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Abstract

In this paper, we investigate a distributed learning scheme for a broad class of stochastic optimization

problems and games that arise in signal processing and wireless communications. The proposed algorithm

relies on the method of matrix exponential learning (MXL) and only requires locally computable gradient

observations that are possibly imperfect and/or obsolete. To analyze it, we introduce the notion of a stable

Nash equilibrium and we show that the algorithm is globally convergent to such equilibria – or locally

convergent when an equilibrium is only locally stable. We also derive an explicit linear bound for the al-

gorithm’s convergence speed, which remains valid under measurement errors and uncertainty of arbitrarily

high variance. To validate our theoretical analysis, we test the algorithm in realistic multi-carrier/multiple-

antenna wireless scenarios where several users seek to maximize their energy efficiency. Our results show

that learning allows users to attain a net increase between 100% and 500% in energy efficiency, even under

very high uncertainty.
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I. Introduction

Consider a finite set of optimizing players (or agents) N = {1, . . . ,N}, each controlling a positive-

semidefinite matrix variable Xi, and behaving selfishly so as to improve their individual well-being. As-

suming that this well-being is quantified by a utility (or payoff ) function ui(X1, . . . ,XN), we obtain the

coupled semidefinite optimization problem

for all i ∈ N



maximize ui(X1, . . . ,XN)

subject to Xi ∈ X i

(1)

where X i denotes the set of feasible actions of player i. Specifically, we will focus on feasible action sets

of the general form

X i = {Xi < 0 : ‖Xi‖ ≤ Ai} (2)

where ‖Xi‖ =
∑M

m=1|eigm(Xi)| denotes the nuclear matrix (or trace) norm of Xi, Ai is a positive constant, and

the players’ utility functions ui are assumed individually concave and smooth in Xi for all i ∈ N .

The coupled multi-agent, multi-objective problem (1) constitutes a game, which we denote by G. As we

discuss in the next section, games and optimization problems of this type are extremely widespread in signal

processing, wireless communications and information theory, especially in a stochastic framework where:

a) the objective functions ui are themselves expectations over an underlying random variable (see Ex. II-B

below); and/or b) the feedback to the optimizers is subject to noise and/or measurement errors (Ex. II-C).

Accordingly, our main goal will be to provide a learning algorithm that converges to a suitable solution of

G, subject to the following desiderata:

(i) Distributedness: player updates are based on local information and measurements.

(ii) Robustness: feedback and measurements may be subject to random errors, noise, and delays.

(iii) Statelessness: players are oblivious to the overall state (or interaction structure) of the system.

(iv) Flexibility: players can employ the algorithm in both static and ergodic environments.

To achieve this, we build on the method of matrix exponential learning (MXL) that was recently in-

troduced by the authors of [1] in the context of throughput maximization in multiple-input and multiple-

output (MIMO) systems. In a nutshell, the main idea of the proposed method is that each player tracks

the individual gradient of his utility function via an auxiliary score matrix, possibly subject to randomness

and/or feedback imperfections. The players’ actions are then computed via an “exponential projection”

step that maps these score matrices to the players’ action spaces, and the process repeats. Thus, building

on the preliminary results of [1] for MIMO throughput maximization, we show here that a) MXL can
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be applied to a much broader class of (stochastic) optimization problems and games of the general form

(1); b) the algorithm’s convergence does not require the (restrictive) structure of a potential game [2];

c) MXL converges to equilibrium (locally or globally) under very mild assumptions for the noise and

uncertainty surrounding the optimizers’ decisions; and d) we derive explicit estimates for the method’s

rate of convergence.

A. Related work

The MXL method studied in this paper has strong ties to matrix regularization [3] and mirror descent

methods [4, 5] for (online) convex optimization. In particular, the important special case of real vector vari-

ables on the simplex (real diagonal Xi with constant trace) is closely related to the well-known exponential

weight (EW) learning algorithm for multi-armed bandit problems [6]. More recently, MXL schemes were

also proposed for single-user regret minimization in the context of online power control [7] and throughput

maximization [8] for dynamic MIMO systems. The goal there was to show that, in the presence of temporal

variabilities, the long-run performance of matrix exponential learning matches that of the best fixed policy

in hindsight, a property known as “no regret” [5, 9]. Nonetheless, in a multi-user, game-theoretic setting,

a no-regret strategy may end up assigning positive weight only to strictly dominated actions [10]. As a

result, (external) regret minimization is neither necessary nor sufficient to ensure convergence to a Nash

equilibrium (or other game-theoretic solution concept).

In [1, 11, 12], a special case of (1) was studied in the context of MIMO throughput maximization in

the presence of stochasticity, in both single-user [12] and multiple access channels [1, 11]. In both cases,

the problem boils down to a semidefinite optimization problem, possibly distributed over several agents [1].

The existence of a single objective function greatly facilitates the analysis; however, many cases of practical

interest (such as the examples we discuss in the following section) cannot be modeled as problems of this

type, so a potential-based analysis is often unsuitable for practical applications.

In this paper, we derive the convergence properties of matrix exponential learning in concave N-player

games, and we investigate the algorithm’s long-term behavior under feedback errors and uncertainty. Specif-

ically, building on earlier work by Rosen [13], we consider a broad class of games that satisfy a local

variational stability condition which ensures that Nash equilibria are locally isolated. In a series of recent

papers, Scutari et al. used a stronger, global variant of this condition to establish the convergence of a

class of Gauss–Seidel, best-response methods, and successfully applied these algorithms to a wide range

of communication problems – for a panoramic survey, see [14] and references therein. However, in the

presence of noise and uncertainty, the convergence of best-response methods is often compromised: as an
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example, in the case of throughput maximization with imperfect feedback, iterative water-filling (a standard

best-response scheme) [15] fails to provide any perceptible gains over crude, uniform power allocation

policies [1]. Thus, given that randomness, uncertainty and feedback imperfections are ubiquitous in practical

systems, we focus throughout on attaining convergence results that are robust to learning impediments of

this type.

B. Main contributions and paper outline

The main contribution of this work is the derivation of the convergence properties of matrix exponen-

tial learning for games played over bounded regions of positive-semidefinite matrices in the presence of

feedback noise and randomness. To put our theoretical analysis in context, we first discuss three examples

from wireless networks and computer vision in Section II. More specifically, we illustrate i) a general

game-theoretic framework for contention-based medium access control (MAC); ii) a stochastic optimization

formulation for content-based image retrieval (a key “Big Data” signal processing problem); and iii) the

multi-agent problem of transmit energy efficiency (EE) maximization in multi-carrier MIMO networks (a

critical design feature of emerging green multi-cellular networks).

In Section III, we revisit our core game-theoretic framework, and we discuss the notion of a stable Nash

equilibrium. Subsequently, in Section IV, we introduce our matrix exponential learning scheme, and we

detail our assumptions for the stochasticity affecting the players’ objectives and observations. Our main

results are then presented in Section V and can be summarized as follows: Under fairly mild assumptions

on the underlying stochasticity (zero-mean feedback errors with finite conditional variance), we show that

(i) the algorithm’s only termination states are Nash equilibria; (ii) if the game admits a globally (locally)

stable equilibrium, then the algorithm converges globally (locally) to said equilibrium; and (iii) on average,

the algorithm converges to an ε-neighborhood of an extreme (resp. interior) strongly stable equilibrium

within O(1/ε) iterations (resp. O(1/ε2)).

The above results greatly extend and generalize the recent analysis of [1] for throughput maximization

in MIMO MAC systems. To further validate our results in MIMO environments, our theoretical analysis

is supplemented with extensive numerical simulations for energy efficiency maximization in multi-carrier

MIMO wireless networks in Section VI. To streamline the flow of the paper, technical proofs have been

relegated to a series of appendices at the end.

Notation: In what follows, the profile X = (X1, . . . ,XN) is identified with the block-diagonal matrix

diag(Xi)N
i=1, and we use the game-theoretic shorthand (Xi; X−i) when we need to focus on the action Xi of
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player i against that of all other players. Also, given A ∈ �d×d, we write ‖A‖ =
∑d

j=1|eig j(A)| for the nuclear

(trace) norm of A and ‖A‖∞ = max j|eig j(A)| for its (dual) singular norm.

II. Motivation and Examples

To motivate the general framework of (1), we illustrate below three examples taken from communication

networks and computer vision (and reflecting the subjective tastes and interests of the authors). A reader

who is interested in the general theory may skip this section and proceed directly to Sections III–V.

The first example below defines a game-theoretic model for the interactions between wireless users in

networks with contention-based medium access. The second example revolves around metric learning for

similarity-based image search and showcases the range of problems where the proposed method applies.

Finally, the third example focuses on energy efficiency (EE) maximization in MIMO multi-user networks, a

key aspect of future and emerging wireless networks: to the best of our knowledge, MXL provides the first

distributed and provably convergent algorithm for energy efficiency maximization in with noisy feedback

and imperfect channel state information.

A. Contention-based medium access

Contention-based medium access control (MAC) aims to provide an efficient means for accessing and

sharing a wireless channel in the presence of several competing wireless users that interfere with each other.

To model this, consider a set of wireless users indexed by N = {1, . . . ,N}, each updating their individual

channel access probability xi in response to the amount of contention in the network [16]. In practice,

wireless users cannot be assumed to know the exact channel access probabilities of other users, so user i

infers the level of wireless contention via an aggregate contention measure qi(x−i) which is determined as a

(symmetric) function of the access probability profile x−i = (x1, . . . , xi−1, xi+1 . . . , xN) of all other users.1

With this in mind, the objective of each user is to select their individual channel access probability so as to

maximize the benefit derived from acessing the channel more often minus the induced contention xiqi(x−i)

incurred by all other users. This leads to the utility function formulation

ui(xi; x−i) = Ui(xi) − xiqi(x−i) (3)

where Ui is a continuous and nondecreasing function representing the utility of user i when there are no

other users in the channel. Thus, in economic terms, ui simply represents the user’s net gain from channel

access, discounted by the associated contention cost.

1For instance, a standard contention measure of this type is the conditional collision probability qi(x−i) = 1 −
∏

j,i(1 − x j). [16].
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We thus obtain the multi-agent, multi-objective formulation

for all i ∈ N



maximize ui(xi; x−i),

subject to xi ∈ [0, 1].
(4)

whose solutions can be analyzed through the specification of the utility function Ui(xi) and the choice of the

contention measure qi. If Ui(xi) is assumed to be continuously differentiable and strictly concave (see for

example [16, 17] and references therein), (4) is a special case of (1) with M = 1 and Ai = 1. We further note

the unilateral optimization problems above are interconnected because of the dependence of the contention

measure qi(x−i) on the access probabilities of all users; as a result, the theory of noncooperative games

theory arises naturally as the most suitable framework to analyze and solve (4) [17].

B. Metric learning for image similarity search

A key challenge in content-based image retrieval is to design an automatic procedure capable of retrieving

documents from a large database based on their similarity to a given request, often distributed over several

computing cores in a massively parallel computing grid (or cloud) [18, 19]. To formalize this, an image is

typically represented via its signature, i.e. a real d-dimensional vector i ∈ �d that collects and encodes the

most distinctive features of said image. Given a database D of such signatures, each image i ∈ D is further

associated with a set Si ⊆ D of similar images and a set Ui ⊆ D of dissimilar ones, based on each image’s

content. Accordingly, the goal is to design a distance metric which is minimized between similar images

and is maximized between dissimilar ones.

A widely used distance measure between image signatures is the Mahalanobis distance, defined as

dX(i, j) = (i − j)⊤X (i − j), (5)

where X < 0 is a d × d positive-definite matrix.2 This so-called “precision matrix” must then be chosen by

the optimizer so that dX(i, j) < dX(i,k) whenever i is similar to j but dissimilar to k. With this in mind, we

obtain the minimization objective

F(X; T ) =
∑

(i,j,k)∈T

C
(
dX(i, j) − dX(i,k) − ε

)
+ ‖X − I‖2F , (6)

2The baseline case X = I corresponds to the Euclidean distance, which is often unsuitable for image discrimination purposes

[20].
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where: a) T is the set of all triples (i, j,k) such that j ∈ Si and k ∈ Ui; b) C is a convex, nondecreasing

function that penalizes matrices X that do not capture similarities and dissimilarities between images; c) the

parameter ε > 0 reinforces this penalty; and d) ‖·‖F denotes the ordinary Frobenius (ℓ2) norm.3

An additional requirement in the above is to employ a low-rank precision matrix X so as to reduce model

complexity and computational costs [18], enable distributed storing and retrieval [22], and better exploit

correlations between features that further reduce over-fitting effects [21]. A computationally efficient way

to achieve this is to include a trace constraint of the form tr X ≤ c for some c ≪ d,4 leading to the feasible

region

X = {X ∈ �d×d : X < 0 and tr X ≤ c}. (7)

Combining (6) and (7), we see that metric learning in image retrieval is a special case of the general

problem (1) with N = 1 optimizers. However, when D is large, the number of variables involved is

computationally prohibitive: for instance, (6) may contain up to 109–1011 terms for a modest database

with 104 images. To circumvent this obstacle, a common approach is to replace T with a smaller, randomly

drawn population sample W ⊆ T , and then take the average over all such samples. In so doing, we obtain

the stochastic optimization problem [23]:

minimize �[F(X;W)]

subject to X < 0, tr(X) ≤ c,

(8)

where the expectation is taken over the random samples W .

The benefit of this formulation is that, at each realization, only a small-size, tractable data sample W is

used for calculations at each computing node. On the flip side however, the expectation in (8) cannot be

calculated, so the optimizer only has access to information on the random, realized gradients ∇XF(X;W).

This type of uncertainty is typical of stochastic optimization problems, and the proposed MXL method has

been designed precisely with this feedback structure in mind.

C. Energy efficiency maximization

Consider the problem of energy efficiency maximization in multi-user, multiple-carrier MIMO networks

– see e.g. [24–26] and references therein. Here, wireless connections are established over transceiver pairs

with M (resp. N) antennas at the transmitter (resp. receiver), and communication takes place over a set of

3This last regularization term is included in order to maximize predictive accuracy by reducing the effects of over-fitting to

training data [21].

4By contrast, an ℓ0 rank constraint of the form rank(X) ≤ c generically leads to an untractable NP-hard problem formulation.
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Fig. 1. A multi-user MIMO system with N = 3 connections.

S orthogonal subcarriers. Accordingly, the i-th transmitter is assumed to control his individual input signal

covariance matrix Qis over each subcarrier s = 1, . . . , S , subject to the constraints: a) Qis < 0 (since each

Qis is a signal covariance matrix); and b) tr Qi ≤ Pmax, where Qi = diag(Qis)S
s=1 is the covariance profile

of the i-th transmitter, tr(Qi) represents the user’s transmit power over all subcarriers, and Pmax denotes the

user’s maximum transmit power.

Assuming Gaussian input and single user decoding (SUD) at the receiver, each user’s Shannon-achievable

throughput is given by the well-known expression

Ri(Q) = log det
(
W−i +HiiQiH

†

ii

)
− log det

(
W−i

)
, (9)

where H ji denotes the channel matrix profile between the j-th transmitter and the i-th receiver over all

subcarriers, Q = (Q1, . . . ,QN) denotes the users’ transmit profile and W−i ≡ W−i(Q) = I +
∑

j,i H jiQ jH
†

ji

is the multi-user interference-plus-noise (MUI) covariance matrix at receiver i. The users’ transmit energy

efficiency (EE) is then defined as the ratio between their Shannon rate and the total consumed power, i.e.

EEi(Q) =
Ri(Q)

Pc + tr(Qi)
, (10)

where Pc > 0 represents the total power consumed by circuit components at the transmitter [24].

The energy efficiency function above is not concave w.r.t the covariance matrix Qi of user i, but it can be

recast as such via a suitable Charnes-Cooper transformation [27]. To this aim, following [26], consider the
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adjusted control variables

Xi =
Pc + Pmax

Pmax

Qi

Pc + tr(Qi)
, (11)

where the normalization constant (Pc + Pmax)/Pmax implies that tr(Xi) ≤ 1 with equality if and only if

tr(Q) = Pmax. The action set of user i is thus given by

X i = {diag(Xis)S
s=1 : Xis < 0 and

∑
s tr Xis ≤ 1}, (12)

and, using (11), the energy efficiency expression (10) yields the utility function

ui(Xi; X−i) =
Pc + (1 − tr Xi) Pmax

Pc(Pc + Pmax)
log det

I +
PcPmax H̃iXiH̃

†

i

Pc + (1 − tr Xi)Pmax

 , (13)

where H̃i =W
−1/2
−i

Hii denotes the effective channel matrix of user i.

We thus see that the resulting energy efficiency maximization problem is of the general form (1) with

Ai = 1.5 In this context, randomness and uncertainty stem from the noisy estimation of the users’ MUI

covariance matrices (which depend on the other users’ behavior), the noise being due to the scarcity of

perfect channel state information at the transmitter (CSIT), random measurement errors, etc. To the best of

our knowledge, the MXL method discussed in Section IV comprises the first distributed solution scheme

for energy efficiency maximization in general multi-user/multi-antenna/multi-carrier networks with local,

causal – and possibly imperfect – channel state information (CSI) feedback at the transmitter.

III. Elements from Game Theory

The most widely used solution concept in noncooperative games is that of a Nash equilibrium (NE),

defined as any action profile X∗ ∈ X which is unilaterally stable in the sense that

ui(X
∗) ≥ ui(Xi; X∗−i) for all Xi ∈ X i, i ∈ N . (14)

In other words, X∗ ∈ X is a Nash equilibrium when no single player can further increase his individual

utility assuming that the actions of all other players remain unchanged.

In complete generality, a game need not admit an equilibrium. However, thanks to the concavity of each

player’s payoff function ui and the compactness of their action space X i, the existence of a Nash equilibrium

in the case of (1) is guaranteed by the general theory of [28]. Hence, a natural question that arises is whether

such an equilibrium solution is unique or not.

5Strictly speaking, the block-diagonal constraint in (12) does not appear in (2), but it is satisfied automatically by the learning

method presented in Sec. IV.
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To answer this question, Rosen [13] provided a first-order sufficient condition for general N-person

concave games known as diagonal strict concavity (DSC). To state it, define the individual payoff gradient

of player i as

Vi(X) ≡ ∇Xi
ui(Xi; X−i), (15)

and let V(X) ≡ diag(V1(X), . . . ,VN(X)) denote the collective profile of all players’ individual gradients.

With this definition at hand, Rosen’s condition can be stated as:

tr[(X′ − X)
(
V(X′) − V(X)

)
] ≤ 0 for all X,X′ ∈ X , (DSC)

with equality if and only if X = X′. We then have:

Theorem 1 (Rosen [13]). If a game of the general form (1) satisfies (DSC), then it admits a unique Nash

equilibrium.

The above theorem provides a sufficient condition for equilibrium uniqueness, but it does not provide a

way for players to compute it – especially in a decentralized setting with no information exchange between

players and/or imperfect feedback. More recently, (DSC) was used by Scutari et al. (see [14] and references

therein) as the starting point for the convergence analysis of a class of Gauss–Seidel methods for concave

games based on variational inequalities [29]. Our approach is similar in scope but relies instead on the

following notion of stability:

Definition 1. The profile X∗ ∈ X is called stable if it satisfies the variational stability condition:

tr[(X − X∗) V(X)] ≤ 0 for all X sufficiently close to X∗. (VS)

In particular, if (VS) holds for all X ∈ X , we say that X∗ is globally stable.

Mathematically, (VS) is implied by (DSC);6 the converse however does not hold, even when (VS) holds

globally. Still, as is the case with DSC, stability plays a key role in the characterization of Nash equilibria:

Proposition 1. If X∗ ∈ X is stable, then it is an isolated Nash equilibrium; specifically, if X∗ is globally

stable, it is the game’s unique Nash equilibrium.

Proof: Suppose X∗ is stable, pick some Xi close to X∗
i
, and let X = (Xi; X∗

−i
). Then, by (VS), we get

tr[(Xi −X∗
i
) Vi(Xi; X∗

−i
)] < 0, implying that ui is decreasing along the ray X∗

i
+ t(Xi −X∗

i
). Since this covers

6Simply note that Nash equilibria are solutions of the variational inequality tr[(X − X∗)V(X∗)] ≤ 0 [14]. Then, (VS) follows by

setting X∗ = X′ in (DSC).
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all rays starting at X∗
i
, we conclude that X∗ is the game’s unique equilibrium in the neighborhood of X∗

where (VS) holds. Our assertion then follows immediately.

The variational stability condition (VS) is important not only for characterizing the structure of the

game’s Nash set, but also for determining the convergence properties of the proposed learning scheme. More

precisely, as we show in Section V, local stability implies that a Nash equilibrium is locally attracting, while

global stability implies that it is globally so. Therefore, it is of paramount importance to have a verifiable

criterion for the stability of a Nash equilibrium. This can be accomplished by appealing to a second-order

condition (similar to the second derivative test in calculus).

Specifically, define the Hessian of a game as follows:

Definition 2. The Hessian matrix of a game is the block matrix D(X) =
(
Di j(X)

)
i, j∈N with blocks

Di j(X) = 1
2∇Xi
∇X j

u j(X) + 1
2

[
∇X j
∇Xi

ui(X)
]†
. (16)

The terminology “Hessian” reflects the fact that, in the single-player case where (1) is a single-agent

optimization problem, D(X) is simply the Hessian of the optimizer’s objective. Thus, just as negative-

definiteness of the Hessian of a function guarantees (strong) concavity and the existence of a unique

maximizer, we have:

Proposition 2. If D(X) ≺ 0 for all X ∈ X , the game admits a unique and globally stable Nash equilibrium.

More generally, if X∗ is a Nash equilibrium and D(X∗) ≺ 0, X∗ is locally stable and isolated.

Proof: The first statement of the proposition can be proved as follows. Assume first that D(X) ≺ 0

for all X ∈ X . Then, from [13, Theorem 6] it follows that that the game satisfies (DSC) and thus admits a

unique Nash equilibrium X∗; since (DSC) implies (VS) for all X ∈ X , our claim is immediate. The proof for

the second statement is as follows. If X∗ is a Nash equilibrium and D(X∗) ≺ 0, we will have D(X) ≺ 0 for

all X in some convex neighborhood U of X∗ (by continuity). Then, by applying [13, Theorem 6] to U and

reasoning as in the global case above, it follows that X∗ is the game’s unique equilibrium in U , as claimed.

Remark 1. In the special class of potential games, the players’ payoff functions are aligned along a common

goal, the game’s potential [2]; as a result, the maximizers of the game’s potential are Nash equilibria. In this

context, (DSC) boils down to strict concavity of the potential function, which in turn implies the existence

of a unique Nash equilibrium. Similarly, the sufficient condition of Proposition 2 reduces to the second

order condition of concave potential functions that guarantees uniqueness of the solution (strictly negative
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Algorithm 1 Matrix exponential learning (MXL).
Parameter: step-size sequence γn ∼ 1/na, a ∈ (0, 1].

Initialization: n← 0; Yi ← any Mi × Mi Hermitian matrix.

Repeat

n← n + 1;

foreach player i ∈ N do

play Xi ← Ai

exp(Yi)
1 + ‖exp(Yi)‖

;

get gradient feedback V̂i;

update auxiliary matrix Yi ← Yi + γnV̂i;

until termination criterion is reached.

definite Hessian matrix).

IV. Learning under Uncertainty

The goal of this section is to provide a learning algorithm that allows players to converge to a Nash

equilibrium in a decentralized environment with no information exchange between players and/or imperfect

feedback. To that end, the main idea of the proposed learning scheme is as follows: First, at every stage

n = 0, 1, . . . of the process, each player i ∈ N tracks the individual gradient of his utility function via an

auxiliary “score” matrix Yi(n), possibly subject to feedback/stochasticity-induced errors. Subsequently, the

players’ actions Xi(n) are computed via an “exponential projection” step that maps the gradient tracking

matrix Yi(n) back to the player’s action space X i, and the process repeats.

More precisely, we will focus on the following matrix exponential learning (MXL) scheme (for a pseu-

docode implementation, see Algorithm 1):

Yi(n + 1) = Yi(n) + γnV̂i(n),

Xi(n + 1) = Ai

exp(Yi(n + 1))
1 + ‖exp(Yi(n + 1))‖

,
(MXL)

where:

1) n = 0, 1, . . . denotes the stage of the process.

2) the auxiliary matrix variables Yi(n) are initialized to an arbitrary (Hermitian) value.

3) V̂i(n) is a stochastic estimate of the individual gradient Vi(X(n)) of player i at stage n (more on this

below).

4) γn is a decreasing step-size sequence, typically of the form γn ∼ 1/na for some a ∈ (0, 1].
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Setting aside for a moment the precise nature of the stochastic estimates V̂i(n), we note that the update of

the auxiliary matrix variable Yi(n) in (MXL) acts as a “steepest ascent” step along the estimated direction

of each player’s individual payoff gradient Vi(X(n)).7 As such, if there were no constraints for the players’

actions, Yi(n) would define an admissible sequence of play and, ceteris paribus, player i would tend

to increase his payoff along this sequence. However, this simple ascent scheme does not suffice in our

constrained framework, so Yi(n) is first exponentiated and subsequently normalized in order to meet the

feasibility constraints (2).8

Of course, the outcome of the players’ gradient tracking process depends crucially on the quality of the

gradient feedback V̂i(n) that is available to them. With this in mind, we will consider the following sources

of uncertainty:

i) The players’ gradient observations are subject to noise and/or measurement errors (cf. Ex. II-C).

ii) The players’ utility functions are themselves stochastic expectations of the form ui(X) = �[ûi(X;ω)] for

some random variable ω, and the players can only observe the (stochastic) gradient of ûi (cf. Ex. II-B).

iii) Any combination of the above.

In view of all this, we will focus on the general model:

V̂i(n) = Vi(X(n)) + Zi(n), (17)

where the stochastic noise process Z(n) satisfies the hypotheses:

(H1) Zero-mean:

�[Z(n) | X(n)] = 0. (H1)

(H2) Finite mean squared error (MSE):

�[‖Z(n)‖2∞ | X(n)] ≤ σ2
∗ for some σ∗ > 0. (H2)

The statistical hypotheses (H1) and (H2) above are fairly mild from and allow for a broad range of estimation

scenarios.9 In more detail, the zero-mean hypothesis (H1) is a minimal requirement for feedback-driven

systems, simply positing that there is no systematic bias in the players’ information. Likewise, Hypothesis

(H2) is a bare-bones assumption for the variance of the players’ feedback, and it is satisfied by most common

7The step-size sequence γn further finetunes this process and its role is discussed in detail later.

8Recall here that Vi is Hermitian as the derivative of a real function with respect to a Hermitian matrix variable [30]. Moreover,

the normalization step in (MXL) subsequently ensures that the resulting matrix has ‖Xi‖ ≤ Ai, so the sequence Xi(n) induced by

(MXL) meets the problem’s feasibility constraints.

9In particular, we will not be assuming that the errors are i.i.d. or bounded.
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error processes – such as Gaussian, log-normal, uniform and all sub-Gaussian distributions. In other words,

Hypotheses (H1) and (H2) simply mean that the players’ individual gradient estimates V̂i are unbiased and

bounded in mean square, i.e.

�
[
V̂i(n)

∣∣∣ X(n)
]
= Vi(X(n)), (18a)

�
[
‖V̂i(n)‖2∞

∣∣∣ X(n)
]
≤ V2

i for some Vi > 0. (18b)

Even though (H2) will be our main error control assumption, it will also be useful to consider the more

refined hypothesis:

(H2′) Subexponential moment growth: for all p ∈ �,

�
[
‖Z(n)‖p∞

∣∣∣ X(n)
]
≤

p!
2
σ

p
∗ for some σ∗ > 0. (H2′)

Clearly, (H2) is implied by (H2′) but the latter may fail in certain heavy-tailed error distributions (such as

Pareto-tailed ones). From a practical point of view, this is not particularly restrictive as (H2′) continues to

apply to a wide range of practical scenarios (including all Gaussian and sub-Gaussian error distributions),

and is considerably more general than the “finite errors” assumptions studied in the literature [5].

V. Convergence Analysis and Implementation

By construction, the recursion (MXL) with gradient feedback satisfying Hypotheses (H1) and (H2) enjoys

the following desirable properties:

(P1) Distributedness: players only require individual gradient information as feedback.

(P2) Robustness: the players’ feedback could be stochastic, imperfect, or otherwise perturbed by random

noise.

(P3) Statelessness: players do not need to know the state of the system.

(P4) Reinforcement: players tend to increase their individual utilities.

The above shows that (MXL) is a promising candidate for learning in games and distributed optimization

problems of the general form (1). Accordingly, our aim in this section will be to examine the long-term

convergence properties of (MXL) and its practical implementation attributes.

A. Convergence

We begin by showing that the algorithm’s termination states are Nash equilibria:
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Theorem 2. Assume that Algorithm 1 is run with a decreasing step-size sequence γn such that
∑∞

n=1 γ
2
n <

∑∞
n=1 γn = ∞ and gradient observations satisfying (H1) and (H2). If X(n) converges, it does so to a Nash

equilibrium of the game (a.s.).

The proof of Theorem 2 is presented in detail in Appendix B and is essentially by contradiction. To

provide some intuition, if the limit of (MXL) is not a Nash equilibrium, at least one player of the game must

be dissatisfied, thus experiencing a repelling drift – in the limit and on average. Owing to the algorithm’s

exponentiation step, this “repulsion” can be quantified via the so-called von Neumann (or quantum) entropy

[31]; then, by using the law of large numbers, it is possible to control the impact of the noise and show that

this entropy diverges to infinity, thus obtaining the desired contradiction.

Stated concisely, Theorem 2 shows that if (MXL) converges, it converges to a Nash equilibrium. How-

ever, the theorem does not provide any guarantee that the algorithm converges in the first place. A sufficient

condition for convergence based on equilibrium stability is given below:

Theorem 3. Assume that Algorithm 1 is run with a step-size sequence γn such that
∑∞

n=1 γ
2
n <
∑∞

n=1 γn = ∞

and gradient observations satisfying (H1) and (H2). If X∗ is globally stable, then X(n) converges to X∗

(a.s.).

The proof of Theorem 3 is given in Appendix C. In short, it comprises the following steps: First, we

consider a deterministic, continuous-time variant of (MXL) and we show that globally stable equilibria are

global attractors of said system. To do this, we introduce a matrix version of the so-called Fenchel coupling

[32] and we show that it plays the role of a Lyapunov function in continuous time. Subsequently, we derive

the evolution of the discrete-time stochastic system (MXL) by using the method of stochastic approximation

[33] and the theory of concentration inequalities [34] to control the aggregate error between continuous and

discrete time.

From a practical point of view, an immediate corollary of Theorem 3 is the following second-derivative

convergence test:

Corollary 1. If the game’s Hessian matrix D(X) is negative-definite for all X ∈ X , Algorithm 1 converges

to the game’s (necessarily) unique Nash equilibrium (a.s.).

The above results show that (MXL) converges to stable equilibria under very mild assumptions on the

underlying stochasticity (zero-mean errors and finite conditional variance). The following theorem shows

that, under the slightly sharper assumption (H2′), local stability implies local convergence with arbitrarily
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high probability:

Theorem 4. Assume that Algorithm 1 is run with gradient observations satisfying (H1) and (H2′), and

small enough step-sizes γn such that
∑∞

n=1 γ
1+q
n <

∑∞
n=1 γn = ∞ for some q ∈ (0, 1). If X∗ is (locally) stable,

then it is locally attracting with arbitrarily high probability; specifically, for every ε > 0, there exists a

neighborhood Uε of X∗ such that

�(X(n)→ X∗ | X(0) ∈ Uε) ≥ 1 − ε. (19)

Theorem 4 is proven in Appendix D, building on the (global) proof of Theorem 3. The key difference

with Theorem 3 is that, since we only assume the existence of a locally stable equilibrium X∗, the drift of

(MXL) has no reason to point towards X∗ globally. As a result, X(n) may exit the basin of X∗ in the presence

of high uncertainty. However, by invoking (H2′) and the Borel–Cantelli lemma, it is possible to show that

this happens with arbitrarily small probability, leading to the probabilistic convergence result (19).

As in the case of globally stable equilibria, Theorem 4 leads to the following easy-to-check condition for

local convergence:

Corollary 2. Let X∗ be a Nash equilibrium of G such that D(X∗) ≺ 0. Then (MXL) converges locally to X∗

with arbitrarily high probability.

B. Rate of convergence

Combining Theorems 2–4 gives a fairly complete picture of the qualitative convergence properties of the

exponential learning algorithm (MXL): the only possible end-states of (MXL) are Nash equilibria, and the

existence of a globally (resp. locally) stable Nash equilibrium implies the algorithm’s global (resp. local)

convergence to said equilibrium. On the other hand, these theorems do not address the quantitative aspects

of the algorithm’s long-term behavior, such as its rate of convergence. In what follows, we study precisely

this question.

We begin by introducing the so-called quantum Kullback–Leibler divergence (or von Neumann relative

entropy) to measure distances on X [31]. Specifically, the quantum divergence between X and X∗ is defined

as

DKL(X∗,X) = tr[X∗(log X∗ − log X)]. (20)

By Klein’s inequality [31], DKL(X∗,X) ≥ 0 with equality if and only if X = X∗, so DKL(X∗,X) represents a

(convex) measure of the distance between X and X∗. With this in mind, we introduce below the following

quantitative measure of stability:
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Definition 3. Given B > 0, X∗ is called B-strongly stable if

tr[(X − X∗) V(X)] ≤ −B DKL(X∗,X) for all X ∈ X . (21)

Under this refinement of equilibrium stability,10 we obtain the following quantitative result:

Theorem 5. Assume that Algorithm 1 is run with the step-size sequence γn = γ/n and gradient observations

satisfying (H1) and (H2). If X∗ is B-strongly stable and γ > B−1, we have

�[DKL(X∗,X(n))] ≤
γ2V2

Bγ − 1
1
n
. (22)

In particular, if X∗ lies in the interior of X , then

�[‖X(n) − X∗‖] = O(n−1/2). (23a)

Otherwise, if X∗ is an extreme point of X , we have

�[‖X(n) − X∗‖] = O(n−1). (23b)

The explicit bounds of Theorem 5 (proven in Appendix E) have several interesting consequences:

i) The rate of convergence to interior versus extreme states of X is substantially different because the

von Neumann divergence grows quadratically when X∗ is interior and linearly when X∗ is extreme.

Intuitively, the reason for this is that, in the case of interior states, the algorithm has to slow down

considerably near X∗ in order for random oscillations around X∗ to dissipate. On the other hand, in the

case of extreme points, the algorithm has a constant drift towards the boundary of X and there are no

possibilities of overshooting (precisely because the equilibrium state in question is an extreme point

of X ). As a result, random oscillations become irrelevant near extreme points, thus allowing for faster

convergence in that case.

ii) Thanks to the explicit expression (22), we see that if the stability constant B can be estimated ahead of

time, we can attain the convergence rate

�[DKL(X∗,X(n))] ≤
4V2

B2n
, (24)

achieved for the optimized step-size sequence γn = 2/(Bn). It is also possible to estimate the algo-

rithm’s convergence rate for equilibrium states that are only locally strongly stable. However, given

that the algorithm’s convergence is probabilistic in that case, the resulting bounds are also probabilistic

and, hence, more complicated to present.

10Since DKL(X∗,X) ≥ 0 with equality if and only if X = X∗, it follows that strongly stable states are automatically stable.
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C. Practical implementation

We close this section with a discussion of certain issues pertaining to the practical implementation of

Algorithm 1:

a) Updates and feasibility: As we discussed earlier, the exponentiation/normalization step of Algo-

rithm 1 ensures that the players’ action variables Xi(n) satisfy the game’s feasibility constraints (2) at each

stage n. In the noiseless case (Z = 0), feasibility is automatic because, by construction, Vi (and, hence,

Yi) is Hermitian. In the presence of noise however, there is no reason to assume that the estimates V̂i are

Hermitian, so the updates Xi may also fail to be feasible. To rectify this, we tacitly assume that each player

corrects such errors by replacing V̂i with (V̂i + V̂
†

i
)/2. Since this error-correcting operation is linear in its

input, Hypotheses (H1) and (H2) continue to apply, so our analysis and proofs hold as stated.

b) On the step-size sequence γn: Using a decreasing step-size γn in (MXL) may appear counter-

intuitive because it implies that new information enters the algorithm with decreasing weights. As evidenced

by Theorem 5, the reason for this is that a constant step-size might cause the process to overshoot and lead

to oscillatory behavior around the algorithm’s end-state. In the deterministic regime, these oscillations can

be dampened by using forward-backward splitting or accelerated descent methods [35]. However, in the

presence of noise, the use of a decreasing step-size is essential in order to dissipate measurement noise and

other stochastic effects, explaining why it is not possible to improve on (22) by using a constant step.

c) Computational complexity and numerical stability: From the point of view of computational com-

plexity, the bottleneck of each iteration of Algorithm 1 is the matrix exponentiation step Yi 7→ exp(Yi).

Since matrix exponentiation has the same complexity as matrix multiplication, this step has polynomial

complexity with a low degree on the input dimension of Xi [36]. In particular, each exponentiation requires

O(Mω
i

) floating point operations, where the complexity exponent can be as low as ω = 2.373 if the players

employ fast Coppersmith–Winograd matrix multiplication methods [37].

Finally, regarding the numerical stability of Algorithm 1, the only possible source of arithmetic errors

is the exponentiation/normalization step. Indeed, if the eigenvalues of Yi are large, this step could incur

an overflow where both the numerator and the denominator evaluate to machine infinity. This potential

instability can be fixed as follows: If yi denotes the largest eigenvalue of Yi and we let Y′
i
= Yi − yiI, the

algorithm’s exponentiation step can be rewritten as:

Xi ←
exp(Y′

i
)

exp(−yi) + ‖exp(Y′
i
)‖
. (25)

Thanks to this shift, the elements of the numerator are now bounded from above by 1 (because the largest

diagonal element of Y′
i

is eyi−yi = 1), so there is no danger of encountering a numerical indeterminacy of
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the type Inf/Inf. Thus, to avoid computer arithmetic issues, we employ the stable expression (25) in all

numerical implementations of Algorithm 1.

d) Asynchronous implementation: An implicit assumption in (MXL) is that user updates – albeit local

– are concurrent. This can often be achieved via a global update timer that synchronizes the players’ updates;

however, in a fully decentralized setting, even this degree of coordination may be challenging to attain. Thus,

to overcome this synchronicity limitation, we discuss below an asynchronous variant of Algorithm 1 where

each player updates his action based on an individual, independent schedule.

Specifically, assume that each player i ∈ N has an individual timer that triggers an update event, i.e. a

request for gradient feedback and, subsequently, an update of Xi. Of course, the players’ gradient estimates

V̂i will then be subject to delays and asynchronicities (in addition to noise), so the update structure of

Algorithm 1 must be modified appropriately. To that end, let Nn ⊆ N be the set of players that update their

actions at the n-th overall update event (typically |Nn| = 1 if players update at random times), and let di(n)

be the corresponding number of epochs that have elapsed since the last update of player i. We then obtain

the following asynchronous variant of (MXL):

Yi(n + 1) = Yi(n) + γni
1{i ∈ Nn} · V̂i(n),

Xi(n + 1) = Ai

exp(Yi(n + 1))
1 + ‖exp(Yi(n + 1))‖

,
(26)

where ni denotes the number of updates performed by player i up to epoch n while the (asynchronous)

estimate V̂i(n) satisfies

�[V̂i(n)] = Vi(X1(n − d1(n)), . . . ,XN(n − dN(n))). (27)

Assuming that the delays di(n) are bounded and the players’ update rates are strictly positive (in the sense

that lim infn→∞ ni/n > 0), it is possible to employ the analysis of [38] to show that Theorems 2–4 remain

true under the asynchronous variant (26). However, a detailed analysis would take us too far afield, so we

relegate it to future work.

VI. Numerical Results

In this section, we assess the performance of the MXL algorithm via numerical simulations. For con-

creteness, we focus on the case of transmit energy efficiency maximization in practical multi-user MIMO

networks (cf. Section II-C), but our conclusions apply to a wide range of parameters and scenarios. To the

best of our knowledge, this comprises the first distributed solution scheme for general multi-user/multi-

antenna/multi-carrier networks under imperfect feedback/CSI and mobility considerations.
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TABLE I

wireless network simulation parameters

Parameter Value

Cell size (rectangular) 1 km

User density 500 users/km2

Time frame duration 5 ms

Wireless propagation model COST Hata

Central frequency 2.5 GHz

Total bandwidth 11.2 MHz

OFDM subcarriers 1024

Subcarrier spacing 11 kHz

Spectral noise density (20 ◦C) −174 dBm/Hz

Maximum transmit power Pmax = 33 dBm

Non-radiative power Pc = 20 dBm

Transmit antennas per device M = 4

Receive antennas per link N = 8

Our basic network setup consists of a macro-cellular OFDMA wireless network with access points

deployed on a rectangular grid with cell size 1 km (for a quick overview of simulation parameters, see

Table I). Signal transmission and reception occurs over a 10 MHz band divided into 1024 subcarriers

around a central frequency of fc = 2.5 GHz. We further assume a frame-based time-division duplexing

(TDD) scheme with frame duration T f = 5 ms: transmission takes place during the uplink phase while

the network’s access points process the received signal and provide feedback during the downlink phase.

Finally, signal propagation is modeled after the widely used COST Hata model [39, 40] with spectral noise

density equal to −174 dBm/Hz at 20 ◦C.

The network is populated by wireless transmitters (users) following a homogeneous Poisson point process

with intensity ρ = 500 users/km2. Each wireless transmitter is further assumed to have M = 4 transmit

antennas, a maximum transmit power of Pmax = 40 dBm and circuit (non-radiative) power consumption of

Pc = 20 dBm. In each cell, orthogonal frequency division multiplexing (OFDM) subcarriers are allocated to

wireless users randomly so that different users are assigned to disjoint carrier sets. We then focus on a set

of N = 25 users, each located at a different cell of a 5 × 5 square cell cluster and sharing S = 8 common

subcarriers. Finally, at the receiver end, we consider N = 8 receive antennas per connection and a receiver
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Fig. 2. Performance of MXL in the presence of noise. In all figures, we plot the transmit energy efficiency of wireless users that

employ Algorithm 1 in a wireless network with parameters as described in the main text (to reduce graphical clutter, we only plotted

4 users with diverse channel characteristics). In the absence of noise (upper left), the system converges to a stable Nash equilibrium

state (unmarked dashed lines) within a few iterations. The convergence speed of MXL is slower in the presence of noise but the

algorithm remains convergent under very high degrees of uncertainty (up to relative error levels of 100%; bottom right).

noise figure of 7 dB.

To assess the performance and robustness of the MXL algorithm, we first focus on a scenario with

stationary users and static channel conditions. Specifically, in Fig. 2, each user runs Algorithm 1 with a

variable step-size γn ∼ n−1/2 and initial transmit power P0 = Pmax/2 = 26 dBm (allocated uniformly

across different antennas and subcarriers), and we plot the users’ transmit energy efficiency over time. For

benchmarking purposes, Fig. 2(a) assumes that users have perfect CSI measurements at their disposal. In

this deterministic regime, the algorithm converges to a stable Nash equilibrium state within a few iterations

(for simplicity, we only plotted 4 users with diverse channel characteristics). In turn, this rapid convergence

leads to drastic gains in energy efficiency, ranging between 3× and 6× over uniform power allocation

schemes.



22

○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○
○○○○○○○○○○○○○○○

□

□

□

□□□
□

□

□
□
□
□□

□

□□
□
□
□
□□
□□□□

□

□

□
□□
□□
□
□

□□

□□□□□□
□□
□

□
□□□

□
□□

□

□

□

□

□
□

□□□
□□

□
□
□□□□□□

□

□
□□□

□
□
□
□□□□

□
□
□
□□
□
□□
□

□

□□□□
□
□□□

□□

□
□□
□
□□□

□□□
□
□

□

□
□
□
□□
□□□

□
□□

□
□
□
□□□□

□□□
□

□□

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
◇◇◇◇

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
◇◇
◇◇◇◇

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
◇◇
◇◇◇

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

◇

△△
△△△△

△△
△
△
△
△△
△
△
△

△△
△
△

△
△

△

△
△
△△△

△

△△
△△
△△

△

△△△
△
△
△
△△
△
△△
△△△△

△△△△
△△△△

△△
△

△
△△△

△

△
△△
△△
△△
△
△
△
△
△
△△△△△

△
△

△
△△△△△△△

△△

△

△△△
△△
△
△△
△

△
△
△△
△
△
△△△

△
△
△
△
△

△
△△△

△
△
△
△△
△
△△
△△
△△
△
△
△△

� ��� ��� ��� ��� ��� ��� ���
-���

-���

-���

-���

-���

-���

���� [��]

��(
��

†
)
[��

]

○ ���� � □ ���� � ◇ ���� � △ ���� �

������� ����� ���� ����

(a) Channel gain evolution for different user velocities
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(b) Equilibrium tracking under mobility

Fig. 3. Performance of MXL in a dynamic network environment with mobile users moving at v ∈ {3, 5, 30, 130} km/h. The

users’ achieved energy efficiency tracks the system’s (evolving) equilibrium remarkably well, even under rapidly changing channel

conditions.

Subsequently, the simulation cycle above was repeated in the presence of observation noise and measure-

ment errors. The intensity of the measurement noise was quantified via the relative error level of the gradient

observations V̂, i.e. the standard deviation of V̂ divided by its mean (so a relative error level of z% means

that, on average, the observed matrix V̂ lies within z% of its true value). We then plotted the users’ transmit

energy efficiency over time for noise levels z = 25%, 50%, and 100% (corresponding to moderate, high,

and extremely high uncertainty respectively). Fig. 2 shows that the network’s rate of convergence to a Nash

equilibrium is negatively impacted by the magnitude of the noise; remarkably however, MXL retains its

convergence properties and the network’s users achieve a 100% per capita gain in energy efficiency within

a few tens of iterations, even under extremely high uncertainty (of the order of z = 100%).

Finally, to assess the algorithm’s performance in a fully dynamic network environment, Fig. 3 focuses

on mobile users with channels that vary with time due to (Rayleigh) fading, path loss fluctuations, etc. To

simulate this scenario, we used the standard extended typical urban (ETU) model for the users’ environ-

ment and the extended pedestrian A (EPA) and extended vehicular A (EVA) models to emulate pedestrian

(3–5 km/h) and vehicular movement (30–130 km/h) respectively [41].

In Fig. 3(a), we plotted the channel gains (tr[HH†]) of 4 users with diverse mobility and distance

characteristics (two pedestrian and two vehicular users, one closer and one farther away from their intended
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receiver). As can be seen, the users’ channels exhibit significant fluctuations (in the range of a few dB) over

different time scales, so the Nash equilibrium set of the energy efficiency game described in Section II-C

will evolve itself over time. Nevertheless, despite the channels’ variability, Fig. 3(b) shows that MXL adapts

to this highly volatile network environment very quickly, allowing users to track the game’s instantaneous

equilibrium with remarkable accuracy. For comparison, we also plotted the users’ achieved energy efficiency

under a uniform power allocation policy, which is known to be optimal under isotropic fading conditions

[42]. Because urban environments are not homogeneous and/or isotropic (even on average), uniform power

allocation fails to adapt to the changing wireless landscape and performs consistently worse than MXL

(achieving an energy efficiency ratio between 2× and 6× lower than that of MXL).

VII. Conclusions and Perspectives

In this paper, we examined a distributed matrix exponential learning algorithm for stochastic semidefinite

optimization problems and games that arise in key areas of signal processing and wireless communications

(ranging from image-based similarity search to MIMO systems and wireless medium access control). The

main idea of the proposed method is to track the players’ individual payoff gradients in a dual, unconstrained

space, and then map this process back to the players’ action spaces via an “exponential projection” step.

Thanks to the aggregation of the players’ payoff gradients, the algorithm is capable of operating under

uncertainty and feedback noise, two impediments that can have a detrimental effect on more aggressive

best-response methods.

To analyze the proposed algorithm, we introduced the notion of a stable Nash equilibrium, and we showed

that the algorithm is globally convergent to such equilibria – or locally convergent when an equilibrium

is only locally stable. Our convergence analysis also revealed that, on average, the algorithm converges

to an ε-neighborhood of a Nash equilibrium (in terms of the Kullback–Leibler distance) within O(1/ε)

iterations. To validate our theoretical analysis, we also tested the algorithm’s performance in realistic multi-

carrier/multiple-antenna wireless scenarios where several users seek to maximize their energy efficiency:

in this setting, users quickly reach a Nash equilibrium and attain gains between 100% and 500% in energy

efficiency, even under very high uncertainty.

The above results are particularly promising and suggest that our analysis applies to an even wider setting

than the game-theoretic framework (1) – for instance, games with convex action sets that are not necessarily

of the form (2). Another natural question that arises is whether it is possible to run the proposed MXL

without any gradient information. We intend to explore these directions at depth in future work.
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Appendix A

The Exponentiation Step

In this appendix, our goal will be to establish certain properties of the exponential map of Algorithm 1

that are crucial in the stationarity and convergence analysis of the next appendices. For simplicity, we only

treat the case Ai = 1; the general case follows by a trivial rescaling so we do not present it.

With a fair degree of hindsight, we begin by introducing the modified von Neumann entropy [31]:

h(X) = tr
[
X log X

]
+ (1 − tr(X)) log(1 − tr(X)). (A.1)

The convex conjugate of h over the spectrahedron D = {X ∈ �M
+ : tr(X) ≤ 1} is then defined as:

h∗(Y) = max{tr[YX] − h(X) : X ∈ D}, (A.2)

with Y ∈ �M. As it turns out, the exponentiation step of the XL algorithm is simply the (matrix) derivative

of h∗:

Proposition A.1. With notation as above, we have:

h∗(Y) = log
(
1 + tr(exp(Y))

)
, (A.3)

and

∇h∗(Y) = G(Y) ≡
exp(Y)

1 + tr[exp(Y)]
. (A.4)

Proof: Since the von Neumann entropy is strictly convex [31] and becomes infinitely steep at the

boundary of X , it follows that the maximization problem (A.2) admits a unique solution X ∈ D◦. Hence,

by the first-order Karush–Kuhn–Tucker (KKT) conditions for the problem (A.2), we get:

Y − log X + log(1 − tr(X))I = 0. (A.5)

Solving for X then yields

X =
exp(Y)

1 + tr[exp(Y)]
, (A.6)

and our claim follows by substituting the above in (A.2).

In addition to the above, the von Neumann entropy also provides a “congruence” measure between the

primal variables X and the auxiliary “dual” variables Y. Specifically, following [32], we introduce here the

Fenchel coupling:

F(X,Y) = h(X) + h∗(Y) − tr[YX] = DKL(X,G(Y)). (A.7)
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By Fenchel’s inequality, we have F(X,Y) ≥ 0 with equality if and only if Y = ∇h(X) – or, equivalently, iff

X = G(Y). More importantly for our purposes, we also have the following approximation lemma:

Proposition A.2. For all X ∈ D and for all Y,Z ∈ �M, we have

F(X,Y + Z) ≤ F(X,Y) + tr[Z (G(Y) − X)] + ‖Z‖2∞. (A.8)

Proof: By the definition of the Fenchel coupling, we get:

F(X,Y + Z) = h(X) + h∗(Y + Z) − tr[(Y + Z)X]

≤ h(X) + h∗(Y) + tr[Z G(Y)] + ‖Z‖2∞

− tr[YX] − tr[ZX]

= F(X,Y) + tr[Z(G(Y) − X)] + ‖Z‖2∞, (A.9)

where the expansion of h∗ in the second line follows from the fact that the von Neumann entropy is 1/2-

strongly convex (from the duality of strong convexity and strong smoothness, and the fact that h∗ is 2-

strongly smooth) [3].

Appendix B

Stationarity Analysis

We prove Theorem 2 regarding the possible termination states of Algorithm 1:

Proof of Theorem 2: Let V∗ = V(X∗) and assume that X∗ is not a Nash equilibrium. By Eq. (14), this

implies that tr[(X′
i
− X∗

i
)V∗

i
] > 0 for some player i ∈ N and some X′ ∈ X i. Therefore, by continuity, there

exists some a > 0 such that

tr[(X′i − Xi) V′′i ] ≥ a > 0, (B.1)

for all X in a small enough neighborhood U of X∗ in X and for all V′′
i

sufficiently close to V∗
i
.

Since X(n) → X∗ as n → ∞, we may assume that X(n) ∈ U for all n (note that the step-size condition
∑∞

n=1 γ
2
n <
∑∞

n=1 γn = ∞ is not affected if we start the sequence at some finite n0 > 0). The recursion (MXL)

then yields:

Y(n) = Y(0) + tnV̄(n), (B.2)

where we have set tn =
∑n

j=1 γ j and

V̄(n) =
1
tn

n∑

j=1

γ jV̂( j) =
1
tn

n∑

j=1

γ jV(X( j)) +
1
tn

n∑

j=1

γ jZ( j) (B.3)
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denotes the γ-weighted time average of the received gradient estimates V̂(n). By the strong law of large

numbers for martingale differences [43, Theorem 2.18], we get limn→∞ n−1∑n
j=1 Z( j) = 0 (a.s.), so the last

term of (B.3) also converges to zero (a.s.) by Hardy’s summability criterion [44, Theorem 14] applied to the

weight sequence w j,n = γ j/tn. Thus, given that X(n) ∈ U for all n, we conclude that V̄(n)→ V∗ as n→ ∞.

Now, with notation as in Appendix A, let hi(Xi) = tr[Xi log Xi] + (1 − tr(Xi)) log(1 − tr(Xi)). Since

Xi(n) = ∇h∗
i
(Yi(n)) by Proposition A.1, we will also have ∇hi(Xi(n)) = Yi(0) + tnV̄i(n) by the general

theory of convex conjugation. In turn, this implies that

hi(X
′
i) − hi(Xi(n)) ≥ tr[(Yi(0) + tnV̄i(n)) (X′i − Xi(n))], (B.4)

by the convexity of hi. However, since limn→∞ V̄k(n) = V∗
i

and limn→∞ tn = ∞, Eq. (B.1) yields

hi(X
′
i) − hi(Xi(n)) & atn, (B.5)

so hi(X′i) − hi(Xi(n))→ ∞ as n→ ∞, a contradiction.

Appendix C

Global Convergence

We begin our analysis with an auxiliary result for the convergence of (MXL) in continuous time. Specif-

ically, consider the dynamics

Ẏ = V(X),

X = G(Y),
(MXLc)

obtained by taking the continuous-time limit of (MXL). Our first auxiliary result is that globally stable

states are globally attracting under (MXLc):

Proposition C.1. Let X∗ be a globally stable Nash equilibrium and let X(t) be a solution of (MXLc). Then,

limt→∞X(t) = X∗.

Proof: Let H(t) = F(X∗,Y(t)). A simple differentiation then yields

Ḣ = tr[Ẏ∇h∗(Y)] − tr[Ẏ X∗] = tr[(X − X∗) V(X)], (C.1)

i.e. Ḣ ≤ 0 with equality if and only if X = X∗ (recall that X∗ is assumed globally stable). This implies that

H(t) is nonincreasing, and hence converges to some c ≥ 0 as t → ∞. Hence, by compactness, there exists

some X̂ ∈ X and a sequence tn ր ∞ such that X(tn)→ X̂ as n→ ∞.

Assume now ad absurdum that X̂ , X∗, so there exists some a > 0 and a neighborhood U of X̂ such

that tr[(X − X∗) V(X∗)] ≤ −a for all X ∈ U; furthermore, since ‖Ẋ‖ is bounded from above (recall that G is
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Lipschitz), there exists some δ > 0 such that X(t) ∈ U for all t ∈ [tn, tn + δ] and for all n ≥ 0. In that case

however, (C.1) yields:

lim
t→∞

H(t) ≤ H(0) +
∞∑

n=1

∫ tn+δ

tn

tr[(X(t) − X∗) V(X(t))] dt

≤ H(0) −
∞∑

n=1

aδ = −∞, (C.2)

a contradiction. This shows that X∗ is the only potential ω-limit point of X(t); since X(t) admits at least one

ω-limit, it follows that X(t)→ X∗, as claimed.

With this auxiliary result at hand, we are finally in a position to prove our global convergence result:

Proof of Theorem 3: We first note that the recursion (MXL) can be written in the more succinct form:

Y(n + 1) = Y(n) + γn [V(G(Y(n))) + Z(n)] . (C.3)

Since V(X) is differentiable for almost all X ∈ X by Alexandrov’s theorem, Propositions 4.1 and 4.2 in [33]

show that X(n) is an asymptotic pseudotrajectory of (MXLc), i.e. the iterates of (MXL) are asymptotically

close to solution segments of (MXLc) of arbitrary length – for a precise statement, see [33, Sec. 3].

Assume now that X(n) remains at a minimal positive distance from X∗. Since X∗ is globally stable, we

will have tr[(X(n)−X∗) V(X(n))] ≤ −a for some a > 0 and for all n. Furthermore, if we let Dn = F(X,Y(n)),

Proposition A.2 yields:

Dn+1 = F(X∗,Y(n) + γnV̂(n))

≤ Dn + γnvn + γnξn + γ
2
n‖V̂(n)‖2∞, (C.4)

where we have set vn = tr[(X(n) − X∗) V(X(n))] and ξn = tr[(X(n) − X∗) Z(n)]. Hence, telescoping (C.4)

yields:

Dn+1 ≤ D0 − tn
(
a −
∑n

j=1 w j,n ξ j

)
+
∑n

j=1 γ
2
j
‖V̂( j)‖2∞, (C.5)

where tn =
∑n

j=1 γ j and w j,n = γ j/tn. By the strong law of large numbers for martingale differences [43,

Theorem 2.18], we have n−1∑n
j=1 ξ j → 0 (a.s.); hence, given that γn+1/γn ≤ 1, Hardy’s summability

criterion [44, Thm. 14] applied to the sequence w j,n = γ j/tn yields
∑n

j=1 w j,n ξ j → 0 (a.s.). Finally, since

γn is square-summable and γnZ(n) is a martingale difference with finite variance, Theorem 6 in [45] shows

that
∑∞

n=1 γ
2
n‖V̂(n)‖2∞ < ∞ (a.s.).

Since tn → ∞ by assumption, the above implies that the RHS of (C.5) tends to −∞ (a.s.); this contradicts

the fact that Dn ≥ 0, so we conclude that X(n) visits a compact neighborhood of X∗ infinitely often (viz.

there exists a sequence nk ր ∞ such that X(nk) lies in said neighborhood). Since X∗ attracts any initial
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condition X(0) = G(Y(0)) under the continuous-time dynamics (MXLc), Theorem 6.10 in [33] then shows

that X(n) converges to X∗ (a.s.), as claimed.

Appendix D

Local Convergence

Proof of Theorem 4: By the definition of local stability, there exists a neighborhood U of X∗ in X such

that (VS) holds for all X ∈ U. Assume now that m > 0 is taken sufficiently small so that G(Y) ∈ U whenever

F(X∗,Y) < 4m (the existence of such a positive m follows from the fact that G(Y)→ X∗ if F(X∗,Y)→ 0).

By Eq. (C.1), it then follows that the set U4m = {Y : F(X∗,Y) ≤ 4m} is invariant under (MXLc). Hence,

by shadowing the proof of Theorem 3, it suffices to show that there exists an open set Uε ⊆ U4m such that

�(Y(n) ∈ U4m for all n) ≥ 1 − ε whenever Y(0) ∈ Uε.

To that end, let Dn = F(X∗,Y(n)) and assume that F(X∗,Y(0)) ≤ m. Then, (C.4) yields

Dn ≤ m +

n∑

j=1

γ jv j +

n∑

j=1

γ jξ j +

n∑

j=1

γ2
j‖V̂( j)‖2∞

≤ m +

n∑

j=1

γ jv j +

n∑

j=1

γ jξ j +

n∑

j=1

γ2
j

(
L2 + K‖Z( j)‖2∞

)
, (D.1)

where v j = tr[(X( j) − X∗) V( j)], ξ j = tr[(X( j) − X∗) Z( j)], K is a sufficiently large positive constant, and

L = supX∈X ‖V(X)‖∞. By the subexponential moment growth condition (H2′) and the martingale concen-

tration inequalities of [34, Theorem 1.2A], it follows that �(
∑n

j=1 γ jξ j ≥ m) ≤ exp
(
− m2

2σ2
∗ (
∑n

j=1 γ
2
j
+γ1m/σ∗)

)
≤ ε

if γ is chosen sufficiently small (specifically, so that γ1m/σ∗ +
∑∞

j=1 γ
2
j
≤ m2|log ε|−1). Likewise, (H2′)

implies that the tails of Z are subexponential, so there exists some constant A > 0 such that �(‖Z( j)‖∞ ≥

m/γ j) ≤ A exp(−m/γ j). By the summability assumption for γ j and the Borel-Cantelli lemma, it follows that

�
(
‖Z( j)‖∞ ≥ m/γ j for infinitely many j

)
= 0, so the last term of (D.1) is bounded from above by m (a.s.) if

γ is chosen small enough. Finally, by choosing γ sufficiently small so that
∑∞

j=1 γ
2
j
≤ m/L2, the third term

of (D.1) is also bounded by m.

Combining all of the above, we obtain Dn ≤ 4m+
∑n

j=1 γ jv j with probability at least 1−ε. Since G(U4m) ⊆

U by construction, we have v j ≤ 0 for all j = 1, . . . , n, and we conclude that Dn ≤ 4m with probability at

least 1 − ε. This implies that �(Y(n) ∈ U4m for all n) ≤ 1 − ε, as claimed.

Appendix E

Rates of Convergence

In this last appendix, our goal is to derive the convergence rate of matrix exponential learning:
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Proof of Theorem 5: Let D̄n = �[F(X∗,Y(n))]. Then, taking expectations in (C.4) yields

D̄n+1 ≤ D̄n + γn�[tr[(X(n) − X∗) V(n)]] + γ2
n �[‖V̂(n)‖2∞]

≤ (1 − γnB)D̄n + γ
2
nV2, (E.1)

where, in the second line, we used (18b) and the assumption that X∗ is B-strongly stable. With this in mind,

assume inductively that D̄n ≤ A/n for some A > 0; it will then suffice to show that D̄n+1 ≤ A/(n + 1) and

that we can choose A = γ2V2/(Bγ − 1). Therefore, substituting in (E.1), it suffices to show that
(
1 −

Bγ

n

)
A

n
+
γ2V2

n2
≤

A

n + 1
. (E.2)

Rearranging this last equation, we get

nA ≤ (n + 1)(ABγ − γ2V2), (E.3)

which shows that it suffices to pick A = ABγ − γ2V2. Solving for A then yields A = γ2V2/(Bγ − 1), as

claimed.

Finally, the bound (23b) follows by noting that DKL(X∗,X) = Ω(‖X∗ − X‖) if X∗ is an extreme point

of X ; likewise, the bound (23a) follows by noting that DKL(X∗,X) = Ω(‖X∗ − X‖2) if X∗ is interior, and

subsequently applying Jensen’s inequality.

References

[1] P. Mertikopoulos and A. L. Moustakas, “Learning in an uncertain world: MIMO covariance matrix optimization with

imperfect feedback,” IEEE Trans. Signal Process., vol. 64, no. 1, pp. 5–18, January 2016.

[2] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic Behavior, vol. 14, no. 1, pp. 124 – 143, 1996.

[3] S. M. Kakade, S. Shalev-Shwartz, and A. Tewari, “Regularization techniques for learning with matrices,” The Journal of

Machine Learning Research, vol. 13, pp. 1865–1890, 2012.

[4] Y. Nesterov, “Primal-dual subgradient methods for convex problems,” Mathematical Programming, vol. 120, no. 1, pp. 221–

259, 2009.

[5] S. Shalev-Shwartz, “Online learning and online convex optimization,” Foundations and Trends in Machine Learning, vol. 4,

no. 2, pp. 107–194, 2011.

[6] V. G. Vovk, “Aggregating strategies,” in COLT ’90: Proceedings of the 3rd Workshop on Computational Learning Theory,

1990, pp. 371–383.

[7] I. Stiakogiannakis, P. Mertikopoulos, and C. Touati, “Adaptive power allocation and control in time-varying multi-carrier

MIMO networks,” working paper, http://arxiv.org/abs/1503.02155.

[8] P. Mertikopoulos and E. V. Belmega, “Transmit without regrets: online optimization in MIMO–OFDM cognitive radio

systems,” IEEE J. Sel. Areas Commun., vol. 32, no. 11, pp. 1987–1999, November 2014.

[9] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. Cambridge University Press, 2006.



30

[10] Y. Viossat and A. Zapechelnyuk, “No-regret dynamics and fictitious play,” Journal of Economic Theory, vol. 148, no. 2, pp.

825–842, March 2013.

[11] P. Mertikopoulos, E. V. Belmega, and A. L. Moustakas, “Matrix exponential learning: Distributed optimization in MIMO

systems,” in ISIT ’12: Proceedings of the 2012 IEEE International Symposium on Information Theory, 2012, pp. 3028–3032.

[12] H. Yu and M. J. Neely, “Dynamic power allocation in MIMO fading systems without channel distribution information,”

http://arxiv.org/abs/1512.08419, 2015.

[13] J. B. Rosen, “Existence and uniqueness of equilibrium points for concave N-person games,” Econometrica, vol. 33, no. 3, pp.

520–534, 1965.

[14] G. Scutari, F. Facchinei, D. P. Palomar, and J.-S. Pang, “Convex optimization, game theory, and variational inequality theory

in multiuser communication systems,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 35–49, May 2010.

[15] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filling for Gaussian vector multiple-access channels,” IEEE Trans.

Inf. Theory, vol. 50, no. 1, pp. 145–152, 2004.

[16] L. Chen, S. H. Low, and J. C. Doyle, “Random access game and medium access control design,” IEEE/ACM Transactions on

Networking, vol. 18, no. 4, pp. 1303 – 1316, Aug 2010.

[17] T. Cui, L. Chen, and S. H. Low, “A game-theoretic framework for medium access control,” IEEE Journal on Selected Areas

in Communications, vol. 26, no. 7, pp. 1116–1127, Sept. 2008.

[18] R. Negrel, D. Picard, and P.-H. Gosselin, “Web-scale image retrieval using compact tensor aggregation of visual descriptors,”

IEEE Magazine on MultiMedia, vol. 20, no. 3, pp. 24–33, 2013.

[19] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-based image retrieval at the end of the early years,”

Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 12, pp. 1349–1380, 2000.

[20] A. Bellet, A. Habrard, and M. Sebban, “A survey on metric learning for feature vectors and structured data,” arXiv preprint

arXiv:1306.6709, 2013.

[21] M. Law, N. Thome, and M. Cord, “Fantope regularization in metric learning,” in Proc. of the IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2014, pp. 1051–1058.

[22] D. Lim, G. Lanckriet, and B. McFee, “Robust structural metric learning,” in Proc. of the 30th Intl. Conf. on Machine Learning,

2013, pp. 615–623.

[23] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks: Tricks of the Trade. Springer, 2012, pp. 421–436.

[24] E. Bjornson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design of energy-efficient multi-user MIMO systems: Is

massive MIMO the answer?” IEEE Transactions on Wireless Communications, vol. 14, no. 6, pp. 3059–3075, June 2015.

[25] A. Zappone, L. Sanguinetti, G. Bacci, E. Jorswieck, and M. Debbah, “Energy-efficient power control: A look at 5G wireless

technologies,” IEEE Transactions on Signal Processing, vol. 64, no. 7, pp. 1668–1683, April 2016.

[26] P. Mertikopoulos and E. V. Belmega, “Learning to be green: Robust energy efficiency maximization in dynamic MIMO-

OFDM systems,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 743 – 757, April 2016.

[27] A. Charnes and W. W. Cooper, “Programming with linear fractional functionals,” Naval Research Logistics Quarterly, vol. 9,

pp. 181–196, 1962.

[28] G. Debreu, “A social equilibrium existence theorem,” Proceedings of the National Academy of Sciences of the USA, vol. 38,

no. 10, pp. 886–893, October 1952.

[29] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, ser. Springer Series



31

in Operations Research. Springer, 2003.

[30] J. Dattorro, Convex Optimization & Euclidean Distance Geometry. Palo Alto, CA, USA: Meboo Publishing, 2005.

[31] V. Vedral, “The role of relative entropy in quantum information theory,” Reviews of Modern Physics, vol. 74, no. 1, pp.

197–234, 2002.

[32] P. Mertikopoulos and W. H. Sandholm, “Learning in games via reinforcement and regularization,” Mathematics of Operations

Research, 2016, to appear.

[33] M. Benaïm, “Dynamics of stochastic approximation algorithms,” in Séminaire de Probabilités XXXIII, ser. Lecture Notes in

Mathematics, J. Azéma, M. Émery, M. Ledoux, and M. Yor, Eds. Springer Berlin Heidelberg, 1999, vol. 1709, pp. 1–68.

[34] V. H. de la Peña, “A general class of exponential inequalities for martingales and ratios,” The Annals of Probability, vol. 27,

no. 1, pp. 537–564, 1999.

[35] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, ser. Applied Optimization. Kluwer Academic

Publishers, 2004, no. 87.

[36] C. Moler and C. van Loan, “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later,” SIAM

Review, vol. 45, no. 1, pp. 3–49, 2003.

[37] A. M. Davie and A. J. Stothers, “Improved bound for complexity of matrix multiplication,” Proceedings of the Royal Society

of Edinburgh, Section A: Mathematics, vol. 143, no. 2, pp. 351–369, 4 2013.

[38] P. Coucheney, B. Gaujal, and P. Mertikopoulos, “Penalty-regulated dynamics and robust learning procedures in games,”

Mathematics of Operations Research, vol. 40, no. 3, pp. 611–633, August 2015.

[39] M. Hata, “Empirical formula for propagation loss in land mobile radio services,” IEEE Trans. Veh. Technol., vol. 29, no. 3,

pp. 317–325, August 1980.

[40] COST Action 231, “Digital mobile radio towards future generation systems,” European Commission, final report, 1999.

[41] 3GPP, “User equipment (UE) radio transmission and reception,” White paper, Jun. 2014.

[42] D. P. Palomar, J. M. Cioffi, and M. Lagunas, “Uniform power allocation in MIMO channels: a game-theoretic approach,”

IEEE Trans. Inf. Theory, vol. 49, no. 7, p. 1707, July 2003.

[43] P. Hall and C. C. Heyde, Martingale Limit Theory and Its Application, ser. Probability and Mathematical Statistics. New

York: Academic Press, 1980.

[44] G. H. Hardy, Divergent Series. Oxford University Press, 1949.

[45] Y. S. Chow, “Convergence of sums of squares of martingale differences,” The Annals of Mathematical Statistics, vol. 39, no. 1,

1968.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

