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Cooperative Simultaneous Localization and
Synchronization in Mobile Agent Networks
Bernhard Etzlinger, Florian Meyer, Franz Hlawatsch, Andreas Springer, and Henk Wymeersch

Abstract—Cooperative localization in agent networks based
on interagent time-of-flight measurements is closely related to
synchronization. To leverage this relation, we propose a Bayesian
factor graph framework for cooperative simultaneous localization
and synchronization (CoSLAS). This framework is suited to
mobile agents and time-varying local clock parameters. Building
on the CoSLAS factor graph, we develop a distributed (decentral-
ized) belief propagation algorithm for CoSLAS in the practically
important case of an affine clock model and asymmetric time
stamping. Our algorithm allows for real-time operation and is
suitable for a time-varying network connectivity. To achieve high
accuracy at reduced complexity and communication cost, the
algorithm combines particle implementations with parametric
message representations and takes advantage of a conditional
independence property. Simulation results demonstrate the good
performance of the proposed algorithm in a challenging scenario
with time-varying network connectivity.

Index Terms—Agent network, network synchronization, coop-
erative localization, belief propagation, message passing, factor
graph, CoSLAS.

I. I NTRODUCTION

A. Background and State of the Art

Location information in agent networks enables a multitude
of location-aware applications [1]–[4]. In many systems, the
location information is obtained from interagent time measure-
ments: each interagent distance is related to the time-of-flight
of a signal and can thus be estimated from time-of-arrival mea-
surements, and the agent locations can then be estimated in a
distributed (decentralized) manner via cooperative localization
techniques [5]. This scheme presupposes a common time base
at all the agents and, thus, accurate synchronization throughout
the network. Accordingly, several methods forsimultaneous
localization and synchronization(SLAS) have been developed
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recently. These methods can be classified into six groups as
follows. Estimation of static clock and location parameters is
considered (i) for a single agent in [6]–[9], (ii) for multiple
agents with centralized computation in [10]–[12], and (iii) for
multiple agents with distributed computation in [12]–[16]. For
a single agent, (iv) estimation of dynamic clock parameters
and static location parameters is considered in [17], and (v)
estimation of static clock parameters and dynamic location
parameters is considered in [18]. (vi) Distributed estimation
of dynamic clock and location parameters of multiple agents
is considered in [19].

Hereafter, we consider onlydistributedSLAS methods for
multiple agents, i.e., methods from groups (iii) and (vi). In
these methods, the local clocks differ either only in a clock
offset [12], [16], [19] or in both a clock offset and a clock
skew [13]–[15]. Considering also clock skews is important
for accurate localization when multiple time measurementsare
combined for each communication link [20].

To account for the nonlinear measurement model of the
SLAS problem, the distributed methods mentioned above
use distributed least-squares (LS) or maximum likelihood
estimation methods [12], [13] or Bayesian message passing
methods [14]–[16], [19]. Typically, message passing meth-
ods require significantly fewer iterations than distributed LS
methods [12]–[14]. Despite this advantage, to the best of our
knowledge, only [19] previously proposed the message passing
approach for SLAS in mobile, dynamic agent networks. How-
ever, the method in [19] is limited in practical scenarios inthat
no clock skews are considered, spatial references (anchors)
must also serve as temporal references, and a linearizationof
the likelihood function is used that requires a dense deploy-
ment of anchors in the network.

Bayesian message passing methods are a powerful approach
to cooperative estimation in agent networks and have been
widely used for cooperative localization and cooperative syn-
chronization individually [21]–[25]. To deal with nonlinearities
in the message passing schemes, [14] and [15] use parti-
cle representations of messages whereas [16] and [19] use
Gaussian messages based on the linearization of a specific
term in the likelihood function. The particle-based methods
outperform the linearized Gaussian method if only few agents
with a spatial reference are available; this comes at the cost
of higher communication requirements. In cooperative local-
ization, the communication requirements of message passing
can be reduced by using a parametric message approximation
[23] or a sigma point implementation [24]. In cooperative
synchronization, Gaussian messages can be used because the
measurement equations are approximately linear [25].

http://arxiv.org/abs/1611.01985v1
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B. Contributions and Paper Organization

Here, we present a unified belief propagation (BP) message
passing framework and algorithm for distributedcooperative
SLAS(CoSLAS) in mobile agent networks with time-varying
local clocks. BP methods provide accurate and computation-
ally efficient solutions in many applications [21], [22], [25]–
[29]. In the proposed BP framework, a low dimension of
the involved state variables is achieved by exploiting the
conditional independence of time measurements and location-
related parameters given the interagent distances, which leads
to a detailed factorization of the joint posterior probability
density function (pdf). In this factorization, the dimension of
the state variables does not depend on the number of agents
in the network, thus yielding excellent scalability.

The proposed BP algorithm enables each agent to determine
its own clock and location parameters in a distributed, cooper-
ative, and sequential manner. The algorithm is a hybrid—both
particle-based and parametric—implementation of BP that
relies on a specific, practically relevant model for the clocks,
state evolutions, and measurements. This model supports para-
metric representations of all messages, which strongly reduces
computation and communication requirements compared to
purely particle-based methods [15]. The algorithm extends
state-of-the-art methods in that it is suited to time-varying
clock and location parameters, time-varying network connec-
tivity, and networks where the sets of spatial and temporal
reference agents may be different or even disjoint.

This paper is organized as follows. The agent network, clock
model, and state evolution model are described in Section
II. The measurement model and corresponding likelihood
function are developed in Section III. In Section IV, we
present a “low-dimensional” factorization of the joint posterior
pdf and the corresponding factor graph, and we review the
BP scheme for approximate marginalization. The parametric
message representations used by our algorithm are described
in Section V. Section VI develops the proposed CoSLAS
algorithm. Finally, Section VII presents simulation results.

This paper advances beyond the results reported in our
conference publication [15] in that (i) it extends the CoSLAS
factor graph framework and BP message passing algorithm
of [15] to a time-dependent senario and a sequential (time-
recursive) operation; (ii) it presents a BP algorithm for mobile
agents with time-varying local clocks; (iii) it proposes para-
metric representations for all messages.

II. N ETWORK AND STATES

A. Agent Network, Clock Model, and States

We consider a connected time-varying network ofI mobile,
asynchronous agentsi ∈ I , {1, . . . , I}. The reference time,
t, is slotted into intervals[nT, (n+1)T ), n∈ {0, 1, . . .}. The
agents know the interval durationT but, due to their imprecise
clocks, are not able to autonomously determine the beginning
of a new time interval. At time stepn, i.e., during thenth time
interval, two agentsi, j∈I, i 6= j are able to communicate if
(i, j) ∈ C(n) ⊆ I×I (and, by symmetry,(j, i) ∈ C(n)). The
neighborhoodT (n)

i ⊆ I \{i} of agenti ∈ I consists of all
agentsj∈I \{i} that communicate with agenti at time step

n, i.e., T (n)
i ,

{

j ∈I \{i}
∣

∣(i, j)∈C(n)
}

. Note thatC(n) and
T (n) are assumed constant within thenth time interval. Some
of the agentsi are spatial and/or temporal references, which
have perfect knowledge of their own location and/or clock,
respectively, at all times. In particular, a temporal reference
agent is able to determine the beginning of a new time interval.

Each agenti ∈ I has an internal/local clockci, whose
dependence on the reference timet is modeled as

ci
(

t;ϑ
(n)
i

)

= α
(n)
i t+ β

(n)
i . (1)

Here,α(n)
i > 0 and β(n)

i ∈ R are theclock skewand clock
phase, respectively, which define theclock stateϑ(n)

i ,
[

ν
(n)
i λ

(n)
i

]T
with ν

(n)
i , β

(n)
i /α

(n)
i andλ(n)i , 1/α

(n)
i . (This

parameter transformation leads to an approximately Gaussian
likelihood function, cf. Section III-B.) Each agenti has a
location-related statex(n)

i ,
[

p
(n)T
i ṗ

(n)T
i

]T
, wherep(n)

i ,
[

x
(n)
1,i x

(n)
2,i

]T
is the location vector anḋp(n)

i ,
[

ẋ
(n)
1,i ẋ

(n)
2,i

]T
is

the velocity vector (relative tot). Thestateof agenti at time
stepn is thus given byθ(n)i ,

[

ϑ
(n)T
i x

(n)T
i

]T
. We note that

p
(n)
i =Px

(n)
i with P =

[

I2 02

]

, whereI2 is the2×2 identity
matrix and02 is the2×2 zero matrix.

B. State-Evolution Model and Prior Distribution

For the temporal evolution of the clock stateϑ(n)
i , we use

a standard random walk model as in [17], i.e.,

ϑ
(n)
i = ϑ

(n−1)
i + u

(n)
1,i , n=1, 2, . . . , (2)

where u
(n)
1,i ∼ N

(

u
(n)
1,i ;0,Σu1,i

)

with Σu1,i = diag
{

σ2
1,i,

σ2
2,i

}

is Gaussian process noise that is independent acrossn
and i. The state-evolution pdf corresponding to (2) is

f
(

ϑ
(n)
i

∣

∣ϑ
(n−1)
i

)

∝ exp

(

−1

2

∥

∥ϑ
(n)
i − ϑ(n−1)

i

∥

∥

2

Σ
−1
u1,i

)

,

where‖v‖2A, vTAv. The temporal evolution of the location-
related statex(n)

i is modeled as [30]

x
(n)
i = G1x

(n−1)
i + u

(n)
2,i , n=1, 2, . . . , (3)

where u
(n)
2,i ∼N

(

u
(n)
2,i ;0,Σu2,i

)

with Σu2,i=σ
2
u2,i

G2; here,
G1 andG2 are as in [30]. The state-evolution pdf correspond-
ing to (3) is

f
(

x
(n)
i

∣

∣x
(n−1)
i

)

∝ exp

(

−1

2

∥

∥x
(n)
i −G1x

(n−1)
i

∥

∥

2

Σ
−1
u2,i

)

.

Furthermore,u(n)
1,i andu(n)

2,i are assumed independent and also

independent acrossi andn. The initial statesϑ(0)
i andx(0)

i are
modeled as independent, independent acrossi, and Gaussian
with independent entries, i.e.,

ϑ
(0)
i ∼ f

(

ϑ
(0)
i

)

= N
(

ϑ
(0)
i ;µ

(0)
fi→ϑi

,Σ
(0)
fi→ϑi

)

, (4)

x
(0)
i ∼ f

(

x
(0)
i

)

= N
(

x
(0)
i ;µ

(0)
li→xi

,Σ
(0)
li→xi

)

, (5)

with Σ
(0)
fi→ϑi

= diag
{

σ2
νi
, σ2
λi

}

andΣ
(0)
li→xi

= diag
{

σ2
xi
, σ2
xi
,

σ2
ẋi
, σ2
ẋi

}

. It follows that the joint prior pdf of all the states
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up to timen factors as

f
(

θ(0:n)
)

=
∏

i∈I

f
(

ϑ
(0)
i

)

f
(

x
(0)
i

)

×
n
∏

n′=1

f
(

ϑ
(n′)
i

∣

∣ϑ
(n′−1)
i

)

f
(

x
(n′)
i

∣

∣x
(n′−1)
i

)

. (6)

Here,θ(0:n) collects allθ(n
′)

i for i∈I andn′∈{0, . . . , n}.

III. M EASUREMENTS ANDL IKELIHOOD FUNCTION

A. Time-Stamping Measurement Model

Each time interval[nT, (n + 1)T ) contains a “measure-
ment phase” in which the agents acquire measurements. Each
measurement phase consists of aninitialization in which the
temporal reference agents inform the other agents about the
beginning of the measurement phase, and apacket exchange
during which the agents obtain time measurements using the
asymmetric time-stamped communication scheme proposed
in [31]. The measurement phase is short compared to the
time interval durationT , so that the clock parameters are
approximately constant during the measurement phase.

1. Initialization: The agents are not able to determine
autonomously the start of a new time interval and, in turn,
of a packet exchange. This information is provided by the
temporal reference agents via the following protocol: (i) After
timeT has passed since the beginning of the last measurement
phase, each temporal reference agent initializes a new time
interval by broadcasting a “start packet exchange” message
to its neighbors. (ii) When an agent receives a “start packet
exchange” message from one of its neighbors, it starts the
packet exchange with that neighbor and itself broadcasts a
“start packet exchange” message to its neighbors.

2. Packet exchange:Consider a communicating agent pair
(i, j) ∈ C(n) with distance

∥

∥p
(n)
i − p

(n)
j

∥

∥. Agent i transmits
Kij ≥ 1 packets to agentj, and agentj transmitsKji ≥ 1
packets to agenti. The communication is termed asymmetric
if Kij 6= Kji [7]. At time n ≥ 1, the kth “i → j” packet
(wherek ∈ {1, . . . ,Kij}) departs from agenti at times(n,k)ij

and arrives at agentj at measured time

r
(n,k)
ij = s

(n,k)
ij + δ

(n,k)
ij , with δ

(n,k)
ij ,

‖p(n)
i −p

(n)
j ‖

c
+ v

(n,k)
ij .

(7)
Here,δ(n,k)ij is the delay expressed in true time,c is the speed

of light, and v(n,k)ij ∼ N
(

v
(n,k)
ij ; 0, σ2

v

)

is Gaussian measure-
ment noise that is independent and identically distributed(iid)
acrossi, j, k, andn. The transmit timess(n,k)ij and receive

timesr(n,k)ij are recorded at agenti andj, respectively in local
time according to (1). This results in thetime stamps

ci
(

s
(n,k)
ij

)

= α
(n)
i s

(n,k)
ij + β

(n)
i , (8)

cj
(

r
(n,k)
ij

)

= α
(n)
j r

(n,k)
ij + β

(n)
j . (9)

Plugging (7) into (9) and inserting in the resulting expression
the expression ofs(n,k)ij obtained from (8), we find

cj
(

r
(n,k)
ij

)

= ψ
(n,k)
i→j

(

θ
(n)
i , θ

(n)
j

)

+ v
(n,k)
ij α

(n)
j , (10)

t

c(t) cj
(

t;ϑ
(n)
j

)

ci
(

t;ϑ
(n)
i

)

ci
(

s
(n,k)
ij

)

cj
(

r
(n,k)
ij

)

ci
(

s
(n,k+1)
ij

)

cj
(

r
(n,k+1)
ij

)

ci
(

s
(n,k+2)
ij

)

cj
(

r
(n,k+2)
ij

)

cj
(

s
(n,k)
ji

)

ci
(

r
(n,k)
ji

)

Fig. 1. Local clock functionsci
(

t,ϑ
(n)
i

)

and cj
(

t,ϑ
(n)
j

)

, packet transmis-
sions, and local time measurements (time stamps) for agentsi and j.

with

ψ
(n,k)
i→j

(

θ
(n)
i , θ

(n)
j

)

,

(

ci(s
(n,k)
ij )−β(n)

i

α
(n)
i

+
‖p(n)

i −p
(n)
j ‖

c

)

α
(n)
j + β

(n)
j . (11)

Similarly, the transmission of thekth packet from agentj
to agenti (wherek ∈ {1, . . . ,Kji}) yields the time stamps
cj
(

s
(n,k)
ji

)

and ci
(

r
(n,k)
ji

)

; expressions of these time stamps
are obtained by exchangingi and j in (8)–(11). The clock
functions ci

(

t;ϑ
(n)
i

)

and cj
(

t;ϑ
(n)
j

)

and time stamps are
visualized in Fig. 1. A communication protocol ensures that
these time stamps are available at both agentsi andj.

The aggregated measurement of agentsi andj comprises all
“received” time stamps, i.e.,y(n)

ij ,
[

y
(n)T
i→j y

(n)T
j→i

]T
with y

(n)
i→j

,
[

cj
(

r
(n,1)
ij

)

· · · cj
(

r
(n,Kij)
ij

)]T
and y

(n)
j→i ,

[

ci
(

r
(n,1)
ji

)

· · ·
ci
(

r
(n,Kji)
ji

)]T
. We also define the (recorded, not measured)

“transmitted” time stamp vectors̃y(n)
i→j ,

[

ci
(

s
(n,1)
ij

)

· · ·
ci
(

s
(n,Kij)
ij

)]T
and ỹj→i ,

[

cj
(

s
(n,1)
ji

)

· · · cj
(

s
(n,Kji)
ji

)]T
.

B. Likelihood Function

We first consider the “single-packet” likelihood function of
thekth i→ j packet at timen, f

(

cj
(

r
(n,k)
ij

)∣

∣θ
(n)
i , θ

(n)
j

)

. From

(10) with v(n,k)ij ∼ N
(

v
(n,k)
ij ; 0, σ2

v

)

, we obtain

f
(

cj
(

r
(n,k)
ij

)∣

∣θ
(n)
i , θ

(n)
j

)

=
1

√
2πα

(n)
j σv

exp

(

−

(

cj
(

r
(n,k)
ij

)

− ψ
(n,k)
i→j

(

θ
(n)
i , θ

(n)
j

)

)2

2α
(n)2
j σ2

v

)

.

The single-packet likelihood function for thekth j → i

packet,f
(

ci
(

r
(n,k)
ji

)∣

∣θ
(n)
i , θ

(n)
j

)

, is obtained by exchangingi

andj. Becausev(n,k)ij was assumed iid acrossi, j, andk, the
measurements between any agentsi and j with (i, j) ∈ C(n)

(cf. (10)) are conditionally independent given the respective
agent statesθ(n)i andθ(n)j , and thus we have

f
(

y
(n)
ij

∣

∣θ
(n)
i , θ

(n)
j

)

= f
(

y
(n)
i→j

∣

∣θ
(n)
i , θ

(n)
j

)

f
(

y
(n)
j→i

∣

∣θ
(n)
i , θ

(n)
j

)

=

Kij
∏

k=1

f
(

cj
(

r
(n,k)
ij

)∣

∣θ
(n)
i , θ

(n)
j

)

Kji
∏

k′=1

f
(

ci
(

r
(n,k′)
ji

)∣

∣θ
(n)
i , θ

(n)
j

)
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= G
(n)
ij exp

(

−
‖y(n)

i→j −ψ
(n)
i→j‖2

2α
(n)2
j σ2

v

−
‖y(n)

j→i−ψ
(n)
j→i‖2

2α
(n)2
i σ2

v

)

, (12)

whereG(n)
ij ,

(√
2π α

(n)
j σv

)−Kij
(√

2π α
(n)
i σv

)−Kji, ψ(n)
i→j ,

[

ψ
(n,1)
i→j

(

θ
(n)
i , θ

(n)
j

)

· · · ψ(n,Kij)
i→j

(

θ
(n)
i , θ

(n)
j

)]T
, and ψ(n)

j→i ,
[

ψ
(n,1)
j→i

(

θ
(n)
i , θ

(n)
j

)

· · · ψ(n,Kji)
j→i

(

θ
(n)
i , θ

(n)
j

)]T
. As analyzed in

[25], if the difference of successive packet transmit timesis
much larger than the noise standard deviation, i.e.,s

(n,k)
ij −

s
(n,k−1)
ij ≫ σv for k ∈{2, . . . ,Kij}, then the following accu-

rate approximation of the likelihood function (12) is obtained
by approximatingα(n)j σv andα(n)i σv (involved inG(n)

ij ) by σv:

f
(

y
(n)
ij

∣

∣θ
(n)
i , θ

(n)
j

)

≈ f̃
(

y
(n)
ij

∣

∣θ
(n)
i , θ

(n)
j

)

(13)

∝ exp

(

−
∥

∥A
(n)
ij ϑ

(n)
i + B

(n)
ij ϑ

(n)
j + ad‖p(n)

i −p
(n)
j ‖

∥

∥

2

2σ2
v

)

,

(14)
where the symbol∝ indicates equality up to a constant
normalization factor (i.e., not depending onα(n)

i or α(n)
j ),

and A
(n)
ij ,

[

1Kij
−ỹ

(n)
i→j

−1Kji
y
(n)
j→i

]

, B
(n)
ij ,

[

−1Kij
y
(n)
i→j

1Kji
−ỹ

(n)
j→i

]

, and

ad , − 1
c
1Kij+Kji

with 1K denoting the all-ones vector of
dimensionK. In (14), f

(

y
(n)
ij

∣

∣θ
(n)
i , θ

(n)
j

)

is approximated by

a Gaussian function in the agent distance‖p(n)
i −p

(n)
i ‖ and

the clock statesϑ(n)
i andϑ(n)

j . As in [25], this approximation
will allow us to develop a BP message passing scheme where
the clock messages are represented by Gaussian parameters.

Finally, becausev(n,k)ij was assumed independent acrossn,
we obtain the approximate joint likelihood function

f̃
(

y(1:n)
∣

∣θ(1:n)
)

=

n
∏

n′=1

∏

(i,j)∈C(n′)

i>j

f̃
(

y
(n′)
ij

∣

∣θ
(n′)
i , θ

(n′)
j

)

, (15)

wherey(1:n) collects ally(n′)
ij , (i, j)∈ C(n′), i> j andθ(1:n)

collects allθ(n
′)

i , i∈I, both forn′∈{1, . . . , n}.

IV. SEQUENTIAL STATE ESTIMATION USING BP

At each time stepn, each agenti ∈ I estimates its
current clock stateϑ(n)

i and location-related statex(n)
i from

all past and present measurements,y(1:n). This is based on the
minimum mean-square error (MMSE) estimates [32]

ϑ̂
(n)
i,MMSE ,

∫

ϑ
(n)
i f

(

ϑ
(n)
i

∣

∣y(1:n)
)

dϑ
(n)
i , (16)

x̂
(n)
i,MMSE ,

∫

x
(n)
i f

(

x
(n)
i

∣

∣y(1:n)
)

dx
(n)
i . (17)

Here, the marginal posterior pdfs f
(

ϑ
(n)
i

∣

∣y(1:n)
)

and

f
(

x
(n)
i

∣

∣y(1:n)
)

can be obtained from thejoint posterior pdf
f
(

θ(0:n)
∣

∣y(1:n)
)

∝ f
(

y(1:n)
∣

∣θ(1:n)
)

f
(

θ(0:n)
)

by marginal-
izations. Because these marginalizations are typically com-
putationally infeasible, we resort to approximate MMSE es-
timation by means of iterative BP [26]–[28]. BP provides
approximations of the marginal posterior pdfs,b

(

ϑ
(n)
i

)

≈

f
(

ϑ
(n)
i

∣

∣y(1:n)
)

and b
(

x
(n)
i

)

≈ f
(

x
(n)
i

∣

∣y(1:n)
)

, so-calledbe-
liefs, which can be calculated in a sequential (time-recursive),
distributed manner. The means of these beliefs then provide
approximations of the MMSE estimateŝϑ(n)

i,MMSE andx̂(n)
i,MMSE.

A. Joint Posterior pdf and Factor Graph

BP is based on a factor graph (FG), which represents the
factorization structure of the joint posterior pdf [26]–[28]. In
our case, using the approximation (13) and the factorizations
in (6) and (15), the joint posterior pdf is

f
(

θ(0:n)
∣

∣y(1:n)
)

∝ f
(

θ(0:n)
)

f̃
(

y(1:n)
∣

∣θ(1:n)
)

=
∏

i∈I

f
(

ϑ
(0)
i

)

f
(

x
(0)
i

)

n
∏

n′=1

f
(

ϑ
(n′)
i

∣

∣ϑ
(n′−1)
i

)

f
(

x
(n′)
i

∣

∣x
(n′−1)
i

)

×
∏

(i,j)∈C(n′)

i>j

f̃
(

y
(n′)
ij

∣

∣θ
(n′)
i , θ

(n′)
j

)

. (18)

In a direct application of BP, the maximum dimension of the
messages would be the dimension ofθ(n)i , i.e., six. To obtain
lower-dimensional messages, we apply the “opening nodes”
principle [28, Sec. 5.2.2], i.e., we augment (18) by additional
variables that depend deterministically on certain variables in
(18). More specifically, we introduce location variable replicas
p̃
(n)
i , Px

(n)
i (note that formallyp̃(n)

i = p
(n)
i ) and interagent

distances involving these location replicas,d(n)ij ,
∥

∥p̃
(n)
i −

p̃
(n)
j

∥

∥. In this way, the joint posterior pdff
(

θ(0:n)
∣

∣y(1:n)
)

in
(18) is extended to

f
(

θ(0:n), p̃(1:n),d(1:n)
∣

∣y(1:n)
)

∝ f
(

θ(0:n), p̃(1:n),d(1:n)
)

f
(

y(1:n)
∣

∣θ(1:n), p̃(1:n),d(1:n)
)

, (19)

wherep̃(1:n) consists of all̃p(n′)
i for i∈ I, andd(1:n) consists

of all d(n
′)

ij for (i, j) ∈ C(n′) (i> j), both forn′∈{1, . . . , n}.
The new likelihood function (cf. (15)) is

f
(

y(1:n)
∣

∣θ(1:n), p̃(1:n),d(1:n)
)

=

n
∏

n′=1

∏

(i,j)∈C(n′)

i>j

f̃
(

y
(n′)
ij

∣

∣ϑ
(n′)
i ,ϑ

(n′)
j , d

(n′)
ij

)

, (20)

wheref̃
(

y
(n)
ij

∣

∣ϑ
(n)
i ,ϑ

(n)
j , d

(n)
ij

)

is given by (14) with
∥

∥p
(n)
i −

p
(n)
j

∥

∥ replaced byd(n)ij . Here, we exploited the fact that
the measurementsy(1:n) are conditionally independent of
the location-related states given the interagent distances,
i.e., f

(

y(1:n)
∣

∣θ(1:n), p̃(1:n),d(1:n)
)

= f
(

y(1:n)
∣

∣ϑ(1:n),d(1:n)
)

.
Furthermore, using the deterministic relations mentioned
above, the extended prior pdf (cf. (6)) is obtained as

f
(

θ(0:n), p̃(1:n),d(1:n)
)

=
∏

i∈I

f
(

ϑ
(0)
i

)

f
(

x
(0)
i

)

n
∏

n′=1

f
(

ϑ
(n′)
i

∣

∣ϑ
(n′−1)
i

)

f
(

x
(n′)
i

∣

∣x
(n′−1)
i

)

× f
(

p̃
(n′)
i

∣

∣x
(n′)
i

)

∏

(i,j)∈C(n′)

i>j

f
(

d
(n′)
ij

∣

∣p̃
(n′)
i , p̃

(n′)
j

)

, (21)
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where f
(

d
(n)
ij

∣

∣p̃
(n)
i , p̃

(n)
j

)

= δ
(

d
(n)
ij −

∥

∥p̃
(n)
i − p̃

(n)
j

∥

∥

)

and

f
(

p̃
(n)
i

∣

∣x
(n)
i

)

= δ
(

p̃
(n)
i − Px

(n)
i

)

express the deterministic
relationsd(n)ij =

∥

∥p̃
(n)
i − p̃

(n)
j

∥

∥ and p̃(n)
i =Px

(n)
i , respectively.

Inserting (20) and (21) into (19), we obtain for the extended
joint posterior pdf

f
(

θ(0:n), p̃(1:n),d(1:n)
∣

∣y(1:n)
)

∝
∏

i∈I

f
(

ϑ
(0)
i

)

f
(

x
(0)
i

)

n
∏

n′=1

f
(

ϑ
(n′)
i

∣

∣ϑ
(n′−1)
i

)

f
(

x
(n′)
i

∣

∣x
(n′−1)
i

)

× f
(

p̃
(n′)
i

∣

∣x
(n′)
i

)

∏

(i,j)∈C(n′)

i>j

f̃
(

y
(n′)
ij

∣

∣ϑ
(n′)
i ,ϑ

(n′)
j , d

(n′)
ij

)

× f
(

d
(n′)
ij

∣

∣p̃
(n′)
i , p̃

(n′)
j

)

. (22)

This extended joint posterior pdf is related to the original
joint posterior pdff

(

θ(0:n)
∣

∣y(1:n)
)

(cf. (18)) via the marginal-
ization f(θ(0:n)|y(1:n)) =

∫ ∫

f
(

θ(0:n), p̃(1:n),d(1:n)
∣

∣y(1:n)
)

×dp̃(1:n)dd(1:n). In the factorization (22), all factors involve
only state variables with a maximum dimension of four.

The FG representing the factorization (22) is shown in
Fig. 2. Each factor function in (22) is represented by a square
factor node, and each variable by a circular variable node. A
variable node is connected to a factor node by an edge if the
corresponding variable is an argument of the corresponding
factor function. In Fig. 2 and hereafter, we use the following
short notations:fi , f

(

ϑ
(n′)
i

∣

∣ϑ
(n′−1)
i

)

, li , f
(

x
(n′)
i

∣

∣x
(n′−1)
i

)

,

fij , f̃
(

y
(n′)
ij

∣

∣ϑ
(n′)
i ,ϑ

(n′)
j , d

(n′)
ij

)

, φij , f
(

d
(n′)
ij

∣

∣p̃
(n′)
i , p̃

(n′)
j

)

,

andψi , f
(

p̃
(n′)
i

∣

∣x
(n′)
i

)

.

B. BP Message Passing

The proposed sequential CoSLAS algorithm applies BP
[26], [27] to the FG in Fig. 2. Before presenting our algorithm
in Section VI, we review the BP message update rules for
a generic factor functionf and a generic variablez. Let
Zf denote the set of arguments off , and assumez ∈ Zf ,
i.e., f = f(z, . . .). Furthermore, letFz denote the set of all
functionsf ′ of which z is an argument, i.e.,z ∈ Zf ′ if and
only if f ′∈Fz. In message passing iterationq ∈ {1, . . . , Q},
the message from factor nodef to variable nodez—denoted
by ζ(q)f (z) —and the message from variable nodez to factor

nodef—denoted byη(q)f (z)—are calculated recursively as

ζ
(q)
f (z) =

∫

f(z, . . .)

(

∏

z′∈Zf\{z}

η
(q−1)
f (z′)

)

d∼z , (23)

η
(q)
f (z) =

∏

f ′∈Fz\{f}

ζ
(q)
f ′ (z) , (24)

where ∼z denotes allz′ ∈ Zf except z. After the final
iteration q = Q, the belief for variablez is obtained (up to
a normalization) as

b(z) ∝
∏

f∈Fz

ζ
(Q)
f (z) . (25)

For a functionf(z, z′) with only two argumentsz, z′, (23)
simplifies toζ(q)f (z) =

∫

f(z, z′)η
(q−1)
f (z′)dz′. If η(q−1)

f (z′)

n′−1

f1

ϑ1
l1

x1

ψ1p̃1

f12 φ12

d12
· · · (1, 5)

f2

ϑ2
l2

x2

ψ2p̃2

d1 2

f25 φ25

d25
· · · (2, 6)

n′

f1

ϑ1
l1

x1

ψ1p̃1

f12 φ12

d12
· · · (1, 5)

f2

ϑ2
l2

x2

ψ2p̃2

d1 2

f25 φ25

d25
· · · (2, 6)

...

fI

ϑI

lI

xI

ψIp̃I

fI4 φI4

dI4
· · · (8, I)

...

fI

ϑI

lI

xI

ψIp̃I

fI4 φI4

dI4
· · · (8, I)

Fig. 2. CoSLAS factor graph for a network with agentsi ∈ {1, 2, . . . , I},
where(1, 2), (1, 5), (2, 5), (2, 6), (4, I), and(8, I) belong to bothC(n′

−1)

and C(n′). Only the time stepsn′−1 and n′ are shown. Time indices are

omitted for simplicity (e.g.,xi is short forx(n′
−1)

i or x(n′)
i ). Each dotted

box corresponds to an agenti ∈ I at time stepn′− 1 or n′; calculations
within the box are performed locally by that agent. Connections between
dotted boxes at the same time imply communication between agents.

is a weightedS-component mixture distribution, thenζ(q)f (z)
is again a weightedS-component mixture distribution, with
the same weights.

If the FG is a tree, then the BP algorithm is noniterative
(Q = 1), there is a well-defined order of calculating the
messages (message schedule), and the beliefs are exactly equal
to the respective marginal posterior pdfs [26], [27]. However,
if the FG has loops, as in the case of the FG in Fig. 2, the
beliefs are only approximations of the marginal posterior pdfs
[26], [27]. Moreover, BP operates iteratively, and convergence
is not guaranteed for general non-Gaussian joint posterior
pdfs. Finally, there exist many possible message schedules,
which may lead to different beliefs. Nevertheless, loopy BP
provides accurate approximations of the marginal posterior
pdfs in many applications [21], [22], [25]–[29].

The sequential BP algorithm proposed in Section VI follows
a specific schedule that was observed to converge for the
scenarios studied in Section VII. The scheduling of the BP
operations (23)–(25) is chosen such that messages are not
passed backward in time [22] and uninformative messages
are censored [33] (i.e., not used in message calculations).
Since the messages are not passed backward in time, our
algorithm can cope with a changing network connectivity and
its complexity does not increase with timen; moreover, the
beliefs are directly equal to the messages passed to the next
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n′

fi

ϑi

ζfi(ϑi) ηfi(ϑi) = b(ϑi)

li

xi

ηli(xi) = b(xi)ζli(xi)

fij

η
(q)
fij

(ϑi) ζ
(q)
fij

(ϑi)

φij

ψi

p̃i

ηψi
(xi) ζψi

(xi)

ζψi
(p̃i) ηψi

(p̃i)

η
(q)
φij

(p̃i) ζ
(q)
φij

(p̃i)

dij

ζ
(q)
fij

(dij)

ζ
(q)
φij

(dij)

agentj∈Ti agentj∈Ti

to agents
j′∈Ti\{j}

to agents
j′∈ Ti\{j}

Gaussian

Gaussian or two
Gaussians

Annulus or two
annuli

Message type:

Fig. 3. Detail of the FG in Fig. 2, corresponding to agenti and its connection
to agentj ∈ Ti at time stepn′. All depicted messages are calculated by agent
i. The messagesη(q)

fij
(dij ) and η(q)

φij
(dij) (which are equal toζ(q)

φij
(dij)

and ζ(q)
fij

(dij ), respectively) are omitted to avoid visual clutter. Messages
represented by an annulus or two annuli are drawn in magenta,messages
represented by a Gaussian or a two-component Gaussian mixture in blue, and
messages represented by a single Gaussian in red.

time. The algorithm consists of the following main steps:

1) Prediction: Each agenti locally converts the previous
belief of its clock state,b

(

ϑ
(n−1)
i

)

, and of its location-

related state,b
(

x
(n−1)
i

)

, into messagesζfi
(

ϑ
(n)
i

)

and

ζli
(

x
(n)
i

)

for the current time intervaln. This corresponds
to messages passed from then′−1 section to then′ section
along the horizontal edges of the FG in Fig. 2.

2) Iterative message passing:Each agenti exchanges mes-
sages related to its statesϑ(n)

i andp̃(n)
i with neighboring

agents, and uses the received messages to update its own
messages according to (23) and (24). Only messages that
are informative according to some criterion (see Section
VI-B) are used for further calculations. In Fig. 2, these
messages are passed along the vertical edges connect-
ing different agents. This step requires communication
(packet exchanges) with neighboring agents; it is repeated
during a predefined number of iterationsQ.

3) Belief calculation and estimation:Each agent calculates
its beliefs by multiplying according to (25) the appropri-
ate messages calculated in Steps 1 and 2. It then uses
these beliefs for state estimation according to (16) and
(17), and as messages for the next prediction (Step 1).

These steps will be worked out in Section VI after the
introduction of parametric message representations.

V. PARAMETRIC MESSAGEREPRESENTATIONS

The messages calculated at agenti∈ I are displayed in the
FG detail shown in Fig. 3. Hereafter, for simplicity, we drop
the time indexn in the superscript. For the messages involved
in thepredictionandbelief calculationsteps, we use Gaussian
or Gaussian mixture representations. More specifically, the
clock messagesζfi(ϑi) and ηfi(ϑi) are represented by a

Message µ Σ w S∈{1, 2}

ζfi(ϑi) µfi→ϑi
Σfi→ϑi

— —

ζli(xi) = ηψi
(xi) µli→xi,s

Σli→xi,s
wxi,s Sxi

ζψi
(p̃i) µψi→p̃i,s

Σψi→p̃i,s
wxi,s Sxi

ηψi
(p̃i) µp̃i→ψi,s

Σp̃i→ψi,s
wp̃i,s Sp̃i

ζψi
(xi) µψi→xi,s

Σψi→xi,s
wp̃i,s Sp̃i

ηfi (ϑi) = b(ϑi) µϑi→fi
Σϑi→fi

— —

ηli(xi) = b(xi) µxi→li,s
Σxi→li,s

wbi,s Sbi

TABLE I
PARAMETERS OF THEMESSAGESINVOLVED IN THE PREDICTION AND

BELIEF CALCULATION STEPS.

Gaussian, e.g.,ζfi(ϑi) , N
(

ϑi;µfi→ϑi
,Σfi→ϑi

)

, and the
location-related messagesζli(xi), ηli(xi), ζψi

(xi), ηψi
(p̃i),

ζψi
(p̃i) andηψi

(xi) are represented by a Gaussian or a two-
component Gaussian mixture [23], [34], e.g.,

ζli(xi) ,

Sxi
∑

s=1

wxi,s N
(

xi;µli→xi,s,Σli→xi,s

)

,

with Sxi
∈ {1, 2} and normalized weightswxi,s. The latter

representation is motivated by the observation that the location
messages tend to be unimodal or bimodal [22]. Becauseli
(short for f

(

x
(n)
i |x(n−1)

i

)

) has only two arguments,ζli(xi)
has the samew andS parameters asηli(xi) from the previous
time interval (cf. (23)). For the same reason, at functionψi
(short for f

(

p̃i|xi
)

), ηψi
(xi) and ζψi

(p̃i) have the samew
and S parameters, and similarly forηψi

(p̃i) and ζψi
(xi).

Moreover, since messages are not passed backward in time,
we haveb(ϑi) = ηfi(ϑi) (cf. (25) with only ζfi(ϑi)ζ

(Q)
fij

(ϑi)

on the right-hand side, which equalsηfi(ϑi) due to (24)) and
similarly b(xi) = ηli(xi), andηψi

(xi) = ζli(xi) (cf. (24) with
only ζli(xi) on the right hand side). The notation used for the
parameters of these messages is indicated in Table I.

Regarding the messages involved in theiterative message
passingstep, we use Gaussian representations forη

(q)
fij

(ϑi),

ζ
(q)
fij

(ϑi), ζ
(q)
fij

(dij), andζ(q)φij
(dij), and Gaussian or two-compo-

nent Gaussian mixture representations forη(q)φij
(p̃i) (here,

j ∈ Ti , and q ∈ {1, . . . , Q} is the iteration index). The
corresponding parameters are listed in Table II. Forη

(q)
fij

(dij)

andη(q)φij
(dij), the same Gaussian models as for, respectively,

ζ
(q)
φij

(dij) andζ(q)fij
(dij) are used, becauseη(q)fij (dij) = ζ

(q)
φij

(dij)

andη(q)φij
(dij) = ζ

(q)
fij

(dij) according to (24). Finally,ζ(q)φij
(p̃i)

is represented by an annulus or a mixture of two annuli defined
as (cf. [34])

ζ
(q)
φij

(p̃i) ,

S
(q−1)
j→i
∑

s=1

w
(q−1)
j→i,s exp



−
(

r
(q)
φij

−
∥

∥p̃i−µ(q)
φij ,s

∥

∥

)2

2σ
2(q)
φij ,s



.

(26)
Here, S(q−1)

j→i and w(q−1)
j→i,s equal theS and w parameters of

η
(q−1)
φji

(p̃j) (cf. Section VI-B4),r(q)φij
is the nominal radius of

the annulus or annuli, andµ(q)
φij ,s

andσ2(q)
φij ,s

are, respectively,
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Message µ Σ w S∈ {1, 2}

η
(q)
fij

(ϑi) µ
(q)
ϑi→fij

Σ
(q)
ϑi→fij

— —

ζ
(q)
fij

(ϑi) µ
(q)
fij→ϑi

Σ
(q)
fij→ϑi

— —

η
(q)
φij

(p̃i) µ
(q)
p̃i→φij ,s

Σ
(q)
p̃i→φij ,s

w
(q)
i→j,s

S
(q)
i→j

η
(q)
fij

(dij ) = ζ
(q)
fij

(dij) µ
(q)
fij→dij

σ
2(q)
fij→dij

— —

η
(q)
φij

(dij ) = ζ
(q)
φij

(dij) µ
(q)
φij→dij

σ
2(q)
φij→dij

— —

ζ
(q)
φij

(p̃i) µ
(q)
φij ,s

σ
2(q)
φij ,s

w
(q−1)
j→i,s S

(q−1)
j→i

TABLE II
PARAMETERS OF THEMESSAGESINVOLVED IN THE ITERATIVE MESSAGE

PASSINGSTEP.

the midpoint and squared nominal width of annulus (mixture
component)s. In each message passing iterationq, the param-
eters of these messages (see Table II) are calculated at agent
i for all j ∈Ti , and the parameters ofη(q)φij

(p̃i) and η(q)fij (ϑi)
are transmitted to neighbor agentj.

VI. T HE PROPOSEDCOSLAS ALGORITHM

Although the BP algorithm reviewed in Section IV-B
is less complex than straightforward marginalization of
f
(

θ(0:n)
∣

∣y(1:n)
)

, a direct implementation of the BP rules (23)–
(25) in the considered CoSLAS scenario is still computation-
ally infeasible. Therefore, we next develop an approximate
version of the BP algorithm that has moderate complexity and
low communication requirements. This approximate algorithm
is a hybrid particle-based and parametric implementation of
(23)–(25): it combines a nonparametric (particle-based) BP
implementation, which is typically used for the nonlinear
cooperative localization problem [22], with parametric repre-
sentations for messages and beliefs (see Section V), which are
suited to the approximately linear-Gaussian synchronization
problem [25]. This combination is enabled by the extended
factorization (22) involving̃pi anddij , whereby the location
and clock states are characterized by separate messages and,
thus, the message calculations can be performed via particle
methods for the location states and via Gaussian parameter
updates for the clock states. To obtain a distributed algorithm
in which only message parameters have to be communicated
between agents, the result of particle-based message multipli-
cation for the location states is approximated by a Gaussian
mixture (see Section V). Next, we present the individual
operations used for calculating messages and beliefs.

A. Prediction

At time n= 0, the recursive BP algorithm is initialized by
setting b(ϑi) = f(ϑi) and b(xi) = f(xi), wheref(ϑi) and
f(xi) are the Gaussian prior pdfs in (4) and (5). The mixture
parameters ofηli(xi) = b(xi) = f(xi) are wbi,1 = 1 and
Sbi = 1. For n ≥ 1, the parameters of the messagesζfi(ϑi),
ζli(xi), andζψi

(p̃i) are calculated according to (23), in which
the η messages are replaced by the respective beliefsb from
timen−1 because they are equal. In the following presentation

of these calculations, messages and their parameters that are
used from timen−1 are denoted by the superscript “−.”

1) Messageζfi(ϑi): The parameters ofζfi(ϑi) are calcu-
lated using the functionfi and the parameters ofb−(ϑi). The
evaluation of (23) here simplifies because the function node
fi is connected only to two edges [26]. One obtains

µfi→ϑi
= µ−

ϑi→fi
, (27)

Σfi→ϑi
= Σ−

ϑi→fi
+Σu1,i . (28)

2) Messageζli(xi): The parameters ofζli(xi) are calcu-
lated using the functionli and the parameters ofb−(xi). One
obtains from (23)

µli→xi,s = G1µ
−
xi→li,s

,

Σli→xi,s = G1Σ
−
xi→li,s

GT
1 +Σu2,i ,

as well aswxi,s=w−
bi,s

andSxi
=S−

bi
.

3) Messageζψi
(p̃i): Similarly, the parameters ofζψi

(p̃i)
are calculated using the functionψi and the parameters of
ηψi

(xi). (Note thatηψi
(xi) = ζli(xi).) One obtains

µψi→p̃i,s = Pµli→xi,s ,

Σψi→p̃i,s = PΣli→xi,sP
T.

Thew andS parameters are given bywxi,s andSxi
, respec-

tively (see Section VI-A2).

B. Iterative Message Passing

Next, we describe the iterative message passing operations
performed in iterationq ∈ {1, . . . , Q}. The iterations are
initialized by settingη(0)fij (ϑi) = ζfi(ϑi), η

(0)
φij

(p̃i) = ζψi
(p̃i),

andζ(0)fij
(dij) = ζ

(0)
φij

(dij) = f(dij) for j∈Ti, wheref(dij) =
N (dij ;µd, σ

2
d) with µd andσ2

d reflecting prior assumptions on
the interagent distances. The messagesη

(0)
fij

(ϑi) andη(0)φij
(p̃i)

are passed to the neighborsj ∈Ti. For q ≥ 1, the parameters
of ζ(q)fij

(dij), ζ
(q)
φij

(dij), ζ
(q)
fij

(ϑi), and ζ(q)φij
(p̃i) are calculated

according to (23), and the parameters ofη
(q)
fij

(ϑi) andη(q)φij
(p̃i)

are calculated according to (24), as discussed next.
1) Messageζ(q)fij

(dij): We consider messageη(q−1)
fij

(ϑi)
(passed from agenti to neighborj) as informativeif the trace
of its covariance matrixΣ(q−1)

ϑi→fij
is smaller than a thresholdτ

and asuninformativeotherwise, and we denote byT c(q)
i the

set of neighborsj of agenti that provide informative messages
η
(q−1)
fji

(ϑj). If η(q−1)
fij

(ϑi) is informative, then the parameters

of ζ(q)fij
(dij), j ∈ T c(q)

i are calculated using the functionfij

and the parameters ofη(q−1)
fij

(ϑi) andη(q−1)
fji

(ϑj). Using (23)
and standard Gaussian operations [26], one obtains

σ
2(q)
fij→dij

= σ2
v

(

‖ad‖2 − q
(q)T
j→i,1D

T
ijad

)−1
, (29)

µ
(q)
fij→dij

= −σ2(q)
fij→dij

q
(q)T
j→i,1Σ

(q)−1
j→i,1µ

(q)
j→i,1 , (30)

where q
(q)T
j→i,1 , aT

dDij

(

DT
ijDij + σ2

vΣ
(q)−1
j→i,1

)−1
, Dij ,

[Aij Bij ], Σ
(q)
j→i,1, diag

{

Σ
(q−1)
ϑi→fij

,Σ
(q−1)
ϑj→fji

}

, andµ(q)
j→i,1 ,

[

µ
(q−1)T
ϑi→fij

µ
(q−1)T
ϑj→fji

]T
. Otherwise, i.e., ifη(q−1)

fij
(ϑi) is uninfor-

mative or if j /∈ T c(q)
i , we setζ(q)fij

(dij) = ζ
(q−1)
fij

(dij).
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2) Messageζ(q)φij
(dij): We considerη(q−1)

φij
(p̃i) as infor-

mative if it satisfies a criterion involving two thresholdsτ1
and τ2 (see Section VI-B6), and we denote byT p(q)

i the set
of neighborsj of agenti that provide informative messages
η
(q−1)
φji

(p̃j). If η(q−1)
φij

(p̃i) is informative, then the parameters

of ζ(q)φij
(dij), j ∈ T p(q)

i are calculated using the functionφij

and the parameters ofη(q−1)
φij

(p̃i) andη(q−1)
φji

(p̃j). Becauseφij
is nonlinear, we use a linearization as discussed in Appendix
A. This yields a single Gaussian representingζ

(q)
φij

(dij), whose
mean and variance are obtained as

µ
(q)
φij→dij

=

S
(q−1)
i→j
∑

r=1

S
(q−1)
j→i
∑

s=1

w
(q−1)
i→j,rw

(q−1)
j→i,s

∥

∥µ
(q−1)
dij,rs

∥

∥ , (31)

σ
2(q)
φij→dij

=

S
(q−1)
i→j
∑

r=1

S
(q−1)
j→i
∑

s=1

w
(q−1)
i→j,rw

(q−1)
j→i,s

(

µ̄
(q−1)T
dij ,rs

Σij,rs µ̄
(q−1)
dij,rs

+
(∥

∥µ
(q−1)
dij,rs

∥

∥− µ
(q)
φij→dij

)2
)

, (32)

withµ(q−1)
dij,rs

,µ
(q−1)
p̃i→φij ,r

−µ(q−1)
p̃j→φji,s

, Σij,rs,diag
{

Σ
(q−1)
p̃i→φij ,r

,

Σ
(q−1)
p̃j→φji,s

}

, andµ̄(q−1)
dij,rs

,
[

µ
(q−1)T
dij,rs

−µ(q−1)T
dij ,rs

]T
/
∥

∥µ
(q−1)
dij ,rs

∥

∥.

If η
(q−1)
φij

(p̃i) is uninformative or if j /∈ T p(q)
i , we set

ζ
(q)
φij

(dij) = ζ
(q−1)
φij

(dij).

3) Messageζ(q)fij
(ϑi): The parameters ofζ(q)fij

(ϑi), j∈T c(q)
i

are calculated using the functionfij and the parameters of
η
(q−1)
fji

(ϑj) andζ(q)φij
(dij). Similarly to (29) and (30), one has

Σ
(q)
fij→ϑi

= σ2
v

(

AT
ijAij −Q

(q)
j→i,2C

T
ijAij

)−1
, (33)

µ
(q)
fij→ϑi

= −Σ
(q)
fij→ϑi

Q
(q)
j→i,2Σ

(q)−1
j→i,2 µ

(q)
j→i,2 , (34)

where Q
(q)
j→i,2 , AT

ijCij

(

CT
ijCij + σ2

vΣ
(q)−1
j→i,2

)−1
, Cij ,

[Bij ad], Σ
(q)
j→i,2 , diag

{

Σ
(q−1)
ϑj→fji

, σ
2(q−1)
φij→dij

}

, andµ(q)
j→i,2 ,

[

µ
(q−1)T
ϑj→fji

µ
(q−1)
φij→dij

]T
.

4) Messageζ(q)φij
(p̃i): The parameters ofζ(q)φij

(p̃i), j∈T p(q)
i

(see (26)) are calculated using the functionφij and the
parameters ofη(q−1)

φji
(p̃j) and ζ(q)fij

(dij). Again, becauseφij
is nonlinear, we linearize‖p̃i− p̃j‖ (considered as a function
of p̃i, with fixed p̃j = µ

(q−1)
p̃j→φji,s

, s∈ {1, . . . , S(q−1)
j→i }) around

∑S
(q−1)
i→j

r=1 w
(q−1)
i→j,rµ

(q−1)
p̃i→φij ,r

and obtain the parameters of (26) as
[30], [34]

r
(q)
φij

= µ
(q)
fij→dij

,

µ
(q)
φij ,s

= µ
(q−1)
p̃j→φji,s

,

σ
2(q)
φij ,s

= µ̄(q−1)T
pij ,s

Σ
(q−1)
p̃j→φji,s

µ̄(q−1)
pij ,s

+ σ
2 (q)
fij→dij

,

where µ̄(q−1)
pij ,s , µ

(q−1)
pij ,s /

∥

∥µ
(q−1)
pij ,s

∥

∥ with µ(q−1)
pij ,s , µ

(q−1)
p̃j→φji,s

−∑S
(q−1)
i→j

r=1 w
(q−1)
i→j,rµ

(q−1)
p̃i→φij ,r

. Furthermore,w(q−1)
j→i,s andS(q−1)

j→i

in (26) equal the respective parameters ofη
(q−1)
φji

(p̃j) (cf.

Section VI-B6). In this context, note thatζ(q)φij
(p̃i) =

∫∫

f(dij |p̃i, p̃j) η(q−1)
φji

(p̃j) η
(q)
φij

(dij) dp̃j ddij involves only

η
(q−1)
φji

(p̃j) as Gaussian mixture distribution whereasη
(q)
φij

(dij)
is a Gaussian distribution.

5) Messageη(q)fij (ϑi): The parameters ofη(q)fij (ϑi), j ∈ Ti
are calculated from those ofζfi (ϑi) andζ(q)fij′

(ϑi), j′∈ T c(q)
i \

{j} according to (24). Since all involved messages are Gaus-
sian,η(q)fij (ϑi) is a single Gaussian with parameters [26]

Σ
(q)
ϑi→fij

=

(

Σ−1
fi→ϑi

+
∑

j′∈T
c(q)
i

\{j}

Σ
(q)−1
fij′→ϑi

)−1

, (35)

µ
(q)
ϑi→fij

= Σ
(q)
ϑi→fij

(

Σ−1
fi→ϑi

µfi→ϑi

+
∑

j′∈T
c(q)
i

\{j}

Σ
(q)−1
fij′→ϑi

µ
(q)
fij′→ϑi

)

. (36)

6) Messageη(q)φij
(p̃i): The parameters ofη(q)φij

(p̃i), j ∈ Ti
are calculated from those ofζψi

(p̃i) andζ(q)φij′
(p̃i), j′∈ T p(q)

i \
{j} via (24), which reads

η
(q)
φij

(p̃i) = ζψi
(p̃i)

∏

j′∈T
p(q)
i

\{j}

ζ
(q)
φij′

(p̃i) . (37)

This product involves the annularly shaped messagesζ
(q)
φij′

(p̃i)

(see (26)). We use a particle implementation of (37) based on
importance sampling [35], which is inspired by an approach
proposed for localization in [21] and [34]. The resulting
particle representation ofη(q)φij

(p̃i) is then approximated by
a Gaussian or Gaussian mixture distribution, or the message
η
(q)
φij

(p̃i) is declared uninformative as explained presently.
The proposal distribution for importance sampling is chosen

similarly as in [21], i.e.,

p(q)(p̃i) , ζψi
(p̃i) +

∑

j′∈T
p(q)
i

\{j}

ζ
(q)
φij′

(p̃i) . (38)

To obtain particles representingp(q)(p̃i), we first draw par-
ticles

{

p̃
(l)
ζi,i

}L

l=1
from the Gaussian or Gaussian mixture

messageζψi
(p̃i). Next, for eachj′∈ T p(q)

i \{j}, we generate
particles

{

p̃
(l)
ζij′ ,i

}L

l=1
representingζ(q)φij′

(p̃i) according to [21]

p̃
(l)
ζij′ ,i

= p̃
(l)
ηij′ ,j

′ + d
(l)
ij′

[

sin(ϕ(l))

cos(ϕ(l))

]

.

This involves particles
{

p̃
(l)
ηij′ ,j

′

}L

l=1
drawn fromη(q−1)

φij′
(p̃j′ ),

particles
{

d
(l)
ij′

}L

l=1
drawn from η

(q)
fij′

(dij′ ), and particles
{

ϕ(l)
}L

l=1
uniformly drawn on[0, 2π). Then,

∣

∣T p(q)
i

∣

∣L par-

ticles
{

p̃
(l)
i

}|T
p(q)
i

|L

l=1
representing the proposal distribution

p(q)(p̃i) in (38) are obtained by fusing the particles
{

p̃
(l)
ζi,i

}L

l=1

and
{

p̃
(l)
ζij′ ,i

}L

l=1
, j′∈ T p(q)

i \{j}, i.e.,

{

p̃
(l)
i

}|T
p(q)
i

|L

l=1
=
{

p̃
(l)
ζi,i

}L

l=1
∪

⋃

j′∈T
p(q)
i

\{j}

{

p̃
(l)
ζij′ ,i

}L

l=1
.
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The corresponding weights are calculated as

w
(l)
i =

η
(q)
φij

(

p̃
(l)
i

)

p(q)
(

p̃
(l)
i

)
=

ζψi

(

p̃
(l)
i

)
∏

j′∈T
p(q)
i

\{j}
ζ
(q)
φij′

(

p̃
(l)
i

)

ζψi

(

p̃
(l)
i

)

+
∑

j′∈T
p(q)
i

\{j}
ζ
(q)
φij′

(

p̃
(l)
i

)
,

for l = 1, . . . ,
∣

∣T p(q)
i

∣

∣L. This involves an evaluation of the

messagesζψi
(p̃i) (cf. Section VI-A3) andζ(q)φij′

(p̃i), j′ ∈
T p(q)
i \ {j} in (26) at the particles̃p(l)

i , l = 1, . . . ,
∣

∣T p(q)
i

∣

∣L.
The complexity of this algorithm for computing the message
product (37) scales only linearly in the number of particles.
This improves on the quadratic scaling of the particle-based
message multiplication method described in [21].

Next, the particle representation
{(

p̃
(l)
i , w

(l)
i

)}|T
p(q)
i

|L

l=1
of

η
(q)
φij

(p̃i) is converted into a Gaussian or two-component Gaus-
sian mixture distribution, or the respective message is declared
uninformative. This is done using the procedure described in
[34, Section 4.1], which involves two thresholdsτ1 and τ2.
In the informative case, one obtains the Gaussian parameters
µ

(q)
p̃i→φij ,1

andΣ(q)
p̃i→φij ,1

(here,w(q)
i→j,1 =1 andS(q)

i→j =1) or

the Gaussian mixture parametersµ(q)
p̃i→φij ,s

, Σ
(q)
p̃i→φij ,s

, and

w
(q)
i→j,s for s ∈ {1, 2} (here,S(q)

i→j = 2).

C. Calculation of Messagesηψi
(p̃i) and ζψi

(xi)

The messagesηψi
(p̃i) andζψi

(xi) are calculated after the
final message passing iteration (q=Q).

1) Messageηψi
(p̃i): According to (24),

ηψi
(p̃i) =

∏

j∈T
p(Q)
i

ζ
(Q)
φij

(p̃i) .

If T p(Q)
i is nonempty, then a Gaussian or Gaussian mixture

distribution with parametersµp̃i→ψi,s, Σp̃i→ψi,s, wp̃i,s, and
Sp̃i ∈ {1, 2} is obtained by carrying out similar steps as
in Section VI-B6, using the proposal distributionp(p̃i) ,
∑

j∈T
p(Q)
i

ζ
(Q)
φij

(p̃i) and replacingS(q)
i→j by Sp̃i . If T p(Q)

i is
empty or ifηψi

(p̃i) is found to be uninformative, thenηψi
(p̃i)

is set to a constant (i.e.,Σ−1
p̃i→ψi,s

is set to the zero matrix).
2) Messageζψi

(xi): The parameters ofζψi
(xi) are calcu-

lated from those ofηψi
(p̃i) based on (23). One obtains

Σ−1
ψi→xi,s

= PTΣ−1
p̃i→ψi,s

P ,

Σ−1
ψi→xi,s

µψi→xi,s = PTΣ−1
p̃i→ψi,s

µp̃i→ψi,s . (39)

Note that (39) yieldsΣ−1
ψi→xi,s

µψi→xi,s (instead ofµψi→xi,s)
because that product will be used in (41). Thew and S
parameters arewp̃i,s andSp̃i (see Section VI-C1).

D. Calculation of Beliefs

Once the parameters ofηψi
(p̃i) andζψi

(xi) are available,
the beliefsb(ϑi) andb(xi) are calculated according to (25).

1) Belief b(ϑi): The parametersΣϑi→fi and µϑi→fi of
belief b(ϑi) are calculated from those ofζfi(ϑi) andζ(Q)

fij
(ϑi),

j ∈ T c(Q)
i . This is done by calculating the expressions in

(35) and (36), respectively, in whichq is replaced byQ, the
summation index setT c(q)

i \ {j} is replaced byT c(Q)
i , and all

the terms involvingΣ−1
fi→ϑi

are suppressed.

2) Beliefb(xi): The parametersµxi→li,s, Σxi→li,s, wbi,s,
andSbi ∈ {1, 2} of belief b(xi) are obtained by multiplying
ζψi

(xi) andζli(xi). These messages are mixtures of, respec-
tively, Sp̃i andSxi

components. This results inSp̃iSxi
mixture

components forb(xi), with parameters

Σxi→li,(r,s) =
(

Σ−1
ψi→xi,r

+Σ−1
li→xi,s

)−1
, (40)

µxi→li,(r,s) = Σxi→li,(r,s)

(

Σ−1
ψi→xi,r

µψi→xi,r

+Σ−1
li→xi,s

µli→xi,s

)

(41)

and weights (before normalization)

w̃bi,(r,s) = wp̃i,rwxi,s

× exp
(

−hψi→xi,r − hli→xi,s + hxi→li,(r,s)

)

,

wherehψi→xi,r , µT
ψi→xi,r

Σ−1
ψi→xi,r

µψi→xi,r, hli→xi,s ,

µT
li→xi,s

Σ−1
li→xi,s

µli→xi,s, and hxi→li,(r,s) , µT
xi→li,(r,s)

×Σ−1
xi→li,(r,s)

µxi→li,(r,s). Note thatSp̃iSxi
may be1, 2, or 4.

If Sp̃iSxi
is 1 or 2, we use all the mixture components to repre-

sent the product messageb(xi), i.e.,Sbi = Sp̃iSxi
, and the final

weights wbi,(r,s) are obtained by normalizing thẽwbi,(r,s).
However, ifSp̃iSxi

= 4, we setSbi = 2 and use only the two
strongest mixture components, corresponding to the two index
tuples(r, s) whose weights̃wbi,(r,s) are largest. These weights
are then normalized. The parameters and weights obtained in
this way are then assigned toΣxi→li,s′ , µxi→li,s′ , andwbi,s′
with s′ ∈ {1, . . . , Sbi}.

E. Estimation

Approximations ϑ̂(n)
i and x̂

(n)
i of the MMSE estimates

ϑ̂
(n)
i,MMSE and x̂

(n)
i,MMSE are obtained by replacing in (16)

and (17) the marginal posterior pdfsf
(

ϑ
(n)
i

∣

∣y(1:n)
)

and

f
(

x
(n)
i

∣

∣y(1:n)
)

by the beliefsb(ϑi) and b(xi), respectively.
Using the parametric representations ofb(ϑi) and b(xi) dis-
cussed in Sections V and VI-D,̂ϑ(n)

i is directly given by
µϑi→fi , andx̂(n)

i by
∑

s∈Sbi
wbi,sµxi→li,s. Finally, estimates

of the primary clock parametersα(n)
i and β(n)

i (see Section
II-A) are obtained aŝα(n)

i = 1/[ϑ̂
(n)
i ]2 andβ̂(n)

i = α̂
(n)
i [ϑ̂

(n)
i ]1,

where[·]l denotes thelth element of a vector.

F. Algorithm Summary and Communication Requirements

A summary of the overall algorithm is provided in Table III.
The communication requirements are as follows. At any time
n, in any message passing iterationq, the parameters of
the two-dimensional messagesη(q)φij

(p̃i) andη(q)fij (ϑi) have to

be transmitted from agenti to agentj ∈ T (n)
i . According

to Section VI-B6,η(q)φij
(p̃i) is either uninformative or repre-

sented by a Gaussian or two-component Gaussian mixture
distribution. In the last case, which corresponds to maximum
communication requirements, the parameters ofη

(q)
φij

(p̃i) are
two mean vectors, two covariance matrices, and one weight
(as the two weights are normalized, only one of them has to be
known). Furthermore, according to Section VI-B5,η

(q)
fij

(ϑi) is
represented by a single Gaussian, i.e., by one mean vector and
one covariance matrix. Hence, the total number of real values
that have to be transmitted from agenti∈ I to agentj ∈ T (n)

i

per iterationq is maximally (2+1) (2+3) + 1 = 16.
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TABLE III
COSLAS BP ALGORITHM—OPERATIONSPERFORMED BYAGENT i

Initialization at time n=0:
The temporal recursion is initialized by settingb(ϑi) = f

(

ϑ
(0)
i

)

and
b(xi) = f

(

x
(0)
i

)

(see (4) and (5), respectively).

Temporal recursion at times n≥ 1:

Step 1 – Prediction:

1.1) The clock messageζfi(ϑi) is calculated fromb−(ϑi) (which
was calculated at timen−1) according to (27) and (28).

1.2) The location messageζli(xi) is calculated fromb−(xi) (which
was calculated at timen−1) according to Section VI-A2.

1.3) The location messageζψi
(p̃i) is calculated fromηψi

(xi) =
ζli(xi) according to Section VI-A3.

Step 2 – Iterative message passing: The message passing iteration is
initialized by settingη(0)

fij
(ϑi) = ζfi(ϑi), η

(0)
φij

(p̃i) = ζψi
(p̃i), and

ζ
(0)
fij

(dij) = ζ
(0)
φij

(dij) = f(dij) for all j∈Ti. Furthermore,η(0)
fij

(ϑi)

andη(0)
φij

(p̃i) are transmitted to the respective neighborsj∈Ti. Then,
for q = 1, . . . , Q:

2.1) The messagesη(q−1)
fji

(ϑj) and η
(q−1)
φji

(p̃j) (calculated at the
previous iteration) are received from the respective neighbors
j ∈ Ti. The setsT c(q)

i =
{

j
∣

∣η
(q−1)
fji

(ϑj) is informative
}

and
T
p(q)
i =

{

j
∣

∣η
(q−1)
φji

(p̃j) is informative
}

are determined.

2.2) If η(q−1)
fij

(ϑi) is informative, then for allj ∈ T
c(q)
i , the mes-

sagesζ(q)fij
(dij) are calculated fromη(q−1)

fij
(ϑi) andη(q−1)

fji
(ϑj)

according to (29) and (30). Otherwiseζ(q)fij
(dij) = ζ

(q−1)
fij

(dij).

2.3) If η(q−1)
φij

(p̃i) is informative, then for allj∈T
p(q)
i , the messages

ζ
(q)
φij

(dij) are calculated fromη(q−1)
φij

(p̃i) and η
(q−1)
φji

(p̃j) ac-
cording to to (31) and (32). Otherwiseζ(q)φij

(dij) = ζ
(q−1)
φij

(dij).

2.4) For j ∈ T
c(q)
i , the messagesζ(q)fij

(ϑi) are calculated from
η
(q−1)
fji

(ϑj) andζ(q)φij
(dij) according to (33) and (34).

2.5) For j ∈ T
p(q)
i , the messagesζ(q)φij

(p̃i) are calculated from
η
(q−1)
φji

(p̃j) andζ(q)fij
(dij) according to Section VI-B4.

2.6) Forj∈Ti, the messagesη(q)
fij

(ϑi) are calculated fromζfi(ϑi)
andζ(q)fij′

(ϑi), j′∈T
c(q)
i \{j} according to (35) and (36).

2.7) Forj∈Ti, the messagesη(q)
φij

(p̃i) are calculated fromζψi
(p̃i)

andζ(q)φij′
(p̃i), j′∈T

p(q)
i \{j} according to Section VI-B6.

2.8) The (parameters of) the messagesη
(q)
fij

(ϑi) and η
(q)
φij

(p̃i) are
transmitted to the respective neighborsj∈Ti.

Step 3 – Belief calculation:

3.1) The beliefb(ϑi) = ηfi(ϑi) is calculated fromζfi(ϑi) and
ζ
(Q)
fij

(ϑi), j ∈T
c(Q)
i according to (35) and (36) in whichq is

replaced byQ, the summation index setT c(q)
i \{j} is replaced

by T
c(Q)
i , and all terms involvingΣ−1

fi→ϑi
are suppressed.

3.2) The messageηψi
(p̃i) is calculated fromζ(Q)

φij
(p̃i), j ∈ T

p(Q)
i

according to Section VI-C1. Next, the messageζψi
(xi) is

calculated fromηψi
(p̃i) according to Section VI-C2. Finally,

the belief b(xi) = ηli(xi) is calculated fromζψi
(xi) and

ζli(xi) according to Section VI-D2.

Step 4 – Estimation: The clock estimateŝαi and β̂i and the
location-related estimateŝxi are obtained from the parameters of
b(ϑi) and b(xi), respectively as described in Section VI-E.
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Fig. 4. Agent locations at timesn = 0, 10, 20, and 30. Dots indicate the
locations of the spatial reference agents, crosses indicate the locations of the
mobile agents, the circle indicates the location of the temporal reference agent
(one of the mobile agents), blue solid lines indicate the agent trajectories, and
dashed gray lines indicate the measurement/communicationlinks.

VII. N UMERICAL STUDY

In this section, we analyze the performance of the proposed
CoSLAS algorithm and compare it with that of two variants
with perfect clock or location-velocity information.

A. Simulation Setting

We consider a network ofI =9 agents located in a square
area of size50m×50m, as shown in Fig. 4. The time interval
length is T = 1s. Three of the agents (i ∈ {1, 2, 3}) are
nonmobile spatial references located in three corners of the
square area, and the remaining six agents (i∈{4, . . . , 9}) are
mobile. Mobile agenti= 7 is a clock reference with known
clock statesϑ(n)

7 = [0 1]T for all n. For i 6= 7, the clock
statesϑ(n)

i evolve according to (2) with process noise standard
deviationsσ1,i = 1µs andσ2,i = 10 ppm, and with the initial
clock statesϑ(0)

i , i 6=7 randomly drawn according to (4) with
σνi=1s, σλi

= 150 ppm, andµ(0)
fi→ϑi

= [0 1]T. The location-

related statesx(n)
i of the mobile agents evolve according to (3)

with process noise standard deviationσu2,i = 2m, and with
the initial valuesx(0)

i chosen as shown in Fig. 4. A realization
of the statesϑ(n)

i and x
(n)
i , n = 0, 1, . . . was generated as

described above and used for all simulation runs. Fig. 4 shows
the locations of the agents at four different timesn.

Each agent communicates with other agents within a radius
of 40m, i.e.,T (n)

i =
{

j ∈ I
∣

∣

∥

∥p
(n)
i −p

(n)
j

∥

∥≤ 40m
}

. The net-
work connectivity is time-varying (cf. Fig. 4) but the network
is always connected, as required by our initialization protocol
in Section III-A. The agents performKij = Kji = 10 noisy
measurements relative to each neighbor according to (7). In
each of the 100 simulation runs we performed, the mea-
surement noisesv(n,k)ij in (7) were drawn independently for
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all (i, j) ∈ C(n), n, andk ∈ {1, . . . ,Kij = 10}, with a noise
standard deviation ofσv =10ns.

In the simulated algorithms, the parameters used to initialize
the distance messagesζ(0)fij

(dij) = ζ
(0)
φij

(dij) (see Section
VI-B) are µd = 27m and σd = 10m. The process noise
parameters and the parametersσνi andσλi

are as stated earlier.
The number of particles used for message multiplication (see
Section VI-B6) is

∣

∣T p(q)
i

∣

∣L =1000. The threshold parameters
(see Section VI-B) areτ = 2, τ1 = 15, and τ2 = 40. The
initial covariance matrix ofx(0)

i , Σ(0)
li→xi

(see (5)), is defined
by σxi

=5m andσẋi
= 2m/s, and the initial mean is modeled

randomly asµ(0)
li→xi

= x
(0)
i +εi, wherex(0)

i is the actual initial

location-related state andεi ∼ N
(

εi;0,Σ
(0)
li→xi

)

was drawn
independently for alli and all simulation runs.

B. Simulation Results

We consider the proposed CoSLAS algorithm (briefly re-
ferred to as CoSLAS) and two variants performing only
localization or synchronization. In the first variant, dubbed
ClkRef, all agents know their clock parameters, and in the
second variant, LocRef, all agents know their location and
velocity. We are not able to present a comparison with other
methods because, to the best of our knowledge, there are no
other SLAS methods for time-varying clock skew and clock
offset. Our measure of performance is the root mean square
error (RMSE) of the various parameters averaged over 100
simulation runs and those agents that are not reference agents.

For timesn=1, 10, and20, Fig. 5 shows the dependence of
the RMSEs of location, velocity, clock phase, and clock skew
(cf. Section VI-E) on the message passing iteration index
q. Here, differently from Section VI-E and Table III, the
belief calculation and estimation steps were performed in each
iteration q, for a total ofQ = 5 iterations. Atn = 1, the
RMSE of the locationspi is seen to converge to a minimum
after q = 4 iterations for CoSLAS and afterq = 2 iterations
for ClkRef. This difference can be explained by the fact that
in ClkRef, all agents know their clocks whereas in CoSLAS,
distance messages can only be calculated when the agents
possess informative clock messages (cf. Step 2.2 in Table III).
Furthermore, the RMSE oḟpi does not decrease with in-
creasingq. This can be explained as follows. Via (40) and
(41), the location accuracy expressed byζψi

(xi) andζli(xi)—
or, more specifically, by the first two (block) entries of the
corresponding parametersµψi→xi,r, Σψi→xi,r andµli→xi,s,
Σli→xi,s, respectively—strongly influences the velocity accu-
racy expressed byb(xi)—or, more specifically, by the second
two (block) entries ofµxi→li,s, Σxi→li,s. But atn=1, ζli(xi)
still contains large uncertainties inherited from the initial prior
f
(

x
(0)
i

)

. Therefore,ṗi cannot be estimated accurately at time
n= 1. The RMSEs of the clock parametersαi andβi converge
to a minimum afterq = 2 iterations for both CoSLAS and
LocRef. We note thatq = 2 iterations correspond to the
maximum hop distance from any nonreference agent to a
spatial/temporal reference agent (in each iteration, the clock
and location information is propagated by one hop).

At n = 10 andn= 20, the RMSEs ofαi andβi converge
to a minimum inq = 2 iterations. Atn = 10, the RMSE of
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Fig. 5. RMSEs versus message passing iteration indexq at timesn=1, 10,
and20. Top: location-related parameters, bottom: clock parameters.

pi is rather high for allq. This is because the top right agent
in the “n= 10” part of Fig. 4 has two of its three neighbors
effectively located in the same direction. This is no longerthe
case atn = 20, and indeed the RMSE ofpi here converges
approximately to a minimum in onlyq= 1 iteration. Thus, one
can obtain low communication cost without compromising the
convergence ofpi by performing only one message passing
iteration per time step (Q= 1, which is sometimes referred to
as “real-time BP” [36]). We also see that atn= 10 andn=20,
remarkably, the RMSEs of CoSLAS are similar to or only
slightly higher than those of ClkRef and LocRef. Thus, we
can conclude that after a moderate number of time intervals,
CoSLAS compensates for the lack of perfect knowledge of
the clock or location-related parameters.

In Fig. 6, we show the estimated and true trajectories and the
RMSEs versus timen for Q=1 andQ=5. It is seen that at
early times, the location RMSE is higher forQ = 1 than for
Q = 5. The increased location RMSE around timen = 10
can be explained as before. The clock RMSE is generally
higher forQ=1 since the clock information provided by the
temporal reference agents cannot be disseminated throughout
the network during one message passing iteration, and hence
(becauseQ= 1) during one time step. However, the location-
related RMSEs suggest that the local synchronicity between
neighboring agents is sufficient for obtaining accurate location-
related estimates. The fluctuation of the clock RMSEs is
caused by the time-varying network connectivity and the
random-walk evolution model (2). Finally, the performance
of CoSLAS is again generally close to that of ClkRef and
LocRef.

VIII. C ONCLUSION

We presented a distributed, sequential belief propagation
(BP) algorithm for cooperative simultaneous localizationand
synchronization (CoSLAS) in mobile, decentralized agent net-
works with time-varying clocks. The agents acquire interagent
distance estimates from time-of-flight measurements. We ex-
ploited the resulting close relation between localizationand
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Fig. 6. Trajectories and RMSEs forQ= 1 (top) andQ= 5 (bottom). In the leftmost figures, solid blue lines indicatethe true trajectories and dashed black
lines the estimated trajectories.

synchronization to establish a common statistical formulation
that features a conditional independence of time measure-
ments and location-related parameters given the interagent
distances. This independence is leveraged by the proposed
BP algorithm to obtain reduced dimensions of the messages
and thus a reduced complexity. The combined use of particle
representations and parametric representations leads to high
accuracy at low communication cost, and a judiciously chosen
message schedule allows for real-time operation in networks
with rapidly changing connectivity. Simulation results demon-
strated the good performance of the proposed algorithm in a
challenging scenario with only one temporal reference agent
and time-varying network connectivity.

APPENDIX A

We derive the Gaussian approximation ofζ(q)φij
(dij) pre-

sented in Section VI-B2. According to (23), we have

ζ
(q)
φij

(dij) =

∫ ∫

φij η
(q−1)
φij

(p̃i) η
(q−1)
φji

(p̃j) dp̃idp̃j ,

with φij = δ
(

‖p̃i−p̃j‖−dij
)

. Inserting the Gaussian mixture

representations ofη(q−1)
φij

(p̃i) and η(q−1)
φji

(p̃j) (cf. Table II)
gives

ζ
(q)
φij

(dij) =

S
(q−1)
i→j
∑

r=1

S
(q−1)
j→i
∑

s=1

w
(q−1)
i→j,rw

(q−1)
j→i,sΨij,rs(dij), (42)

where

Ψij,rs(dij)

,

∫ ∫

δ
(

‖p̃i,r− p̃j,s‖−dij
)

N
(

p̃i,r;µ
(q−1)
p̃i→φij ,r

,Σ
(q−1)
p̃i→φij ,r

)

× N
(

p̃j,s;µ
(q−1)
p̃j→φji,s

,Σ
(q−1)
p̃j→φji,s

)

dp̃i,rdp̃j,s . (43)

Here,Ψij,rs(dij) describes the(r, s)th Gaussian mixture com-
ponent and, e.g.,̃pi,r ∼ N

(

p̃i,r;µ
(q−1)
p̃i→φij ,r

,Σ
(q−1)
p̃i→φij ,r

)

cor-
responds to therth Gaussian component. We can writedij =
‖p̃i,r−p̃j,s‖ as a functiondij =χ(p̃ij,rs) of the stacked vector
p̃ij,rs ,

[

p̃T
i,r p̃T

j,s

]T
. We havep̃ij,rs ∼ f(p̃ij,rs) =N (p̃ij,rs;

µij,rs,Σij,rs), whereµij,rs ,
[

µ
(q−1)T
p̃i→φij ,r

µ
(q−1)T
p̃j→φji,s

]T
and

Σij,rs has been specified in Section VI-B2; furthermore,
N
(

p̃i,r;µ
(q−1)
p̃i→φij ,r

,Σ
(q−1)
p̃i→φij ,r

)

N
(

p̃j,s;µ
(q−1)
p̃j→φji,s

,Σ
(q−1)
p̃j→φji,s

)

=N (p̃ij,rs;µij,rs,Σij,rs). Therefore, we can rewrite (43) as

Ψij,rs(dij)

,

∫

δ
(

χ(p̃ij,rs)−dij
)

N (p̃ij,rs;µij,rs,Σij,rs) dp̃ij,rs. (44)

For an approximate evaluation of this integral, we linearize
the functionχ(p̃ij,rs) aroundµij,rs. This yields

χ(p̃ij,rs)

≈ χ̃rs(p̃ij,rs) ,
∥

∥µ
(q−1)
dij,rs

∥

∥+ µ̄
(q−1)T
dij,rs

(p̃ij,rs−µij,rs), (45)

with µ(q−1)
dij,rs

andµ̄(q−1)
dij,rs

as defined in Section VI-B2. Inserting
(45) into (44), we obtain the approximation

Ψij,rs(dij)

≈ Ψ̃ij,rs(dij)

,

∫

δ
(

χ̃rs(p̃ij,rs)−dij
)

N (p̃ij,rs;µij,rs,Σij,rs) dp̃ij,rs .

(46)
Within our approximationdij ≈ χ̃rs(p̃ij,rs), δ

(

χ̃rs(p̃ij,rs)−
dij
)

can be interpreted asf(dij |p̃ij,rs). Hence, (46) becomes

Ψ̃ij,rs(dij) =

∫

f(dij |p̃ij,rs)f(p̃ij,rs)dp̃ij,rs = frs(dij), (47)

wherefrs(dij) denotes the pdf ofdij under our approximation
dij ≈ χ̃rs(p̃ij,rs). Becausẽpij,rs ∼ N (p̃ij,rs;µij,rs,Σij,rs)
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and χ̃rs(·) is an affine function (see (45)),frs(dij) is again
Gaussian, i.e.,frs(dij) = N

(

dij ;µd,rs, σ
2
d,rs

)

, with

µd,rs= E[χ̃rs(p̃ij,rs)]

=
∥

∥µ
(q−1)
dij ,rs

∥

∥+ µ̄
(q−1)T
dij,rs

(

E[p̃ij,rs]−µij,rs
)

=
∥

∥µ
(q−1)
dij ,rs

∥

∥

and

σ2
d,rs = var[χ̃rs(p̃ij,rs)]

= µ̄
(q−1)T
dij,rs

cov[p̃ij,rs−µij,rs] µ̄(q−1)
dij ,rs

= µ̄
(q−1)T
dij,rs

Σij,rs µ̄
(q−1)
dij,rs

.

Thus, because of (47), we also haveΨ̃ij,rs(dij) = N
(

dij ;
µd,rs, σ

2
d,rs

)

. Substituting this forΨij,rs(dij) in (42) yields

ζ
(q)
φij

(dij) ≈
S

(q−1)
i→j
∑

r=1

S
(q−1)
j→i
∑

s=1

w
(q−1)
i→j,rw

(q−1)
j→i,s N

(

dij ;µd,rs, σ
2
d,rs

)

.

This is a mixture of up to four Gaussian components. Finally,
we use moment matching [37] to approximate this Gaussian
mixture by a single Gaussian. The resulting mean and variance
are given in (31) and (32), respectively.
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