Qutput: Model order estimatek, frequency and amplitude
cardinality /" and the vector-valued functioal : [—7,7) — estimates{ (@, &) }5_,, reconstructed signa

We define a schedule for iteratively updating the factors

cM, w = a'(w) & (eﬂ'w.n | m € M)T. By simply 1. |nitialize v, p, 7 andge,|y, i € {1,..., N}, computea;
developing|y™a(6)|? we arrive at 2 repeat
3 Updates, wg andCg (Algorithm 4)
pojy (0| y) o exp (R (2474 (9))) (39) 4 Updatei (24), 5 and+ (25)
5. Foralli € S, updaten; (17) anda; (Sec. IV)
where, for eacht = 1,..., M/, v = % Z(M)Gﬂ yry; with 6 until stopApingAcrit?rion )
Ti={(k,1) |1 < k,1 < M,my —m; =t}.1° Given (39), we 7: return |[8]lo, 85, W¢ andx (15)

can approximatge|y as an MVM (35). In the log domain the
approximation provides a representation of the periodagra While several initialization schemes can be imagined, we

As an illustration, we takéds = 3 and plot a snapshot of chggse to initialize{go, v } ., in a sequential manner. In the
pejy (Fig. 4c top) and the log ofey scaled so as 0 give first step, we assigq@]"y the noncoherent pdf form (38) and
the periodogram (Fig. 4c bottom). We can see again the gogialize the parameter estimates. For the latter, we yise
agreement between the approximations and the exact curygg3o) (whose entries are estimates of the autocovariame fu
The three lobes corresponding to each of the sinusoids aye Vffon) to build a Toeplitz estimate d[yy']. Then, we initialize
well represented by Heuristic 1 while Heuristic 2 picks up th;, \ith the average of the lower quarter of the eigenvalues of
highest lobe. Due to the exponentiatigrsy is significant

only at the values of for which a(6) is well aligned withy. 11The alternating minimization scheme generates sequeridastors and
estimates which, for notational convenience, we will natex with iteration
numbers. It is to be understood that the update of one quafgjpends on

10Actually, ~ is the sample autocovariance pf the most recent updates of the rest of the quantities.
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that matrix. Given thaE[y'ly]/M = pN7+v, we setp = 0.5 measurements Heuristic 1 provides better representafion o
and let? = (yy/M — 0)/(pN). Then, in stepi, when we the pdfs (see Fig. 4), we observed that in those conditions
have initialized the firsi — 1 pdfs, we compute the estimatedHeuristic 1 has the tendency to underestimat@nd provide
{wk};;ll and the residuat;_; = y—zz;ll wiayg. Initializing  slightly lower success rate than Heuristic 2. We assume no
qo,|y X exp{|ziH_1a(9)|2/(VM)},We can represenb, |y as prior information about the frequencies is available, so we
an MVM (see (38) and (39)) and compuag’? setpe,(0;) = 1/(27), i = 1,..., N. Algorithm 3 stops at
The complexity per iteration is dominated by the maximizaterationt if [|[x® —x¢=1||/||x*~Y| < 1075 or the number
tion of In Z(s) needed in line 3 (realized by Algorithm 4) andof iterations reaches 5000.
the approximation of{ge, |y },. ¢ by mixtures of von Mises ~We also introduce a variant of our algorithm, called
pdfs required in line 5 (using Algorithm 1 or Algorithm 2).“VALSE-pt”, which operates with point estimates of the
According to the analysis in Appendix A, the maximizatiofirequencies (as in the traditional approach). VALSE-ptiadd
has complexityO(NK?) (actually, O(NK?) during most tionally assumes thae,y (¢; | y) = 6(6; — 0,) for all i,
of the iterations of VALSE). As indicated in Sec. IV, thewhich gives tha®; is the maximizer of (16) and; = a(é;).
complexity of the MVM approximation isD(DMN) with  We obtaind; = arg max® (n!'a(6;)) numerically. Except for
Heuristic 1 andO(M N) with Heuristic 2; thus, the update ofthe computation of; in line 5 of Algorithm 3, all the other
the pdfs of all frequencies with indices # has complexity steps and settings of VALSE-pt and VALSE are identical.

O(KDMN), respectivelyO(KMN). For comparison, we evaluate the following state-of-the-
art methods described in the Introduction: atomic-nornt-sof
VI. SIMULATION EXPERIMENTS thresholding® (AST) [25]—only applicable in the complete

In this section, we use computer simulations to asseddta case, the gridless-SPICE-based frametd(&LS) [26],

the performance of the VALSE algorithm and state-of-the-ggnhanced matrix completién (EMaC) [29] and reweighted
methods under different scenarios. atomic-norm minimizatioff (RAM) [30]. To configure

algorithm-specific parameters, AST, EMaC and RAM require
) ) knowledge of the noise power. For each of these three methods
A. Setup, metrics and algorithms we use the noise-variance estimation in [25], which congpute
Referring to (1), theK values {w;}+—, of the angular » by averaging a lower part of the eigenvalues of an estimate
frequencies are generated one-by-ong: is drawn from of E[yy']. EMaC and RAM require an upper bound on the
U(—m,m) until @ minimum (wrap-around) distancAw is ¢, norm of the noise vector in order to search only among
ensured between;, and each of thé: — 1 previously gener- candidate solutions whose distances to the measureynanmt
ated values. The complex amplitudés, } £ , are generated less than the bound: we set this bound I/QM + 2V M)
randomly by drawing their magnitudes froi(1,0.1) and suggested in [30]'. ’
phases fromi/(—m, ). The noise samples contaminating

the observations (2) are independent and zero-mean complex
Gaussian distributed. B. Estimation from complete data

The following metrics are evaluated by averaging from 500 Fig. 5 displays the results of estimatidg = 5 sinusoidal
independent trials: the normalized mean square error aBigcomponents fromd/ = N = 21 measurements at different
reconstructionE[[|% — x||3/[[x3]; the success rate, whichsNR values. The distance between any two frequencies is at
we compute as the empirical probability & = K; and |eastAw = 2= radians. VALSE outperforms the reference
frequency estimation error. For a given simulation poihg t methods at all SNR values and shows excellent performance
frequency estimation error is evaluated only for the alfyons  at SNR > 10 dB, where the reconstruction and frequency
that provide a success rate0.1 by averaging only the trials in estimation errors are very close to the CRLB and the success
which all those algorithms output’ = K. The assignment of rate is almost one. AST and GLS estimate the model order
estimated components to the true ones is performed aceprdigcurately as well in high SNR, but their success rates dsere
to the Munkres’ (or Hungarian) algorithm [37] with the coskarlier. The success rate of AST seems to saturate at a value
being the squared error of frequency estimates. We algigyhtly below one and degrades faster than that of GLS when
report the runtime per trial for different problem sizes as ahe SNR decreases. In Fig. 5a, the gap between AST and
indicator of the complexity of the methods. The Cramér-Ragn| SE increases for SNR> 10 dB, while GLS maintains
lower bounds (CRLB) on the reconstruction and frequengy constant gap of abow5 dB. A similar behavior can be

estimation errors are computed by assumifigs known. also observed for the frequency estimation error in Fig. 5c.
We present the results for VALSE using Heuristic 2 to

compute the estimate§a;} in line 5 of Algorithm 3. In 13The software is available at https:/github.com/badéyan/astlinespec.

general, we obtain very similar performances with Heuisti Welﬁﬁd theﬂ'\r";p'ememaﬂon ‘_’('ja dADbMMH hors of 6L We used i

and Heuristic 2, the latter being significantly faster. Evgﬂ]plemfngon?,rii ngwr[%]g y the authors of [26]. We used the

though in the tough conditions of low SNR and/or few 15we used the software available at http:/Avww2.ece.ohatestdut chil

research.html. The implementation uses the SDPT3 solvased® on the

12In the initialization we use Heuristic 2 to compute thg's because, “cleaned” signal output by EMaC, we perform model order aadameter

when the sinusoidal components have similar powers, Heutiswill capture ~ estimation using Root-MUSIC and Akaike information criber.

contributions from the signal components that are not yiialized, while 16The software was provided by the authors of [30]. The impletat@on

Heuristic 2 picks up the strongest one (see Fig. 4c). uses the SDPT3 solver.
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We have also evaluated the EMaC and RAM algorithms. 16 -
Since they did not provide significant improvements over AST

and for the clarity of the figures, we do not show those results e
In fact, we observed that EMaC and RAM perform well only at ! LT

high SNR (above&0-25 dB) where their success rates approach

Q
one; still, in this SNR regime, EMaC shows worse signal re- é 10°
construction and frequency estimation than AST, while RAM g
provides slight improvement over AST. For SNR 20 dB, 1P| _|_EX'SIC
both EMaC and RAM are outperformed by AST in all metrics. --GLS
Our explanation for their not so good performance in the low- _1 --VALSE
to-moderate SNR region is that, according to our obsemafio 105, 50 100 150 200
their performance is quite sensitive to the setting of thpeup N (samples)
bound on the’, ”Orm of th.e noise VQCtOI’ and therefore to thEig. 8. Scaling of the runtime with the problem size. The dation
accuracy of the noise variance estimate. points correspond to the followingV, M, K) triples: (25, 15, 2), (51, 30, 4),

The gap between the success rates of VALSE-pt and VALSE, 45, 6), (100, 60, 8) and (200, 120, 16).
is due to the former’s tendency to overestimdie more
heavily. For example, at SNR= 15 dB, VALSE outputs
K =6 in 5 out of the500 simulation trials, while VALSE-pt €xact separation ofAw, and not a minimum one as in the
outputsk” = 6, 7 and10 components i3, 7 and respectively Previous experiments). Fig. 7 shows resultsfér= N = 51,
1 trials. The discrepancy between their performance come®R = 10 dB and0.1 x 3¢ < Aw < 2 x 5. We observe
from the way in whichg; is computed in line 5 of Algorithm 3, that, for Aw > 0.5 x 3F, VALSE and GLS reconstruct the
since this is the only difference between the two algorithm&gnal similarly well and estimate the correct model order
VALSE computesa; = Ey, , [a(©;)], which involves the with high probability (the success rate of VALSE seems to
expectations of the phasors™®:. The more concentratedcapP at about 0.95 Whlle_ that of GLS comes very closge to 1).
go, v the closer By, [e7"91]| is to one and|a; |2 to /3. When the two freql_Jen.clles are s.eparated by less(tian =T,
Therefore, the uncertainty in frequency estimation cagtay VALSE shows a S|gn|f|ca}ntly higher success rate compared
ge, v is reflected in,. Consequently, the uncertainty impact&° GLS; the reconstruction performance of the Iatter_ also
all the other estimates, which in turn determine the compbnedegrades considerably. Fig. 7c shows that VALSE estimates
acceptance criterion, and therefore influences the moderorth® frequencies accurately in the whole rangefof. AST, -
estimate. On contrary, VALSE-pt assigas= a(f;) and thus EMaC and_RAM prpwde S|gn|f|canftly lower performapce in
puts full certainty on the phasors’ estimates. Loosely kipga  "€constructing the signal and selecting the model ordeictwh
VALSE-pt might include excessive components because 1§t inline with our observations in the first experiment.
“overtrusts” them—this is what we also observe experimen-
tally.

E. Scaling with the problem size

C. Estimation from incomplete data To obtf_;lin an in(_jicatio_n of how the complexity of VALSE
dv th ¢ hen th dscales with the dimension of the problem, we evaluate the

_ We now study the performance when the measurement dfaime for different sizesV. We consider an incomplete-

'S mcomp_lete, _|.e.,M < IV. We consider the estimation of 4,15 gcenario in which the numbed of measurements

fK =3 smusmds WhenNdE 20 Iand SNQRF: 10 dj' Thﬁ and model orderK scale with N and SNR = 20 dB.

requencies are separated by at east = N Based on the o following (N, M, K) triples are investigated25, 15, 2),

previous analysis, in the comparison we include only the GL(g1 30,4), (75,45,6), (100,60,8) and (200,120,16). The

method. The r_esults in Fig. 6a and 6b show that, Ir>  oq g in Fig. 8 clearly show that VALSE is computationally

14, VALSE estimatesc very accurately (Close 1o the CRLB)advantageous compared to the benchmark methods. While

and selects the correct model order with a rate close to OBE\M's runtime becomes quickly prohibitive, followed by

On contrary, the reconstruction errors of GLS and VALSE-Rt\1ac and GLS. VALSE is abouto times faster than GLS
are 1-2 dB larger in that range oM. GLS provides a good when N increasés

estimation of K, although the success rate is always lower

than that of VALSE and decreases earlier when redugdihg

VALSE-pt shows a significantly lower success rate (again due VIl. CONCLUSIONS
to overestimation). When the algorithms estimateorrectly,
both VALSE and VALSE-pt provide very accurate frequenCé
estimation, while GLS has larger errors.

In this paper, we treated line spectral estimation (LSE) as
ayesian inference in a probabilistic model of the frequesc
and coefficients. The latter were modeled by a Bernoulli-
. . Gaussian distribution, which turned model order seledtibo
D. Resolution capability detection of a binary sequence. To circumvent the deadlock

Next, we evaluate the performance of resolvihig = 2 of exact inference we resorted to the variational approach i
sinusoids that are closely-spaced in frequency. We dvaw which an approximate (surrogate) posterior pdf was contpute
from U(—m, ) and setws = w; + Aw (i.e., we impose an analytically by maximizing a lower bound on the model
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Fig. 5. Performance vs. SNR fav/ = N = 21 samples,K = 5 and minimum separatiodw = QW”: (a) normalized MSE of the reconstructed signal; (b)

success rate of model order estimation; (c) root MSE forueegy estimation.
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Fig. 6. Performance vsM for K = 3, N = 20 samples, SNR= 10 dB and minimum separatiohw = %”: (a) normalized MSE of the reconstructed
signal; (b) success rate of model order estimation; (c) MSE for frequency estimation.
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Fig. 7. Performance of resolvingl = 2 sinusoids separated by smalw; M = N = 51 samples, SNR= 10 dB and0.1 x %” < Aw <2 X %”: (a)
normalized MSE of the reconstructed signal; (b) successafimodel order estimation; (c) root MSE for frequency eation.

evidence. Contrary to related works which compute poirit estincertainty in frequency estimation, as we obtain signifiga
mates of the frequencies, we considered estimating and-woirkproved performance compared to just using point estisnate
ing with their posterior probability density functions gl VALSE shows an excellent performance (often close to the
We showed that these pdfs can be very well approximated 6yamér-Rao bound), consistently better than the bendhmar
mixtures of von Mises pdfs, which enables computation of

closed-form expectations. In fact, our simulations shoat th Our method can straightforwardly include prior knowledge
the representation by one von Mises pdf seems appropri&eout the frequencies in the form of von Mises pdfs or mix-
The resulting VALSE algorithm increases the lower bound ddres of such pdfs if multimodal distribution are desiretieT
the model evidence in each step and hence is convergeng Sfiaet that VALSE conveniently represents posterior distitms

all the parameters are estimated, VALSE does not requitows for estimating the uncertainty in the estimationsd|
any fine tuning by the user. Simulation results advocate oifse pdfs can be subsequently used as prior pdfs in applisatio

fully Bayesian approach of representing and operating thich that rely on line spectral estimation. As an outlook, we expe
that finding a better variational approximation, in whicte th



13

surrogate pdf does not fully factorize over the frequenciém line 3). It requiresO((N — 1)I?) operations, wheré =
yet still facilitates tractable inference, would furthengrove ||s||o is the current number of active locations. If in liheve
performance, especially in situations where the frequesnaie initialize s = 0 (i.e., [ = 0), the algorithm will execute the

very closely spaced. while loop O(K) times to outputs, where K = ||3]|o. This
gives the overall complexit{D(Nf@). However, in linel we

APPENDIXA can initializes with § from the previous iteration of VALSE

FINDING A LOCAL MAXIMUM OF In Z(s) (Algorithm 3). In this case, we observed that in each iterati

To find the globally optimal binary sequenae would of VALSE (except for the first one), the number of locations
require2” evaluations ofin Z(s) given by (21). Inspired by Of § that are changed by Algorithm 4 is very small (in fact,
the iterative search strategy proposed in [31], we seekadlyoc often zero!). Thus, empirically, the complexity of Algdrih 4
optimal solution in a progressive manner. In stephe utility ~during most of the iterations of VALSE i©(NK?).
of the reference sequens&) is compared to theV utilities
corresponding taV test sequences. Specifically, théh test
sequence;, is obtained by flipping thetth location ofs(), Input: J, h, v andp
The change ") = In Z(t,) —In Z(s®) is evaluated for each OUtPUL: 8, W¢ andCg A .
k=1,...,N,and the test sequence giving the highest positivé: Initialize s and computevs and Cs (20)
change is used as the reference sequefice) in the next 2 While truedo
step. IFA”) < 0 for all k = 1,..., N, then the search stops 3  FOr eachk ¢ S, computeu;, anduy, (41), andAy, (40)
and we se6 — s(). The search starts with a certain initial ¥ FOr €achk € S, computeA;, (44)
reference sequenca?) and converges in a finite number of 5 if {k [ Ak >0} # 0 then

Algorithm 4 Algorithm for maximizingln Z(s)

steps to some locally optimal sequence. Although (21) iresl & ks = arg max;, Ay,
a matrix inversion, the changes(p), k=1,...,N,can be " If s, =0 compute (42) (43), else compute (45)
' ’ 8: Sk, < Sk, D1

efficiently computed in each stgpas follows.

Assume we change a sequerkénto a sequence’ by
flipping the bit at thekth location. Whenk ¢ S, i.e.s, =0, O break
s, = 1andS’ = SU{k}, we say thekth location is activated. 1L €nd if
Using the formulas for block-matrix determinant and block?2 €nd while ..
wise matrix inversion, we writén Z(s') — In Z(s) as 13 retumn 8§ =s, Wg = Ws andCy = Cs

9: else

2
S LU T (40) J—
T Vk -p
where APPROXIMATION OF WRAPPED VONMISES DISTRIBUTIONS
v A e ! The N-fold wrapped VM distribution is invariant under the
v =V (M + L CSJk) (41) transformatior® — (94—%r [35, p. 52]. Its pdf isfym (N O; 1),
up = v o (hy, — jiWs) for somen = ke/N#. The N modes of the pdf have equal

amplitudes and are evenly distributed around the circte, |.
with jx = (Jix | i € S)T. Upon changings into s, we Use they are agi+27n/N, n = 0,..., N — 1. We show that such
rank-one updates for the mean and covariance of the weight8istribution is well approximated by an appropriate migtu
., U, i=k, of von Mises distributions (MVM) obtained by matching their
Wi = { (42)  characteristic functions. Our result extends the one in [B5
54] which proposes the approximation foyr = 2.
The characteristic functiog;,, p € Z, of a random variable

( Cs &, > _ ( Cs 0 )+vk( Csir > < Csin )H having anN-fold wrapped VM distribution is
0

g .
¢ C! 0 -1 -1 27
k kk (PI _ / ejp@#eﬁ cos N(0—p) de
P 0 2mlo(kK)

w; — é?j;m;w i€ S.

and

Thus, by activating théth component, the posterior mean and
N-1 2x(n+1)/N

variance oflV;, areu; anduvy, respectively. e jpb gricos N6 g
In the case of deactivation, i.es; = 1, s, = 0 andS’ = - 27lo(k) = Jornn e
S\ {k}, the changén Z(s') — In Z(s) is given by o .
A elPH o P " ; ;
1o ~ 12 _ eJQTrWn/ e]p@ e/icosNO de
N /T 1w W (44) 2mlo(k) n; 0
T Chrk I—p o No1 o
We can again develop efficient updates: foriall € S, o 1 Z ea‘?fr%n/ eI 0 eroost 49 (46)
P oo 2ly(k) N o 0
Wy = by — 5 and Cj; = Cjj — % ~. (45 The sum of a geometrical progression in (46) amounts to
Kk Kk

The iterative maximization is given by Algorithm 4. The 1 Ni:l pi2mn _ 1, if pmod N =0, (47)
most expensive computation is to obtaip for all £ ¢ S N — 10, else.



Finally, we obtain the characteristic function

ipp Lo/ (K)
Jjpp Zp/NY)
! C oty

Pp = 0

Given the properties of thév-fold wrapped VM pdf, we
choose the approximating MVM pdf

if pmod N =0,
else.

(1]
(2]

(48)

(3]

1 N-1
i cos(0—p—2mn/N)
T TN AT € ,
2rly(R)N 7;) [4]

i.e., the pdf hagV components with equal amplitudes, evenly
spaced means+2mn/N,n =0,...,N—1, and concentration
parameters equal t%. The characteristic functiop/;, p € Z,
is obtained as

N-1

2
) 1 ~ ~
jpb R cos(0—p—2mn/N) de
/0 N 27TIO(R)N ; c

2T
ejpu o
E 67271' n e]p@ ef cos 6 de

271'[0
Using (47) again, we obtaln

[6]
@

(7]

(8]

1,
eipii In(F)

To(R)”
0,

We want to findiz andx that provide a good match betweeril0]
¢, andy, for all p € Z. Settingji = 11, we obtainarg{¢},} =
arg{(p }, for all p. As to the magnitudes, we equate the flrs{tu]
nonzero values of the characteristic functions, i, = ¢/,
and obtain the transcendental equatiorkin

if pmod N =0,
else.

oy = (49) P

Iv(®) _ L) [12]
N(K 1(R
— = 50
To(® ~ To(r) (%0
To show that (50) yields a good approximatigr | ~ |¢)[  [13]

for any p, we make use of the fact that the VM distribution
characterized by, and x can be well approximated by a
wrapped normal distribution with mean directiprand mean [14]
resultant lengthp = A(xk) = I,(k)/Io(k) [35]. While the
approximation is tight for larges, it is still satisfactory for [15]
intermediate values of. Therefore, the characteristic function
e“‘PpP of the wrapped normal distribution approximates that
one of a VM distribution. Based on (26), we can thus writel!

To(n (51)

~—
12
S

[17]
for all p € Z andp = A(k). Next, we definegy by p"" =
~(R)/Io(R). According to (50),[)N2 = p. Thus, using (51), [18]
we obtain that, for alp € Z, pmod N = 0,
Ip/N('ka) ~ M
Io(k) Io(R)
In conclusion, setting: = p and solving (50) forz, we find
a good approximationy; ~ ¢;, for all p and thus can write

2 /N? ~ (~)p2 ~ [19]

[20]

N—-1
Z fum (0; 1 + 270 /N, &),
n=0

An approximate solution to (50) can be found by using (51)
to arrive at[A(%)]N = A(k), where A(-) = I,(-)/I(:). [22
Approximations of the functiomd(-) and its inverse are well
studied, see [35, p. 40] and [35, pp. 85-86].

[21]

Sum (NO; N, k) (52)

14

REFERENCES

P. Stoica and R. L. Mose§pectral Analysis of Sgnals. Upper Saddle
River, NJ: Prentice Hall, 2005.

R. Schmidt, “Multiple emitter location and signal pareter estimation,”
Antennas and Propagation, |[EEE Transactions on, vol. 34, no. 3, pp.
276-280, Mar 1986.

R. Roy and T. Kailath, “Esprit-estimation of signal pareters via rota-
tional invariance techniqueslEEE Transactions on Acoustics, Speech,
and Sgnal Processing, vol. 37, no. 7, pp. 984-995, Jul 1989.

I. Ziskind and M. Wax, “Maximum likelihood localizatiorof multiple
sources by alternating projection/EEE Transactions on Acoustics,
Foeech, and Sgnal Processing, vol. 36, no. 10, pp. 1553-1560, Oct
1988.

M. Feder and E. Weinstein, “Parameter estimation of sugsosed
signals using the EM algorithm,JEEE Transactions on Acoustics,
Soeech, and Signal Processing, vol. 36, no. 4, pp. 477-489, Apr 1988.
B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhausdai. I.
Pedersen, “Channel parameter estimation in mobile radisagmments
using the SAGE algorithm,JEEE Journal on Selected Areas in Com-
munications, vol. 17, no. 3, pp. 434—-450, Mar 1999.

P. Stoica and Y. Selen, “Model-order selection: a reviwnformation
criterion rules,”|EEE Sgnal Processing Magazine, vol. 21, no. 4, pp.
36-47, July 2004.

C. D. Austin, J. N. Ash, and R. L. Moses, “Dynamic dictiopaalgo-
rithms for model order and parameter estimatiof5EE Transactions
on Sgnal Processing, vol. 61, no. 20, pp. 5117-5130, Oct 2013.

J. A. Tropp and S. J. Wright, “Computational methods foause solution
of linear inverse problemsProceedings of the |IEEE, vol. 98, no. 6, pp.
948-958, June 2010.

Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderban&ghsitivity to
basis mismatch in compressed sensing&EE Transactions on Sgnal
Processing, vol. 59, no. 5, pp. 2182-2195, May 2011.

M. F. Duarte and R. G. Baraniuk, “Spectral compressiensing,”
Applied and Computational Harmonic Analysis, vol. 35, no. 1, pp. 111—
129, Jul. 2013.

D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse sighrecon-
struction perspective for source localization with sersways,” |EEE
Transactions on Sgnal Processing, vol. 53, no. 8, pp. 3010-3022, Aug
2005.

C. Ekanadham, D. Tranchina, and E. P. Simoncelli, “Recp of
sparse translation-invariant signals with continuoussbpsrsuit,” |EEE
Transactions on Sgnal Processing, vol. 59, no. 10, pp. 4735-4744, Oct
2011.

Z. Yang, L. Xie, and C. Zhang, “Off-grid direction of aral estimation
using sparse Bayesian inferenckEEE Transactions on Sgnal Process-
ing, vol. 61, no. 1, pp. 38-43, Jan 2013.

L. Hu, J. Zhou, Z. Shi, and Q. Fu, “A fast and accurate nstaiction
algorithm for compressed sensing of complex sinusoidEE Transac-
tions on Signal Processing, vol. 61, no. 22, pp. 5744-5754, Nov 2013.
K. Fyhn, M. F. Duarte, and S. H. Jensen, “Compressivapaier esti-
mation for sparse translation-invariant signals usingpuoiterpolation,”
IEEE Transactions on Signal Processing, vol. 63, no. 4, pp. 870-881,
Feb 2015.

M. E. Tipping, “Sparse Bayesian learning and the releea vector
machine,”Journal of Machine Learning Research, vol. 1, pp. 211-244,
2001.

D. P. Wipf and B. D. Rao, “Sparse Bayesian learning f@i®aelection,”
|EEE Transactions on Sgnal Processing, vol. 52, no. 8, pp. 2153-2164,
Aug 2004.

D. Shutin and B. H. Fleury, “Sparse variational BayasBAGE algo-
rithm with application to the estimation of multipath wiesk channels,”
|EEE Transactions on Sgnal Processing, vol. 59, no. 8, pp. 3609-3623,
Aug 2011.

L. Hu, Z. Shi, J. Zhou, and Q. Fu, “Compressed sensingoofilex
sinusoids: An approach based on dictionary refineméBEE Transac-
tions on Signal Processing, vol. 60, no. 7, pp. 3809-3822, July 2012.
D. Shutin, W. Wang, and T. Jost, “Incremental sparseeB&n learning
for parameter estimation of superimposed signals,”Pioc. of the
10th International Conference on Sampling Theory and Applications
(SampTA), Bremen, Germany, July 2013.

T. L. Hansen, M. A. Badiu, B. H. Fleury, and B. D. Rao, “Aape
Bayesian learning algorithm with dictionary parametetineation,” in
Sensor Array and Multichannel Signal Processing Workshop (SAM),
2014 |EEE 8th, June 2014, pp. 385-388.



[23] E. J. Candés and C. Fernandez-Granda, “Towards a mattwal theory
of super-resolution,Communications on Pure and Applied Mathemat-
ics, vol. 67, no. 6, pp. 906-956, 2014.

G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Comptessasing
off the grid,” IEEE Transactions on Information Theory, vol. 59, no. 11,
pp. 7465-7490, Nov 2013.

B. Bhaskar, G. Tang, and B. Recht, “Atomic norm dendasiwith
applications to line spectral estimatiorggnal Processing, |EEE Trans-
actions on, vol. 61, no. 23, pp. 5987-5999, Dec 2013.

Z. Yang and L. Xie, “On gridless sparse methods for lipecral
estimation from complete and incomplete daighal Processing, IEEE
Transactions on, vol. 63, no. 12, pp. 3139-3153, June 2015.

P. Stoica, P. Babu, and J. Li, “New method of sparse patam
estimation in separable models and its use for spectralysinabf
irregularly sampled data,IEEE Transactions on Sgnal Processing,
vol. 59, no. 1, pp. 35-47, Jan 2011.

Z. He, A. Cichocki, S. Xie, and K. Choi, “Detecting the mber of
clusters in n-way probabilistic clusterind EEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 11, pp. 2006—2021, 2010.
Y. Chen and Y. Chi, “Robust spectral compressed sengmgtructured
matrix completion,”|EEE Transactions on Information Theory, vol. 60,
no. 10, pp. 6576-6601, Oct 2014.

Z. Yang and L. Xie, “Enhancing sparsity and resolutiaa keweighted
atomic norm minimization,”|EEE Transactions on Signal Processing,
vol. 64, no. 4, pp. 995-1006, Feb 2016.

J. J. Kormylo and J. Mendel, “Maximum likelihood detect and
estimation of Bernoulli-Gaussian processeHZEE Transactions on
Information Theory, vol. 28, no. 3, pp. 482-488, May 1982.

C. Andrieu and A. Doucet, “Joint Bayesian model setattand estima-
tion of noisy sinusoids via reversible jump MCMGQEEE Transactions
on Sgnal Processing, vol. 47, no. 10, pp. 2667—2676, Oct 1999.

C. Soussen, J. Idier, D. Brie, and J. Duan, “From beiliegdussian
deconvolution to sparse signal restoratiditEE Transactions on Signal
Processing, vol. 59, no. 10, pp. 4572-4584, Oct 2011.

C. M. Bishop,Pattern Recognition and Machine Learning (Information
Science and Satistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

K. V. Mardia and P. E. Jupiirectional Satistics. John Wiley & Sons,
2000.

D. Shutin, T. Buchgraber, S. R. Kulkarni, and H. V. Pdast varia-
tional sparse Bayesian learning with automatic relevareterthination
for superimposed signalsJEEE Transactions on Sgnal Processing,
vol. 59, no. 12, pp. 6257-6261, Dec 2011.

J. Munkres, “Algorithms for the assignment and tram&g@n prob-
lems,” Journal of the Society of Industrial and Applied Mathematics,
vol. 5, no. 1, pp. 32-38, March 1957.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

(36]

[37]

Mihai-Alin Badiu received the Dipl.-Ing., M.S. and Ph.D. degrees in eleaitric
engineering from the Technical University of Cluj-NapoBamania, in 2008,
2010 and 2012, respectively. Since 2012, he has been witiDépartment
of Electronic Systems, Aalborg University, Denmark, wheeeis currently
holding a post-doc fellowship from the Danish Council fordépendent
Research. From 2008 to 2010 he was a research assistant &cdheical
University of Cluj-Napoca. In 2011 he was a visiting PhD ssher at
Aalborg University, Denmark. In 2016-2017 he was a visitpmstdoctoral
researcher at Aston University, Birmingham, United Kingddis research
interests are in the fields of machine learning, wirelessvorés and signal
processing.

15

Bernard Henri Fleury (M'97-SM'99) received the Diplomas in electrical
engineering and in mathematics in 1978 and 1990 respectarel the Ph.D.
degree in electrical engineering in 1990 from the Swiss fadastitute of
Technology Zurich (ETHZ), Zurich, Switzerland.

Since 1997, he has been with the Department of ElectronideSys
Aalborg University, Aalborg, Denmark, as a Professor of Gamication
Theory. From 2000 till 2014 he was Head of Section, first of Bigital
Signal Processing Section and later of the Navigation anchr@anications
Section. From 2006 to 2009, he was partly affiliated as a KegeReher
with the Telecommunications Research Center Vienna (fifienna, Austria.
During 1978-1985 and 1992-1996, he was a Teaching Assistaght a
Senior Research Associate, respectively, with the Comeatioh Technology
Laboratory, ETHZ. Between 1988 and 1992, he was a Reseasibtast with
the Statistical Seminar at ETHZ.

Prof. Fleury’s research interests cover numerous aspéatigiveommuni-
cation theory, signal processing, and machine learningnlynéor wireless
communication systems and networks. His current scierdtivities include
stochastic modeling and estimation of the radio channgle@ally for large
systems (operating in large bandwidths, equipped withelangtenna arrays,
etc.), especially when these systems operate in harsh toogi e.g. in
highly time-varying environments; iterative messagespas processing, with
focus on the design of efficient feasible architectures foeless receivers;
localization techniques in wireless terrestrial systears] radar signal pro-
cessing. Prof. Fleury has authored and coauthored neaflypiblications
and is co-inventor of 6 filed or published patents in theseasaréie has
developed, with his staff, a high-resolution method for ¢sémation of radio
channel parameters that has found a wide application anth$pised similar
estimation techniques both in academia and in industry.

Thomas Lundgaard Hansenreceived the B.Sc. and M.Sc. (cum laude) in

electrical engineering from Aalborg University, Denmairk,2011 and 2014,
respectively. Since 2014 he has been a Ph.D. fellow at Aglhbriversity.
During 2013 and 2015 he was a visiting scholar at UniversitZalifornia,
San Diego. He is the recipient of the best student paper aatahe 2014 IEEE
Sensor Array and Multichannel Signal Processing worksimapadso received
an award from IDA Efondet for his masters thesis. His redeanterests
include signal processing, machine learning and wirelessntunications.



