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Cooperative Simultaneous Localization and
Synchronization in Mobile Agent Networks

Bernhard Etzlinger, Florian Meyer, Franz Hlawatsch, Amadr&pringer, and Henk Wymeersch

Abstract—Cooperative localization in agent networks based recently. These methods can be classified into six groups as
on interagent time-of-flight measurements is closely relad to follows. Estimation of static clock and location paramstisr
synchronization. To leverage this relation, we propose a Beesian considered (i) for a single agent in [6]-[9], (i) for mult&

factor graph framework for cooperative simultaneous localization . . L ..
and synchronization (CoSLAS). This framework is suited to agents with centralized computation in [10]-[12], and fiar

mobile agents and time-varying local clock parameters. Buding Multiple agents with distributed computation in [12]-[1Bpr

on the CoSLAS factor graph, we develop a distributed (decemal- a single agent, (iv) estimation of dynamic clock parameters
ized) belief propagation algorithm for CoSLAS in the practically  and static location parameters is considered in [17], apd (v
important case of an affine clock model and asymmetric time agtimation of static clock parameters and dynamic location

stamping. Our algorithm allows for real-time operation and is . . : e .
suitable for a time-varying network connectivity. To achieve high parameters is considered in [18]. (vi) Distributed estiorat

accuracy at reduced complexity and communication cost, the Of dynamic clock and location parameters of multiple agents

algorithm combines particle implementations with parametic is considered in [19].

message representations and takes advantage of a condit@n  Hereafter, we consider onlgfistributed SLAS methods for

independence property. Simulation results demonstrate ta good jtinle agents, i.e., methods from groups (iii) and (vi). In

performance of the proposed algorithm in a challenging sceario . . .

with time-varying network connectivity. these methods, the Ioca! clocks differ either only in a clock
o offset [12], [16], [19] or in both a clock offset and a clock

Index Terms—Agent network, network synchronization, oop- - qq\y [13]-[15]. Considering also clock skews is important
erative localization, belief propagation, message passin factor o . .
graph, CoSLAS. for accurate localization when multiple time measuremergs
combined for each communication link [20].

To account for the nonlinear measurement model of the
SLAS problem, the distributed methods mentioned above
A. Background and State of the Art use distributed least-squares (LS) or maximum likelihood

Location information in agent networks enables a multitudgstimation methods [12], [13] or Bayesian message passing
of location-aware applications [1]-[4]. In many systents t methods [14]-[16], [19]. Typically, message passing meth-
location information is obtained from interagent time meas 0ds require significantly fewer iterations than distrilniteS
ments: each interagent distance is related to the timagsftfl methods [12]-[14]. Despite this advantage, to the best of ou
of a signal and can thus be estimated from time-of-arrivalmeknowledge, only [19] previously proposed the message pgssi
surements, and the agent locations can then be estimated &pgroach for SLAS in mobile, dynamic agent networks. How-
distributed (decentralized) manner via cooperative laatibn ever, the method in [19] is limited in practical scenarioghiat
techniques [5]. This scheme presupposes a common time bageclock skews are considered, spatial references (arjchors
at all the agents and, thus, accurate synchronizationgiwamut must also serve as temporal references, and a linearizaftion
the network. Accordingly, several methods fsimultaneous the likelihood function is used that requires a dense deploy
localization and synchronizatiofSLAS) have been developedment of anchors in the network.

Bayesian message passing methods are a powerful approach
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B. Contributions and Paper Organization n, ie, W& {jeZ\{i}|(i,j)€C™}. Note thatc(") and

Here, we present a unified belief propagation (BP) messa’(jém are assumed constant within théh time interval. Some
passing framework and algorithm for distributedoperative Of the agents are spatial and/or temporal references, which
SLAS(CoSLAS) in mobile agent networks with time-varying?ave perfect knowledge of their own location and/or clock,
local clocks. BP methods provide accurate and computatid@SPectively, at all times. In particular, a temporal refere
ally efficient solutions in many applications [21], [22],52 @agdentis able to determine the beginning of a new time interva
[29]. In the proposed BP framework, a low dimension of Each agent € 7 has an internal/local clock;, whose
the involved state variables is achieved by exploiting ttéependence on the reference timis modeled as
conditional independence of time measurements and lozatio
related parameters given the interagent distances, weatdsl| e’ i i
to a detailed factorization of the joint posterior probpil

density function (pdf). In this factorization, the dimemsiof

the state variables does not depend on the number of agéfl’lrk%?e (rne)s?ec.t |vel)(/;l)vxh|c(r:1)dezlr;e the'ﬁ’f‘i Stat%gi N
in the network, thus yielding excellent scalability. v, NV with v £ B /0 and N £ 170", (This

The proposed BP algorithm enables each agent to determffgameter transformation leads to an approximately Gaissi

its own clock and location parameters in a distributed, esop likelihood function, cf. Sectiorgnw-li.%.()n)lgach agent ?gsAa

. . . . ) i (n) & T
ative, and sequential manner. The algorithm is a hybr,d_hbdpcza;uorg-)relTa.ted State‘(i_ = [p; Pi( )} , w(h()are(p)i .
particle-based and parametric—implementation of BP that); =5 ;] is the location vector ang;" £ [i") @37 ] is
relies on a specific, practically relevant model for the kic the velocity vector (relative t¢). The stateof agent; at time

state evolutions, and measurements. This model suppagts patepn is thus given bys!™ £ [191(.")T x(.")T]T. We note that

K3
metric representations of all messages, which stronglyaesi p(™) = Px{™ with P = I, 0], wherel, is the2x2 identity
computation and communication requirements compared rtatrix and0- is the 2x 2 zero matrix.

purely particle-based methods [15]. The algorithm extends

state-of-the-art methods in that it is suited to time-vagyi . . N

clock and location parameters, time-varying network camneB' State-Evolution Model and Prior Distribution

tivity, and networks where the sets of spatial and temporalFor the temporal evolution of the clock staﬂé"), we use

Here, o™ > 0 and 8™ € R are theclock skewand clock
A

reference agents may be different or even disjoint. a standard random walk model as in [17], i.e.,
This paper is organized as follows. The agent network, clock B
i ibed i : 9 =9 ul?, =12 @)
model, and state evolution model are described in Section i i 1,i> IR
II. The measurement model and corresponding likelihoo (n) (n) . ) 9
function are developed in Section Ill. In Section IV, Wé/vdhere w’y ~ N(u/;0,%,, ) with X, = diag{o],

o3 ;} is Gaussian process noise that is independent aecross

present a “low-dimensional” factorization of the joint persor _ ’ : ;
ﬁé\d i. The state-evolution pdf corresponding to (2) is

pdf and the corresponding factor graph, and we review t

BP scheme for approximate marginalization. The parametric )1 a(n—1) Lyom)  o(ne1)|2

message representations used by our algorithm are deascribe f(ﬂz('n “91'” ) X exp (5 ||191n -9;" H>3u11i> 5

in Section V. Section VI develops the proposed CoSLAS '

algorithm. Finally, Section VII presents simulation résul  where||v||% = vTAv. The temporal evolution of the location-
This paper advances beyond the results reported in QH[ated statecz(.") is modeled as [30]

conference publication [15] in that (i) it extends the CoSLA

factor graph framework and BP message passing algorithm xz(.") = Glxz(."_l)Jrug"i), n=1,2,..., (3)

of [15] to a time-dependent senario and a sequential (time- ’

recursive) operation; (ii) it presents a BP algorithm forhit® where u§Z>~N(u§Z); 0,3,,,) with 3,,,=02, ,Gs; here,

agents with time-varying local clocks; (iii) it proposesrpa G1 andGs are as in [30]. The state-evolution pdf correspond-

metric representations for all messages. ing to (3) is

n n— 1 n n— 2
[I. NETWORK AND STATES £ )|x§ VY o exp (—5 ||xf ) Gyx! 1)\]21‘21@).
A. Agent Network, Clock Model, and States

We consider a connected time-varying networld ahobile, ___ ) )
asynchronous agentse 7 2 {1,...,}. The reference time, independent acrogsandn. The initial statesy,’ andx, ’ are
¢, is slotted into interval$nT, (n+1)T), n€ {0,1,...}. The m.od(.aled as independlent,_independent actpssid Gaussian
agents know the interval durati@ibut, due to their imprecise With independent entries, i.e.,
clocks, are not able to autonomously determine the beginnin (0) o)y 0). (0) (0)
of a new time interval. At time step, i.e., during theath time 0~ f(ﬂi ) - N(ﬂi g R Efﬁﬁi)’ )
|ntgrval, two agents, j€Z, i#; are able t'o'communlcate if XEO) ~ f(X§0>) — N(X§0>;ugflxi7 EOLI), (5)
(i,7) € C™ C T x T (and, by symmetry(j,i) € C(™). The
neighborhood7;™ C T\ {i} of agenti € T consists of all with Egc()Lﬁ = diag{o? ,03,} and EZ(OLQE = diag{c2 02,
agentsj € Z\ {i} that communicate with agerntat time step o2 ,02 1. It follows that the joint prior pdf of all the states

T Y&,

Furthermoreugi? andugfi) are assumed independent and also



up to timen factors as
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Here, 0" collects allo\"") for ieZ andn’€{0,...,n}.

(n,k+2)
(n,k) Ci(si- )
(n,k+1) Ci(Tji ) J
(n.k)y Ci(8;
C’(sij ) ( 7 ) ¢

IIl. M EASUREMENTS ANDLIKELIHOOD FUNCTION ) . .
Fig. 1. Local clock functions; (¢, 195”)) andc; (¢, 19(.")), packet transmis-

A Time-Stamping Measurement Model sions, and local time measurements (time stampsﬁ for ageantsd ;.

Each time intervalnT, (n + 1)T') contains a “measure-
ment phase” in which the agents acquire measurements. E4t
measurement phase consists ofiuitialization in which the w(n,k)( (n) 0(@))
temporal reference agents inform the other agents about th&™’ ** "/
beginning of the measurement phase, argheket exchange (ci(sg.“k)) —g™ | pt—

during which the agents obtain time measurements using the~ (n) + c
asymmetric time-stamped communication scheme proposed i
in [31]. The measurement phase is short compared to tB&nilarly, the transmission of théth packet from agenj
time interval durationT’, so that the clock parameters ard¢o agenti (wherek € {1,...,K;;}) yields the time stamps
approximately constant during the measurement phase. Cj(sg,?’k)) and ¢; (rg,j’k)); expressions of these time stamps
1. Initialization: The agents are not able to determinare obtained by exchangingand j in (8)—(11). The clock
autonomously the start of a new time interval and, in turfunctions ¢; (t;9{"’) and ¢;(t;9{") and time stamps are
of a packet exchange. This information is provided by th@sualized in Fig. 1. A communication protocol ensures that
temporal reference agents via the following protocol: (ideA these time stamps are available at both agemisd ;.
time T has passed since the beginning of the last measurementhe aggregated measurement of agemisdj comprises all
phase, each temporal reference agent initializes a new timgcejved” time stamps, i.ey,l@ s [yz(i)T y@,ﬂT with Yfi)
interval by broadcasting a “start packet exchange” message[ _(T@,l)) ---c-(r(’.“K“))]JT and y(_i)_ Jé [C_(r(_@,n) J
to its neighbors. (ii) When an agent receives a “start packet * TN I L
exchange” message from one of its neighbors, it starts tfia”

(n)
J )a§ VM. (1)

J
("’K“))}T. We also define the (recorded, not measured)

packet exchange with that neighbor and itself broadcaststensmitted” time stamp VeCtOfogi)j £ o (sxll))
“start packet exchange” message to its neighbors. i (SE?KM))]T andy;_,; £ [c; (55,;?’1)) e (S§?aKji))]T.

2. Packet exchangeConsider a communicating agent pair
(i,7) € ™ with distance||pz(.")fp§")H. Agent i transmits
K;; > 1 packets to agenjf, and agentj transmitskK;; > 1
packets to agent The communication is termed asymmetric We first consider the “single-packet” likelihood functioh o
if K;; # Kj; [7]. At time n > 1, the kth “i — j” packet thekthi— j packet at timen, f(c;( g’.”k))]egn) 0(.")). From

. rzy i 17
(wherek € {1,..., K;;}) departs from agentat times!""*  (10) with oI o N (030, 02), we obtain
and arrives at agent at measured time

B. Likelihood Function

]
n,k n n
Fles ™) 07 657) 2
(n.k) (n.k) (g(n) g(n)
- 1 < (Cj(rij ) — Vi (6; :0; ))
[ =N (O B 2, '
Here,ég“k) is the delay expressed in true timeis the speed 2mag oy 2a; 0y
of light, and vg”’%N(vf}’“);o,ag) is Gaussian measure-The single-packet likelihood function for théth j —
ment noise that is independent and identically distribiiiedl packet,f(ci (rgfk))|01("), 0§")), is obtained by exchanging
acrossi, j, k, andn. The transmit time%(;-l"k) and receive andj. Because;g“k was assumed iid across;j, andk, the
timeSrg’.”k) are recorded at agentindj, respectively in local measurements between any agengsd j with (i, j) € C(™
time according to (1). This results in thiene stamps (cf. (10)) are conditionally independent given the respect
agent state" and 0](.”), and thus we have

n)_(n)
(k) (k) | k) o sk a 1P Pk
R L

cisiy ™) = osi ) 4 51, @
¢; (r@’k)) = a(")rgy’k) + ﬂj(n) 9) f(yz';l [ 0jn )

] J

Plugging (7) into (9) and inserting in the resulting expiess = f(y§i)j!0§"), 0§n)) f(Y§-72i’0§n)7 0§n))
the expression oil(;“k) obtained from (8), we find Kij Kji
cj (r(.’k)) = w( o) (0( ) 6! )) + U(.’k)a§- ), (10) ,};[1 T ’ ’ kl_zll ’ ’ !

17 1—7 ] 17



(n)2 liefs, which can be calculated in a sequential (time-recursive),

— ¢ exp| - Hyz(i)j —%(Z)j”z B ||Y§-73i—1/’§i)i||2 (12) f(19§”)|y(1’")) and b(xE”)) ~ f(xgn)|y(1:")), so-calledbe-
ij )2 5 (M2 5 ’
2a lops 2041 o o . .
! distributed manner. The means of these beliefs then provide

v

whereG{" £ (v2r o\ o, ) "9 (Var Mo, )T, ") £ approximations of the MMSE estimatés$yyse andx!yse-
n, n n n, K n n)\1T (n) A
Y00, 6) K (9, 6] and ("), £ _ _
[ (3]1)( (n) ](n)) w(ﬁm)( (n) ](n))}T i . A. Joint Posterior pdf and Factor Graph
[0, (0;™,6) - "7 (6,,6")] . As analyzed in . .
[25], if the difference of successive packet transmit tirees BP is based on a factor graph (FG), which represents the
much larger than the noise standard deviation is%".’k) _factorization structure of the joint posterior pdf [26]8[2In
sg;,k—1)>> o, for ke {2,..., Ky}, then the following accu- our case, using the approximation (13) and the factoriratio

rate approximation of the likelihood function (12) is olotadl in (6) and (15), the joint posterior pdf is

by approximatingx(j")av andaﬁ”)av (involved in GZ(.?)) by ou: () ‘y(l:n))

f(y§?)!0§”’, 0](.”)) O( f(e(O:n))f(y(l:n)‘e(l:n))
~ F(vi)ler.6,") (13) = L)) [T £ 8 0) £ (x™[x" )
A L By | 4 ||p(n)7p(n)|| 2 i€l ) ,n/:1, ,
x exp (_ H ij Vi ij j202 d || Py j H ) , % H f(ygz)yez(n )7 ej(n )) - (18)
Y ijyec®”)
(14) IS

where the symbolx indicates equality up ;[1()) a C?Q)Stant In a direct application of BP, the maximum dimension of the

normalization factor (i.e., not depending ef)" or o), messages would be the dimensionédf’, i.e., six. To obtain

and A & | 15 -y, B & | 1Ky v lower-dimensional messages, we apply the “opening nodes”
i U 1k, =y principle [28, Sec. 5.2.2], i.e., we augment (18) by addéio

(n)
—1r; Y5 ji j—i

A1 . . variables that depend deterministically on certain vaesln
ag = *_ZlKiﬁKﬁ with lfn)de&?tm(%)th? aII-one§ vector Of(182. More specifically, we introduce location variableliegs
dimensionk.. In (14), f(y;;”|6;",6;") is approximated by p\™ 2 Px!™ (note that formallyp!™ = p{™) and interagent
a Gaussian function in the agent distarjgg™ — p"|| and distances involving these location replicas;’ 2 ||p!" —
th_e clock stateﬁl(.") andﬁg."). As in [25], this _approximation p(n)"_ In this way, the joint posterior pdf(e(o:n)|y(1:n)) in
will allow us to develop a BP message passing scheme Wh?{%) is extended to
the clock messages are represented by Gaussian parameters.

Finally, because;f}“k) was assumed independent acrass f (8™, p(1™), d(1m)|y (1))

we obtain the approximate joint likelihood function - f(e(O:n), pn), d(h")) f(y(l:n)ye(l:n)7ﬁ(l:n)7 d(m))’ (19)
Fy@met)y =1 ] f(y§§’>10§"’>, 0§"I)), (15) wherep( consists of allp{" for i € Z, andd () consists
W=l (1, 5)ec) of all d!) for (i, 5) € ™) (i > ), both forn’ €{1,...,n}.
>3 The new likelihood function (cf. (15)) is

wherey (") collects allyz(;l,), (i,j) e "), i>j and @)

; f y(l:n) 0(1:n)7f)(1:n)7d(1:n)
collects allo\™”, i€ Z, both forn’ €{1,...,n}. ( | )

=1 II 768 i ei™al?), (20
IV. SEQUENTIAL STATE ESTIMATION USING BP n'=1 (i, jyec™”)

At each time stepn, each agenti € 7 estimates its =7

current clock state?\™ and location-related state!™ from Wheref(y§?)|19§”2 9" d(f?)) is given by (14) With||p§”) _

n . VY
al! p_ast and present measurememgts;”). Th|_s is base(; on the pg_n)H replaced bydl(-?). Here, we exploited the fact that
minimum mean-square error (MMSE) estimates [32] the measurementg(" ™) are conditionally independent of

a(n) a (n) (n) | (1:n) (n) the location-related states given the interagent distnce
,"91',MMSE - /191 f(’l91 ‘y )d,ﬂz ’ (16) ie., f(y(l:n)|0(1:n)7f)(1:n)7d(1:n)) — f(y(ln)|,l9(1n),d(ln))

o (n) a () ¢ ()] (1:n) (n) Furthermore, using the deterministic relations mentioned
XiMMSE = /Xi £ ‘y ) dx™. (17) above, the extended prior pdf (cf. (6)) is obtained as

Here, the marginal posterior pdfs f(ﬂz(.")\y(lm)) and f(e(O:n) f)(l:n) d(l:n))
f(x(.")\y(lm)) can be obtained from thint posterior pdf

f(ez(():n)’y(l:n)) o f(y(ln)‘e(ln)) f(e(On)) by marginal— _ Hf(19§0))f(xgo)) H f(ﬂgn’)’ﬁgn/_l))f(xgn/) Xgn/_l))
izations. Because these marginalizations are typicalip-co ez =1

putationally infeasible, we resort to approximate MMSE es- _(n)|_(n) (n')|=(n') ~(n')

timation by means of iterative BP [26]-[28]. BP provides < f(B; ‘Xi ) H / (dij ’pi 'Pj ) (21)

7.9 (n’)
approximations of the marginal posterior pdfﬁ(,ﬂz(.")) & (])lii



where f(d;”[p{". ") = o(dj}’ — ||p{" — p}"[) and n-1 n
f(f)ﬁ")]xl(.")) — 5(p,"” — Px\"™) express the deterministic
relationsd(}’ = ||p{")— p\"|| andp\" = Px\"), respectively.

Inserting (j20) and (21) into (19), we obtain for the extended

joint posterior pdf

f(a(()m)7 f)(l:n)7 d(l:n) ’y(ln))

o TLA) <) TL @090 £ (x|
i€T i)
<MY TT Fers e ol )
(i,)ec™"
i>j
< F(d BB, (22)

This extended joint posterior pdf is related to the original
joint posterior pdff (6(%)|y(::")) (cf. (18)) via the marginal-
ization f(g(O:n)|y(1:n)) = ff f(g(O:n)J;(l:n)’d(lrn)|y(1:n))

x dp(™dd (™), In the factorization (22), all factors involve
only state variables with a maximum dimension of four.

The FG representing the factorization (22) is shown in
Fig. 2. Each factor function in (22) is represented by a sguar
factor node, and each variable by a circular variable node. A
variable node is connected to a factor node by an edge if the
corresponding variable is an argument of the corresponding
factor function. In Fig. 2 gind hereafter, we use the /f0||(y\linFig. 2. CoSLAS factor graph for a network with agerts {1,2,...,1},
short notationsy; 2 f(ﬂl(-n )wgnun), I 2 f(Xl(-" ),Xg_nfl)), where(1,2), (1,5), (2,5), (2,6), (4,1), and(8, I belong to bothc("~1)

A Fr () a(n) am’) (n)) N (') |~ (1) ~(n') and ("), Only the time steps)’—1 and n’ are shown. Time indices are
fis = Fvi; ”92 779; Jdii ), di = F(dig [P B )s omitted for simplicity (e.g.x; is short forx(" ) or x{"")). Each dotted
andy; £ f(f)gn )’Xl(_" ))_ box corresponds to an agedie 7 at time stepn’ — 1 or n’; calculations

within the box are performed locally by that agent. Conmerti between
dotted boxes at the same time imply communication betweentag

B. BP Message Passing

The proposed sequential CoSLAS algorithm applies BP ) ) S 2
[26], [27] to the FG in Fig. 2. Before presenting our algonith 1S @ weightedS-component mixture distribution, thﬁ'ﬁ (z)
in Section VI, we review the BP message update rules i 29&in @ weighteds-component mixture distribution, with
a generic factor functionf and a generic variable. Let the same weights. o o
Z; denote the set of arguments ¢f and assume € Z;, If the FG is a tree, then the BP algorithm is noniterative
ie., f = f(z,...). Furthermore, letF. denote the set of all (¢ = 1), there is a well-defined order of calculating the
functions f/ of which z is an argument, i.ez € Z; if and MeSsages (mgssage S(_:hedule), a_nd the beliefs are exagtly eq
only if f/€ F.. In message passing iteratiqre {1, ...,Q}, _to the respective margmz_il posterior pdfs [26], [2_7]. I_-|owrev
the message from factor nogeto variable node—denoted [T the FG has loops, as in the case of the FG in Fig. 2, the
by C)(fq) (z) —and the message from variable nadéo factor beliefs are only approximations of the marginal posteritfsp

- @\ . [26], [27]. Moreover, BP operates iteratively, and conesrce
node f—denoted by (z)—are calculated recursively as s o guaranteed for general non-Gaussian joint posterior

pdfs. Finally, there exist many possible message schedules
(}q)(z) :/f(z,...)( H n;ql)(z’)> d~z, (23) which may lead to different beliefs. Nevertheless, loopy BP

2/ €Z;\{z} provides accurate approximations of the marginal posterio
@/ \ _ (@) pdfs in many applications [21], [22], [25]-[29].
"y (2) = H < (2), (24) The sequential BP algorithm proposed in Section VI follows
freFaAs} a specific schedule that was observed to converge for the

where ~z denotes allz’ € Z; exceptz. After the final scenarios studied in Section VII. The scheduling of the BP
iteration ¢ = @, the belief for variablez is obtained (up to operations (23)-(25) is chosen such that messages are not
a normalization) as passed backward in time [22] and uninformative messages
are censored [33] (i.e., not used in message calculations).
b(z) o H g}Q)(z). (25) Since the mes[sagje(s are not passed backvx?ard in time, ozjr

fers algorithm can cope with a changing network connectivity and

For a function f(z,z’) with only two argumentss, z’, (23) its complexity does not increase with time moreover, the

simplifies tog“](ﬂ) (z) = ff(z,z’)n;q’l)(z’)dz’. If n;qfl)(z’) beliefs are directly equal to the messages passed to the next



n/

Message H n > ‘ w ‘ Se{l,2}
fi (o _ to agents e (9 — b
. ENANANED; 17 (8) = b(%) Cri (93) Biiso; | Epioo, — -
K3
G, (%4) N m; (xi) = b(x;) Cli(xi) = %i(xi) Kl —a;,s D2/ PR Wz;,s Sz,
— (% —— -
: Gy, (Pi) B —pis | Dpi—pis | Wagys Sz,
l Ny (X4 (x ~
i ]tl( z)l Tédh,( 1) Wi(pi) K5, —sa;,s Eﬁi—ﬂl’hs Wp, s Sﬁi
@ 0 |[1¢42(9) W
Message type:” o ' Gy (x2) Byimais | Bwioags | Whis Sp;
b o N o
Annulus or two Cos B | | T (trc);i\gents ny; (9:) = b(F:) B, g DI - -
annuli -
~ J'eTi\{j M, (%i) = b(x; Haz;—1;, B, W, Sb;
Gaussian or two '€ T} (i) = blxi) Tirhio Firtiss s
Gaussians g, @0 |] <62 B0
: @ gy Y TABLE |
T Gaussian fis Qf” (dij) bii PARAMETERS OF THEMESSAGESINVOLVED IN THE PREDICTION AND
: ! @ * BELIEF CALCULATION STEPS
pr—
<((I)(
] oY) |
agentje 7T; agentje 7T; Gaussian, e.g(y, (9;) £ N(ﬂﬁuﬂ-—wiazﬁ—wi)a and the

location-related messal X)), 7. (xi), Cu. (%4), 1w, (Pi),
Fig. 3. Detail of the FG in Fig. 2, corresponding to ageand its connection N d 968 (xi) ma( bz) G (i) i (P:)
to agentj € T at time stepn’. All depicted messages are calculated by agertv: (pi) andny, (x;) are represented by a Gaussian or a two-

i. The messages” (d;;) and n'" (di;) (which are equal to;{?’ (d;;) ~COmMponent Gaussian mixture [23], [34], e.g.,
ij iJ ij
and C;‘g (dij), respectively) are omitted to avoid visual clutter. Messag

S
K
represented by an annulus or two annuli are drawn in magemtasages A .
X ; . (x;) = E Wy, Xii s —sz 55 20—
represented by a Gaussian or a two-component Gaussianrenintblue, and Gi (1) Ti,8 N( i Bli—wi,sr Hlioas, ) ’
messages represented by a single Gaussian in red. s=1

with S,, € {1,2} and normalized weights,, ;. The latter
. ) . . ) representation is motivated by the observation that thatioe
time. The algorithm consists of the following main steps: messages tend to be unimodal or bimodal [22]. Becdyse
1) Prediction: Each agent locally converts the previous (short forf(xl(”>|xl(”*1>)) has only two arguments;, (x;)
belief of its clock statep(9{" "), and of its location- has the sames andS parameters ag, (x;) from the previous
related stateb(xl("_l)), into messagesy, (191(.")) and time interval (cf. (23)). For the same reason, at functign

¢, (x{™) for the current time intervat. This corresponds (short for f (bs[x:)), ny, (x:) and ¢y, (b:) have the samey

to messages passed from thel section to the:’ section and S parameters, and similarly fon,, (p;) and (y, (x;).

along the horizontal edges of the FG in Fig. 2. Moreover, since messages are not passed backward in time,
2) lterative message passingach ageni exchanges mes- we haveb(d;) =y, (9;) (cf. (25) with only ¢y, (%)C}g) (94)

sages related to its staté$™ andp.™ with neighboring on the right-hand side, which equajg (9;) due to (24)) and

agents, and uses the received messages to update its 8Hlarly b(x;) =, (x;), andny, (x;) = ¢, (x;) (cf. (24) with

messages according to (23) and (24). Only messages ®aly ¢, (x;) on the right hand side). The notation used for the

are informative according to some criterion (see Sectigrarameters of these messages is indicated in Table I.

VI-B) are used for further calculations. In Fig. 2, these Regarding the messages involved in ftexative message

messages are passed along the vertical edges conng@ssingstep, we use Gaussian representationsnﬁ}(ﬂi),

ing different agents. This step requires communicatiqii? (%), CJ(;I? (dij), andgéq,)_ (d;,), and Gaussian or two-compo-

(packet exchanges) with neighboring agents; it is repeatmgn”nt Gau;sian mixture” representations ﬁéf) (B:) (here

during a predefined number of iteratio@s i \Pi ’

3) Belief calculation and estimatiorEach agent calculates’ € Ti, an_d ¢ €{1,....4} |s_the !teratlon index). The
corresponding parameters are listed in Table II. ﬁﬁ]}(dij)

its beliefs by multiplying according to (25) the appropri- @
ate messages calculated in Steps 1 and 2. It then ugBg 17, (d;), the same Gaussian models as for, respectively,
these beliefs for state estimation according to (16) arggfg (d;;) and¢'? (d;;) are used, becauss? (d;;) :g(‘g (di;)

. fij ij
(17), and as messages for the next prediction (Step 1), 0@ (dij) = C}qj (dij) according to (24). Fina”VQé‘Z (Ps)

~ These steps will be worked out in Section VI after thg yepresented by an annulus or a mixture of two annuli defined
introduction of parametric message representations. as (cf. [34])
sy @ _||a. _ @ |2
V. PARAMETRIC MESSAGEREPRESENTATIONS (q)( ) 2 Z (¢—1) (T% le H%,SH)
i) = wil . expl —
The messages calculated at agestZ are displayed in the 91 \Pi po g &P 20;({1)8
- CVE]

FG detail shown in Fig. 3. Hereafter, for simplicity, we drop (26)
the time indexn in the superscript. For the messages inVOIVeiQere =1 gng la—D equal theS and w parameters of
in the predictionandbelief calculationsteps, we use Gaussian (q—l,) I IS (@ ) i

or Gaussian mixture representations. More specificall, tHo,; (Ps) (Cf. Section VI-B4),ry " is the nominal radius of
clock messagesy, (9;) and ny,(9;) are represented by athe annulus or annuli, anﬂ;‘ias and szf,)s are, respectively,



of these calculations, messages and their parametersrthat a

Message 3 w Se{l,2 . s
9 H ° ‘ ‘ 2 ‘ used from timen — 1 are denoted by the superscript.
0y (9:) pe g | =0 — — 1) Messages,(9;): The parameters ofy, (9;) are calcu-
D) (9 5@ _ _ lated using the functiorf; z_ind 'Fhe parameters of (). .The
Fig 2t fig =0 fig =0 evaluation of (23) here simplifies because the function node
(@ (4 (@) (@) i -
ng?) (Bi) ,ngg%’s zgjg%s s, fi is connected only to two edges [26]. One obtains
N (i) =¢§0 @) || 1y | o7y | — | — Bimsii = Hos g (27)
Dif 9, = 2y Dy - 28
] e Rl e et = Bt B 29
Cifjj. (B:) “g?j ) Jigs wj(_q_;;; S}i}“ 2) Me.ssagegli (xi):_ The parameters of;, (x;) are calcu-
lated using the functio; and the parameters &f (x;). One
obtains from (23)
TABLE i
PARAMETERS OF THEMESSAGESINVOLVED IN THE I TERATIVE MESSAGE . . — G -
PASSINGSTEP. Plimai,s Wa, >l
- T
Eliﬁzi,s = Glzxi*}li”SGl + Eu2,i )

the midpoint and squared nominal width of annulus (mixtuas well asw,, ;= Wy, andS;, =5, .

componentk. In each message passing iteratigthe param-  3) Message(y, (p;): Similarly, the parameters afy, (p;)
eters of these messages (see Table II) are calculated &t ages calculated using the functiap; and the parameters of
i for all j €7;, and the parameters @quz (p;) and n;‘lj) (9i)  my,(x;). (Note thatny, (x;) = ¢, (x;).) One obtains

are transmitted to neighbor agent
quﬁﬁq,é = Pl*”h—)ij,s 9

_ T
V1. THE PROPOSEDCOSLAS ALGORITHM i —pis = P e, P

Although the BP algorithm reviewed in Section Iv-BThew andS parameters are given hy,, ; andS;,, respec-
is less complex than straightforward marginalization dively (see Section VI-A2).
£(6©™|y(tm) a direct implementation of the BP rules (23)-
(25) in the considered CoSLAS scenario is still computatio. Iterative Message Passing
ally infeasible. Therefore, we next develop an approximate Next, we describe the iterative message passing operations
version of the BP algorithm that has moderate complexity apgrformed in iterationg € {1,...,Q}. The iterations are
!ow communlcat_lon requirements. This appr_oxmate algqmt initialized by settingnj(f_),) (9:) = Cr, (9;), 77;0.). (P:) = Co (i),
is a hybrid particle-based and parametric implementation o ©), ;" Y
(23)—(25): it combines a nonparametric (particle-baseH) gnd ¢y, (dij) = Cois (dij) = f(dij) for.j 67; wheref(d?-j) -
implementation, which is typically used for the nonlinearV (4 ta, o) With 1uq andor reflecting prior assumptions on
cooperative localization problem [22], with parametripne=  the interagent distances. The messaég%?s(ﬂi) and 77;”) (Ps)
sentations for messages and beliefs (see Section V), which @€ passed to the neighbois 7;. For ¢ > 1, the parameters
suited to the approximately linear-Gaussian synchroioizat Of Qj(cq]) (dij), Qéqz (dij), }qj) (), and Céqj) (p;) are calculated
problem [25]. This combination is enabled by the extendegtcording to (23), and the parameterglgiﬁ(rﬁi) andnéq,)_ (D)
factorization (22) involvingp; andd;;, whereby the location are calculated according to (24), as discussed next.
and clock states are characterized by separate messages ang Messagegj(ﬂ? (dij): We consider messags}‘?fl)(ﬂi)
thus, the message calculations can be performed via Eartiglassed from agertto neighborj) asinformativeif the trace

methods for the location states and via Gaussian paramejgefis covariance matri='?" ) is smaller than a threshote

. . . Vi— fij
updates for the clock states. To obtain a distributed algori . . Y
P néj asuninformativeotherwise, and we denote W(q) the

in which only message parameters have to be communicaft : ) . L .

: . set of neighborg of agent; that provide informative messages
between agents, the result of particle-based messagephaulti™,_7) 9 1f 0= 09Y s inf tive. then th h
cation for the location states is approximated by a Gaussiah: (9;)- s (9;) is informative, then the parameters

mixture (see Section V). Next, we present the individugf C}fj)(dij), je 77 are calculated using the functioh;

operations used for calculating messages and beliefs. and the parameters @ﬁgfl)(ﬂi) andn;’?fl)(ﬂj). Using (23)
and standard Gaussian operations [2J6], one obtains
A. Prediction
20 _ 2 2_ @7 T, 71
At time n = 0, the recursive BP algorithm is initialized by 0t = oy (l2all® — q;%; 1 Djjaq) (29)
1 ) — . ) — . . 2 T —1
settingb(9;) = f(¥;) and b(x;) = f(x;), where f(¢;) and ;i)_%dij — _O’fi(jqidiquﬂi,lzgﬂi,l uﬁ-‘ﬂi,l, (30)

f(x;) are the Gaussian prior pdfs in (4) and (5). The mixture
parameters ofy, (x;) = b(x;) = f(x;) are w;1 = 1 and  where ng_);l 2 A Dy (D;erij + ng§ﬂ;i)_l, D; 2
S, = 1. Forn > 1, the parameters of the messagggdi), o. B..] 2@ 2 diae{x@ D 5@ v angu@ 2
G, (x;), and¢y, (p;) are calculated according to (23), in which[ (fl_l)”T]' T & Vi fig? ?ja@l)}’ Hizia

the , messages are replaced by the respective beliglsm  Hi.—fi, Ho,5,:) - Otherwise, i.e., ifyel(9;) is uninfor-

time n—1 because they are equal. In the following presentatidnative or if j ¢ 79, we Set(}fj) (dij) = C](c?j_l)(dij)-



2) Messageg“(’”( i) We consrdern

st (b)) If e

of g(q)( dij), j € Tp(q) are calculated using the functiaf;
and the parameters Qﬁ) (P:) andn(q_ )( ;). Becausey;;

V(i) as infor-  [[ f(dijlps Bj)ni' " (B) n? (dij) dp;jddi; involves only
mative if it satrsfzes a criterion mvolvrng two thresholds

andt, (see Section VI-B6), and we denote By @ the set
of neighborsj of agentz‘ that provide informative messages
(pz) is informative, then the parameters

77(7 )(p ) as Gaussian mixture distribution Whereé@ )
is a Gaussian distribution.

5) Messagen(q)( 9;): The parameters o;fygcqj) (9:),i€T:

are calculated from those gf, (9;) and C}fj)/(ﬂi), 5 e TEO\

{7} according to (24). Since all involved messages are Gaus-
sian, 77f () is a single Gaussian with parameters [26]

is nonlinear, we use a linearization as d|scussed in Appendi

A. This yields a single Gaussian represen@éﬁ( i), whose
mean and variance are obtained as
S(q 1)5(’-1 1)
i—7 J—i
(9) (g— 1) (¢—1) (g—1)
u¢11_>d11 Z Z wZ_Uv J—ri,s || zg775|| ’ (31)

gla—1) gla=1)
i—j j—i
(g=1) (q—1) ( - (¢g—1)T (¢—1)
¢1]~>d” Z Z zijr ]izs(l‘l’dzj,rs 21377él‘l’dq
(@) 2
0 - ) ) (32
1) 1 1 1
with [,I,(q [J/;(f*ﬂ;” T_H;(j*}(;]l s? zg,7s—d1ag{2 7 )
1) Ha nT nT 1)
ﬁlj—mﬁ ,5} and/‘l’dqj TS ['u'dzj,rs - 31,76 } /H iﬂéH
If n(q Y(p;) is uninformative or ifj ¢ 7Y we set

c<q>< i)= cq”( nt
3) Message; ( ;): The parameters o;f('”( D), GETE@

-1
S0, - ( CY o) e
7 €T\

j eT;(‘“\{a}

6) Messagen(q)( ;). The parameters o;fy('”( jeT:

i)
are calculated from those of,, (p;) andgd)» (i), J' € 7;13((1)\
{j} via (24), which reads

Do) =) T ¢ m.

FET N}

n (37)

This product involves the annularly shaped messaégé,s(f)i)
(see (26)). We use a particle implementation of (373 based on

are calculated usmg the functiof); and the parameters 0f|mportance sampling [35], which is inspired by an approach

fs, Y (9;) and () (d

-1
E}qg)‘?ﬁ =0y (AT A - Qj%z 2CT ) ) (33)
Ngcij)")"?i = 5‘(53%19 Qj*)z 2252)2 2 Hﬁz 2 (34)

(9) A AT T (@-1\=1 ~ 2
where Q" , = A};Cj; (C Cij + o232 0,) , Ciy =

[Bi; adl, 2&212 2 d1ag{219q —3}]7 iqu—ii) }* and“yii,z £

[ (¢-1)T  (¢-1) ]T

Hoy; i fii Pig—digl -

4) Message;(” (p;): The parameters ogf(Q) (Bs), TP

;)- Similarly to (29) and (30), one hasproposed for Iocallzatlon in [21] and [34]. The resulting

particle representation of )( ) 1S then approximated by

a Gaussian or Gaussian mlxture distribution, or the message
(‘I) (pz) is declared uninformative as explained presently.
The proposal distribution for importance sampling is clmose

similarly as in [21], i.e.,

PO®B) 2 G+ > B

FETH NG}

(38)

To obtain particles representing? (p;), we first draw par-

(see (26)) are calculated using the functrdrr] and the ticles {p(l) }ZL:1 from the Gaussian or Gaussian mixture

parameters ofy(q Y(p,) and g(‘”(
is nonlinear, we Ilnearlz@pZ

;). Again, because;;

pj|| (considered as a function
of p;, with fixedp; = u;‘j‘_};ﬂ asefl, ... sl 1)}) around

message,, (p;). Next, for eachj’ € 77?\ {j}, we generate
particles{f)él,),, Z}ZL representlng{(” (p:) according to [21]
13"

y Mg
(a—1) (l)
S pi"}) , and obtain the parameters of (26) as f)él), .= pE}l)/,], +d) {Sm( (l))} :
[30], [34] cos(¢™)
((qu) _ M;Q) . This involves parUcIes{p%”/ 5 }l , drawn fromn(q Y0,
K3 K2 — 03 ’
u(q)J N(; 1 ' particles {d(l)}l , drawn from n(‘” (dij), and particles
$iges DB {p®}7  uniformly drawn on[0,27r). Then, |77 |L par-
=1 ?
2@ _ ﬂ(q DT sx(a—1) H(q 1)+J (@) WO ITPP|L ) o
bij:s Pij:s  TPi—djins Fpijys fig=dij> ticles {p; } representing the proposal distribution
l L
where pl4—1 2 1)/H (q— 1)H with @D 2 =1 p(p;) in (38) are obtained by fusing the partrcl{sp() }l:1
l‘l’pwv5 l‘l’pwv5 l‘l’pwv5 l‘l’pwv5 l‘l’ﬁ‘]*}(ﬁ],” s d (l) p(q)
SO o) ( oan {p< ,i}lzl,j e TV \{j}, ie.,
,Z S b Furthermore;qu_m and S]q_” .
in (26) equal the respective parametersné‘f p;) (cf. { l>}‘qu I _ C }z U U { Py }z .-
iy ZJ/ Z

Section VI-B6). In this context, note thadj(Q)( i) =

/67-1}7((1)\{]}



The corresponding weights are calculated as 2) Beliefb(x;): The parametersi,, i, s, Xu;—1i.s: Wh;,ss
(@ /=) (1) (@) (=) and S, € {1,2} of belief b(x;) are obtained by multiplying
W _ Mo (p.) _ Gu: (P Hj’eT!’(‘”\{j} §¢“, (") Cy,; (x;) and ¢, (x;). These messages are mixtures of, respec-

Cp@ 3P G (BP) + ey ¢ (p) " tively, S;, andS,, components. This results i, S,, mixture

b1’ components fob(x;), with parameters
— (a) P ; _
for | = 1,...,\7’}” \L. ThI.S involves an ev(a!uatlon of the i) = (2;:% ¥ 2;1—>wv S) 1, (40)
messages;y, (p;) (cf. Section VI-A3) andgdfv,(f)i), j e ' 5 B . L
* = 3 . g n . €Ti.T
7;13(11) \ {j} in (26) at the particle@ﬁl), l=1,..., ‘ﬁp(Q)‘L. oz —1;,(r,s) J«z—>lm(776)( 1b7',_—>117:,7-”’11’1H i
The complexity of this algorithm for computing the message + Eli—>z7;7s'u’li‘>93i75) (41)

product (37) scales only linearly in the number of particleand weights (before normalization)
This improves on the quadratic scaling of the particle-dase _ B
message multiplication method described in [21]. Woi,(r,s) = Wpi,rWai,s

P(q) — —

Next, the particle representatiob(f)?),wgl)) Z1 L of X exp (= hy,—air — Myszis + Pty (rs)) 5
77§>q3 (p;) is converted into a Gaussian or two-component Gaughere iy, o, » = pl, . S0l g e e £
sia_n mixtur_e distri_t)uﬁon, or the_respective message ikadm ;_LlTﬁ%S Zfii%smﬁxi,s, and hg, i, (rs) = Nlﬁzi,(r,s)
uninformative. This is done using the procedure described j »—1 e . Note thatS-.S... may bel. 2. or4

. . . Ii%li,.(r,s) xi—li,(r,s)" piri y 1 .
[34, Section 4.1], which involves two thresholds and 7. |f §;'S, is 1 or 2, we use all the mixture components to repre-
In the informative case, one obtains the Gaussian paramet@nt the product messabjex; ), i.€., S5, = Sp, S»,, and the final
M,(;qi)_,%,l and 21(33)_,%71 (here,w”).; =1 andS\”), =1) or weights wy, (rs) are obtained by normalizing the,, . ).
the Gaussian mixture parametaz%‘?)_}(b” o E(ﬂ)_mﬁ” ., and However, if 555, = 4, we setS;, =2 and use only the two

(a) (@) o e BT strongest mixture components, corresponding to the twexind
w2, fors € {1,2} (here,S;% . =2). T )

g J tuples(r, s) whose weightsp,, (. ;) are largest. These weights
are then normalized. The parameters and weights obtained in

- this way are then assigned ¥, ., o/, o, 1,5, andwy, o
The messagesy, (p;) and (y, (x;) are calculated after the ., o/ 1,....5}

final message passing iteration=£ Q).

C. Calculation of Messages,, (p;) and (y, (x;)

1) Messageyy, (p:): According to (24), E. Estimation
o (Bi) = H (9D po) A(A)pproximatio(niﬁz(.”) and x§”> of the MMSE. esti.mates
Pi\Pi pig \Pi) - 9 umse and x;uuse are obtained by replacing in (16)

: (Q)
I€T; and (17) the marginal posterior pdfﬁ(ﬂgn)\y(l’m) and

If_ 7’1.7.”@). is nqnempty, then a Gaussian or Gaussian mixtuye(xz(_n)‘y(m)) by the beliefsb(19;) and b(x;), respectively.
distribution with parametergi;, .y, s, Xp,—v..s: Wp..s» N ging the parametric representationsbé®;) and b(x;) dis-
Sp; € {1,2} is obtained by carrying out similar steps a3, ssed in Sections V and VI-DI™ s directly given by
in Section VI-B6, using the proposal distributignip;) = and<™ b 3 W ’ Finallv. estimates
ZjeTp<Q) Céﬁ)(ﬁi) and replacinggi(izj by Sp,. If 7f(Q) is Hoiofo _ i Y 2isesy, bi*sﬂ(f;f“*s' ) Y _
empty or ifn,, (p;) is found to be uninformative, thep,, (p;) of the primary cIockA (E)lgirametg(gi andA(%’) (f’&? §(i(;t|on
is set to a constant (i.e55 !, | is set to the zero matrix). !I-A) are obtained as;; "=1/[8; ], and/5; " =a; (9 ],
2) Messag{wi (Xz) The parameters ml/)z (Xi) are calcu- Where[']l denotes thdth element of a vector.

I f h . (Di 23). i . o .
ated from those ofjy, (p;) based on (23). One obtains F. Algorithm Summary and Communication Requirements

>t =P’z P TR dod |
Yi—=@is pi—rpi,st A summary of the overall algorithm is provided in Table III.
-1 Ty—1 icati i i
e st s =PTEL pp ye. (39) The communication requirements are as follows. At any time

_ ) _ n, in any message passing iteratign the parameters of
Note that (39) yieldS,, ", . fhy; a5 (instead ofuuy, .. s)  the two-dimensional message$’ (p:) and7'? (9;) have to
because that product will be used in (41). Theand S N (7

: be transmitted from agent to agent; ") Accordin
parameters are;, , and.S;, (see Section VI-C1). J gentj € 7; g

to Section VI-BG,n% (p;) is either uninformative or repre-

sented by a Gaussian or two-component Gaussian mixture

distribution. In the last case, which corresponds to marimu

communication requirements, the parameters;gﬁ(ﬁi) are

. i two mean vectors, two covariance matrices, and one weight
1.) Belief b(9;): The parametersly, s, and “’9@1’1' of (as the two weights are normalized, only one of them has to be

beliefb(d;) are calculated from those Qf, (9:) and¢; 7 (9:),  known). Furthermore, according to Section VI-BEY (9;) is

Jj € ZC(Q). This is done by calculating the expressions irepresented by a single Gaussian, i.e., by one mean vector an

(35) and (36), respectively, in whichis replaced byQ, the one covariance matrix. Hence, the total number of real wlue

summation index sef;"'? \ {;} is replaced by7;'“), and all that have to be transmitted from agemt Z to agent; 7™

the terms involvingzﬁgﬂi are suppressed. per iterationg is maximally (241) (2+3) + 1 = 16.

D. Calculation of Beliefs

Once the parameters @f;, (p;) and(y,(x;) are available,
the beliefsb(;) andb(x;) are calculated according to (25).
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TABLE IlI

COSLAS BP ALGORITHM—OPERATIONSPERFORMED BY AGENT? 50 * x 50 e q/ X
Initialization at time n=0: 40 ® § “ ®
The temporal recursion is initialized by setting?;) = f(9'”) and & 30 30
0 =
b(x;)=f ( ( )) (see (4) and (5), respectively). = o0 20

. X
Temporal recursion at timesn > 1: 10 10 —* ¢

o n=0 * 0 [n=10] :

0 10 20 30 40 50 0 10 20 30 40 50

b3

Step 1 — Prediction

1.1) The clock messaggy, () is calculated fromb™ (9;) (which
was calculated at time—1) according to (27) and (28).

1.2) The location messagg, (x;) is calculated fromb™ (x;) (which 50/ 50 o

was calculated at time—1) according to Section VI-A2. 20 JA / 20
1.3) The location messagg, (p;) is calculated fromny, (x;) = N NS

(i, (x4) according to Section VI-A3. = 30 30
Step 2 — lterative message passifithe message passing iteration iss 5q 20

0

initialized by settlngn< )( %) = (5, (%), %” (Ps) = Cy, (Pi), and 10 o / 10
(}?j( 5) = Cm)( ) = f(ds;) for all j€Ti. Furthermorep )(19 )
andné5 1 (p:) are transmitted to the respective nelghbpST. Then, o « * O« °
forg=1,...,Q: 0O 10 20 30 40 50 0O 10 20 30 40 50
2.1) The messagea“‘ Y(9,) and n“’ Y(p,) (calculated at the a[m] a[m]

previous |terat|on) Crz\r)e recelvt?d flr)om the 'reSpeCt'\.’e Mgh  Fig 4. Agent locations at times = 0, 10, 20, and 30. Dots indicate the
j € Ti. The setsT V= {j| 771 (9;) is informative} and  locations of the spatial reference agents, crosses ikdtbat locations of the
Tp(q) {] !77 pj) is Informatlve} are determined. mobile agents, the circle indicates the I_ocati‘on‘of the tmmipe_feren(_:e agent
L (one of the mobile agents), blue solid lines indicate thenagajectories, and
2.2) If n<q )(19¢) is informative, then for allj € 7'6(‘1) the mes- dashed gray lines indicate the measurement/communickitikg.

sageg@( di;) are calculated fronn,<q V(9 )andn(‘? D (9,)
accordlng to (29) and (30). Otherwugéq) ) ij,] 1) (diy).
2.3) Ifp$~Y(ps) is informative, then for alj € T/, the messages
C@( d;;) are calculated fromy(q )(Pi) andn Y(p,) ac-
cording to to (31) and (32). Otherwm{é‘” i) g‘q Y (dij).

2.4) Forj € T“‘“, the messagesj“”( 9;) are calculated from

VIl. NUMERICAL STUDY

In this section, we analyze the performance of the proposed
CoSLAS algorithm and compare it with that of two variants
with perfect clock or location-velocity information.

nff’ D (9;) and(“”( d;j) accordlng to (33) and (34). A. Simulation Setting
2.5) For j € T, the messages;” (p:) are calculated from e consider a network of =9 agents located in a square
nif‘ Y(p;) and Cm( d;) according to Section VI-B4. area of siz&sO0m x 50m, as shown in Fig. 4. The time interval
2.6) ForjeT;, the messagezs(‘”( ;) are calculated frong;, (9;) length isT" = 1s. Three of the agents € {1,2,3}) are
and C(q) (9:), j 67’6(‘1)\{3} according to (35) and (36). nonmobile spatial references located in three corners @f th
square area, and the remaining six agef¢s{¢,...,9}) are

(2)
2.7) Forj (6)71 the messa:g)es , (Pi) are calculated frond,, (B:)  mopile. Mobile agent =7 is a clock reference with known
and ¢y’ (i), j'€ T, \{j} according to Section VI-B6.  gjock statesy™ = [0 1]7 for all n. Fori # 7, the clock
2.8) The (parameters of) the messa@é‘é’ ;) and n(q)( \) are statesﬁgn) evolve according to (2) with process noise standard

transmitted to the respective neighbgrs 7;. deviationso, ; = 1us ando ; = 10 ppm, and with the initial
Step 3 — Belief calculation clock statesﬂl(.o), 1 # 7 randomly drawn according to (4) with
0 .
3.1) The beliefb(,) — ny,(9:) is calculated fromc, (9:) and v, =18, ox,= 150 ppm, andp{”, = [0 1]". The location-

C@)( 9:), j € T according to (35) and (36) in which is related states'™ of the mobile agents evolve according to (3)
replaced byQ, the summation index sgtf“f) \{;j} is replaced With process noise standard deviatiop, ; = 2m, and with
by 7,°%), and all terms involvings; !, , - are suppressed.  the initial value3x( ) chosen as shown in Fig. 4. A realization
3.2) The message,. (p:) is calculated fron(@)( ), jeTr@ of the statesa?l(") and xE"), n = 0,1,... was generated as
according to Section VI-C1. Next, the message (x;) is described above and used for all simulation runs. Fig. 4 show
calculated fromm,, (p:) according to Section VI-C2. Finally, the locations of the agents at four different times
the belief b(xi) = m,(x;) is calculated from¢y,(x:) and  Each agent communicates with other agents within a radius
(i, (x4) according to Section VI-D2. of 40m, i.e. T(n) {j EI} ||p(n) (n)” <40 m} The net-
Step 4 — EstimatianThe clock estimatesi; and §; and the work connectivity is time-varying (cf. Fig. 4) but the netiko
location-related estlmate&I are obtained from the parameters ofg always connected, as required by our initialization peot
b(19;) andb(x;), respectively as described in Section VI-E. in Section II-A. The agents performk; = K ;; = 10 noisy
measurements relative to each neighbor according to (7). In
each of the 100 simulation runs we performed, the mea-
surement nmses(” " in (7) were drawn independently for
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all (i,7) € C™, n, andk € {1,..., K;; = 10}, with a noise 10 n=0 3 3

standard deviation of, = 10ns. T g —o—Ppi COSLAS
In the simulated algorithms, the parameters used to iziéial £ 2 2 Pi gl‘i(iu?s

the distance message;‘%_) (dij) = Céoj) (di;) (see Section E ® ooy oo o i

VI-B) are pug = 27m andog = 10m. The process noise 2 4 1~ 1

parameters and the parametegsando,, are as stated earlier. & 2 S ~—o—o—o—0

The number of particles used for message multiplicatior (se g 0 0

012345 0123245

106

Section VI-B6) is]ﬁp(‘” |L =1000. The threshold parameters
(see Section VI-B) are = 2, ; = 15, and» = 40. The _ 106
initial covariance matrix Ofxl(-o), El(o)_m (see (5)), is defined § 04
by 0,,=5m ando;,=2m/s, and the initial mean is modeled UQ,

randomly ags(”, . =x¥+¢,, wherex'”) is the actual initial

—o— 3; COoSLAS

104 «; CoSLAS

- - - f3; LocRef
«a; LocRef

100

. n
location-related state ang ~ A'(e;;0,5\” ) was drawn = \\5\ ' N
. . . . i i o o—o—o—0 o——0o—>
independently for ali and all simulation runs. o.0f  TEFTE o0 ST FS o.01f AT

012345 012345 0123245

. . Iteration index Iteration index Iteration index
B. Simulation Results q q q

We consider the proposed CoSLAS algorithm (briefly re=g. 5. RMSEs versus message passing iteration igdaktimesn =1, 10,
ferred to as COSLAS) and two variants performing On@ndQO. Top: location-related parameters, bottom: clock paramet
localization or synchronization. In the first variant, deldb

ClkRef, all agents know their clock parameters, and in the s rather high for ally. This is because the top right agent
second variant, LocRef, all agents know their location anf the “n = 10" part of Fig. 4 has two of its three neighbors
velocity. We are not able to present a comparison with Oth@ﬁectively located in the same direction. This is no lonter
methods because, to the best of our knowledge, there arecage atn, — 20, and indeed the RMSE ab; here converges
other SLAS methods for time-varying clock skew and clockpproximately to a minimum in only= 1 iteration. Thus, one
offset. Our measure of performance is the root mean squag obtain low communication cost without compromising the
error (RMSE) of the various parameters averaged over 199nvergence op; by performing only one message passing
simulation runs and those agents that are not referencésaggferation per time step( = 1, which is sometimes referred to
For timesn=1, 10, and20, Fig. 5 shows the dependence ofs “real-time BP” [36]). We also see thatrat= 10 andn = 20,
the RMSEs of location, velocity, clock phase, and clock Skeﬂémarkably, the RMSEs of COoSLAS are similar to or only
(cf. Section VI-E) on the message passing iteration ind@Xghtly higher than those of ClkRef and LocRef. Thus, we
q. Here, differently from Section VI-E and Table Ill, thecan conclude that after a moderate number of time intervals,
belief calculation and estimation steps were performedthe coSLAS compensates for the lack of perfect knowledge of
iteration ¢, for a total of @ = 5 iterations. Atn = 1, the the clock or location-related parameters.
RMSE of the locationg; is seen to converge to a minimum |n Fig. 6, we show the estimated and true trajectories and the
after ¢ = 4 iterations for CoSLAS and aftey = 2 iterations RMSEs versus time. for Q=1 andQ =5. It is seen that at
for ClkRef. This difference can be explained by the fact thafarly times, the location RMSE is higher f@r =1 than for
in ClkRef, all agents know their clocks whereas in COSLAS@ = 5. The increased location RMSE around time= 10
distance messages can only be calculated when the agegi$ be explained as before. The clock RMSE is generally
possess informative clock messages (cf. Step 2.2 in Taple Ihigher for =1 since the clock information provided by the
Furthermore, the RMSE op; does not decrease with in-temporal reference agents cannot be disseminated thratigho
creasingg. This can be explained as follows. Via (40) anghe network during one message passing iteration, and hence
(41), the location accuracy expresseddBy(x;) and(, (x;)— (because = 1) during one time step. However, the location-
or, more specifically, by the first two (block) entries of theelated RMSEs suggest that the local synchronicity between
corresponding parameters,, —x,,r, Sy, —»e,,r aNd 11, 2,5, neighboring agents is sufficient for obtaining accuratetion-
X1, 2,5, respectively—strongly influences the velocity acCyelated estimates. The fluctuation of the clock RMSEs is
racy expressed byy(x;)—or, more specifically, by the secondcaused by the time-varying network connectivity and the
two (block) entries Oftq, 1,5, Xz, —1,,s- Butatn =1, G, (x;)  random-walk evolution model (2). Finally, the performance
still contains Ial‘ge uncertainties inherited from theuﬁlprlor of CoSLAS is again genera"y close to that of ClkRef and
f(xl(.o)). Thereforep; cannot be estimated accurately at timgocRef.
n = 1. The RMSEs of the clock parametersand; converge
to a minimum afterg = 2 iterations for both CoSLAS and VIII. CONCLUSION
LocRef. We note thaty = 2 iterations correspond to the We presented a distributed, sequential belief propagation
maximum hop distance from any nonreference agent to(BP) algorithm for cooperative simultaneous localizatand
spatial/temporal reference agent (in each iteration, thekc synchronization (CoSLAS) in mobile, decentralized agesit n
and location information is propagated by one hop). works with time-varying clocks. The agents acquire intergg
At n =10 andn = 20, the RMSEs ofa; and 3; converge distance estimates from time-of-flight measurements. We ex
to a minimum ing = 2 iterations. Atn = 10, the RMSE of ploited the resulting close relation between localizatéord



12

5 —o—p; COSLAS 2 —e— f3; CoSLAS
pi COSLAS _ «; CoSLAS
@ - - - p; ClkRef S - --f3; LocRef
E, 4 p: ClkRef % 1.6 «; LocRef
0=1 E 3 212 |
w w |
%) %) |
S 2 s 038 |
o o |
1 0.4 &Q\?‘X
. . 0 0 @mﬁmﬂ,
0 10 20 30 40 50 0 5 10 15 20 25 30 0 5 10 15 20 30
xz[m] Time indexn Time indexn
—o—p; COSLAS —e— f3; CoSLAS
5 e 5 pi CoSLAS 0.1 «; CoSLAS
o D - - - pi ClkRef = - - - B; LocRef
4 &q 7 E 4 pi ClkRef o 0.08 «; LocRef
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Fig. 6. Trajectories and RMSEs f@p = 1 (top) and@ =5 (bottom). In the leftmost figures, solid blue lines indictite true trajectories and dashed black
lines the estimated trajectories.

synchronization to establish a common statistical fortmute. Here,¥,; ,.s(d;;) describes thér, s)th Gaussian mixture com-
that features a conditional independence of time measupgnent and, e.gp;, ~ /\/(p“,uz()quZU wgz()qﬂldzl T) cor-
ments and location-related parameters given the intetaggssponds to theth Gaussian component. We can wmtg =
distances. This independence is leveraged by the propoggd,— P;s| as afunctioni;; = x(pj,»s) of the stacked vector
T ~T 1T - _ -
BP algorithm to obtain reduced dimensions of the messages £ [pT pl,] . We havepij, s ~ f(Bij.rs) :N(pim;
and thus a reduced complexity. The combined use of partlcle a1 (¢—1)T (q—1)T
representations and parametric representations leadigho ijrs; Dijra), WHETe puyj ps = [“"ﬁ% r M54, s} and
ij,rs has been specified in Section VI- éZ furthermore,
accuracy at low communication cost, and a judiciously chos& (-1 sa=1) s (g—1) E(q 1)
message schedule allows for real-time operation in nemvo_/(vlj" ﬁﬁmjm’zﬁﬁmjll@% (fpﬂaé’“p —¢ji,s ﬁﬁabz,gs)
with rapidly changing connectivity. Simulation resultsnten- —*V (Piirsi Kijrs; Zijirs)- Therefore, we can rewrite (43) as
strated the good performance of the proposed algorithm inig, ,.(d,;)
challenging scenario with only one temporal reference aigen

and time- varylng network connect|V|ty /6 pzy,m) dz]) N(pu,m: Hijrs, z],m) dngns (44)

For an approximate evaluation of this integral, we lineariz
APPENDIXA the functiony(p;;,-s) aroundy;; -s. This yields

We derive the Gaussian approximation @(qf ii) Pre-  x(Pijrs)

sented in Section VI-B2. According to (23), we have . s -1 _(¢—-1)T
g ( ) ~ er([’ij,rs) £ H)u'((jlj]JZH +iu’((ilj] 72 (plj rs )u'ij.,rs)a (45)
ch” ij) //@g %ZJ V(p 77;(]1 Y (b;) dp;dp;, with ,u(q Y and~!) as defined in Section VI-B2. Inserting
(45) into (44) we obtam the approximation
with ¢;; = 6(||pi— 13]” dij). Inserting the Gaussian mixture\Ij__ (ds;)
representations 0% Y(p;) and n;’fl)(f)j) (cf. Table 1) "
gives ~ Uijirs(dij)
S(q 1)S(q 1)
s = 6 th pz ,75) dz N Pij,rss Hijrs, z ,7s)dpz ,T'S -
66! (ds =X X DWW (dy),  (42) / sirs) = dig) N(Bisirsi Higras Bisirs) By o)
where Within our approximationd;; ~ Xrs(Pij,rs), 6 (Xrs(Pijrs)—

d”) can be interpreted ag(d;;|pi;.rs). Hence, (46) becomes

’Lj rs -
Wij,rs(dig) Z/f(dij|f>ij,rs)f(f)z'j,rs)dﬁij,rs = frs(dij), (47)

1 -1
/ ; ||p“ Byl — dig) N (B 0, B0 )
(4—1) (4—1) R wheref,(d;;) denotes the pdf of;; under our approximation
x N(pj’w Ppj 6.0 Eﬁj%%i’&‘)dpl’rdpj’s. (43) dij ~ )?rs(f’ij-,rs)- Becausq}ijms ~ N(f’ij,rs; Hij,rs, 2ijﬂ“s>



and x,s(-) is an affine function (see (45)),s(d;;) is again [14]
Gaussian, i.e.frs(di;) = N (dij; pra.rs, 03 .g), With
Hd,rs = E[)er (f)ij,rs)] [15]
—1 nT ~
= [l 2+ B T (B lBij sl - phisirs)
_1l,,(@1D
= [0 [16]
and
Ug,rs = Var[f(TS (f)ijﬂ”s)] [17]
1 1
- /‘l’t(izj 72 COV[pz] rs /1'1] TS] /1’((13],72
_ 1 —_(g—1
I‘I’EI(ZJ r; Eij,rs l‘l’glzj,ri . [18]
Thus, because of (47), we also ha\i'ejym(dij) = N(dij;
Hd, Ts,od,é) Substituting this forl;; ..(d;;) in (42) yields  [19]
S(i 1) S(L 1)
C(q) Z Z wzijlz j:zlz N( ijs Hd,rs) 02,7'5) : [20]

This is a mixture of up to four Gaussian components. Finally,
we use moment matching [37] to approximate this Gaussr? :
mixture by a single Gaussian. The resulting mean and vagia
are given in (31) and (32), respectively.
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