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Abstract—In magnetic resonant coupling (MRC) enabled
multiple-input multiple-output (MIMO) wireless power transfer
(WPT) systems, multiple transmitters (TXs) each with one single
coil are used to enhance the efficiency of simultaneous power
transfer to multiple single-coil receivers (RXs) by constructively
combining their induced magnetic fields at the RXs, a technique
termed “magnetic beamforming”. In this paper, we study the
optimal magnetic beamforming design in a multi-user MIMO
MRC-WPT system. We introduce the multi-user power region
that constitutes all the achievable power tuples for all RXs,
subject to the given total power constraint over all TXs as
well as their individual peak voltage and current constraints.
We characterize each boundary point of the power region
by maximizing the sum-power deliverable to all RXs subject
to their minimum harvested power constraints, which are
proportionally set based on a given power-profile vector to
ensure fairness. For the special case without the TX peak voltage
and current constraints, we derive the optimal TX current
allocation for the single-RX setup in closed-form as well as
that for the multi-RX setup by applying the techniques of
semidefinite relaxation (SDR) and time-sharing. In general, the
problem is a non-convex quadratically constrained quadratic
programming (QCQP), which is difficult to solve. For the case
of one single RX, we show that the SDR of the problem
is tight, and thus the problem can be efficiently solved. For
the general case with multiple RXs, based on SDR we obtain
two approximate solutions by applying the techniques of time-
sharing and randomization, respectively. Moreover, for practical
implementation of magnetic beamforming, we propose a novel
signal processing method to estimate the magnetic MIMO
channel due to the mutual inductances between TXs and RXs.
Numerical results show that our proposed magnetic channel
estimation and adaptive beamforming schemes are practically
effective, and can significantly improve the power transfer
efficiency and multi-user performance trade-off in MIMO
MRC-WPT systems compared to the benchmark scheme of
uncoordinated WPT with fixed identical TX current.

Index Terms—Wireless power transfer, magnetic resonant
coupling, magnetic MIMO, magnetic beamforming, magnetic
channel estimation, multi-user power region, time-sharing,
semidefinite relaxation.
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I. INTRODUCTION

NEAR-FIELD wireless power transfer (WPT) has drawn

significant interests recently due to its high efficiency

for delivering power to electric loads without the need of any

wire. Near-field WPT can be realized by inductive coupling

(IC) for short-range applications within centimeters, or mag-

netic resonant coupling (MRC) for mid-range applications up

to a couple of meters. Although short-range WPT has been

in widely commercial use (e.g., electric toothbrushes), mid-

range WPT is still largely under research and prototype. In

2007, a milestone experiment has successfully demonstrated

that based on strongly coupled magnetic resonance, a single

transmitter (TX) is able to transfer 60 watts of power wire-

lessly with 40%–50% efficiency to a single receiver (RX)

at a distance about 2 meters. Motivated by this landmark

experimental result, the research in MRC enabled WPT

(MRC-WPT) has grown fast and substantially (see e.g., [1]

and the references therein).

MRC-WPT with generally multiple TXs and/or multiple

RXs has been studied in the literature [2]–[7]. Under the

multiple-input single-output (MISO) setup, [2] has studied

an MRC-WPT system with two TXs and one single RX,

while the analytical results proposed in this paper cannot

be directly extended to the case with more than two TXs.

In [3], a convex optimization problem has been formulated

to maximize the efficiency of MISO MRC-WPT by jointly

optimizing all TX currents together with the RX impedance.

However, the study in [3] has not considered the practical

circuit constraints at individual TXs, such as peak voltage and

current constraints, and also its solution cannot be applied

to the muti-RX setup. Recently, [4] has reported a wireless

charger with an array of TX coils which can efficiently charge

a mobile phone 40cm away from the charging unit, regardless

of the phone’s orientation. On the other hand, under the

single-input multiple-output (SIMO) setup, an MRC-WPT

system with one single TX and multiple RXs has been

studied in [5], in which the load resistances of all RXs

are jointly optimized to minimize the total transmit power

drawn while achieving fair power delivery to the loads at

different RXs, even subject to their near-far distances to the

TX. For the general multiple-input multiple-output (MIMO)

setup, in [6] it has been experimentally demonstrated that

employing multiple TX coils can enhance the power delivery

to multiple RXs simultaneously, in terms of both efficiency

and deliverable power. However, this work has not addressed

how to design the system parameters to achieve optimal

performance.

Currently, there are two main industrial organizations on
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standardizing wireless charging, namely, the Wireless Power

Consortium (WPC) which developed the “Qi” standard based

on magnetic induction, and the Alliance for Wireless Power

(A4WP) which developed the “Rezence” specification based

on magnetic resonance. The Rezence specification advocates

a superior charging range, the capability to charge multiple

devices concurrently, and the use of two-way Bluetooth

communication between the charger and devices for real-time

charging control. These features make Rezence a promising

technology for high-performance wireless charging in future.

However, in the current Rezence specification, one single

TX coil is used in the power transmitting unit, i.e., only

the SIMO MRC-WPT is considered. Generally, deploying

multiple TXs can help focusing their generated magnetic

fields more efficiently toward one or more RXs simultane-

ously [4], thus achieving a magnetic beamforming gain, in

a manner analogous to multi-antenna beamforming in the

far-field wireless information and/or power transfer based on

electromagnetic (EM) wave radiation [8]–[11]. It is worth

noting that applying signal processing and optimization tech-

niques for improving the efficiency of far-field WPT systems

has recently drawn significant interests (see, e.g., the work on

transmit beamforming design [12], [13], channel acquisition

method [14], [15], waveform optimization [16], and power

scheduling policy for WPT networks [17]). However, to our

best knowledge, there has been no prior work on mag-

netic beamforming optimization under practical TX circuit

constraints, for a MIMO MRC-WPT system with arbitrary

numbers of TXs and RXs, which motivates our work. The

results of this paper can be potentially applied in e.g., the

Rezence specification for the support of multi-TX WPT for

performance enhancement.

In this paper, as shown in Fig. 1, we consider a general

MIMO MRC-WPT system with multiple RXs and multiple

TXs where the TXs’ source currents (or equivalently volt-

ages) can be adjusted such that their induced magnetic fields

are optimally combined at each of the RXs, to maximize the

power delivered. We introduce the multi-user power region

to characterize the optimal performance trade-offs among

the RXs, which constitutes all the achievable power tuples

deliverable to all RXs subject to the given total consumed

power constraint over all TXs as well as practical peak

voltage and current constraints at individual TXs.

The main contributions of this paper are summarized as

follows.

• In order to characterize the optimal performance trade-

offs among all RXs by finding all the boundary points

of the multi-user power region, we apply the technique

of power profile. Specifically, we obtain each boundary

point by maximizing the sum-power deliverable to all

RXs subject to the minimum harvested power con-

straints at different RX loads which are proportionally

set based on a given power-profile vector. We propose an

iterative algorithm to solve this problem, which requires

to solve a TX sum-power minimization problem at each

iteration to optimally allocate the TX currents.

• For the special case of one single RX, identical TX
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Fig. 1: Example setup of our considered MIMO MRC-WPT

system: a rectangular table with five built-in wireless chargers

attached below its surface and four receivers randomly placed

on it for wireless charging.

resistances and without the TX peak voltage and current

constraints, we show that the optimal current at each

TX should be proportional to the mutual inductance

between its TX coil and the RX coil. This optimal

magnetic beamforming design for MISO MRC-WPT

system is analogous to the maximal-ratio-transmission

(MRT) based beamforming in the far-field radiation-

based WPT [9].

• In general, the TX sum-power minimization problem is

a non-convex quadratically constrained quadratic pro-

gramming (QCQP). For the case of one single RX,

with arbitrary TX resistances and the peak voltage and

current constraints at individual TXs applied, we show

that the semidefinite relaxation (SDR) of the problem is

tight, and thus the problem can be efficiently solved via

the semidefinite programming (SDP) by using existing

optimization software such as CVX [18]. For the general

case with multiple RXs, based on SDR, we obtain two

approximate solutions by applying the techniques of

time-sharing and randomization, respectively. In particu-

lar, for the special case without the TX peak and voltage

constraints, the time-sharing based solution is shown to

be optimal.

• For practical implementation of magnetic bemaforming,

it is essential to obtain the magnetic channel knowledge

on the mutual inductance between each pair of TX

coil and RX coil. To this end, we propose a novel

magnetic MIMO channel estimation scheme, which is

shown to be efficient and accurate by simulations. The

channel estimation and feedback design for MIMO or

multi-antenna based wireless communication systems

has been extensively studied in the literature (see. e.g.,

[19] and the references therein). However, it is shown in

this paper that the magnetic MIMO channel estimation

problem in MRC-WPT has a different structure, which
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TABLE I: List of main variable notations and their meanings

Notation Meaning

N,Q Number of TXs and RXs, respectively
n, q Index for TXs and RXs, respectively
w Operating angular frequency
vtx,n Phasor representation for complex voltage of TX n

itx,n, ītx,n, îtx,n Phasor representation for complex current, real-part and imaginary-part of current of TX n, respectively

i, ī, î TX current vector i = [itx,1 . . . itx,N ]T , its real-part and imaginary-part, respectively

irx,q , īrx,q, îrx,q Phasor representation for complex current, real-part and imaginary-part of current of RX q, respectively
Ltx,n, Ctx,n Self-inductance and capacitance of the n-th TX coil, respectively
Lrx,q , Crx,q Self-inductance and capacitance of the q-th RX coil, respectively
rtx,n Total source resistance of the n-th TX
R Diagonal resistance matrix R = diag{rtx,1, . . . , rtx,N}
rrx,p,q , rrx,l,q , rrx,q Parasitic resistance, load resistance and total resistance of RX q, respectively

Mnq , M̃nk Mutual inductance between TX n and RX q / TX k with k 6= n, respectively
mq Vector of mutual inductance between RX q and all TXs

Mq Rank-one matrix Mq = mqm
T
q for RX q

B,B, B̂ Impedance matrix, its real-part and imaginary-part, respectively

Bn Rank-one matrix Bn = bnb
H
n , with bn denoting the n-th column of B

ptx Total power drawn from all TXs
prx,q Power delivered to the load of RX q
PT Maximum total power drawn by all TXs
Vn, An Maximum amplitude of voltage and current of TX n, respectively
α Power-profile vector
Wn Rank-one matrix with the n-th diagonal element being one and others zero
P Sum-power delivered to all RXs

X Rank-one matrix X = ii
H

L Rank of optimal SDR solution X
⋆

V Singular matrix of X⋆, V = [v1 . . . vL]
Λ L-order diagonal matrix with diagonal elements given by eigenvalues of X

⋆

τl Transmission time of the l-th WPT slot in time-sharing based solution
erx,q,t Error of the q-th RX’s current in the t-th channel-training slot

cannot be directly solved by existing methods in wire-

less communication.

• By extensive numerical results, we show that our pro-

posed magnetic beamforming designs are practically

effective, and can significantly enhance the energy effi-

ciency as well as the multi-user performance trade-off

in MIMO MRC-WPT, as compared to the benchmark

scheme of uncoordinated WPT with fixed identical

current at all TXs.

The rest of this paper is organized as follows. Section II

introduces the system model for MIMO MRC-WPT. Sec-

tion III presents the problem formulation to characterize the

boundary points of the multi-user power region. Section IV

presents the optimal and approximate solutions for the for-

mulated problem under various setups. Section V presents

the algorithms for magnetic MIMO channel estimation. Sec-

tion VI provides the numerical results. Section VII concludes

the paper.

The notations for main variables used in this paper are

listed in Table I for the ease of reading. Moreover, we use the

following math notations in this paper. |·| means the operation

of taking the absolute value. X < 0 means that the matrix

X is positive semidefinite (PSD). Re{·} means the operation

of taking the real part. Tr(·) means the trace operation.
⋃

is the union operation of sets. E[·] denotes the statistical

expectation. v ∼ CN (µ,C) means that the random vector v

follows the circularly symmetric complex Gaussian (CSCG)

distribution with mean vector µ and covariance matrix C.

The (·)T , (·)∗ and (·)H represent the transpose, conjugate,

and conjugate transpose operations, respectively.

II. SYSTEM MODEL

As shown in Fig. 2, we consider a MIMO MRC-WPT

system with N ≥ 1 TXs each equipped with a single coil, and

Q ≥ 1 single-coil RXs. We assume that the RXs are all legit-

imate users for wireless charging. Each TX n, n = 1, . . . , N ,

is connected to a stable power source supplying sinusoidal

voltage over time given by ṽtx,n(t) = Re{vtx,ne
jwt}, with

vtx,n denoting the complex voltage and w > 0 denoting the

operating angular frequency. Let ĩtx,n(t) = Re{itx,nejwt} de-

note the steady-state current flowing through TX n, with the

complex current itx,n. The current produces a time-varying

magnetic flux in the n-th TX coil, which passes through the

coils of all RXs and induces time-varying currents in them.

Let ĩq(t) = Re{irx,qejwt} denote the steady-state current in

the q-th RX coil, q = 1, . . . , Q, with the complex current

irx,q.

Let Mnq and M̃nk denote the mutual inductance between

the n-th TX coil and the q-th RX coil, and the mutual

inductance between the n-th TX coil and the k-th TX coil

with k 6= n, respectively. The mutual inductance is a real

number, either positive or negative, which depends on the

physical characteristics of each pair of TX and RX coils such
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Fig. 2: System model of MIMO MRC-WPT.

as their relative distance, orientations, etc. [4].1 Specifically,

the negative sign of mutual inductance Mnq (M̃nk) indicates

that the current induced at the coil of RX q (TX k) due to

the current flowing at the coil of TX n is in the opposite

of the reference direction assumed (as shown in Fig. 2,

the reference current direction at each TX/RX is set to be

clockwise in this paper for convenience). In this paper, we

assume that the mutual coupling between any pair of RX coils

is negligible, as shown in Table II later for our considered

numerical example, due to their small sizes in practice and

the assumption that they are well separated from each other.

We denote the self-inductance and the capacitance of the

n-th TX coil (q-th RX coil) by Ltx,n > 0 (Lrx,q > 0)

and Ctx,n > 0 (Crx,q > 0), respectively. The capacitance

values are set as Ctx,n = 1
Ltx,nw2 and Crx,q = 1

Lrx,qw2 ,

such that all TXs and RXs have the same resonant angular

frequency, w. Let rtx,n > 0 denote the total source resistance

of the n-th TX. Define the diagonal resistance matrix as

R , diag{rtx,1, . . . , rtx,N}. The resistance of each RX q,

denoted by rrx,q, consists of the parasitic resistance rrx,p,q > 0
and the load resistance rrx,l,q > 0, i.e., rrx,q = rrx,p,q + rrx,l,q.

The load is assumed to be purely resistive. It is also assumed

that the load resistance is sufficiently larger than the parasitic

resistance at each RX q such that rrx,l,q/rrx,q ≈ 1. This

is practically required to ensure that most of the energy

harvested by the coil at each RX can be delivered to its load.

In our considered MRC-WPT system, we assume that

there is a controller installed which can communicate with

all TXs and RXs (e.g., using Bluetooth as in the Rezence

specification) such that it can collect the information of all

system parameters (e.g., RX loads and currents) required

to design and implement magnetic beamforming. We also

assume that the RXs all have sufficient initial energy stored

in their batteries, which enables them to conduct the neces-

sary current measurement and send relevant information to

1In this paper, the values of mutual inductances (i.e., magnetic channels)
are assumed to be purely real, since our considered MRC-WPT system
operates under the near-field condition for which EM wave radiation is
negligible and hence the imaginary-part of each inductance value can be
set as zero.

the central controller to implement magnetic beamforming.

However, for simplicity, we ignore the energy consumed for

such operations at RXs. Last, for convenience, we treat the

complex TX currents itx,n’s as design variables,2 which can

be adjusted by the controller in real time to realize adaptive

magnetic beamforming.

By applying Kirchhoff’s circuit law to the q-th RX, we

obtain its current irx,q as

irx,q =
jw

rrx,q

N∑

n=1

Mnqitx,n. (1)

Denote the vector of all TX currents as i = [itx,1 . . . itx,N ]T .

Moreover, denote the vector of mutual inductances between

the q-th RX coil and all TX coils as mq = [M1q . . . MNq]
T ,

and define the rank-one matrix Mq , mqm
T
q . From (1), the

power delivered to the load of the q-th RX is

prx,q =
1

2
|irx,q|2rrx,q =

w2

2rrx,q

iHMqi. (2)

Similarly, by applying Kirchhoff’s circuit law to each TX n,

we obtain its source voltage as

vtx,n =

(
rtx,n +

Q∑

q=1

M2
nqw

2

rrx,q

)
itx,n+

∑

k 6=n

(
jwM̃nk +

Q∑

q=1

MnqMqkw
2

rrx,q

)
itx,k. (3)

Next, we derive the total power drawn from all TXs in

terms of the vector of TX currents i. Let us define an N×N
impedance matrix B as

B = B+ jB̂, (4)

where the elements in B and B̂ are respectively given by

Bnk =





rtx,n +
Q∑

q=1

M2

nqw
2

rrx,q
, if k = n

Q∑
q=1

MnqMqkw
2

rrx,q
, otherwise;

(5)

B̂nk =

{
0, if k = n

−wM̃nk, otherwise.
(6)

Note that the matrices B, B and B̂ are all symmetric, since

Mnk = Mkn, ∀n 6= k. Denote the n-th column of the

matrices B, B, B̂ by bn, bn, b̂n, respectively. We also

define the rank-one matrices Bn , bnb
H
n , n = 1, . . . , N . It

can be shown that both B and Bn’s are PSD matrices. The

2In practice, it may be more convenient to use voltage source instead
of current source. Therefore, after designing the TX currents itx,n’s, the
corresponding voltages vtx,n’s can be computed and set by the controller
accordingly (see (3) and (8)). Moreover, in the case of adjustable voltage
sources, impedance matching can be conducted in series with the sources,
each of which can be adjusted in real time to match the current flowing in its
corresponding TX to the optimal value obtained by magnetic beamforming
design.
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matrix B can be also rewritten as

B = R+ w2

Q∑

q=1

Mq

rrx,q

. (7)

Accordingly, the source voltage of each TX n given in (3)

can be equivalently re-expressed as

vtx,n = bH
n i. (8)

From (4) and (8), the total power drawn from all TXs is given

by

ptx =
1

2
Re

{
N∑

n=1

iHbnin

}
=

1

2
iHBi. (9)

Note that from (5), it follows that ptx in (9) in general

depends on the mutual inductances Mnq’s between all TXs

and RXs, but does not depend on the mutual inductances

M̃nk’s among the TXs.

III. PROBLEM FORMULATION

In this section, we first introduce the multi-user power

region to characterize the optimal performance trade-offs

among all RXs in a MIMO MRC-WPT system introduced in

Section III-A. Then, we formulate an optimization problem to

find each boundary point of the power region corresponding

to a given “power-profile” vector.

A. Multi-user Power Region

In this subsection, we define the multi-user power region

under practical circuit constraints at TXs. In particular, the

power region consists of all the achievable power tuples

that can be received by all RXs subject to the following

constraints: the total power drawn by all TXs needs to be

no larger than a given maximum power PT , i.e., ptx ≤ PT ;

the peak amplitude of the voltage vtx,n (current itx,n ) at each

TX n needs to be no larger than a given threshold Vn (An),

i.e., |vtx,n| ≤ Vn, |itx,n| ≤ An, ∀n = 1, . . . , N . In this case,

it can be easily verified that the maximum transmit power

at each TX n is indeed capped by 1
2VnAn. Accordingly, to

avoid the trivial case that the constraint ptx ≤ PT is never

active, we consider that
∑N

n=1
1
2VnAn > PT holds in this

paper. The power region is thus formally defined as

R ,
⋃

ptx≤PT , |vtx,n|≤Vn,

|itx,n|≤An, n=1,...,N

(prx,1, prx,2, . . . , prx,Q), (10)

where prx,q, vtx,n, ptx are given in (2), (8), and (9), respec-

tively. Note that the union operation in (10) has considered

the possibility that some power tuples may be achievable only

through “time-sharing (TS)” of a certain set of achievable

power tuples each corresponding to a different set of feasible

vtx,n’s and itx,n’s.

Next, we apply the technique of power-profile vector [5]

to characterize all the boundary points of the power region,

where each boundary power tuple corresponds to a Pareto-

optimal performance trade-off among the RXs. Let P denote

the sum-power delivered to all RXs, i.e., P =
∑Q

q=1 prx,q.

Power Profile

1
p

2
p

1
Pa

1
(1 )Pa-

0

Fig. 3: Illustration of characterization of power region bound-

ary via the technique of power profile in a two-user case.

Accordingly, we set prx,q = αqP , where the coefficients αq’s

are subject to
∑Q

q=1 αq = 1 and αq ≥ 0, ∀q. The vector

α = [α1 α2 . . . αQ]
T is a given power-profile vector that

specifies the proportion of the sum-power delivered to each

RX q. With each given α, the maximum achievable sum-

power P thus corresponds to a boundary point of the power

region; Fig. 3 illustrates the characterization of the power

region boundary via the power profile technique for the case

of Q = 2 RXs.

B. Optimization Problem

In this subsection, we formulate an optimization problem

to find different boundary points of the power region. Denote

the N -dimensional complex space by CN , and let Wn denote

the rank-one matrix with the n-th diagonal element being one

and all other elements being zero.

From the definition in (10), each boundary point of the

power region R can be obtained by solving the following

RX sum-power maximization problem with a given power-

profile vector α (for the case when TS is not required to

achieve the boundary point of the multi-user power region

corresponding to the given power profile α; see Proposition

2 in Section IV for the case when TS is required),

(P0) : max
i∈CN

P (11a)

s.t.
w2

2rq
iHMqi ≥ αqP, q = 1, . . . , Q (11b)

iHBni ≤ V 2
n , n = 1, . . . , N (11c)

iHWni ≤ A2
n, n = 1, . . . , N (11d)

1

2
iHBi ≤ PT , (11e)

where the inequalities (11b), (11c) and (11e) are due to (2),

(8), and (9), respectively. Given a power-profile vector α,

(P0) can be solved by a bisection search over P , where in

each search iteration, it suffices to solve a feasibility problem

that checks whether all constraints of (P0) can be satisfied for

some given P . The converged optimal value of P is denoted

by P ⋆.

The feasibility problem can be equivalently solved by first

obtaining the minimum sum-power drawn from all TXs by

solving the following problem, denoted by p⋆tx, and then
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Algorithm 1 : Algorithm for (P0)

1: Initialization: Pmin = 0, Pmax = PT , and a small positive
number ǫ (ǫ = 10−2 is set in our simulations).

2: while Pmax − Pmin > ǫ do
3: P = (Pmin + Pmax)/2.
4: if (P1) is not feasible then
5: Go to step 8.
6: else if p⋆tx(P ) > PT then
7: Obtain the optimal solutions as i

⋆(P ).
8: Pmax ← P .
9: else

10: Obtain the optimal solutions as i
⋆(P ).

11: Pmin ← P .
12: end if
13: end while
14: return the optimal value and solution of (P0) as P ⋆ = P and

i
⋆ = i

⋆(P ⋆), respectively.

comparing it with the given total power constraint for all TXs,

PT . Specifically, the TX sum-power minimization problem is

given by

(P1) : min
i∈CN

ptx =
1

2
iHBi (12a)

s.t.
w2

2rq
iHMqi ≥ αqP, q = 1, . . . , Q (12b)

iHBni ≤ V 2
n , n = 1, . . . , N (12c)

iHWni ≤ A2
n, n = 1, . . . , N. (12d)

To summarize, the overall algorithm for solving (P0) is

given in Algorithm 1. Note that in the rest of this paper, we

focus on solving problem (P1). However, (P1) is in general

a non-convex QCQP problem [20] due to the constraints in

(12b). Although solving non-convex QCQPs is difficult in

general [21], we study the optimal and approximate solutions

to (P1) under various setups in Section IV. Notice that for

solving (P1), it is essential for the controller to have the

knowledge of the mutual inductance values between any

pair of TX coils as well as any pair of TX and RX coils.

In practice, the TX-TX mutual inductance is constant with

fixed TX positions and thus can be measured offline and

stored in the controller. However, due to the mobility of

RXs (such as phones, tablets), the TX-RX mutual inductance

is time-varying in general and thus needs to be estimated

periodically. The magnetic channel estimation problem will

be addressed later in Section V.

Last, note that an alternative approach to characterize

the boundary of the multi-user power region is to solve a

sequence of weighted sum-power maximization (WSPMax)

problems for the RXs. Compared to the TX sum-power

minimization problem (P1) with the given RX minimum

load power constraints, the WSPMax problem with the given

maximum total TX power can be considered as its “dual”

problem. In practice, how to select weights in WSPMax so

as to satisfy the minimum load power requirement at each

RX is challenging. Hence, in this paper, we study (P1) due

to its practical usefulness in satisfying any given RX load

power requirements.

IV. SOLUTIONS TO PROBLEM (P1)

In this section, we first present the optimal solution to (P1)

for the special case without TX peak voltage and current

constraints (12c) and (12d), and then study the solution to

(P1) for the general case with all constraints.

A. Optimal Solution to (P1) without Peak Voltage and Cur-

rent Constraints

In this subsection, we consider (P1) for the ideal case

without the TX peak voltage and current constraints given in

(12c) and (12d), respectively, to obtain useful insights and

the performance limit of magnetic beamforming.

Denote the N -dimensional real space by RN . Let i = ī+j î,
where ī, î ∈ RN . It is then observed that the real-part ī and

the imaginary-part î contribute in the same way to the total

TX power in (12a) as well as the delivered load power in

(12b), since both B and Mq’s are symmetric matrices. As a

result, we can set î = 0 without loss of generality and adjust

ī only, i.e., we need to solve

(P2) : min
ī∈RN

1

2
īTBī (13a)

s.t.
w2

2rrx,q

īTMq ī ≥ αqP, q = 1, . . . , Q. (13b)

Denote the space of N -order real matrices by RN×N . Let

X = ī̄iT . The SDR of (P2) is thus given by

(P2−SDR) : min
X∈RN×N

1

2
Tr
(
BX

)
(14a)

s.t. Tr (MqX) ≥ 2rrx,qαqP

w2
,

q = 1, 2, . . . , Q (14b)

X < 0. (14c)

In general, (P2−SDR) is a convex relaxation of (P2) by

dropping the rank-one constraint on X. This relaxation is

tight, if and only if the solution obtained for (P2−SDR),
denoted by X⋆, is of rank one. In the following, we discuss

the solutions to (P2−SDR) as well as that for (P2) for the

two cases with one single RX and multiple RXs, respectively.

1) Single-RX Case: Let IN denote the N -order identity

matrix. For the case of single RX (i.e., RX 1 with α1 = 1),

the optimal solution to (P2) is obtained in closed-form as

follows.

Theorem 1. For the case of Q = 1, the optimal solution

to (P2) is ī⋆ = βu1, where β is a constant such that the

constraint (13b) holds with equality, and u1 is the eigenvector

associated with the minimum eigenvalue, denoted by ψ1, of

the matrix

T = R+
w2(1− v⋆)

rrx,1
M1, (15)

where v⋆ is chosen such that ψ1 = 0. Particularly, for the

case of identical TX resistances, i.e., R = rIN with r > 0,

the optimal solution to (P2) is simplified to

ī⋆ =
βm1

‖m1‖2
. (16)
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Proof: Please refer to Appendix A.

Theorem 1 implies that for the case of single RX and

identical TX resistances, the optimal current of each TX

n is proportional to the mutual inductance Mn1 between

the TX n and RX 1. This is analogous to the maximal-

ratio-transmission (MRT) based beamforming in the far-field

wireless communication [8]. However, magnetic beamform-

ing operates in the near-field and thus the phase of each TX

current only needs to take the value of 0 or π, i.e., the current

is a positive or negative real number depending on its positive

or negative mutual inductance with the RX, while in wireless

communication beamforming operates over the far-field, and

as a result, the beamforming weight at each transmit antenna

needs to be of the opposite phase of that of the wireless

channel, which can be an arbitrary value within 0 and 2π.

2) Multiple-RX Case: For the general case of multiple

RXs, (P2−SDR) is a separable SDP with Q constraints. We

directly obtain the following result from [22, Thm. 3.2].

Proposition 1. For the case of Q ≥ 1, the rank of the optimal

solution to (P2−SDR) is upper-bounded by

rank (X⋆) ≤
√
Q. (17)

From Lemma 1, we have the following corollary.

Corollary 1. For Q ≤ 3, the SDR in (P2−SDR) is tight,

i.e., the optimal solution X⋆ to (P2−SDR) is always rank-

one, which is given by X⋆ = ī⋆
(̄
i⋆
)T

. The optimal solution

to (P2) is thus ī⋆.

Note that for Q ≥ 4, the optimal solution of X⋆ to

(P2−SDR) may have a rank higher than 1, which is thus

not feasible to (P2). In general, (P2−SDR) can be efficiently

solved by existing software such as CVX [18].

In the following, we propose a time-sharing (TS) based

scheme to achieve the same optimal value of problem

(P2−SDR). Let L be the rank of the obtained solution

X⋆ for (P2−SDR), i.e., L = rank (X⋆), with L ≤ N .

Denote the singular-value-decomposition (SVD) of X⋆ by

X⋆ = VΛVH , where V = [v1 . . . vL] is an N × L
matrix with VHV = IL and Λ , diag{λ1, . . . , λL} is an

L-order diagonal matrix with the diagonal elements given by

λ1 ≥ λ2 ≥ . . . λL > 0.

To perform magnetic beamforming in a TS manner, we

divide WPT into L orthogonal time slots, indexed by l ∈
{1, . . . , L}, where slot l takes a portion of the total transmis-

sion time given by τl, with 0 < τl < 1 and
∑L

l=1 τl = 1. In

particular, we set

τl =
λl∑L

k=1 λk
. (18)

In the l-th slot, the TX current vector is then given by

ī⋆l =

√√√√
L∑

k=1

λk vl. (19)

We have the following result on the TS scheme.

Proposition 2. For the case without peak voltage and current

Algorithm 2 : Algorithm for (P2) with TS

1: Input parameters: B, w, P,Mq, rrx,q , αq , for q = 1, . . . , Q.
2: Solve (P2−SDR), obtain its solution as X

⋆.
3: if rank (X⋆) = 1 then
4: return ī

⋆ =
√
λ1v1. (TS is not applied)

5: else

6: return ī
⋆
l =

√∑L

k=1
λkvl, and τl = λl∑

L
k=1

λk
, for l =

1, 2, . . . , L. (TS is applied)
7: end if

constraints, the TS scheme given in (18) and (19) achieves

the same optimal value of (P2−SDR).

Proof: With the TS scheme, the total delivered power

to each RX q over L time slots is

L∑

l=1

Tr
(
Mq ī

⋆
l

(̄
i⋆l
)H)

τl =

L∑

l=1

Tr
(
Mqvlv

H
l

)
λl

= Tr (MqX
⋆) , (20)

and the total transmit power is given by

1

2

L∑

l=1

Tr
(
Bī⋆l

(̄
i⋆l
)H)

τl =

L∑

l=1

Tr
(
Bvlv

H
l

)
λl

=
1

2
Tr
(
BX⋆

)
. (21)

Clearly, by using the above TS scheme, the delivered power

and the total transmit power are the same as those by

using the solution X⋆ to (P2−SDR). Hence, the proof is

completed.

In general, since the optimal value of (P2−SDR) is a

lower bound of that of (P2), the above TS scheme thus

achieves a TX sum-power that is no larger than the the

optimal value of (P2). Thus, the resulting solution can be

considered to be optimal for (P2) if TS is allowed. Notice

that in such cases, TS is required to achieve the boundary

point of the multi-user power region with the given power

profile vector α. In summary, the aforementioned procedure

to solve (P2) is given in Algorithm 2.

B. Solution to (P1) with All Constraints

In this subsection, we consider (P1) with all the con-

straints. Denote the space of N -order complex matrices by

CN×N . Let X = iiH . The SDR of (P1) is given by

(P1−SDR) : min
X∈CN×N

1

2
Tr
(
BX

)
(22a)

s.t. Tr (MqX) ≥ 2rrx,qαqP

w2
,

q = 1, 2, . . . , Q (22b)

Tr (BnX) ≤ V 2
n ,

n = 1, . . . , N (22c)

Tr (WnX) ≤ A2
n,

n = 1, . . . , N (22d)

X < 0. (22e)
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Like (P2−SDR), (P1−SDR) is also convex. By exploit-

ing its structure, we obtain the following result on the rank

of the optimal solution to (P1−SDR).

Theorem 2. The rank of the optimal solution X⋆⋆ to

(P1−SDR) is upper-bounded by

rank (X⋆⋆) ≤ min
(
Q,
√
Q+ 2N

)
. (23)

Proof: Please refer to Appendix B.

The optimal solution X⋆⋆ to (P1−SDR) can be efficiently

obtained by CVX [18]. Moreover, from Theorem 2, we

directly obtain the following corollary.

Corollary 2. For (P1) in the case of Q = 1, the SDR

in (P1−SDR) is tight, i.e., the optimal solution X⋆⋆ to

(P1−SDR) is always of rank-one with X⋆⋆ = i⋆⋆ (i⋆⋆)H ,

where i⋆⋆ is thus the optimal solution to (P1).

For the general case of Q > 1, if the solution X⋆⋆ to

(P1−SDR) is of rank-one with X⋆⋆ = i⋆⋆ (i⋆⋆)
H

, then i⋆⋆

is the optimal solution to (P1); however, for the case of

rank (X⋆⋆) > 1, in the following we propose two approx-

imate solutions for (P1) based on TS and randomization,

respectively.

1) TS-based Solution: We note that the TS scheme pro-

posed in Section IV-A2 for (P2) cannot be directly applied

to (P1) due to the additional peak voltage and current

constraints. This is because the current solutions given in

(19) in general may not satisfy these peak constraints at all

TXs over all the L time slots. To tackle this problem, we

treat the time allocation τl’s and the current scaling factors,

denoted by
√
θl with θl ≥ 0, ∀l = 1, . . . , L, for all slots

as design variables, such that all peak constraints can be

satisfied over all slots. Recall τl’s are subject to
∑L

t=1 τl = 1,

and τl ≥ 0, ∀l; and with a little abuse of notations, we still

use vl’s to denote the singular vectors obtained from the

SVD of the optimal solution X⋆⋆ to (P1−SDR), similar to

those defined for X⋆⋆ to (P2−SDR). In the l-th slot, the TX

current vector is then set as

īl =
√
θlvl. (24)

Let θ = [θ1 . . . θL]
T , and τ = [τ1 . . . τL]

T . More-

over, we denote Vl = vlv
H
l , and nonnegative constants

c0,l = Tr
(
BVl

)
, c1,lq = Tr (MqVl), c2,ln = Tr (BnVl),

and c3,ln = Tr (WnVl). We then formulate the following

problem to obtain the TS-based solution for (P1).

(P1−TS) : min
θ, τ

L∑

l=1

c0,lθlτl
2

(25a)

s.t.

L∑

l=1

c1,lqθlτl ≥
2rrx,qαqP

w2
,

q = 1, . . . , Q (25b)

c2,lnθl ≤ V 2
n ,

n = 1, . . . , N, l = 1, . . . , L (25c)

c3,lnθl ≤ A2
n,

n = 1, . . . , N, l = 1, . . . , L (25d)

L∑

t=1

τl = 1, (25e)

τl ≥ 0, θl ≥ 0, l = 1, . . . , L. (25f)

We define a set of new variables as φl = θlτl, l =
1, . . . , L. Problem (P1−TS) is thus rewritten as the follow-

ing linear-programming (LP), which can be efficiently solved

by e.g., CVX [18].

(P1−TS− LP) : min
λ, τ

L∑

l=1

c0,lφl
2

(26a)

s.t.

L∑

l=1

c1,lqφl ≥
2rrx,qαqP

w2
,

q = 1, . . . , Q (26b)

c2,lnφl − V 2
n τl ≤ 0,

n = 1, . . . , N, l = 1, . . . , L (26c)

c3,lnφl −A2
nτl ≤ 0,

n = 1, . . . , N, l = 1, . . . , L (26d)

L∑

t=1

τl = 1, (26e)

τl ≥ 0, φl ≥ 0, l = 1, . . . , L. (26f)

If the above (P1−TS− LP) is feasible, there is a feasible

TS-based solution for (P1); otherwise (P1) is regarded as

infeasible, which implies that the RX sum-power P needs

to be decreased in the next bisection search iteration in

Algorithm 1.

2) Randomization-based Solution: The randomization

technique is a well-known method applied to extract a

feasible approximate QCQP solution from its SDR solu-

tion. Before presenting the proposed randomization-based

solution, we first describe the steps for generating feasible

random vectors from SDR solution. Recall the SVD of X⋆⋆

as X⋆⋆ = VΛVH . Define Λ
1

2 , diag{
√
λ1, . . . ,

√
λL}. A

random vector is specifically generated as follows:

yd = VΛ
1

2wd, (27)

where wd ∼ CN (0N , IN ), with 0N representing an all-zero

column vector of length N .

To further generate a random vector xd that is feasible

to (P1), we scale the vector yd by µd with µd ∈ R, i.e.,

xd , µdyd. If the resulting problem shown as follows is

feasible, a feasible µd is thus found; otherwise no feasible

vector can be obtained from this yd.

find : µd (28a)

s.t.
w2µ2

d

2rq
yd

HMqyd ≥ αqP, q = 1, . . . , Q (28b)

µ2
dy

H
d Bnyd ≤ V 2

n , n = 1, . . . , N (28c)

µ2
dy

H
d Wnyd ≤ A2

n, n = 1, . . . , N. (28d)

The proposed algorithm for obtaining the randomization-

based solution is summarized as Algorithm 3.
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Algorithm 3 : Randomization-based Solution for (P1)

1: Initialization: the solution X⋆⋆ to (P1−SDR), a large

positive integer D (set as D = 4 × 103 in our simula-

tions), set D = ∅.

2: Compute the SVD of X⋆⋆ as X⋆⋆ = VΛVH .

3: for d = 1, . . . , D do

4: Generate a random vector yd = VΛ
1

2wd, where

wd ∼ CN (0N , IN ).
5: if the problem (28) is feasible, then

6: Obtain xd = µdyd.

7: D = D⋃ d.

8: end if

9: end for

10: return i⋆⋆ = argmin
d∈D

1
2xd

HBxd if D 6= ∅; otherwise,

declare (P1) is infeasible.

V. MAGNETIC CHANNEL ESTIMATION

For implementation of magnetic beamforming in practice,

it is necessary for the central controller at the TX side to

estimate the mutual inductance between each pair of TX coil

and RX coil, namely magnetic MIMO channel estimation.

Note that in this paper, the mutual inductances Mnq’s are

assumed to be quasi-static, i.e., they remain constant over

a certain block of time, but may change from one block to

another, since the RXs are mobile devices in general. Hence,

Mnq’s need to be estimated periodically over time. For prac-

tical implementation, at the beginning of each transmission

period, we treat all the magnetic channels Mnq’s as unknown

real parameters. For convenience, we denote the magnetic

channel matrix by M with elements given by Mnq’s. In the

next, we first consider magnetic MIMO channel estimation

for the ideal case with perfect RX current knowledge and

then the practical case with imperfect current knowledge.

We assume that each RX q can feed back its measured

current to the central controller by using existing commu-

nication module. One straightforward method to estimate

Mnq is given in [5], where by switching off all the other

TXs and RXs, TX n can estimate Mnq with RX q based

on the current measured and fed back by RX q. However,

this method may not be efficient for estimating the magnetic

MIMO channel M, since it requires synchronized on/off

operations of all TXs and RXs and also needs at least NQ
iterations to estimate all Mnq’s. Alternatively, we propose

more efficient methods that can simultaneously estimate the

magnetic MIMO channel M in T (T ≥ Q) time slots. In the

t-th slot, we apply a source voltage vtx,n,t on TX n, and the

current itx,n,t is measured by TX n. From Kirchhoff’s circuit

laws, the voltage of TX n is

vtx,n,t = rtx,nitx,n,t+

jw

N∑

k=1, 6=n

M̃nkitx,k,t − jw

Q∑

q=1

Mnqirx,q,t. (29)

In practice, randomly generated voltage values are as-

signed over different TXs as well as over different time slots.

Define the N ×T matrices H and Y with elements given

by vtx,n,t’s and itx,n,t’s, respectively. Moreover, define the

Q × T matrix Z with elements given by irx,q,t’s and the

N ×N matrix F with elements given by

Fnk =

{
rtx,n, if k = n

jwM̃nk, otherwise.
(30)

Since the fixed TX-TX mutual inductance M̃nk can be

measured offline and the TX currents itx,n,t’s as well as

voltages vtx,n,t’s can be measured by the TXs, the matrices

F and Y are assumed to be known by the central controller

perfectly. From (29), the voltages at all TXs over T time

slots can be written in the following matrix-form

H = FY − jwMZ. (31)

Let G , j
w
(H − FY). The voltage matrix in (31) can be

rewritten as

G = MZ. (32)

With known H, F and Y, the matrix G is known by the

central controller.

A. Channel Estimation with Perfect RX-Current Knowledge

For the case with perfect RX-current knowledge of Z at

the central controller, it suffices to use Q time slots for

channel estimation, i.e., T = Q. Since the voltage values

are randomly generated and assigned over different TXs as

well as over different time slots, the RX current matrix Z

known at the central controller can be assumed to have a

full rank of Q and thus its inverse exists. Hence, the mutual

inductance matrix M can be estimated as

M̂ = GZ−1. (33)

Note that from (30) and (31), it can be shown that the

estimate in (33) is always a real matrix.

B. Channel Estimation with Imperfect RX Current Knowl-

edge

In practice, the RX-current information of Z obtained by

the central controller are not perfect, due to various errors

such as the error in the current meter reading, quantization

error and feedback error, etc. Denote the error of the q-th

RX’s current in the t-th slot by erx,q,t. We assume that all

the current errors erx,q,t’s are mutually independent and each

follows the CSCG distribution with zero mean and variance

σ2. The corresponding RX current known by the central

controller is thus i′rx,q,t = irx,q,t + erx,q,t. Denote all the RX-

current errors by the Q×T matrix E with elements erx,q,t’s.

In addition, denote the RX-current knowledge obtained at

the central controller by the Q × T matrix Z̃ with elements

i′rx,q,t’s. We thus have

Z = Z̃−E. (34)
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With RX-current errors, from (34), the circuit equation in (32)

is rewritten as follows:

G = MZ̃−ME. (35)

In the following, we first show the difficulty to obtain the

maximum likelihood (ML) estimate for the magnetic channel

M, then present a suboptimal but efficiently implementable

least-square (LS) based estimate for M. Define A = ME

for convenience. From (35), we have

A = MZ̃−G. (36)

Denote the columns of A, Z̃ and G by at, z̃t and gt,

respectively, for t = 1, . . . , T . Then at is a CSCG random

vector with mean µt(M) and covariance matrix Σ(M),
which are given by

µt(M) = Mz̃t − gt, (37)

Σ(M) = σ2MMT . (38)

From the mutual independence of at’s, the joint probability

distribution of at’s is given by

p(A) =
1

(2π)
NT
2 |Σ(M)| T2

(39)

exp

(
−1

2

T∑

t=1

(at − µt(M))H(Σ(M))−1(at − µt(M))

)
.

The log-likelihood function of the above probability density

function (PDF) is thus

log(L) = −T log(|Σ(M)|)−NT log(π)−
T∑

t=1

(at − µt(M))H(Σ(M))−1(at − µt(M)). (40)

The ML estimate should be obtained by maximizing the log-

likelihood function log(L) in (40) over M. To this end, we

take the derivative of log(L) with respect to M as follows:

∂ log(L)
∂M

= −T ∂ log(|MMT |)
∂M

− (41)

T∑

t=1

∂

∂M

[
(at − µt(M))H

(
σ2MMT

)−1
(at − µt(M))

]
.

However, it is difficult to simplify the derivative in (41) to

derive the optimal M, since the means µt(M)’s depend on

the unknown M and also vary over t, and furthermore the

covariance matrix Σ(M) is a scaled Gramian matrix of MT .

Hence, we present a suboptimal LS estimate, denoted by

M̂LS, for M in the following theorem.

Theorem 3. The LS estimate of M is given by

M̂LS =
(
GZ̃H +G∗Z̃T

)(
Z̃Z̃H + Z̃∗Z̃T

)−1

, (42)

and the resulting squared error is given by

J = Tr

((
G− M̂LSZ̃

)(
G− M̂LSZ̃

)H)
. (43)

Proof: Please refer to Appendix C.

It is noted that the LS estimate M̂LS in (42) is always a

real matrix, although both G and Z̃ are complex matrices in

general.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of our pro-

posed magnetic channel estimation and magnetic beamform-

ing schemes. As shown in Fig. 1, we consider a MIMO

MRC-WPC system, which constitutes a rectangular table of

size 1.6m × 1.6m with N = 5 built-in wireless chargers

placed horizontally below its surface and Q = 4 RXs placed

horizontally on its surface at random locations. Specifically,

we consider the thickness of the table’s surface is 10cm,

which is indeed the same as the vertical separating distance

between each TX and RX. For TXs 1–5, we set (x =
0.7, y = 0.7), (x = −0.7, y = 0.7), (x = −0.7, y = −0.7),
(x = 0.7, y = −0.7), and (x = 0, y = 0), respectively,

in meter. On the other hand, for RXs 1–4, we set (x =
0.7, y = 0.5), (x = −0.3, y = 0.6), (x = −0.2, y = −0.1),
and (x = 0.3, y = −0.3), respectively, in meter. Moreover,

we consider that each TX coil has 250 turns and a radius

of 10cm, while each RX coil has 50 turns and a radius of

2cm. We assume that coils are all made from copper wire

with radius of 0.25mm. We set the resistance of each TX n
as rtx,n = 13.44 Ω, n = 1, ..., N , which is set equal to the

ohmic resistance of its coil. Similarly, the parasitic resistance

of each RX q is set as rrx,p,q = 0.5367 Ω. We also set the load

resistance at RX q as rrx,l,q = 10 Ω. Clearly, the parasitic re-

sistance of each RX is negligible compared to the much larger

load resistance, which is typical in practice. Hence, in our

simulations, we can safely set rrx,p,l/rrx,q ≈ 1, q = 1, . . . , Q.

The compensators’ capacitances at the TXs and RXs are

set such that their natural angular frequencies all become

identically w = 42.6× 106 rad/second (or 6.78 MHz). Last,

we set PT = 100 W, and the peak voltage/current constraints

at all TXs are given by Vn = 50
√
2 V and An = 5

√
2 A,

n = 1, ..., N , respectively.

The self and mutual inductance values of all TXs and RXs

are given in Table II. From the mutual inductance values

in Table II, we have two observations: first, on average the

coupling between RXs are considerably smaller than that

between RXs and TXs; second, for each RX the ratio of

the mutual inductance between itself and the closest TX to

that between itself and the closest RX is very large (e.g., the

ratios are 1700, 500, 520, and 205 for RXs 1–4, respectively).

In this case, the current induced at each RX is mainly due

to the magnetic flux generated by its nearby TX(s), which is

in accordance with our previous assumption that the mutual

inductances between RXs are negligible. In the following

simulations, we thus ignore the mutual inductance between

RXs.

A. Magnetic MIMO Channel Estimation

In this subsection, we evaluate the performance of mag-

netic channel estimation. For performance comparison, we

use the channel estimation scheme in [5] as a benchmark,

where in each training slot, only one pair of TX n and RX
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TABLE II: Mutual/Self inductance values (µH)

TX 1 TX 2 TX 3 TX 4 TX 5 RX 1 RX 2 RX 3 RX 4

TX 1 47700 2.2970 0.8074 2.2970 6.5741 0.9468 0.04747 0.02789 0.03874

TX 2 2.2970 47700 2.2970 0.8074 6.5741 0.01733 0.5642 0.05711 0.01733

TX 3 0.8074 2.2970 47700 2.2970 6.5741 0.007872 0.01945 0.09880 0.03874

TX 4 2.2970 0.8074 2.2970 47700 6.5741 0.02817 0.01116 0.03825 0.2458

TX 5 6.5741 6.5741 6.5741 6.5741 47700 0.07472 0.1526 1.3266 0.5256

RX 1 0.9468 0.01733 0.007872 0.02817 0.07472 280.32 0.0003932 0.0003153 0.0005579

RX 2 0.04747 0.5642 0.01945 0.01116 0.1526 0.0003932 280.32 0.001130 0.0003153

RX 3 0.02789 0.05711 0.09880 0.03825 1.3266 0.0003153 0.001130 280.32 0.002561

RX 4 0.03874 0.01733 0.03874 0.2458 0.5256 0.0005579 0.0003153 0.002561 280.32

q are switched on, and the mutual inductance between this

pair of coils is estimated as

M̂nq = Re

{
rtx,nitx,n − vtx,n

jwĩrx,q

}
, (44)

with the imperfect RX-current ĩrx,q = irx,q + erx,q. The real-

part operation is adopted, since the RX-current error erx,q is

complex in general. The total required number of slots is

thus NQ = 20 in our numerical example. For the proposed

LS estimation scheme, we assume that the training period

of T time slots can be divided into multiple blocks each

of which consists of N successive time slots. In the n-th

time slot of each block, TX n carries a source voltage of

0.75 V, and other TXs remain in closed-loop but with a

source voltage of 0 V, which ensures that the total power

consumed by all TXs in each slot is 40 W (i.e., less than

PT = 100 W). We define the signal-to-noise ratio (SNR)

of the RX-current estimation as γ =
E[|irx,q,t|

2]
σ2 , where the

expectation is with respect to different q’s and t’s. We define

the following normalized mean squared error (MSE) as the

performance metric,

ε̄ =
E
M̂

[
‖M− M̂‖2F

]

‖M‖2F
. (45)

The following numerical results are based on 106 Monte

Carlo simulations each with randomly generated RX current

errors.

Fig. 4 plots the normalized MSE ε̄ versus the RX-current

SNR γ, for both our proposed LS estimation scheme and

the benchmark scheme in [5]. For the proposed scheme,

we observe that in general ε̄ decreases as γ increases, as

expected. In particular, for T = 10, we observe that the

normalized MSE is 2.8 × 10−3, 3 × 10−4, and 3 × 10−5

for γ = 20 dB, 30 dB, and 40 dB, respectively. In practice,

the precision of current meters is typically more than 99%.

Neglecting the quantization error and feedback error, the

SNR γ can thus be practically modeled as 40 dB. Since the

proposed channel estimation scheme is accurate enough in

practice, we thus assume that the RX-current information is

known by the central controller perfectly in the subsequent

simulations. Moreover, we observe that the MSE decreases

as the number of training slots T increases. On the other

hand, we observe that the LS estimation outperforms the

estimation in [5] in terms of both lower MSE and less training

time required. For an MSE level of 10−3, the LS estimation
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Fig. 4: Normalized MSE for TX-RX inductance estimation.

achieves a SNR improvement of 3 dB and 6 dB for T = 10
and 20, respectively. Also, for the scheme in [5], the MSE

is high in the low SNR region, due to the real-part rounding

operation in (44).

B. MISO WPT with Single RX

In this subsection, we consider the special case of a single

RX, i.e., only RX 2 is present in Fig. 1. For performance

benchmark, we consider an uncoordinated WPT system with

all TXs set to have identical current with equal power

consumption. We compare this system with our proposed co-

ordinated WPT with optimal magnetic beamforming without

or with the peak voltage and current constraints at all TXs.

We define the efficiency of WPT as the ratio of the delivered

load power P to the total TX power ptx, i.e., η , P
ptx

.

Fig. 5 plots the total TX power ptx and the efficiency η
versus the delivered load power P . For the case without

TX voltage/current constraints, it is observed that the WPT

efficiencies with magnetic beamforming and benchmark sys-

tem are 77.3% and 58.6%, respectively. For the case with

TX voltage/current constraints, it is observed that magnetic

beamforming can deliver power up to 56 W to the RX

with the efficiency of 70%; while the benchmark system

can deliver at most 0.2 W to the RX with the efficiency of

58.6%. Thus, besides the WPT efficiency improvement, mag-

netic beamforming also significantly enhances the maximum

power deliverable to the RX load, under the same practical

circuit constraints.
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TABLE III: Comparison under different load power

P = 1 W P = 56 W

(i⋆
1
, v⋆

1
, p⋆

1
) (−0.0152, −1.109 − 32.027j, 0.0085) (−0.224, −52.910 + 46.910j, 5.9279)

(i⋆
2
, v⋆

2
, p⋆

2
) (−0.181, −13.185 − 15.953j, 1.194) (1.269 + 0.786j, 68.983 − 15.531j, 37.661)

(i⋆
3
, v⋆

3
, p⋆

3
) (−0.0062, −0.454 − 32.336j, 0.0014) (−0.190 + 0.0036j, −55.667 + 43.602j, 5.381)

(i⋆
4
, v⋆

4
, p⋆

4
) (−0.0036, −0.260 − 22.0638j, 0.000467) (−0.702 − 0.573j, −70.073 − 9.468j, 27.321)

(i⋆
5
, v⋆

5
, p⋆

5
) (−0.0490, −3.565 − 57.779j, 0.0874) (−0.0204 + 0.123j, −42.861 + 56.239j, 3.906)
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Fig. 5: TX sum-power and efficiency versus RX load power.

Fig. 5 also shows that the WPT efficiency decreases over

1 ≤ P ≤ 56 in W. To explain this observation and obtain

insights for magnetic beamforming, we further investigate

the two cases of P = 1 W and 56 W in the following.

The optimal currents, the corresponding voltages and the

consumed powers of all TXs are given in Table III for these

two cases. For P = 1 W, it is observed that most of the

transmit power is consumed by TX 2 and TX 5 which have

the two largest mutual inductance values with the RX. This

implies that the TX with larger mutual inductance with the

RX carries higher current, and thus consumes more power

so as to maximize the efficiency of WPT. In this case, all

TX current or voltage constraints are inactive, and it can

be further verified that the current of each TX is exactly

proportional to its mutual inductance with the RX. This is

in accordance with Theorem 1. In contrast, to support higher

RX load power of 56 W, the voltages of all TXs reach the

peak value 50
√
2 V. This results in a decreased efficiency,

due to relatively smaller mutual inductance between TXs 1,

3, 4 and the RX, compared to those between TXs 2, 5 and

the RX.

C. MIMO WPT with Multiple RXs

In this subsection, we consider the multi-user case, i.e.,

there are more than one RXs.

1) Two-user Case: For the two-user case, we consider in

Fig. 1 only RXs 1 and 2 are present. Fig. 6 plots the power

regions for the proposed magnetic beamforming and the

benchmark scheme with uncoordinated WPT, respectively.

Each power region is shown as a convex set, as expected.

There is a trade-off between the maximally delivered powers

prx, 1 and prx, 2 to RX 1 and RX 2, respectively, i.e., prx, 2
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Fig. 6: Power region for the two-user case with RX 1 and

RX 2.

decreases as prx, 1 increases. Without TX peak voltage/curent

constraints, we observe that for the magnetic beamforming

system, the maximally delivered power is 87.5 W and

77.5 W, for RX 1 and RX 2, respectively; while for the

benchmark system, the maximally delivered power for them

are 50.4 W and 27.5 W, respectively.

With TX peak voltage/current constraints, the maximally

delivered power is 46 W and 57.5 W, for RX 1 and RX

2, respectively, for the magnetic beamforming system. This

is because the inductance (i.e., 0.9468 µH) between TX 1
and RX 1 is much larger than that between any other TX

and RX 1, and the maximally delivered power to RX 1 is

limited by the peak voltage constraint for TX 1. In contrast,

for the benchmark system, the maximally delivered power

for them are 0.38 W and 0.22 W, for RX 1 and RX 2,

respectively, which are negligible compared to those for the

magnetic beamforming system. The significant improvement

over the benchmark system is also shown for both the cases

with or without the TX peak constraints.

2) Four-user Case: For the four-user case, we con-

sider RXs 1, 2, 3 and 4 are present in Fig. 1. We

fix the power profile vector α = [α1 α2 α3 α4]
T =

[0.1227 0.03615 0.7836 0.05752]T , under which numerical

results show that the optimal SDR solution is of rank

two. Fig. 7 plots the total TX power consumed versus the

total RX power delivered for the TS-based solution, the

randomization-based solution, and the benchmark scheme.

We observe that the TS solution achieves the best perfor-

mance, while the randomization solution performs slightly

worse. For the benchmark scheme, the maximally delivered

power to all RXs is only 0.8 W, and the consumed total TX

power increases faster than the proposed schemes.
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VII. CONCLUSIONS

This paper has studied the optimal magnetic beamforming

design subject to practical power and circuit constraints for

the multi-user MIMO MRC-WPT system. To characterize

the optimal performance trade-offs among the users on the

boundary of the multi-user power region, we formulate an

optimization problem to maximize the sum-power deliverable

to all RXs subject to the constraints on the minimum load

power at each RX, which is proportionally set based on a

given power-profile vector, as well as the practical maximum

peak voltage and current at each TX. We propose an iterative

algorithm to solve the formulated problem, which requires

to solve a TX sum-power minimization problem at each

iteration. For the special case of one single RX and without

TX peak current/voltage constraints, the optimal current of

each TX is shown to be proportional to the mutual inductance

between its TX coil and the RX coil. Besides, for the case

of multiple RXs and without TX peak current/voltage con-

straints, we propose a new TS-based scheme that achieves the

optimal solution. In general, the TX sum-power minimization

problem is a non-convex quadratically constrained quadratic

programming (QCQP) and thus difficult to solve optimally.

However, for the case of one single RX, we show the

existence of optimal rank-one solution to the SDR of the

formulated QCQP, and thus solve the problem optimally. For

the general case with multiple RXs, we derive a new upper

bound on the rank of the optimal SDR solution. Based on

the obtained SDR solution with higher rank, two approximate

solutions are proposed by applying the techniques of TS and

randomization, respectively. Furthermore, an efficient method

to estimate the magnetic MIMO channel is proposed for the

practical implementation of magnetic beamforming. Numer-

ical results show the effectiveness of the proposed magnetic

channel estimation and beamforming schemes as well as their

great potential to significantly enhance the energy efficiency,

maximum deliverable power, as well as performance fairness

in multi-user MIMO MRC-WPT systems over the benchmark

uncoordinated equal-current transmission. As a concluding

remark, we would like to point out that in this paper, we

have assumed that the RXs are well separated from each

other, and thus the mutual inductances between them are

negligible and thus ignored. However, if the RX coupling

is considered, our proposed circuit analysis and magnetic

beamforming design need to be modified accordingly, which

is worthy of investigation in future work.

APPENDIX A

PROOF TO THEOREM 1

For Q = 1, we construct the Lagrangian of (P2) as

L(̄i, v) =
1

2
īHBī+ v

(
α1P − w2

2rrx,1
īHM1ī

)
. (46)

Then, the (Lagrange) dual function is given by

L(v) = α1Pv+inf
ī

1

2
īH
(
R+

w2(1−v)
rrx,1

M1

)
ī. (47)
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Fig. 7: Total TX power v.s. total RX power for the four-user

case.

To obtain the best lower bound on the optimal objective

value of (P2), the dual variable v should be optimized over

v ≥ 0 to maximize the dual function given in (47). For

dual feasibility, the dual function (47) should be bounded

below. For convenience, we consider the following eigenvalue

decomposition (EVD):

R+
w2(1− v)

rrx,1
M1 = UΨUH , (48)

where the matrix U = [u1 u2 . . . uN ] is orthogonal, and

Ψ = diag{ψ1, . . . , ψN}, with ψ1 ≤ ψ2 ≤ . . . ≤ ψN . For the

case of arbitrary transmitter resistance values, the Lagrangian

in (46) is bounded below in ī and the dual function (47)

is maximized, only when v is chosen as v⋆ > 0 such that

ψ1 = 0. Moreover, we observe that the objective in (13a)

is minimized when the constraint (13b) holds with equality,

since both B and the matrix mmH are PSD. Hence, the

optimal current can be written as ī⋆ = βu1, where u1 is the

eigenvector associated with the eigenvalue ψ1 = 0, and β is

a constant such that the constraint (13b) holds with equality.

Since the dual optimal solution leads to a primal feasible

solution and the problem satisfies the Slater’s condition [18],

the duality gap for (P2) in the case of Q = 1 is zero (although

the problem is non-convex due to its non-convex constraints.)

For the special case of identical transmitter resistance, i.e.,

R = rIN , from the isometric property of the identity matrix

IN , the diagonal matrix Λ is given by

Λ = diag

{
r +

w2(1− v)

rrx,1
, r, . . . , r

}
,

and the eigenvector u1 = m1

‖m1‖2
, and un, ∀n ≥ 2,

are arbitrarily orthogonal vectors constructed by methods

such as Gram−Schmidt method. It is easy to show that

the Lagrangian in (46) is bounded below in ī and the dual

function (47) is maximized, only when v is chosen such that

the first eigenvalue is zero, i.e., the optimal dual variable is

v⋆ = 1 +
rrrx,1

w2
, (49)

and the optimal current is thus given in (16). The proof of

Theorem 1 is thus completed.
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APPENDIX B

PROOF TO THEOREM 2

Let λ = [λ1 . . . λQ]
T ≥ 0,ρ = [ρ1 . . . ρN ]T ≥ 0,

and µ = [µ1 . . . µN ]T ≥ 0 be the dual variables

corresponding to the constraint(s) given in (22b), (22c),

and (22d), respectively. Let the matrix S < 0 be the dual

variable corresponding to the constraint X < 0 in (22e). The

Lagrangian of (P1−SDR) is then written as

L(X, λ,ρ,S) =
1

2
Tr
(
BX

)
− (50)

Q∑

q=1

λq

(
Tr (MqX)− 2r2qαqP

w2rl,q

)
+

N∑

n=1

ρn
(
Tr (BnX)−A2

n

)
+

N∑

n=1

µn

(
Tr (WnX)−D2

n

)
− Tr (SX) .

Let X⋆,λ⋆,ρ⋆,µ⋆, and S⋆ be the optimal primal and

dual variables, respectively. Since (P1-SDR) is convex and

satisfies the Slater’s condition, the strong duality holds for

this problem [20]; as a result, the optimal primal and dual

solutions should satisfy the Karush−Kuhn−Tucker (KKT)

conditions given by

∇XL(X
⋆,λ⋆,ρ⋆,µ⋆,S⋆) =

1

2
B−

Q∑

q=1

λ⋆qMq+

N∑

n=1

ρ⋆nBn +

N∑

n=1

µ⋆
nWn − S⋆

= 0. (51)

S⋆X⋆ = 0. (52)

Next, by multiplying (51) by X⋆ on both sides and

substituting (52) into the obtained equation, we have

1

2
BX⋆−

Q∑

q=1

λ⋆qMqX
⋆+

N∑

n=1

ρ⋆nBnX
⋆+

N∑

n=1

µ⋆
nWnX

⋆ = 0.

(53)

We thus have

rank

((
1

2
B+

N∑

n=1

ρ⋆nBn +

N∑

n=1

µ⋆
nWn

)
X⋆

)

= rank

(
Q∑

q=1

MqX
⋆

)
≤ rank

(
Q∑

q=1

Mq

)
≤ Q. (54)

Since B is PSD, the matrix(
1
2B+

N∑
n=1

ρ⋆nBn +
N∑

n=1
µ⋆
nWn

)
must have full rank.

Hence, (54) implies

rank (X⋆) (55)

= rank

((
1

2
B+

N∑

n=1

ρ⋆nBn +

N∑

n=1

µ⋆
nWn

)
X⋆

)
≤ Q.

On the other hand, from [22, Thm. 3.2], we have

rank (X⋆) ≤
√
Q+ 2N. (56)

Hence, from (55) and (56), the rank of the optimal solution

X⋆ is upper-bounded as in (23). The proof of Theorem 2 is

thus completed.

APPENDIX C

PROOF OF THEOREM 3

With an estimate M̂, the squared error is given by

J(M̂) = Tr

((
G− M̂Z̃

)(
G− M̂Z̃

)H)
. (57)

The LS estimate of M is obtained by solving the following

squared-error minimization problem,

M̂ = argmin
M̂

Tr

((
G− M̂Z̃

)(
G− M̂Z̃

)H)
. (58)

The derivative of the squared error J(M̂) with respect to M̂

is derived as

∂J(M̂)

∂M̂
= −GZ̃H −G∗Z̃T + M̂

(
Z̃Z̃H + Z̃∗Z̃T

)
. (59)

Since the Q×T RX-current matrix Z has a full rank of Q
with probability one and the error matrix E is random, the

RX current matrix Z̃ = Z+E known at the central controller

should also have a full rank of Q with probability one and

thus its inverse exists. By setting the derivative in (59) to zero,

the LS estimate is obtained as in (42). From (57) and (42),

the corresponding least squared error is obtained as

M̂LS =
(
GZ̃H +G∗Z̃T

)(
Z̃Z̃H + Z̃∗Z̃T

)−1

. (60)

The proof of Theorem 3 is thus completed.
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