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Abstract—Cognitive Radio requires efficient and reliable spec-
trum sensing of wideband signals. In order to cope with the
sampling rate bottleneck, new sampling methods have been
proposed that sample below the Nyquist rate. However, such
techniques decrease the signal to noise ratio (SNR), deteriorating
the performance of subsequent energy detection. Cyclostationary
detection, which exploits the periodic property of communication
signal statistics, absent in stationary noise, is a natural candidate
for this setting. In this work, we consider cyclic spectrum recovery
from sub-Nyquist samples, in order to achieve both efficiency
and robustness to noise. To that end, we propose a structured
compressed sensing algorithm, that extends orthogonal matching
pursuit to account for the structure imposed by cyclostationarity.
Next, we derive a lower bound on the sampling rate required for
perfect cyclic spectrum recovery in the presence of stationary
noise and show that it can be reconstructed from samples
obtained below Nyquist, without any sparsity constraints on the
signal. In particular, in non sparse settings, the cyclic spectrum
can be recovered at 4/5 of the Nyquist rate. If the signal
of interest is sparse, then the sampling rate may be further
reduced to 8/5 of the Landau rate. Once the cyclic spectrum
is recovered, we estimate the number of transmissions that
compose the input signal, along with their carrier frequencies
and bandwidths. Simulations show that cyclostationary detection
outperforms energy detection in low SNRs in the sub-Nyquist
regime. This was already known in the Nyquist regime, but is
even more pronounced at sub-Nyquist sampling rates.

I. INTRODUCTION

Spectrum sensing has been thoroughly investigated in the
signal processing literature. Several sensing schemes have
been proposed, with different performance and complexity
levels. The simplest approach is energy detection [1], which
does not require any a priori knowledge on the input signal.
Unfortunately, energy detection is very sensitive to noise and
performs poorly in low signal to noise ratio (SNR) regimes.
In contrast, matched filter (MF) detection [2], [3], which
correlates a known waveform with the input signal to detect
the presence of a transmission, is the optimal linear filter for
maximizing SNR in the presence of additive stochastic noise.
This technique requires perfect knowledge of the potential
received transmission. A compromise between both methods
is cyclostationary detection [4]–[6]. This approach is more
robust to noise than energy detection but at the same time
only assumes the signal of interest exhibits cyclostationarity.

Cyclostationary processes have statistical characteristics that
vary periodically, arising from the underlying data modula-
tion mechanisms, such as carrier modulation, periodic keying
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or pulse modulation. The cyclic spectrum, a characteristic
function of such processes, exhibits spectral peaks at cer-
tain frequency locations called cyclic frequencies, which are
determined by the signal parameters, particularly the carrier
frequency and symbol rate [6]. When determining the presence
or absence of a signal, cyclostationary detectors exploit one
fundamental property of the cyclic spectrum: stationary noise
and interference exhibit no spectral correlation. Non-stationary
interference can be distinguished from the signal of interest
provided that at least one cyclic frequency of the signal is not
shared with the interference [6]. This renders such detectors
highly robust to noise and interference.

The traditional task of spectrum sensing has recently been
facing new challenges due, to a large extent, to cognitive radio
(CR) applications [7]. Today, CRs are perceived as a potential
solution to the spectrum over-crowdedness issues, bridging
between the scarcity of spectral resources and their sparse
nature [8]. Even though most of the spectrum is already owned
and new users can hardly find free frequency bands, various
studies [9]–[11] have shown that it is typically significantly
underutilized. CRs allow secondary users to opportunistically
use the licensed spectrum when the corresponding primary
user (PU) is not active [7]. CR requirements dictate new
challenges for its most crucial task, spectrum sensing. On the
one hand, detection has to be performed in real time, efficiently
and with minimal software and hardware resources. On the
other hand, it has to be reliable and able to cope with low
SNR regimes.

Nyquist rates of wideband signals, such as those CRs deal
with, are high and can even exceed today’s best analog-to-
digital converters (ADCs) front-end bandwidths. In addition,
such high sampling rates generate a large number of samples
to process, affecting speed and power consumption. In order
to efficiently sample sparse wideband signals, several new
sampling methods have recently been proposed [12]–[15] that
reduce the sampling rate in multiband settings below the
Nyquist rate. This alleviates the burden on both the analog and
digital sides by enabling the use of cheaper and lower power
reduced rate ADCs and the processing of fewer samples.

The authors of [12] derive the minimal sampling rate allow-
ing for perfect signal reconstruction in noise-free settings and
provide specific sampling and recovery techniques. However,
when the final goal is spectrum sensing and detection, recon-
structing the original signal is unnecessary. Power spectrum
reconstruction from sub-Nyquist samples is considered in
[16]–[18]. These works seek power spectrum estimates from
low rate samples, using multicoset sampling [16]–[18] and
the modulated wideband converter (MWC) [18] proposed in
[13]. The presence or absence of a signal in a particular
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frequency band is then assessed with respect to the estimated
power within the band. Unfortunately, the sensitivity of energy
detection used in the above works is amplified when performed
on sub-Nyquist samples due to noise aliasing [19]. Therefore,
this scheme fails to meet CR performance requirements in low
SNR regimes. On the other hand, little a priori knowledge can
be assumed on the received signals, making MF difficult to
implement. Consequently, cyclostationary detection is a natu-
ral candidate for spectrum sensing from sub-Nyquist samples
in low SNRs.

Signal detection using cyclostationarity and its application
to spectrum sensing for CR systems in the Nyquist regime,
has been thoroughly investigated; see e.g., [5], [8], [20], [21].
Recently, cyclostationary detection from sub-Nyquist samples
was treated in [22]–[30]. A general framework is adopted,
that exploits a linear relation between the sub-Nyquist and
Nyquist samples, over a finite sensing time. In particular,
a transformation between the Nyquist cyclic spectrum and
the time-varying correlations of the sub-Nyquist samples is
derived to retrieve the former from the latter. In [22], the
carrier frequencies, symbol periods and modulation types of
the transmissions are assumed to be known. In this case, the
cyclic spectrum can be reduced to its potential non zero cyclic
frequencies, which are recovered using simple least squares
(LS). However, this scheme cannot be applied in the context
of blind spectrum sensing for CR.

The authors in [23], [24] consider low-pass compressive
measurements of the correlation function. The cyclic autocor-
relation is then reconstructed at a given lag using compressed
sensing (CS) algorithms [31]. Two heuristic detection tech-
niques are developed in order to infer the presence or absence
of a transmission. However, it is not clear how the signal
itself should be sampled in order to obtain these correlation
measurements. In addition, no requirements on the number of
samples for recovering the cyclic autocorrelation or guarantees
on the detection methods are provided.

In [25], [26], the authors consider a random linear relation
between the sub-Nyquist samples autocorrelation and Nyquist
cyclic spectrum and formulate a `1-norm regularized LS
problem, enforcing sparsity on the latter. The same ideas
are adopted in [27] but the reconstruction is performed in
matrix form, allowing for higher resolution. In [28], correlation
lags beyond lag zero are exploited and the span of the
random linear projections is extended beyond one period of
cyclostationarity of the signal. These two extensions allow for
simple LS recovery without any sparsity requirements on the
signal.

The main drawback of this digital approach, adopted by
all works above, is that it does not deal with the sampling
scheme itself, since we do not have access to the Nyquist
samples. It simply assumes that the sub-Nyquist samples can
be expressed as random linear projections of the Nyquist
samples. In addition, due to the inherent finite sensing time,
the recovered cyclic frequencies lie on a predefined grid.
Therefore, in the above works, the frequencies of interest are
assumed to lie on that grid. The theoretical resolution that can
be achieved is thus dictated by the sensing time. Moreover, no
theoretical guarantees on the minimal sampling rate allowing

for perfect recovery of the cyclic spectrum have been given.
In [29], a concrete sampling scheme is considered, known

as multicoset, or non-uniform sampling. The authors derive
conditions on the system matrix to have full rank, allowing
for perfect cyclic spectrum recovery from the compressive
measurements. Random sampling in the form of a successive
approximation ADC (SAR-ADC) architecture [32] is used in
[30]. The resulting sampling matrix is similar to multicoset,
with the distinction that the grid is that of the quantization time
rather than the Nyquist grid. While explicit sampling schemes
are considered here, the theoretical cyclic spectrum resolution
still depends on the sensing time, so that the gridding, or
discretization, is part of the theoretical derivations.

In this work, we propose to reconstruct the signal’s cyclic
spectrum from sub-Nyquist samples obtained using the meth-
ods of [12]–[14]. Our theoretical approach does not involve
gridding or discretization and the cyclic spectrum can be
recovered at any frequency. In addition, the MWC analog
front-end presented in [13] is a practical sampling scheme
that has been implemented in hardware [33]. We perform cy-
clostationarity detection on the sub-Nyquist samples, thereby
obtaining both an efficient, fast and frugal detector on the one
hand and one that is reliable and robust to noise on the other.
We derive a sampling rate bound allowing for perfect cyclic
spectrum recovery in our settings, for sparse and non sparse
signals. We note that the cyclic spectrum can be perfectly
recovered in the presence of stationary noise, from compressed
samples, except for a limited number of cyclic frequencies that
are multiples of the basic low sampling rate. For those, the
reconstruction is performed in the presence of bounded noise.

In particular, we show that, in the presence of stationary
noise, the cyclic spectrum can be reconstructed from samples
obtained at 4/5 of the Nyquist rate, without any sparsity
assumption on the signal. If the signal of interest is sparse,
then the sampling rate can be further reduced to 8/5 of the
Landau rate, which is the Lebesgue measure of the occupied
bandwidth [34]. Similar results were observed in [18] in the
context of power spectrum reconstruction of stationary signals.
There, it was shown that the power spectrum of non sparse
signals can be retrieved at half the Nyquist rate and that
of sparse signals can be perfectly recovered at the Landau
rate. Once the cyclic spectrum is reconstructed, we apply our
feature extraction algorithm, presented in [35] in the Nyquist
regime, that estimates the number of transmissions and their
respective carrier frequencies and bandwidths.

The main contributions of this paper are as follows:
• Low rate sampling and digital processing - the cyclic

spectrum is recovered directly from sub-Nyquist samples.
Both sampling and digital processing are performed at a
low rate.

• Structured CS algorithm - an orthogonal matching
pursuit (OMP) based algorithm to reconstruct the cyclic
spectrum is proposed that exploits the inherent structure
of the correlation matrices between frequency samples of
the signal.

• Robust detection in low SNR - we show that cyclosta-
tionary detection performed by estimating the transmis-
sions carrier frequency and bandwidth is more robust to
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noise than energy detection at sub-Nyquist rates.
• Minimal sampling rate derivation - a lower bound on

the sampling rate required for cyclic spectrum recovery
is derived for both sparse and non sparse signals.

This paper is organized as follows. In Section II, we describe
the cyclostationary multiband model. Sections III and IV
present the sub-Nyquist sampling stage and cyclic spectrum
reconstruction algorithm and conditions, respectively. Numer-
ical experiments are presented in Section V.

II. CYCLOSTATIONARY MULTIBAND MODEL

A. Multiband Model

Let x(t) be a real-valued continuous-time signal, supported
on F = [−1/2TNyq,+1/2TNyq] and composed of up to
Nsig uncorrelated cyclostationary transmissions corrupted by
additive noise, such that

x(t) =

Nsig∑
i=1

si(t) + n(t). (1)

Here n(t) is a wide-sense stationary bandpass noise and si(t)
is a zero-mean cyclostationary bandpass process, as defined
below, from the class of pulse-amplitude modulation (PAM)
signals:

si(t) =
√

2 cos(2πfit)
∑
k

aIikgi(t− kTi)

−
√

2 sin(2πfit)
∑
k

aQikgi(t− kTi). (2)

The unknown symbols modulating the in-phase and quadrature
components are denoted {aIik} and {aQik}, respectively, and
gi(t) are the unknown pulse shape functions. The single-
sided bandwidth, the carrier frequency and the symbol period
are denoted by Bi, fi and Ti, respectively. Special cases of
passband PAM include phase-shift keying (PSK), amplitude
and phase modulation (AM-PM) and quadrature amplitude
modulation (QAM) [36].

Formally, the Fourier transform of x(t), defined by

X(f) = lim
T→∞

1√
T

∫ T/2

−T/2
x(t)e−j2πftdt, (3)

is zero for every f /∈ F . We denote by fNyq = 1/TNyq the
Nyquist rate of x(t). The number of transmissions Nsig, their
carrier frequencies, bandwidths, symbol rates and modulations,
including the symbols {aik} and the pulse shape functions
gi(t) are unknown, namely the reconstruction of the cyclic
spectrum, defined in the next section, is performed in a blind
scenario. The single-sided bandwidth of each transmission is
only assumed to not exceed a known maximal bandwidth B,
namely Bi ≤ B for all 1 ≤ i ≤ Nsig. If the bandwidth is fully
occupied, then NsigB is on the order of fNyq.

We will consider the special case of sparse multiband
signals as well and show that the sampling rate for perfect
cyclic spectrum reconstruction can be further reduced. In this
setting, the number of transmissions Nsig which dictates the
signal sparsity, or at least an upper bound on it, is assumed
to be known and NsigB � fNyq. We denote by K = 2Nsig

the upper bound on the number of occupied bands, to account
for both the positive and negative frequency bands for each
signal.

B. Cyclostationarity

A process s(t) is said to be cyclostationary with period T0 in
the wide sense if its mean E[s(t)] = µs(t) and autocorrelation
E[s(t − τ/2)s(t + τ/2)] = Rs(t, τ) are both periodic with
period T0 [4]:

µs(t+ T0) = µs(t), Rs(t+ T0, τ) = Rs(t, τ). (4)

Given a wide-sense cyclostationary random process, its auto-
correlation Rs(t, τ) can be expanded in a Fourier series

Rs(t, τ) =
∑
α

Rαs (τ)ej2παt, (5)

where α = m/T0,m ∈ Z and the Fourier coefficients, referred
to as cyclic autocorrelation functions, are given by

Rαs (τ) =
1

T0

∫ T0/2

−T0/2

Rs(t, τ)e−j2παtdt. (6)

The cyclic spectrum is obtained by taking the Fourier trans-
form of (6) with respect to τ , namely

Sαs (f) =

∫ ∞
−∞

Rαs (τ)e−j2πfτdτ, (7)

where α is referred to as the cyclic frequency and f is the
angular frequency [4]. If there is more than one fundamental
cyclic frequency 1/T0, then the process s(t) is said to be
polycyclostationary in the wide sense. In this case, the cyclic
spectrum contains harmonics (integer multiples) of each of the
fundamental cyclic frequencies [6]. These cyclic frequencies
are related to the transmissions carrier frequencies and symbol
rates as well as the modulation type.

An alternative interpretation of the cyclic spectrum, which
we will exploit, expresses it as the cross-spectral density
Sαs (f) = Suv(f) of two frequency-shifted versions of s(t),
u(t) and v(t), such that

u(t) , s(t)e−jπαt, (8)
v(t) , s(t)e+jπαt. (9)

Then, from [37], it holds that

Sαs (f) = Suv(f) = E
[
S
(
f +

α

2

)
S∗
(
f − α

2

)]
. (10)

The Fourier transform of a wide-sense stationary process
n(t) is a white noise process, not necessarily stationary, so
that [37]

E [N(f1)N∗(f2)] = S0
n(f1)δ(f1 − f2). (11)

Therefore, stationary noise exhibits no cyclic correlation [6],
that is

Sαn (f) = 0, α 6= 0. (12)

This property is the motivation for cyclostationary detection,
in low SNR regimes in particular.
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Fig. 1. Support region of the cyclic spectrum of Sαsi (f).

C. Cyclic Spectrum of Multiband Signals

Denote by [f
(1)
i , f

(2)
i ] the right-side support of the ith trans-

mission si(t). Then, Bi = f
(2)
i −f

(1)
i and fi = (f

(1)
i +f

(2)
i )/2.

The support region in the (f, α) plane of the cyclic spectrum
Sαsi(f) of such a bandpass cyclostationary signal is composed
of four diamonds, as shown in Fig. 1. More precisely, it holds
that [6]

Sαsi(f) = 0, for
∣∣∣∣|f | − |α|2

∣∣∣∣ ≤ f (1)
i or |f |+ |α|

2
≥ f (2)

i .

(13)
Moreover, since x(t) is bandlimited to F , it follows that [6]

Sαx (f) = 0, for |f |+ |α|
2
≥
fNyq

2
. (14)

Since the transmissions si(t) are assumed to be zero-mean
and uncorrelated (coming from different sources), the cyclic
spectrum of x(t) does not contain any additional harmonics
which would result from correlation between different trans-
missions. It is thus given by

Sαx (f) =


Nsig∑
i=1

Sαsi(f) α 6= 0

Nsig∑
i=1

S0
si(f) + S0

n(f) α = 0.

(15)

At the cyclic frequency α = 0, the cyclic spectrum reduces
to the power spectrum and the occupied bandwidth along the
angular frequency axis is 2NsigB, to account for both positive
and negative frequency bands. This cyclic frequency α = 0
contains the noise power spectrum as well. As a consequence,
we choose to detect the transmissions and estimate their
carriers and bandwidths at cyclic frequencies α 6= 0. Note
that, for α 6= 0, the sum only contains the contributions of
the transmissions that exhibit cyclostationarity at the corre-
sponding cyclic frequency α. Therefore, for each α 6= 0, the
sum typically contains less than Nsig non zero elements. It
follows from (15) that, besides the noise contribution at the
cyclic frequency α = 0, the support of Sαx (f) is composed of
4Nsig diamonds, that is four diamonds for each transmission,
as those shown in Fig. 1.

The support of Sαx (f) consists of two types of correlations:
the two diamonds lying on the angular frequency f axis and
those lying on the cyclic frequency α. The diamonds on the
f axis contain self-correlations between a band and its shifted
version. These correspond to cyclic peaks at locations (f, α),
with f ∈ F and 0 ≤ |α| ≤ B. Cyclic features at these
locations are the result of the transmissions symbol rate 1/Ti.
The value of Ti can be derived from the bandwidth, as

Ti =
1 + γi
Bi

, (16)

where 0 ≤ γi ≤ 1 is the unknown excess-bandwidth parameter
of gi(t) [36]. Therefore, cyclic peaks that stem from the
symbol rate appear at cyclic frequencies α = 1

Ti
≤ Bi ≤ B.

The two diamonds lying on the α axis contain cross-
correlations between two symmetric bands, belonging to the
same transmission. These correspond to cyclic peaks at loca-
tions (f, α), with 0 ≤ |f | ≤ B/2 and B < |α| ≤ fNyq. In
particular, applying (10) for α = ±2fi, namely

S±2fi
x (f) = E [X(f + fi)X

∗(f − fi)] , (17)

computes the correlation between the positive and negative
bands of the ith transmission. This generates a peak, or cyclic
feature, in the cyclic spectrum at location (f = 0, α = ±2fi).
By detecting the peak location, one can estimate the carrier fre-
quency of the corresponding transmission si(t). Furthermore,
from (13), it is clear that the occupied bandwidth in the cyclic
spectrum at α = ±2fi is equal to the bandwidth Bi. These
observations are the key to estimating the transmissions carrier
frequency and bandwidth. We note that other modulations not
included in (2) may not exhibit features at α = ±2fi. In such
cases, higher order cyclostationary statistics may be used for
detection [6], [38].

D. Goal

Our objective is to reconstruct Sαx (f) from sub-Nyquist
samples without any a priori knowledge on the support and
modulations of si(t), 1 ≤ i ≤ Nsig. We show that the cyclic
spectrum of non sparse signals can be recovered from samples
obtained at 4/5 of the Nyquist rate and if the signal is assumed
to be sparse, then the sampling rate can be as low at 8/5 of
the Landau rate.

We then estimate the number of transmissions Nsig present
in x(t), their carrier frequencies fi and their bandwidths
Bi. Once the signals’ carrier frequency and bandwidth are
estimated, the occupied support is determined. In [35], we
proposed a generic feature extraction algorithm for the esti-
mation of Nsig, fi and Bi, for all 1 ≤ i ≤ Nsig, from the cyclic
spectrum obtained from Nyquist samples. Here, we apply the
same scheme to the reconstructed cyclic spectrum from sub-
Nyquist rather than Nyquist samples.

III. SUB-NYQUIST SAMPLING

In this section, we briefly describe the sub-Nyquist sam-
pling schemes we adopt. We consider two different sampling
methods: multicoset sampling [12] and the MWC [13] which
were previously proposed for sparse multiband signals in con-
junction with energy detection. We show that both techniques
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lead to identical expressions of the signal cyclic spectrum
in terms of correlations between the samples. Therefore, the
cyclic spectrum reconstruction stage presented in Section IV
can be applied to either of the sampling approaches.

A. Multicoset sampling

Multicoset sampling [39] can be described as the selection
of certain samples from the uniform grid. More precisely, the
uniform grid is divided into blocks of N consecutive samples,
from which only M are kept. The ith sampling sequence is
defined as

xci [n] =

{
x(nTNyq), n = mN + ci,m ∈ Z
0, otherwise, (18)

where 0 < c1 < c2 < · · · < cM < N − 1. Multicoset
sampling can be implemented as a multi-channel system with
M channels, each composed of a delay unit corresponding to
the coset ci followed by a low rate ADC. Let fs = 1

NTNyq
≥ B

be the sampling rate of each channel and Fs = [0, fs].
Following the derivations in [12], we obtain

z(f̃) = Ax(f̃), f̃ ∈ Fs, (19)

where zi(f̃) = Xci(e
j2πf̃TNyq), 0 ≤ i ≤ M − 1, are the

discrete-time Fourier transforms (DTFTs) of the multicoset
samples and

xk(f̃) = X
(
f̃ +Kkfs

)
, 1 ≤ k ≤ N, (20)

where Kk = k − N+1
2 , 1 ≤ k ≤ N for odd N and Kk =

k − N+2
2 , 1 ≤ k ≤ N for even N . Each entry of x(f) is

referred to as a slice of the spectrum of x(t). The ikth element
of the M ×N matrix A is given by

Aik =
1

NTNyq
ej

2π
N ciKk , (21)

namely A is determined by the known sampling pattern
{ci}Mi=1.

B. MWC sampling

The MWC [13] is composed of M parallel channels. In each
channel, an analog mixing front-end, where x(t) is multiplied
by a mixing function pi(t), aliases the spectrum, such that
each band appears in baseband, as illustrated in Fig. 2. The
mixing functions pi(t) are required to be periodic with period
Tp such that fp = 1/Tp ≥ B. The function pi(t) has a Fourier
expansion

pi(t) =

∞∑
l=−∞

cile
j 2π
Tp
lt
. (22)

In each channel, the signal goes through a lowpass filter with
cut-off frequency fs/2 and is sampled at the rate fs ≥ fp,
resulting in the samples yi[n]. For the sake of simplicity, we
choose fs = fp. From [13], the relation between the known
DTFTs of the samples yi[n] and the unknown X(f) is given
by

z(f̃) = Ax(f̃), f̃ ∈ Fs, (23)

where z(f̃) is a vector of length M with ith element zi(f̃) =

Yi(e
j2πf̃Ts). The entries of the unknown vector x(f̃) are given

by (20). The M×N matrix A contains the known coefficients
cil such that

Ail = ci,−l = c∗il, (24)

where N = dfNyq/fse. This relation is illustrated in Fig. 2.

𝑋(𝑓) – Spectrum of 𝑥(𝑡)

+

𝑙1𝑓𝑝

~ ~~ ~~ ~~ ~

𝑙2𝑓𝑝 𝑙3𝑓𝑝

𝑓𝑝

2
−
𝑓𝑝

2

𝑖1 Channel 𝑖2 Channel

𝑓𝑝

2
−
𝑓𝑝

2

𝑎𝑖1𝑙1
×

𝑎𝑖1𝑙2
× ×

𝑎𝑖1𝑙3

+

𝑎𝑖2𝑙1
×

𝑎𝑖2𝑙2
× ×

𝑎𝑖2𝑙3

𝑓Nyq

2
0

Fig. 2. The spectrum slices x(f̃) of the input signal are shown here to be
multiplied by the coefficients ail of the sensing matrix A, resulting in the
measurements zi(f̃) for the ith channel. Note that in multicoset sampling,
only the slices’ complex phase is modified by the coefficients ail. In the
MWC, both the phases and amplitudes are affected in general.

Systems (19) and (23) are identical for both sampling
schemes: the only difference is the sampling matrix A. In
the next section, we derive conditions for the reconstruction
of the cyclic spectrum from either class of samples. The
requirements on the resulting sampling matrix A are tied to
conditions on the sampling pattern for multicoset sampling
[12] and on the mixing sequences for the MWC [13]. We
then present a method for reconstruction of the analog cyclic
spectrum for both sampling schemes jointly. In particular,
we will reconstruct Sαx (f) from correlations between shifted
versions of z(f̃), defined in (19) and (23). We note that for
both sampling approaches, the overall sampling rate is

ftot = Mfs =
M

N
fNyq. (25)

In the simulations, we consider samples obtained using the
MWC. However, multicoset samples can be used indifferently.

IV. CYCLIC SPECTRUM RECONSTRUCTION

In this section, we provide a method to reconstruct the cyclic
spectrum Sαx (f) of x(t) from sub-Nyquist samples obtained
using either of the sampling schemes described above, namely
multicoset and the MWC. We also investigate cyclic spectrum
recovery conditions, that is the minimal sampling rate allowing
for perfect recovery of Sαx (f) in the presence of stationary
noise. Finally, we consider the special case of power spectrum
reconstruction, presented in [18], and compare it to cyclic
spectrum in terms of both recovery method and conditions.
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A. Relation between Samples and Cyclic Spectrum

From (19) or (23), we have

Ra
z(f̃) = ARa

x(f̃)AH , f̃ ∈ [0, fs − a] , (26)

for all a ∈ [0, fs], where

Ra
x(f̃) = E

[
x(f̃)xH(f̃ + a)

]
, (27)

and
Ra

z(f̃) = E
[
z(f̃)zH(f̃ + a)

]
. (28)

Here (.)H denotes the Hermitian operation. The entries in
the matrix Ra

x(f̃) are correlations between shifted versions of
the slices x(f̃), namely correlations between frequency-shifted
versions of x(t). The variable a controls the shift between the
slices, while f̃ , obtaining values in the interval [0, fs − a],
determines the specific frequency location within the slice.
Both a and f̃ are continuous and Ra

x(f̃) can be computed for
any combination of a ∈ [0, fs] and f̃ ∈ [0, fs−a]. In practice,
with a limited sensing time, a and f̃ are discretized according
to the number of samples per channel.

To proceed, we begin by investigating the link between the
cyclic spectrum Sαx (f) and the shifted correlations between
the slices x(f̃), namely the entries of Ra

x(f̃). We then show
how the latter can be recovered from Ra

z(f̃) using (26).
The alternative definition of the cyclic spectrum (10) implies

that the elements in the matrix Ra
x(f̃) are equal to Sαx (f) at

the corresponding α and f . Indeed, it can easily be shown that

Ra
x(f̃)(i,j) = Sαx (f), (29)

for

α = (j − i)fs + a

f = −
fNyq

2
+ f̃ − fs

2
+

(j + i)fs
2

+
a

2
. (30)

Here Ra
x(f̃)(i,j) denotes the (i, j)th element of Ra

x(f̃). In
particular, from (15), it follows that for a = 0, namely with
no shift, it holds that

R0
x(f̃) =

Nsig∑
k=1

R0
sk

(f̃) + R0
n(f̃). (31)

Here, R0
n(f̃) is a diagonal matrix that contains the noise’s

power spectrum, such that

R0
n(f̃)kk = S0

n

(
−
fNyq

2
+ kfs + f̃

)
, (32)

for 0 ≤ k ≤ N − 1, and

Ra
sk

(f̃) = E
[
sk(f̃)sHk (f̃ + a)

]
, (33)

where sk(f̃) is a vector of size N whose non zero elements
are the frequency slices from x(f̃) corresponding to the kth
transmission. The diagonal of R0

x(f̃)kk, for 0 ≤ k ≤ N − 1,
contains the power spectrum of x(t) such that

R0
x(f̃)kk = S0

x

(
−
fNyq

2
+ kfs + f̃

)
, (34)

is the sum of the transmissions’ and noise’s power spectrum.
Since n(t) is stationary, for a 6= 0, we have

Ra
x(f̃) =

Nsig∑
k=1

Ra
sk

(f̃). (35)

Our goal can then be stated as recovery of Ra
x(f̃), for a ∈

[0, fs] and f̃ ∈ [0, fs−a], since once Ra
x(f̃) is known, Sαx (f)

follows for all (α, f), using (29).
We now consider the structure of the autocorrelation ma-

trices Ra
x(f̃), which is related to the support of the cyclic

spectrum Sαx (f). In Section II-B, we discussed the sup-
port of Sαx (f), composed of two types of correlations: self-
correlations between a band and its shifted version and cross-
correlations between shifted versions of symmetric bands be-
longing to the same transmission. Consider a given frequency
location f̃ and shift a. The frequency component xi(f̃), for
0 ≤ i ≤ N − 1, can be correlated to at most two entries of
x(f̃+a), one from the same band and one from the symmetric
band. The correlated component can be either in the same,
respectively symmetric, slice or in one of the adjacent slices.
This follows from the fact that each band may split between
two slices at most, since we require fp ≥ B. Thus, the first
correlated entry is either i or i ± 1 and the second is either
N−i, N−i+1 or N−1+2. Since the noise is assumed to be
wide-sense stationary, from (11), a noise frequency component
is correlated only with itself. Thus, n(t) can contribute non-
zero elements only on the diagonal of R0

x(f̃).
Figures 4 and 5 illustrate these correlations for a = 0

and a = fs/2, respectively. First, in Fig. 3, an illustration
of the spectrum of x(t), namely X(f), is presented for the
case of a sparse signal buried in stationary bandpass noise.
It can be seen that frequency bands of X(f) either appear
in one fp-slice or split between two slices. The resulting
vector of spectrum slices x(f) and the correlations between
these slices without any shift, namely R0

x(f̃), are shown in
Figs. 4(a) and (b), respectively. Define the d-diagonal and d-
anti diagonal of an N ×N matrix to be its (i, j)th elements
such that j = i + d, and j = N − i + 1 − d, respectively.
In particular, the 0-diagonal stands for the main diagonal and
the 0-anti diagonal is the secondary diagonal. In Fig. 4(b), we
observe that self-correlations appear only on the main diagonal
since every frequency component is correlated with itself.
In particular, the main diagonal contains the noise’s power
spectrum (in green). Cross-correlations between the yellow
symmetric triangles appear in the 0-anti diagonal, whereas
those of the blue trapeziums are contained in the −1 and 1-
anti diagonals. The red rectangles do not contribute any cross-
correlations for a shift of a = 0. Figures 5(a) and (b) show
the vector x(f̃) and its shifted version x(f̃ +a) for a = fs/2,
respectively. The resulting correlation matrix Ra

x(f̃) appears
in Fig. 5(c). Here, the self correlations of the blue trapezium
appear in the −1-diagonal. The non zero cross-correlations all
appear in the anti-diagonal, for the shift a = fs/2. We note
that for this shift, the yellow triangles do not contribute self
or cross correlations.

The following four conclusions can be drawn from the
observations above on the structure of Ra

x(f̃), for a given
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Fig. 3. Original spectrum X(f).

Fig. 4. (a) Spectrum slices vector x(f̃) (b) correlated slices of x(f̃) in the
matrix R0

x(f̃).

a ∈]0, fs] and f̃ ∈ [0, fs − a]. We will treat the case where
a = 0 separately since it yields a different structure due to the
presence of noise.
• Conclusion 1: The non zeros entries of Ra

x(f̃) are
contained in its −1, 0 and 1-diagonals and −1, 0 and
1-anti diagonals.

• Conclusion 2: The ith row of Ra
x(f̃) contains at

most two non zero elements at locations (i, g(i)) and
(i, g(N − i+ 1)), where

g(i) =

 i or i± 1 2 ≤ i ≤ N − 1,
i or i+ 1 i = 1,
i or i− 1 i = N.

(36)

• Conclusion 3: The jth column of Ra
x(f̃) contains at

most two non zero elements at locations (g(j), j)) and
(g(N − j + 1), j), for 1 ≤ j ≤ N .

• Conclusion 4: For each specific frequency f̃ , a trans-
mission contributes to at most two slices, one in the
negative and one in the positive frequencies. This is due to
the assumption that fp ≥ B. Therefore, Ra

x(f̃) contains

Fig. 5. (a) Spectrum slices vector x(f̃) (b) spectrum slices shifted vector
x(f̃ + a) for a = fs/2 (c) correlated slices of x(f̃) and x(f̃ + a) in the
matrix Ra

x(f̃), with a = fs/2.

at most K = 2Nsig rows/columns that have non zero
elements. Without any sparsity assumption, it is obvious
that K = N even if the number of transmissions is
greater than N/2.

From Conclusions 2 and 4, it follows that Ra
x(f̃) is 2K-sparse

and has additional structure described in Conclusions 1-3.
Since the non zero elements of Ra

x(f̃) only lie on the 3
main and anti-diagonals, (26) can be further reduced to

raz(f̃) = (Ā⊗A)vec(Ra
x(f̃)) = (Ā⊗A)Brax(f̃) , Φrax(f̃),

(37)
where Ā denotes the conjugate matrix of A and

Φ = (Ā⊗A)B. (38)

Here ⊗ is the Kronecker product, raz(f̃) = vec(Ra
z(f̃)), where

vec(·) denotes the column stack concatenation operation, and
B is a N2×(6N−4) selection matrix that selects the elements
of the −1, 0 and 1-diagonals and anti-diagonals of Ra

x(f̃) from
the vector vec(Ra

x(f̃)). The resulting (6N − 4) × 1 vector
composed of these selected elements is denoted by rax(f̃).

From Conclusions 2-4, the vector rax(f̃) is 2K-sparse and
its support presents additional structure. Denote by Σk the set
of k-sparse vectors that belong to a linear subspace Σ. In our
case, rax(f̃) belongs to Σk = Σ2K , defined as

Σ2K = {x ∈ R(6N−4)×1| |S(x)| ≤ 2K ∧ S(x) ∈ I}, (39)

where S(x) denotes the support of x and the set I is
determined by the following properties:

1) If the group indexed by j is in I, then the group indexed
by (N + 1− j) is in I as well. The groups are defined
in the following items.

2) If the group indexed by 2 ≤ j ≤ N − 1 is in I, then it
means that at most one of the entries {6j−1, 6j, 6j+1}
and at most one of the entries {6j + 2, 6j + 3, 6j + 4}
are in I.

3) If the group indexed by j = 1 is in I, then at most
one of the entries {1, 2} and at most one of the entries
{3, 4} are in I.

4) If the group indexed by j = N is in I, then at most one
of the entries {6N − 7, 6N − 6} and at most one of the
entries {6N − 5, 6N − 4} are in I.

Item 1) follows from Conclusion 4 and items 2)-3) and 4)
follow from Conclusions 2-3. We note that the indexation
above is valid if the selection matrix in (37) selects the
elements of vec(Ra

x(f̃)) row by row. Any other selection order
would yield a different indexation.

Consider now the case in which a = 0. The matrix
R0

x(f̃) contains the power spectrum of the transmissions and
the noise on its main diagonal and cyclic components of
the transmissions on its −1, 0 and 1-anti diagonals. The
remaining elements are zero. Denote by r0

x1
the N × 1 non-

sparse vector composed of the diagonal of R0
x(f̃) and by

r0
x2

the (3N − 2) × 1 sparse vector composed of its −1, 0
and 1-anti diagonals. Let Φ1 = Ā � A where � denotes
the Khatri-Rao product and Φ2 = (Ā ⊗ A)B̃ with B̃ a
N2 × (3N − 2) selection matrix that selects the elements
of the −1, 0 and 1-anti diagonals of R0

x(f̃) from the vector
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vec(R0
x(f̃)). Combining (31) and (37), we can write r0

z(f̃) as
the sum of two components as follows,

r0
z(f̃) = Φ2r

0
x2

(f̃) + w(f̃), (40)

where w(f̃) = Φ1r
0
x1

(f̃) is the noise component. We note
that the signal’s power spectrum is buried in the noise w(f̃).
Therefore, we do not recover it and signal detection will be
performed only on cyclic frequencies α 6= 0.

From (14) and (29), by recovering rax(f̃) ∈ Σ2K for all a ∈
[0, fs], f̃ ∈ [0, fs − a], we recover the entire cyclic spectrum
of x(t). We consider only a ≥ 0 and consequently α ≥ 0. We
thus only reconstruct half of the cyclic spectrum, known to
be symmetric [6]. In (37), there is no noise component, even
if the signal x(t) is corrupted by additional stationary noise.
For the corresponding cyclic frequencies, we can therefore
achieve perfect recovery. In contrast, in (40), namely for a = 0,
there is an additional noise component. From (30), this case
corresponds to cyclic frequencies which are multiples of the
channels’ sampling frequency fs. For these frequencies, the
recovery of the sparse vector r0

x2
(f̃) ∈ Σ2K is not perfect

and is performed in the presence of bounded noise. In the
simulations, we observe that for detection purposes, this noisy
recovery is satisfactory. To achieve perfect recovery for these
cyclic frequencies as well, we may sample the signal using a
different sampling frequency fs2 .

B. Cyclic Spectrum Recovery Conditions

We now consider conditions for perfect recovery of the
cyclic spectrum Sαx (f) from sub-Nyquist samples. Corollary 1
below derives sufficient conditions on the minimal number of
channels M for perfect recovery of Ra

x(f̃), for any a ∈]0, fs]
and f̃ ∈ [0, fs − a] in the presence of additive stationary
noise. As stated above, for a = 0, the recovery is noisy.
From Conclusion 1, we only need to recover rax(f̃) from
(37) or (40) for a 6= 0 or a = 0, respectively. Theorem 1
first states sufficient conditions for reconstruction of the vector
rax(f̃) ∈ Σ2K . To that end, we rely on the following Lemma
which is well known in the CS literature [15], [31].

Lemma 1. For any vector y ∈ Rm, there exists at most one
signal x ∈ Σk such that y = Ax if and only if all sets of 2k
columns of A belonging to W , such that

W = {S(x1)
⋃
S(x2)|x1,x2 ∈ Σk}, (41)

are linearly independent. In particular, for uniqueness we must
have that m ≥ 2k.

Using Lemma 1, it follows that in order to perfectly recover
rax(f̃) ∈ Σ2K from raz(f̃), we need to ensure that all sets of
4K columns of Φ belonging to W are linearly independent. In
our case, W is the set of unions of the supports of two vectors
from Σ2K , as defined in (41). The following theorem relates
spark properties of the sampling matrix A to rank properties
of M2×4K sub-matrices of Φ, whose columns belong to W ,
which we denote by ΦW . Since Φ2 in (40) is a submatrix of
Φ, we only need to consider recovery conditions for the case
a 6= 0. For a = 0, under these conditions, we do not achieve
perfect recovery due to the presence of noise in (40).

Theorem 1. Let Φ be defined in (38), with A of size M ×N
(M ≤ N ) such that spark(A) = M + 1. The M2 × 4K
matrix ΦW , whose columns belong to W defined in (41) with
Σk = Σ2K from (39), is full column rank if M > 8

5K.

We note that if K ≥ 2, namely there is at least one
transmission, then M > 8

5K implies M2 ≥ 4K and ΦW

is a tall matrix.
Proof: Recall that the matrix Φ is expressed as

Φ = [ā1 ⊗ a1 ā2 ⊗ a2 . . . āN ⊗ aN . . .

. . . ā1 ⊗ a2 ā2 ⊗ a3 . . . āN−1 ⊗ aN

. . . ā2 ⊗ a1 ā3 ⊗ a2 . . . āN ⊗ aN−1

ā1 ⊗ aN ā2 ⊗ aN−1 . . . āN ⊗ a1 . . .

. . . ā1 ⊗ aN−1 ā2 ⊗ aN−2 . . . āN−1 ⊗ a1

. . . ā2 ⊗ aN ā3 ⊗ aN−1 . . . āN ⊗ a2 ], (42)

where ai and āi denote the ith column of A and its conjugate,
respectively. Assume by contradiction that the columns of ΦW

are linearly dependent. Then, there exist β1, · · ·β4K , not all
zeros, such that

4K∑
j=1

βjφ
W
j = 0, (43)

where φWj denotes the jth column of ΦW and is of the form

φWj = ā[j] ⊗ ag([j]) or ā[j] ⊗ ag([N+1−j]). (44)

Here a[j] denotes the column of A that corresponds to the
jth selected column of Φ and g(·) is defined in (36). Denote
by k0 the number of indices [j], for 1 ≤ j ≤ K, that appear
twice in ΦW . Obviously, 0 ≤ k0 ≤ K and k0 is even.

From 1)-4) in the definition of Σ2K , we can express ΦW

as

ΦW = [ā[1] ⊗ ag([1]) . . . ā[K] ⊗ ag([K]) . . .

. . . ā[1] ⊗ ah([1]) . . . ā[k0/2] ⊗ ah([k0/2]) . . .

. . . ā[K−k0/2] ⊗ ah([K−k0/2]) . . . ā[K] ⊗ ah([K]) . . .

. . . ā[K+1] ⊗ ag([K+1]) . . . ā[2K−k0] ⊗ ag([2K−k0]) . . .

. . . ā[1] ⊗ ag([K]) . . . ā[K] ⊗ ag([1]) . . .

. . . ā[1] ⊗ ah([K]) . . . ā[k0/2] ⊗ ah([K−k0/2]) . . .

. . . ā[k0/2] ⊗ ah([K−k0/2]) . . . ā[K] ⊗ ah([1]) . . .

. . . ā[K+1] ⊗ a[2K−k0] . . . āg([2K−k0]) ⊗ ag([K+1])].
(45)

Here, h(i) is defined as g(i) and we can have either h(i) =
g(i) or h(i) 6= g(i). By rearranging the columns of ΦW with
respect to the left entry index of each Kronecker product, the
system of equations (43) can be written as

CĀT = 0, (46)

where the M × (2K − k0) matrix C is defined by

C = [β1ag([1]) + βK+1ah([1]) + β2K+1ag([K]) + β3K+1ah([K])

· · · βKag([K]) + βK+k0ah([K]) + β3Kag([1]) + β3K+k0ah([1])

· · · βK+k0+1ag([K+1]) + β3K+k0+1ag([2K−k0])

· · · β2Kag([2K−k0]) + β4Kag([K+1])]. (47)
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We next show that rank(CĀT ) > 0 in order to contradict
the assumption that there exist β1, · · ·β4K , not all zeros, such
that (43) holds. Denote by n0 the number of quadruplets
(βj , βK+j , β2K+j , β3K+j) , for 1 ≤ j ≤ K, or pairs
(βk0+j , β2K+k0+j), for K + 1 ≤ j ≤ 2K − k0, with one
non zero element at least. Obviously, 1 ≤ n0 ≤ 2K − k0. Let
C̃ be the M × n0 matrix composed of the n0 columns of C
corresponding to these non zero quadruplets/pairs and let ÃT

be constructed out of the corresponding n0 rows of ĀT . Then,
from the Sylvester rank inequality,

rank(CĀT ) = rank(C̃ÃT ) ≥ rank(C̃) + rank(ÃT )− n0.
(48)

In addition,

rank(ÃT ) ≥ min (n0, spark(A)− 1) , (49)

and
rank(C̃) ≥ min

(⌈n0

4

⌉
,

spark(A)− 1

4

)
. (50)

The last inequality follows from the fact that any linear
combination of n columns of C is a linear combination of
at least dn/4e distinct columns of A. Therefore,

rank(CĀT ) ≥ min
(⌈n0

4

⌉
,

5

4
M − n0

)
. (51)

Since M > 8
5K, it holds that rank(CĀT ) ≥ 1, for all 1 ≤

n0 ≤ 2K − k0, 0 ≤ k0 ≤ K, contradicting (46).
Corollary 1, which directly follows from Theorem 1, pro-

vides sufficient conditions for perfect recovery of rax(f̃).

Corollary 1. If
1) spark(A) = M + 1,
2) M > 8

5K,
then the system (37) has a unique solution in Σ2K .

Proof: Conditions 1)-2) ensure that all sets of 2K
columns belonging to W are linearly independent, from The-
orem 1. Thus, the proof follows from Lemma 1.

Under the conditions of Corollary 1, the cyclic spectrum
Sx(f) can be perfectly recovered for cyclic frequencies α
which are not multiples of fs. For α that are multiples of
fs, the recovery is performed in the presence of bounded
noise, yielding a bounded reconstruction error. For detection
purposes, this has proven satisfactory in the simulations.

Without any sparsity assumption, we can repeat the proof of
Theorem 1 with K = N and k0 = N , leading to 1 ≤ n0 ≤ N .
We thus obtain that, if M > 4

5N , then we can perfectly recover
the cyclic spectrum of x(t). The minimal sampling rate is then

fmin0 = Mfs =
4

5
Nfs =

4

5
fNyq. (52)

This means that even without any sparsity constraints on the
signal, we can retrieve its cyclic spectrum from samples below
the Nyquist rate, by exploiting its cyclostationary properties.
A similar result was already observed in [18] in the context
of power spectrum reconstruction of wide-sense stationary
signals in noiseless settings. In that case, the power spectrum
slices appear only on the diagonal of the matrix R0

x(f̃) and it
follows that Φ = Ā�A. Power spectrum recovery is therefore

a special case of cyclic spectrum reconstruction, treated here.
There, it was shown that the power spectrum can be retrieved
at half the Nyquist rate without any sparsity constraints. Here,
we extend this result to cyclic spectrum reconstruction, which
requires a higher rate.

If x(t) is assumed to be sparse in the frequency domain,
with K = 2Nsig � N , then the minimal sampling rate for
perfect reconstruction of its cyclic spectrum is

fmin = Mfs =
16

5
NsigB =

8

5
fLandau. (53)

It was shown in [18], that the power spectrum of a stationary
sparse signal can be perfectly recovered at its Landau rate.
Again, the minimal sampling rate for cyclic spectrum recovery
is slightly higher than that required for power spectrum
reconstruction.

C. Cyclic Spectrum Recovery

So far, we only discussed conditions for perfect recovery of
the cyclic spectrum, namely for (37) and (40) to have unique
solutions. We now provide an algorithm for cyclic spectrum
reconstruction. To account for the structure of rax(f̃) for a 6= 0,
we extend orthogonal matching pursuit (OMP) [15], [31]. In
each iteration, we add an internal loop that, for a selected
element originally from the diagonals of Ra

x(f̃ ), checks for a
corresponding non-zero element from the anti-diagonals, and
vice versa, as defined by the set I. For a = 0, we use the
standard OMP [15], [31]. We note that for all a ≥ 0 we can
exploit the additional symmetric structure of rax(f̃) as defined
by Property 1 of I. Our structured OMP method (assuming
that the columns of Φ are normalized) is formally defined by
Algorithm 1.

In Algorithm 1, v = raz(f̃), Λi denotes the set of comple-
mentary indices with respect to i according to Property 2 of
I, namely for 2 ≤ i ≤ N − 1,

Λi =

{
{6di + 5, 6di + 6, 6di + 7} if 0 < mod(i− 4, 6) ≤ 3
{6di + 8, 6di + 9, 6di + 10} else,

(54)
where di = b i−4

6 c. For i = 1 and i = N , Λi is similarly
defined according to Properties 3 and 4, respectively. The
vector wS is the reduction of w to the support S, ΦS

contains the corresponding columns of Φ, Sc denotes the
complementary set of S and † is the Moore-Penrose pseudo-
inverse. The halting criterion in Algorithm 1, as for standard
OMP, can be sparsity-based if the true sparsity is known, or
at least an upper bound for it, or residual-based.

Similarly to [12], the set (37) consists of an infinite number
of linear systems since f̃ is a continuous variable. Since
the support S is common to rax(f̃) for all f̃ ∈ Fs, we
propose to recover it jointly instead of solving (37) for each
f̃ individually, thus increasing efficiency and robustness to
noise. To that end, we use the support recovery paradigm from
[12] that produces a finite system of equations, called multiple
measurement vectors (MMV) from an infinite number of linear
systems. This reduction is performed by what is referred to
as the continuous to finite (CTF) block. The cyclic spectrum
reconstruction of both sparse and non sparse signals can then
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Algorithm 1 Structured OMP
Input: observation vector v of size m, measurement matrix
Φ of size m× n, threshold ε > 0
Output: index set S containing the locations of the non
zero indices of u, estimate for sparse vector û
Initialize: residual r0 = v, index set S0 = ∅, possible index
set Γ0 = {1, . . . , n}, estimate û = 0, ` = 0
while halting criterion false do
`← `+ 1
b← Φ∗r`
S` ← S` ∪ arg max

i∈Γ`
bi

Γ` ← Γ` \ Λi
(û`)

S` ← Φ†S`v, (û`)
Sc` ← 0

δ0 ← ||v −Φû`||2
for j ∈ Λi do

wS`
j ← Φ†S`∪jv, w

Sc`
j ← 0

δj ← ||v −Φwj ||2
end for
if δ0 − min

j∈Λi
δj > ε then

S` ← S` ∪ arg min
j∈Λi

δj

(û`)
S` ← Φ†S`v, (û`)

Sc` ← 0
end if
r← v −Φû`

end while
return S` and û`

be divided into two stages: support recovery, performed by the
CTF, and cyclic spectrum recovery. From (37), for a ∈]0, fs],
we have

Qa = ΦZaΦH (55)

where
Qa =

∫
f̃∈Fs

raz(f̃)raz
H(f̃)df̃ (56)

is an M ×M matrix and

Za =

∫
f̃∈Fs

rax(f̃)rax
H(f̃)df̃ (57)

is an N × N matrix. Then, any matrix Va for which Qa =
Va (Va)

H is a frame for raz(Fs) = {raz(f̃)|f̃ ∈ Fs} [12],
[40]. Clearly, there are many possible ways to select Va. We
construct it by performing an eigendecomposition of Qa and
choosing Va as the matrix of eigenvectors corresponding to
the non zero eigenvalues. We then define the following linear
system

Va = ΦUa. (58)

For a = 0, identical derivations can be carried out by replacing
Φ by Φ2. From [12] (Propositions 2-3), the support of the
unique sparsest solution of (58) is the same as the support
of rax(f̃) in our original set of equations (37) (or (40)).
For simplicity, Algorithm 1 presents the single measurement
vector (SMV) version of the recovery algorithm, which can be
adapted to the MMV settings, similarly to the simultaneous
OMP [15], [31], to solve (58).

As discussed above, rax(f̃) is 2K-sparse for each specific
f̃ ∈ [0, fs − a], for all a ∈ [0, fs]. However, after combining

the frequencies, the matrix Ua is 4K-sparse (at most), since
the spectrum of each transmission may split between two
slices. Therefore, the above algorithm, referred to as SBR4 in
[12] (for signal reconstruction as opposed to cyclic spectrum
reconstruction), requires a minimal sampling rate of 2fmin for
sparse signals or 2fmin0 for non sparse signals. In order to
achieve the minimal rate fmin or fmin0 , the SBR2 algorithm
regains the factor of two in the sampling rate at the expense of
increased complexity [12]. In a nutshell, SBR2 is a recursive
algorithm that alternates between the CTF described above
and a bi-section process. The bi-section splits the original
frequency interval into two equal width intervals on which
the CTF is applied, until the level of sparsity of Ua is less or
equal to 2K. We refer the reader to [12] for more details.

Once the support S is known, perfect reconstruction of the
cyclic spectrum is obtained by

(r̂ax)S(f̃) = Φ†Sraz(f̃) (59)

r̂axi(f̃) = 0 ∀i /∈ S,

for all a ∈]0, fs] and

(r̂0
x)S(f̃) = (Φ2)†Sr0

z(f̃) (60)

r̂0
xi(f̃) = 0 ∀i /∈ S.

The cyclic spectrum Sαx (f) is then assembled using (29) for
(f, α) defined in (30).

D. Carrier Frequency and Bandwidth Estimation

Once the cyclic spectrum Sαx (f) is reconstructed from the
sub-Nyquist samples, we apply our carrier frequency and
bandwidth estimation algorithm from [35]. Our approach is a
simple parameter extraction method from the cyclic spectrum
of multiband signals. It allows the estimation of several carriers
and several bandwidths simultaneously, as well as that of the
number of transmissions Nsig. The proposed algorithm con-
sists of the following five steps: preprocessing, thresholding,
clustering, parameter estimation, corrections. Here, we briefly
describe the algorithm steps. The reader is referred to [35] for
more details.

The preprocessing aims to compensate for the presence of
stationary noise in the cyclic spectrum at the cyclic frequency
α = 0, by attenuating the cyclic spectrum energy around this
frequency. Thresholding is then applied to the resulting cyclic
spectrum in order to find its peaks. For each cyclic frequency
α, we retain the value of the cyclic spectrum at f = 0. The
locations and values of the selected peaks are then clustered
to find the corresponding cyclic feature. Before separating the
clusters, we start by estimating their number using the elbow
method, which can be traced to speculation by Thorndike [41].
Clustering is then performed using the k-means method. At the
end of the process, each cluster represents a cyclic feature.
It follows that, apart from the cluster present at DC which
we remove, the number of signals Nsig is equal to half the
number of clusters. Next, we estimate the carrier frequency fi
and bandwidth Bi of each transmission. The carrier frequency
yields the highest correlation [6] and thus the highest peak, at
the cyclic frequency equal to twice its value, namely α = 2fi.
It is therefore estimated as half the cyclic frequency of the
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Fig. 6. Processing flow diagram. The input signal x(t) is first fed to the MWC
analog front-end which generates the low rate samples z[n] shown in (23)
in the frequency domain. The correlations rza(f̃) between frequency shifted
versions of the samples are then computed by vectorizing (28). The CTF
next produces a finite set of equations, which are solved using Algorithm 1,
exploiting the known structure of the sparse vectors that compose the cyclic
spectrum Sαx (f). The number of transmissions Nsig, their respective carrier
frequencies fi and bandwidths Bi are finally estimated from Sαx (f). The
entire processing is performed at a low rate.

highest peak within the clusters belonging to the same signal.
The bandwidth is found by locating the edge of the support
of the angular frequencies.

The processing flow of our low rate sampling and cyclic
spectrum recovery algorithm is summarized in Fig. 6.

V. SIMULATION RESULTS

We now demonstrate via simulations cyclic spectrum recon-
struction from sub-Nyquist samples and investigate the per-
formance of our carrier frequency and bandwidth estimation
algorithm. We compare our approach to energy detection and
investigate the impact of the sampling rate on the detection
performance. Throughout the simulations we use the MWC
analog front-end [33] for the sampling stage.

A. Preliminaries

We begin by explaining how we estimate the elements of
Ra

z(f̃) in (28). The overall sensing time is divided into P time
windows of length Q samples. We first compute the estimates
of zi(f̃), 1 ≤ i ≤M using the fast Fourier transform (FFT) on
the samples zi[n] over a finite time window. We then estimate
the elements of Ra

z(f̃) as

R̂a
z(f̃)(i,j) =

1

P

P∑
p=1

ẑpi (f̃)ẑpj (f̃ + a), (61)

for a ∈ [0, fs] and f ∈ [0, fs− a]. Here, ẑpi (f̃) is the estimate
of zi(f̃) from the pth time window.

The cyclic spectrum recovery processing is presented here in
the frequency domain. The reconstruction can be equivalently
performed in the time domain by modulating the slices to
replace the frequency shift f̃+a. Then, r̂ax[n] can be recovered
using the time equivalent of (59)-(60). However, the carrier
frequencies fi and bandwidths Bi estimation is performed
on the cyclic spectrum, in the frequency domain. Thus, the
Fourier transform of r̂ax[n] needs to be computed, and Sαx (f)
is then mapped using (29) for (f, α) defined in (30). Therefore,

we choose to perform the entire processing in the frequency
domain. Another reason to do so is that SBR2 can obviously
be performed in the frequency domain only, as opposed to
SBR4 which can be carried out both in time and frequency.

We note that in theory, our approach does not require any
discretization, neither in the angular frequency f nor in the
cyclic frequency α. Indeed, Ra

x(f̃) can be computed for any
a ∈ [0, fs] and f̃ ∈ [0, fs − a]. This distinguishes our scheme
from those based on a transformation between Nyquist and
sub-Nyquist samples, where the resolution is theoretically
inherent to the problem dimension and dictated by the length
of the Nyquist samples vector. In practice, the resolution both
in f and α obviously depends on the sensing time and is
determined by the number of samples, namely the number of
discrete Fourier transform (DFT) coefficients of ẑ(f̃).

We compare our cyclostationary detection to energy detec-
tion based on power spectrum recovery, presented in [18].
There, it was shown that power spectrum sensing outperforms
spectrum sensing, namely energy detection performed on the
recovered signal itself. This power spectrum reconstruction
approach is a special case of ours for a = 0, when only
the matrix R0

x(f̃) is considered and only its diagonal is
reconstructed. Therefore, we compare our detection approach
performed on Sαx (f) for α 6= 0 to energy detection carried out
on Sαx (f), for α = 0, corresponding to the diagonal elements
of R0

x(f̃).
Throughout the simulations we consider additive white

Gaussian noise (AWGN) n(t). The SNR is defined as the
ratio between the power of the wideband signal and that of
the wideband noise as follows

SNR =

∑Nsig
i=1 ||si(t)||2

||n(t)||2
. (62)

B. Cyclic Spectrum Recovery

We first illustrate cyclic spectrum reconstruction from sub-
Nyquist samples. We consider x(t) composed of Nsig = 3 AM
transmissions. Each transmission has bandwidth B = 80MHz
and the carrier frequencies are drawn uniformly at random in
[0,

fNyq

2 ], with fNyq = 6.4GHz. The SNR is set to −5dB. In
the sampling stage, we use the MWC with M = 11 channels,
each sampling at fs = 95MHz. The overall sampling rate is
therefore 1.05GHz, that is 2.2 times the Landau rate and 16%
of the Nyquist rate. Here, the theoretical minimal sampling
rate is fmin = 768MHz. Figure 7 shows the original and
reconstructed power spectrum of x(t), namely S0

x(f). In this
experiment, the carriers are f1 = 97MHz, f2 = 573MHz and
f3 = 1.4GHz. We observe that the recovery of the power
spectrum failed; some occupied bands were not reconstructed
and others that only contained noise were identified as active.
This is due to the poor performance of energy detection in low
SNR regimes. In can be seen in Fig. 7 that the signal spectrum
is not buried in noise and the transmissions would have been
perfectly detected using energy detection on Nyquist samples.
However, in sub-Nyquist regimes, the aliasing decreases the
SNR [19], as can be seen in Fig. 8, which shows the DFT
of the samples of one channel. As a consequence, energy
detection failed in this sub-Nyquist regime.
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Fig. 7. Original (top) and reconstructed (bottom) power spectrum (α = 0).

Fig. 8. Sub-Nyquist samples in the first channel in the frequency domain.

The reconstructed cyclic spectrum of x(t) is presented in
Fig. 9 (the reader is referred to the colored version for a
clearer figure), where we observe that the noise contribution
is concentrated at α = 0 while it is significantly lower at the
non zero cyclic frequencies. For clarity, we focus on the one-
dimensional section of Sαx (f) for f = 0, shown in Fig. 10.
It can be clearly seen that the highest peaks (at least 6dB
above the lower peaks) are located at αi = 2fi for all 3 active
transmissions. This illustrates the advantage of cyclostationary
detection in comparison with energy detection.

Next, we perform cyclostationary detection on the re-
constructed cyclic spectrum. We compare the performance
of cyclostationary and energy detection performed on the
reconstructed cyclic and power spectrum, respectively. For
cyclostationary detection, we use a single-cycle detector which
computes the energy at several frequencies around f = 0 and
at a single cyclic frequency α. In the simulations, we consider
AM modulated signals. We address a blind scenario where
the carrier frequencies of the signals occupying the wideband
channel are unknown and we have Nsig = 3 potentially active
transmissions, with single-sided bandwidth B = 100MHz. For
each iteration, the alternative and null hypotheses define the

Fig. 9. Reconstructed cyclic spectrum.

Fig. 10. Reconstructed cyclic spectrum for f = 0, Sαx (0), as a function of
the cyclic frequency α.

presence or absence of one out of the Nsig transmissions. We
refer to that transmission as the signal of interest. The Nyquist
rate of x(t) is fNyq = 10GHz. We consider N = 64 spectral
bands and M = 7 analog channels, each sampling at fs = 156
MHz. The overall sampling rate is Mfs = 1.09GHz which
is 182% of the Landau rate and 10.9% of the Nyquist rate.
Here, the theoretical minimal sampling rate is fmin = 960MHz.
The receiver operating characteristic (ROC) curve is shown
in Fig. 11 for different SNR regimes (the averages were
performed over P = 15 time windows). Detection occurs if the
presence of the signal of interest is correctly detected while
false alarm is declared if a detection is claimed while the
signal of interest is absent. It can be seen that cyclostationary
detection outperforms energy detection in low SNR regimes,
as expected. This is already known in the Nyquist regime and
is now shown on samples obtained at a sub-Nyquist rate.

C. Carrier Frequencies and Bandwidths Recovery

We now demonstrate carrier frequency and bandwidth es-
timation from sub-Nyquist samples. We first illustrate our
algorithm process on a specific experiment. We consider x(t)
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Fig. 11. ROC for both energy and cyclostationary detection.

composed of Nsig = 3 BPSK transmissions, which have cyclic
features at the locations (f, α) = (0,±2fi), (±fi,± 1

Ti
), where

fi is the carrier frequency and Ti is the symbol period of
the ith transmission [6]. Each transmission has bandwidth
Bi = 18MHz and symbol rate Ti = 1/Bi = 0.56µs,
and the carrier frequencies are drawn uniformly at random
in [0,

fNyq

2 ], with fNyq = 1GHz. In this experiment, the
selected carriers are f1 = 163.18MHz, f2 = 209.69MHz and
f3 = 396.12MHz. The SNR is set to −5dB. In the sampling
stage, we use the MWC with M = 9 channels, each sampling
at fs = 23.26MHz. The overall sampling rate is therefore
210MHz, that is a little below twice the Landau rate and 21%
of the Nyquist rate. Here, the theoretical minimal sampling
rate is fmin = 172.8MHz.

Figure 12 presents the original and reconstructed power
spectrum using P = 100 time windows. We observe that
the signal’s spectrum was not perfectly recovered due to the
noise. The reconstructed cyclic spectrum, including the power
spectrum, estimated over P = 100 time windows as well, is
shown in Fig. 13 and the section corresponding to f = 0
can be seen in Fig. 14. The cyclic peaks at the locations
(f, α) = (0,±2fi), for i = 1, 2, 3 can be observed in both
figures. In Fig. 15, we illustrate the clustering stage of our
algorithm as a function of α for f = 0. The estimated number
of clusters is 6, yielding a correctly estimated number of
signals N̂sig = 3. The estimated carrier frequencies using
cyclostationary based estimation are f̂1 = 162.66MHz, f̂2 =
209.19MHz and f̂3 = 395.11MHz, and the corresponding
estimated bandwidths are B̂1 = 17.4MHz, B̂2 = 17.4MHz
and B̂3 = 17.0MHz. Using energy based estimation, we
obtain N̂sig = 5 signals, with estimated carrier frequencies
f̂1 = 93.04MHz, f̂2 = 162.82MHz, f̂3 = 255.86MHz and
f̂4 = 383.89MHz, f̂5 = 465.21MHz and estimated band-
widths B̂1 = B̂2 = B̂3 = B̂5 = 23.1MHz, B̂4 = 46.3MHz.
Clearly, cyclostationary detection succeeded where energy
detection failed.

We now investigate the performance of our carrier frequency
and bandwidth estimation algorithm from sub-Nyquist samples
with respect to SNR and compare it to energy detection. We

Fig. 12. Original and reconstructed power spectrum.

Fig. 13. Reconstructed cyclic spectrum.

consider x(t) composed of Nsig = 3 BPSK transmissions with
identical parameters as in the previous section. The sampling
parameters remain the same as well. In each experiment,
we draw the carrier frequencies uniformly at random and
generate the transmissions. The results are averaged over 1000
realizations.

Figure. 16 shows the probability of detection of both cy-
clostationary (blue) and energy (red) detection. A detection
is reported if the distance between the true and recovered
carrier frequencies is below 10 times the frequency resolution,
which is equal to 0.388MHz. The average number of false
alarms, namely unoccupied bands that are labeled as detection,
is shown in Fig. 17. Clearly, cyclostationarity outperforms
the energy approach in terms of probability of detection.
Cyclostationary detection also yields fewer false alarms. For
high SNRs, the gap between the performance of both schemes
is small, since energy detection still succeeds in these regimes.
This gap widens with SNR decrease, where the advantage
of cyclostationary detection is clearly marked. The curves
for both cyclostationary and energy detection show a rapid
decrease of performance below a certain SNR level. We note
that this level is lower for cyclostationary detection. This
behavior is common to CS based recovery algorithms, which
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Fig. 14. Reconstructed cyclic spectrum for f = 0, Sαx (0), as a function of
the cyclic frequency α.

Fig. 15. Clustering with k = 6.

fail in the presence of large noise and yield wrong signal
support, leading to misdetections and false alarms. When the
SNR becomes too low, cyclostationary detection fails as well,
due to the finite sensing time and averaging.

Next, we compare cyclic spectrum reconstruction from
Nyquist and sub-Nyquist samples. We consider the same
parameters as above for the signal generation and the sam-
pling front-end. From Fig. 18, which shows the detection
performance in both regimes, it can be seen that the gap
between them is not large. The loss in performance due to the
reduced number of samples is small since it is compensated
by cyclostationary detection, which is robust to noise.

In Fig. 19, we wish to validate the derived theoretical
minimal sampling rate. In the settings described above, the
lower bound is fmin = 172.8MHz, which corresponds to a
minimal number of channels Mmin = 10 for perfect cyclic
spectrum recovery. It can be seen in the figure that beyond
10 channels, the probability of detection is close to 1 in the
noiseless regime. Detection errors are due to the finite sensing
time and averaging. In the presence of noise, the probability of
detection is slightly lower and the number of channels required
to reach its maximal value is higher. Below 10 channels,

Fig. 16. Probability of detection - cyclostationary vs. energy detection.

Fig. 17. False alarm - cyclostationary vs. energy detection.

the cyclic spectrum cannot be perfectly recovered and the
detection performance decreases with the number of channels.

Finally, we compare the recovery performance of our struc-
tured OMP presented in Algorithm 1 with the traditional OMP.
Here, we consider Nsig = 4 transmissions and M = 14
sampling channels. The remaining parameters are identical
to those in the previous experiments. The added performance
of exploiting the structure of the correlation matrices can be
observed in Fig. 20 above a certain SNR value.

VI. CONCLUSION

In this paper, we considered cyclostationary detection in a
sub-Nyquist regime, to cope with efficiency and robustness
requirements for spectrum sensing in the context of CR. We
presented a cyclic spectrum reconstruction algorithm from
sub-Nyquist samples along with recovery conditions for both
sparse and non sparse signals. We showed that even if the
signal is not sparse, its cyclic spectrum can be recovered from
samples obtained below the Nyquist rate. The minimal rates
obtained for both the sparse and non sparse cases are found to
be higher than those required for power spectrum recovery and
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Fig. 18. Probability of detection - sub-Nyquist vs. Nyquist sampling.

Fig. 19. Probability of detection - sampling rate.

lower than the rates required for signal reconstruction. Once
the cyclic spectrum is recovered, we applied our feature extrac-
tion algorithm that estimates the number of transmissions and
their respective carrier frequency and bandwidth. Simulations
performed at low SNRs validate that cyclostationary detection
outperforms energy detection in the sub-Nyquist regime, as
well as the theoretical lower sampling bound.
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