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A Penalty Function Promoting Sparsity Within and
Across Groups

İlker Bayram and Savaşkan Bulek

Abstract—We introduce a new weakly-convex penalty func-
tion for signals with a group behavior. The penalty promotes
signals with a few number of active groups, where within
each group, only a few high magnitude coefficients are active.
We derive the threshold function associated with the proposed
penalty and study its properties. We discuss how the proposed
penalty/threshold function can be useful for signals with isolated
non-zeros, such as audio with isolated harmonics along the
frequency axis, or reflection functions in exploration seismology
where the non-zeros occur on the boundaries of subsoil layers. We
demonstrate the use of the proposed penalty/threshold functions
in a convex denoising and a non-convex deconvolution formu-
lation. We provide convergent algorithms for both formulations
and compare the performance with state-of-the-art methods.

I. INTRODUCTION

Constraints or prior information derived from sparsity is
widely used for regularization in signal processing. Depend-
ing on the application domain, the signal of interest may
exhibit additional features than mere sparsity. In this paper,
we consider signals whose coefficients can be clustered in a
few groups where each group itself has few active members.
Sparse signals with isolated non-zeros may be considered to
fall in that category. We propose a prior function that promotes
such signals and demonstrate how to use the function in basic
inverse problems of potential interest.

Many natural phenomena can be associated with a sparse
underlying process with isolated non-zero components. For in-
stance, the DFT coefficients of a periodic signal are equidistant
with respect to the frequency variable. Consequently, quasi-
periodic audio signals like speech, music can be represented
in the time-frequency domain (via linear transforms [4]) using
components that appear isolated along the frequency axis (i.e.,
harmonics). Another example is related to reflection seismol-
ogy, where one aims to discover the subsoil layers by sending
seismic waves and processing the returning seismic trace [30].
The seismic trace can be modelled as the convolution of the
input seismic wave and the reflection function. The reflection
function is a sparse signal with non-zeros occuring due to
difference in acoustic impedance between the boundaries of
different layers. Since the layers are expected to have some
non-zero thickness, the non-zeros, which occur at the bound-
aries, are isolated. Other than these natural signals, isolated
sparsity is also relevant for designed systems. For instance,
in frequency hopping systems, the parameters of the signal
components are constant in between the hopping instances,
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during which transmission occurs [2]. Since transmission has
to last for some finite amount of time, the hopping instances
may be regarded as isolated non-zeros of a sparse signal.

In order to isolate the non-zeros, we work with non-
overlapping groups of variables and process the groups in-
dependently. We propose a penalty whose threshold function
(to be specified below) has the following properties :
• If the magnitudes of all variables in a group fall below a

threshold, the whole group is set to zero.
• Otherwise, a group-dependent threshold is applied so as

to eliminate the relatively insignificant coefficients in the
group.

The group-dependent threshold serves to separate the large
magnitude coefficients from the rest. Specifically, if there are
k large-magnitude coefficients in the group, they are kept with
little modification, while the rest are set to zero. For k = 1,
this isolates the non-zeros within the group. We remark that
this behavior is achieved with a non-adaptive penalty function
and without reweighting.

To be more precise, assuming that the size of the groups
is n, and that x(i) ∈ Cn denotes the coefficients belonging to
the ith group of x, we define a penalty function for γ ≥ 0 as,

Pγ(x) =
∑

i

Pγ
(
x(i)
)
, (1)

where for u ∈ Cn, Pγ is defined as,

Pγ(u) = γ

(
n−1∑

i=1

n∑

m=i+1

|ui um|
)

+ ‖u‖1. (2)

The term enclosed in parentheses in (2) grows rapidly as the
number of large magnitude coefficients in the group increases.
Therefore Pγ strongly penalizes groups containing many large
coefficients. Given this penalty, we describe how to realize the
associated threshold function (or the proximity operator [11])
defined for λ ≥ 0 as

Tλ,γ(z) = arg min
x

1

2
‖z − x‖22 + λPγ(x). (3)

We show that Tλ,γ is well-defined when λ γ < 1 and study
its behavior. We also show that, as γ → 1/λ, the threshold
function suppresses all but the largest coefficient in each group,
provided the magnitude of the largest coefficient exceeds
the threshold λ. We demonstrate the use of the proposed
penalty and the threshold function in a convex formulation
for audio denoising and a non-convex formulation for non-
blind deconvolution. We provide convergent algorithms for
both formulations and demonstrate that the reconstructions
perform favorably compared to those obtained using other
penalties/threshold functions.
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Related Work

The proposed penalty function may be regarded as a mem-
ber of the family of group-based penalty functions (see e.g.
[34], [18], [20], [17], [6], [28], [9], [24], [29] for a sample
of the literature). In contrast to our interest, many of these
works seek to set whole groups of coefficients to zero, thus
achieving sparsity across groups, and do not enforce sparsity
within groups. For instance, the `2,1 norm [18] is obtained by
replacing Pγ(x(i)) with ‖x(i)‖2 in (1). The proximity operator
associated with the `2,1 norm sets a whole group to zero if
the energy of the group is below a threshold but keeps the
group with little modification otherwise. On the other hand,
in the Elitist-Lasso (E-Lasso) formulation [18], [20] (see also
[35] where the method is referred to as Exclusive-Lasso), the
target signal contains few non-zeros within each group and
sparsity is not enforced across groups. Sparsity within groups
is also addressed by the sparse-group lasso (SGL) proposed
in [29]. SGL uses a convex combination of an `1 norm and
an `2,1 norm as the penalty – it may also be interpreted as a
sum of elastic-net-like penalties [36] applied to each group.
Therefore SGL uses a convex penalty function. SGL was
extended to non-overlapping groups and its performance is
thoroughly analyzed in [24].

Another class of related penalties are based on correlations
extracted from the observation matrix [31], [1]. Given an
observation model of the form y ≈ H x, the idea is to
derive a positive semi-definite weighting matrix W from the
correlations between the columns of H and use it to define
a penalty of the form xT W x. Since W does not depend on
x, the penalty in [31], [1] is convex. The targeted effect is
uniform treatment of the components of xthat produce similar
responses. This contrasts with the proposed penalty because
if two components of xhave similar responses, the proposed
penalty Pγ would prefer to single out one of the components
and suppress the other. Another recent paper that takes into
account correlations between the columns of H is [27]. A
bivariate non-convex penalty is proposed so as to enforce
sparsity stronger than alternative convex penalties, while main-
taining the convexity of the overall problem. Sparsity within
groups is not specifically sought in [27].

The penalty proposed in this paper, Pγ is non-convex. How-
ever, its degree of non-convexity is controlled by the parameter
γ and this in turn allows to formulate convex problems. As
will be clarified in the sequel (see the proof of Prop. 1), Pγ
can be related to the E-Lasso penalty. However, the E-Lasso
penalty is convex and can be shown to contain an additive
energy term, which in turn penalizes higher coefficients more
strongly. Further, the E-Lasso threshold never sets the whole
group to zero, unless the group is zero to start with (see
[18], Remark-6). Thus if a group consists entirely of noise, it
will not be totally eliminated, even if it has components with
small magnitudes. The threshold function associated with the
proposed penalty function contains a deadzone such that if
the coefficients in the group fall in the deadzone, the whole
group is eliminated. Therefore the proposed penalty/threshold
functions aim to achieve sparsity within and across groups.

Notation and Preliminaries

Throughout the paper, vectors are denoted using small case
letters, as in x. The ith component of xis denoted as xi. We
are interested in partitions of x into groups in this paper. We
already used x(i)to denote the ithsubgroup of x. That is, for
a length-4 vector x =

(
x1, . . . , x4

)
, if we form two groups

of size two, by collecting together consecutive components,
we have x(1) =

(
x1, x2

)
and x(2) =

(
x3, x4

)
. However,

with the exception of Sec. II-E, the functions under study
are separable with respect to groups. Therefore, whenever
separability applies, we suppress the group superscript in x(i)

and use x to simplify notation, with the understanding that the
same discussion applies to all of the groups.

For a scalar x ∈ C, the soft threshold function with
threshold τ > 0 is defined as,

soft(x, τ) =





(|x| − τ)
x

|x| , if |x| > τ,

0, if |x| ≤ τ.
(4)

If x is a vector, the soft thresholding operator applies to each
component of x separately.

The proximity operator of a convex, lower semi-continuous
function f is defined as [5], [11]

Jαf (z) = arg min
x

1

2
‖z − x‖22 + αf(x). (5)

We also refer to J as the threshold function, if f under
dicsussion is a penalty function.

Throughout the paper, for a given length-n vector z (com-
plex or real valued), we define the cost function Cλ,γ(x|z) as

Cλ,γ(x|z) =
1

2
‖z − x‖22 + λPγ(x), (6)

where Pγ is given in (2). The threshold function Tλ,γ(z) is
defined, in line with (5), as,

Tλ,γ(z) = arg min
x
Cλ,γ(x|z). (7)

We remark that the penalty function used in this paper is
not convex but weakly convex. In order for the threshold
function to be well-defined, the minimizer of Cλ,γ(·|z) (i.e.,
the point that minimizes Cλ,γ(·|z)) must be unique. To ensure
uniqueness, we will check that Cλ,γ(·|z) is strictly convex.

Outline

We motivate the proposed penalty function and derive the
associated threshold function in Section II. We discuss how the
non-convex penalty function may be employed to formulate
a convex denoising problem with a sparsifying frame and
present a minimization algorithm in Section III. In Section IV,
we present a non-convex deconvolution formulation, study
the convergence of an iterative thresholding algorithm for
the presented formulation and demonstrate its performance.
Section V is the conclusion.
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Fig. 1. Mesh and contour plots of the proposed P�(x1, x2). Notice that the
function is not convex.

II. A WEAKLY CONVEX PENALTY

The penalty function P� introduced in (1) is separable with
respect to the groups and the groups are non-overlapping.
Thanks to these properties, it suffices to study the component
function P�(x) and the associated threshold function T�,� ,
with domain Rn or Cn. Once T�,� , is specified, T�,� can be
realized by applying T�,� to each group separately.

We start our discussion in Section II-A with
penalty/threshold functions defined on R2, since this
case is easier to visualize and interpret. After that, we
generalize the discussion to Rn in Section II-B. A discussion
of how to tune the parameters and a numerical demonstration
of the discussions is provided in Sec. II-C. Extension of the
study to Cn is done in Sec. II-D. Finally, in Sec. II-E, we
briefly consider how the proposed penalty can be combined
with `2,1norms to achieve a modified effect.

A. The Penalty and the Threshold Function on R2

1) The Penalty Function: For a fixed energy vector x =
(x1, x2), we seek a penalty function P such that,

• if |x1| ⌧ |x2| or |x2| ⌧ |x1|, P (x) assumes a low value,
• if |x1| ⇡ |x2|, P (x) assumes a high value.

Observe that P̄ = |x1 x2| satisfies these requirements. How-
ever, P̄ is exactly zero when one of the components is zero.
In order to penalize small non-zero components, we add an
`1 term and propose the penalty

P�(x) = � |x1 x2| + kxk1, (8)

where � � 0 is a tuning parameter. Notice that this is the
restriction of the function in (2) to R2. Mesh and contour
plots of this function are shown in Fig. 1.

P� is not convex but it becomes convex when we add a
quadratic. Such functions are called weakly convex [32]. For
�  1/�, it can be shown that the function ‘kxk22/2+�P�(x)’
is convex (see Sec. II-B). Therefore, � may be regarded as
a parameter that controls how much P� deviates from being
convex. As a consequence of the weak-convexity of P� , we
find that if � < 1/�, for a given z 2 R2, the cost function
C�,�(x|z) is strictly convex with respect to x. Thus, T�,�(z)
is well-defined when � � < 1.

Before we further discuss the threshold function, we would
like to compare P� to the Elitist-Lasso (E-Lasso) penalty
function, which is known to favor large components in a group

Regions with a Constant Gradient
(a) Proposed Threshold
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Fig. 2. The threshold functions associated with the proposed penalty and
E-Lasso have constant gradients in the regions indicated above.

[18], [19], [20]. For groups of size two, the E-Lasso penalty
uses PEL(x) = kxk21. Expanding this, we can write,

PEL(x) = 2|x1 x2| + kxk22. (9)

Both PEL and P� employ the term |x1 x2| and this term is
responsible for the ‘elitist’ character of the penalties, by which
we mean that the penalty assumes lower values for vectors
with unequal components. The difference between the two
penalties lies in the remaining components. P� contains an
additive `1 term which helps enforce sparsity if the compo-
nents have small magnitudes. In contrast, PEL contains an
additive energy term, which renders the overall penalty convex
at the expense of penalizing high magnitude coefficients more
strongly.

2) The Threshold Function: The threshold function T�,�

can be derived via the optimality conditions for the minimiza-
tion problem (7). Let us assume that zi � 0, i.e., z lies in the
first quadrant (extension to the other quadrants can be achieved
by symmetry). Let x̂ = T�,�(z). For the regions R1, R2, R3,
R4, defined in Fig. 2a, x̂ = (x̂1, x̂2) is given as follows.

x̂1 = z1 � �

x̂2 = 0

)
, if z 2 R1,

x̂1 = 0

x̂2 = z2 � �

)
, if z 2 R2,

x̂1 =
z1 � � � z2 � (1� � �)�

1� �2 �2

x̂2 =
z2 � � � z1 � (1� � �)�

1� �2 �2

9
>>=
>>;

, if z 2 R3,

x̂1 = 0

x̂2 = 0

)
if z 2 R4.

Note that the regions are determined by the two parameters
� and � (see ⌧1 and ⌧2 in Fig. 2a). R4 is the deadzone (i.e.,
the collection of input vectors which are mapped to zero by
the threshold function) for the bivariate threshold function and
is determined by the weight �. The first component of the
threshold function (i.e., the mapping that takes z = (z1, z2) to
x̂1) is shown in Fig. 3a. Note that for this function, R2 (on
which |z2| � |z1|) is also a deadzone.

The proposed threshold function behaves quite differently
than a threshold function derived from a separable penalty of
the form ‘p(x1) + p(x2)’. If the penalty is separable, even

Fig. 1. Mesh and contour plots of the proposed Pγ(x1, x2). Notice that the
function is not convex.

II. A WEAKLY CONVEX PENALTY

The penalty function Pγ introduced in (1) is separable with
respect to the groups and the groups are non-overlapping.
Thanks to these properties, it suffices to study the component
function Pγ(x) and the associated threshold function Tλ,γ ,
with domain Rn or Cn. Once Tλ,γ , is specified, Tλ,γ can be
realized by applying Tλ,γ to each group separately.

We start our discussion in Section II-A with
penalty/threshold functions defined on R2, since this
case is easier to visualize and interpret. After that, we
generalize the discussion to Rn in Section II-B. A discussion
of how to tune the parameters and a numerical demonstration
of the discussions is provided in Sec. II-C. Extension of the
study to Cn is done in Sec. II-D. Finally, in Sec. II-E, we
briefly consider how the proposed penalty can be combined
with `2,1norms to achieve a modified effect.

A. The Penalty and the Threshold Function on R2

1) The Penalty Function: For a fixed energy vector x =
(x1, x2), we seek a penalty function P such that,
• if |x1| � |x2| or |x2| � |x1|, P (x) assumes a low value,
• if |x1| ≈ |x2|, P (x) assumes a high value.

Observe that P̄ = |x1 x2| satisfies these requirements. How-
ever, P̄ is exactly zero when one of the components is zero.
In order to penalize small non-zero components, we add an
`1 term and propose the penalty

Pγ(x) = γ |x1 x2|+ ‖x‖1, (8)

where γ ≥ 0 is a tuning parameter. Notice that this is the
restriction of the function in (2) to R2. Mesh and contour
plots of this function are shown in Fig. 1.
Pγ is not convex but it becomes convex when we add a

quadratic. Such functions are called weakly convex [32]. For
λ ≤ 1/γ, it can be shown that the function ‘‖x‖22/2+λPγ(x)’
is convex (see Sec. II-B). Therefore, γ may be regarded as
a parameter that controls how much Pγ deviates from being
convex. As a consequence of the weak-convexity of Pγ , we
find that if λ < 1/γ, for a given z ∈ R2, the cost function
Cλ,γ(x|z) is strictly convex with respect to x. Thus, Tλ,γ(z)
is well-defined when λ γ < 1.

Before we further discuss the threshold function, we would
like to compare Pγ to the Elitist-Lasso (E-Lasso) penalty
function, which is known to favor large components in a group
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II. A WEAKLY CONVEX PENALTY

The penalty function P� introduced in (1) is separable with
respect to the groups and the groups are non-overlapping.
Thanks to these properties, it suffices to study the component
function P�(x) and the associated threshold function T�,� ,
with domain Rn or Cn. Once T�,� , is specified, T�,� can be
realized by applying T�,� to each group separately.

We start our discussion in Section II-A with
penalty/threshold functions defined on R2, since this
case is easier to visualize and interpret. After that, we
generalize the discussion to Rn in Section II-B. A discussion
of how to tune the parameters and a numerical demonstration
of the discussions is provided in Sec. II-C. Extension of the
study to Cn is done in Sec. II-D. Finally, in Sec. II-E, we
briefly consider how the proposed penalty can be combined
with `2,1norms to achieve a modified effect.

A. The Penalty and the Threshold Function on R2

1) The Penalty Function: For a fixed energy vector x =
(x1, x2), we seek a penalty function P such that,

• if |x1| ⌧ |x2| or |x2| ⌧ |x1|, P (x) assumes a low value,
• if |x1| ⇡ |x2|, P (x) assumes a high value.

Observe that P̄ = |x1 x2| satisfies these requirements. How-
ever, P̄ is exactly zero when one of the components is zero.
In order to penalize small non-zero components, we add an
`1 term and propose the penalty

P�(x) = � |x1 x2| + kxk1, (8)

where � � 0 is a tuning parameter. Notice that this is the
restriction of the function in (2) to R2. Mesh and contour
plots of this function are shown in Fig. 1.

P� is not convex but it becomes convex when we add a
quadratic. Such functions are called weakly convex [32]. For
�  1/�, it can be shown that the function ‘kxk22/2+�P�(x)’
is convex (see Sec. II-B). Therefore, � may be regarded as
a parameter that controls how much P� deviates from being
convex. As a consequence of the weak-convexity of P� , we
find that if � < 1/�, for a given z 2 R2, the cost function
C�,�(x|z) is strictly convex with respect to x. Thus, T�,�(z)
is well-defined when � � < 1.

Before we further discuss the threshold function, we would
like to compare P� to the Elitist-Lasso (E-Lasso) penalty
function, which is known to favor large components in a group
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[18], [19], [20]. For groups of size two, the E-Lasso penalty
uses PEL(x) = kxk21. Expanding this, we can write,

PEL(x) = 2|x1 x2| + kxk22. (9)

Both PEL and P� employ the term |x1 x2| and this term is
responsible for the ‘elitist’ character of the penalties, by which
we mean that the penalty assumes lower values for vectors
with unequal components. The difference between the two
penalties lies in the remaining components. P� contains an
additive `1 term which helps enforce sparsity if the compo-
nents have small magnitudes. In contrast, PEL contains an
additive energy term, which renders the overall penalty convex
at the expense of penalizing high magnitude coefficients more
strongly.

2) The Threshold Function: The threshold function T�,�

can be derived via the optimality conditions for the minimiza-
tion problem (7). Let us assume that zi � 0, i.e., z lies in the
first quadrant (extension to the other quadrants can be achieved
by symmetry). Let x̂ = T�,�(z). For the regions R1, R2, R3,
R4, defined in Fig. 2a, x̂ = (x̂1, x̂2) is given as follows.

x̂1 = z1 � �

x̂2 = 0

)
, if z 2 R1,
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)
, if z 2 R2,
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z1 � � � z2 � (1� � �)�
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, if z 2 R3,

x̂1 = 0

x̂2 = 0

)
if z 2 R4.

Note that the regions are determined by the two parameters
� and � (see ⌧1 and ⌧2 in Fig. 2a). R4 is the deadzone (i.e.,
the collection of input vectors which are mapped to zero by
the threshold function) for the bivariate threshold function and
is determined by the weight �. The first component of the
threshold function (i.e., the mapping that takes z = (z1, z2) to
x̂1) is shown in Fig. 3a. Note that for this function, R2 (on
which |z2| � |z1|) is also a deadzone.

The proposed threshold function behaves quite differently
than a threshold function derived from a separable penalty of
the form ‘p(x1) + p(x2)’. If the penalty is separable, even

Fig. 2. The threshold functions associated with the proposed penalty and
E-Lasso have constant gradients in the regions indicated above.

[18], [19], [20]. For groups of size two, the E-Lasso penalty
uses PEL(x) = ‖x‖21. Expanding this, we can write,

PEL(x) = 2|x1 x2|+ ‖x‖22. (9)

Both PEL and Pγ employ the term |x1 x2| and this term is
responsible for the ‘elitist’ character of the penalties, by which
we mean that the penalty assumes lower values for vectors
with unequal components. The difference between the two
penalties lies in the remaining components. Pγ contains an
additive `1 term which helps enforce sparsity if the compo-
nents have small magnitudes. In contrast, PEL contains an
additive energy term, which renders the overall penalty convex
at the expense of penalizing high magnitude coefficients more
strongly.

2) The Threshold Function: The threshold function Tλ,γ
can be derived via the optimality conditions for the minimiza-
tion problem (7). Let us assume that zi ≥ 0, i.e., z lies in the
first quadrant (extension to the other quadrants can be achieved
by symmetry). Let x̂ = Tλ,γ(z). For the regions R1, R2, R3,
R4, defined in Fig. 2a, x̂ = (x̂1, x̂2) is given as follows.

x̂1 = z1 − λ
x̂2 = 0

}
, if z ∈ R1,

x̂1 = 0

x̂2 = z2 − λ

}
, if z ∈ R2,

x̂1 =
z1 − λ γ z2 − (1− λ γ)λ

1− λ2 γ2

x̂2 =
z2 − λ γ z1 − (1− λ γ)λ

1− λ2 γ2




, if z ∈ R3,

x̂1 = 0

x̂2 = 0

}
if z ∈ R4.

Note that the regions are determined by the two parameters
λ and γ (see τ1 and τ2 in Fig. 2a). R4 is the deadzone (i.e.,
the collection of input vectors which are mapped to zero by
the threshold function) for the bivariate threshold function and
is determined by the weight λ. The first component of the
threshold function (i.e., the mapping that takes z = (z1, z2) to
x̂1) is shown in Fig. 3a. Note that for this function, R2 (on
which |z2| � |z1|) is also a deadzone.

The proposed threshold function behaves quite differently
than a threshold function derived from a separable penalty of
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Fig. 3. The first component of the proposed threshold and E-Lasso.

if p is non-convex, the deadzone of the threshold function is
rectangular (and hence x̂1 does not depend on z2).

The relevant regions and the first component of the E-
Lasso threshold are shown in Fig. 2b and Fig. 3b respectively.
Note that, unlike the proposed threshold (which contains four
different regions with constant gradient), the E-Lasso threshold
has three regions where its gradient is constant. Also, unlike
the proposed threshold, the E-Lasso threshold does not contain
a deadzone that eliminates both components.

B. The Penalty and the Threshold Function on Rn

We now consider the function P� : Rn ! R+ defined in (2)
and the associated threshold function. Unlike R2, it is not easy
to express the threshold function in closed form in Rn. Instead,
we will derive a procedure to realize the threshold function.
In order to justify the procedure, we will need to first study
the properties of the penalty and the threshold functions.

We start with the penalty P� . This function is not convex
but it becomes convex if we add a quadratic. Such functions
are called weakly-convex [32].

Definition 1. For � � 0, a function f is said to be �-weakly
convex if

�

2
kxk22 + f(x) (10)

is convex.

Proposition 1. The function P� in (2) is �-weakly convex.
Consequently, the cost function C�,�(x|z) in (6) is strictly
convex with respect to x if � � < 1.

Proof. To see the first claim, observe that,

kxk21 = kxk22 + 2

n�1X

i=1

nX

m=i+1

|xi xm|. (11)

Since kxk21 is convex, this observation implies that the term
in the parentheses in (2) is 1-weakly convex. Since kxk1 is
convex, it follows that P� is �-weakly convex.

To see the strict convexity of C�,� with respect to x, note
that it can be written as the sum of a convex function and

1

2
kxk22 + � �

 
n�1X

i=1

nX

m=i+1

|xi xm|
!

. (12)

But the function in (12) is strictly convex if � � < 1 and thus
follows the claim.

It also follows from Prop. 1 that, when � � < 1, T�,� is
well-defined thanks to the strict convexity of C�,� .

In the following, we will derive two finite-terminating
algorithms that realize T�,� . For that, we discuss the properties
of T�,� . We start by showing that T�,�(z) shrinks z towards
zero and it is monotone in the sense that it preserves the
ordering of |zi| with respect to i. More precisely, we have
the following result.

Proposition 2. Let x̂ = T�,�(z), for � � < 1.
(a) If zi � 0, then zi � x̂i � 0. If zi  0, then zi  x̂i  0.
(b) If |zi| > |zm|, then |x̂i| � |x̂m|.
(c) If |zi| = |zm|, then |x̂i| = |x̂m|.
Proof. See Appendix A.

We now derive an expression for T�,� using the optimality
conditions. Notice that C�,� can be written as,

C�,�(x|z) =
1

2
kzk22 � hz, xi

+
1� � �

2
kxk22 +

� �

2
kxk21 + �kxk1. (13)

Using this expression, the optimality conditions are found as,

z 2 (1� � �)x̂ + �
�
�kx̂k1 + 1

�
sign(x̂), (14)

where sign(x̂) is a set valued separable function of the vector
x̂, whose kth component is given as,

sign(x̂)k =

8
><
>:

{1}, if x̂k > 0,

[�1, 1], if x̂k = 0,

{�1}, if x̂k < 0.

(15)

In the following, we assume for simplicity that zi’s are
non-negative and ordered, i.e., z1 � z2 � · · · � zn � 0. The
general case can be recovered by a permutation of the vector
components and changing signs, thanks to Prop. 2.

Prop. 2 implies that there is an index k 2 {0, 1, . . . , n},
such that x̂i > 0 if i  k and x̂i = 0 if i > k. That is, k
denotes the number of non-zeros in x̂. For this special integer
k, the optimality conditions can be written as,

zi = (1� � �)x̂i + �

 
�

kX

m=1

x̂m + 1

!
, if i  k, (16a)

zi  �

 
�

kX

m=1

x̂m + 1

!
, if i > k. (16b)

In order to find an expression for x̂i, let us define

z̄ =

2
6664

z1

z2

...
zk

3
7775 , x̄ =

2
6664

x̂1

x̂2

...
x̂k

3
7775 , 1k =

2
6664

1
1
...
1

3
7775 2 Rk. (17)

We can now express (16a) as

z̄ = (1� � �) x̄ + �
�
�1T

k x̄ + 1
�

1k. (18)

Multiplying both sides by 1T
k (noting 1T

k 1k = k) and
rearranging, we have

1T
k x̄ =

1T
k z̄ � k �

1 + (k � 1)� �
(19)

Fig. 3. The first component of the proposed threshold and E-Lasso.

the form ‘p(x1) + p(x2)’. If the penalty is separable, even
if p is non-convex, the deadzone of the threshold function is
rectangular (and hence x̂1 does not depend on z2).

The relevant regions and the first component of the E-
Lasso threshold are shown in Fig. 2b and Fig. 3b respectively.
Note that, unlike the proposed threshold (which contains four
different regions with constant gradient), the E-Lasso threshold
has three regions where its gradient is constant. Also, unlike
the proposed threshold, the E-Lasso threshold does not contain
a deadzone that eliminates both components.

B. The Penalty and the Threshold Function on Rn

We now consider the function Pγ : Rn → R+ defined in (2)
and the associated threshold function. Unlike R2, it is not easy
to express the threshold function in closed form in Rn. Instead,
we will derive a procedure to realize the threshold function.
In order to justify the procedure, we will need to first study
the properties of the penalty and the threshold functions.

We start with the penalty Pγ . This function is not convex
but it becomes convex if we add a quadratic. Such functions
are called weakly-convex [32].

Definition 1. For γ ≥ 0, a function f is said to be γ-weakly
convex if

γ

2
‖x‖22 + f(x) (10)

is convex.

Proposition 1. The function Pγ in (2) is γ-weakly convex.
Consequently, the cost function Cλ,γ(x|z) in (6) is strictly
convex with respect to x if λ γ < 1.

Proof: To see the first claim, observe that,

‖x‖21 = ‖x‖22 + 2

n−1∑

i=1

n∑

m=i+1

|xi xm|. (11)

Since ‖x‖21 is convex, this observation implies that the term
in the parentheses in (2) is 1-weakly convex. Since ‖x‖1 is
convex, it follows that Pγ is γ-weakly convex.

To see the strict convexity of Cλ,γ with respect to x, note
that it can be written as the sum of a convex function and

1

2
‖x‖22 + λ γ

(
n−1∑

i=1

n∑

m=i+1

|xi xm|
)
. (12)

But the function in (12) is strictly convex if λ γ < 1 and thus
follows the claim.

It also follows from Prop. 1 that, when λ γ < 1, Tλ,γ is
well-defined thanks to the strict convexity of Cλ,γ .

In the following, we will derive two finite-terminating
algorithms that realize Tλ,γ . For that, we discuss the properties
of Tλ,γ . We start by showing that Tλ,γ(z) shrinks z towards
zero and it is monotone in the sense that it preserves the
ordering of |zi| with respect to i. More precisely, we have
the following result.

Proposition 2. Let x̂ = Tλ,γ(z), for λ γ < 1.

(a) If zi ≥ 0, then zi ≥ x̂i ≥ 0. If zi ≤ 0, then zi ≤ x̂i ≤ 0.
(b) If |zi| > |zm|, then |x̂i| ≥ |x̂m|.
(c) If |zi| = |zm|, then |x̂i| = |x̂m|.

Proof: See Appendix A.

We now derive an expression for Tλ,γ using the optimality
conditions. Notice that Cλ,γ can be written as,

Cλ,γ(x|z) =
1

2
‖z‖22 − 〈z, x〉

+
1− λ γ

2
‖x‖22 +

λ γ

2
‖x‖21 + λ‖x‖1. (13)

Using this expression, the optimality conditions are found as,

z ∈ (1− λ γ)x̂+ λ
(
γ‖x̂‖1 + 1

)
sign(x̂), (14)

where sign(x̂) is a set valued separable function of the vector
x̂, whose kth component is given as,

sign(x̂)k =





{1}, if x̂k > 0,

[−1, 1], if x̂k = 0,

{−1}, if x̂k < 0.

(15)

In the following, we assume for simplicity that zi’s are
non-negative and ordered, i.e., z1 ≥ z2 ≥ · · · ≥ zn ≥ 0. The
general case can be recovered by a permutation of the vector
components and changing signs, thanks to Prop. 2.

Prop. 2 implies that there is an index k ∈ {0, 1, . . . , n},
such that x̂i > 0 if i ≤ k and x̂i = 0 if i > k. That is, k
denotes the number of non-zeros in x̂. For this special integer
k, the optimality conditions can be written as,

zi = (1− λ γ)x̂i + λ

(
γ

k∑

m=1

x̂m + 1

)
, if i ≤ k, (16a)

zi ≤ λ
(
γ

k∑

m=1

x̂m + 1

)
, if i > k. (16b)

In order to find an expression for x̂i, let us define

z̄ =




z1
z2
...
zk


 , x̄ =




x̂1
x̂2
...
x̂k


 , 1k =




1
1
...
1


 ∈ Rk. (17)

We can now express (16a) as

z̄ = (1− λ γ) x̄+ λ
(
γ1Tk x̄+ 1

)
1k. (18)
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Multiplying both sides by 1Tk (noting 1Tk 1k = k) and
rearranging, we have

1Tk x̄ =
1Tk z̄ − k λ

1 + (k − 1)λ γ
(19)

Therefore,

λ
(
γ1Tk x̄+ 1

)
=
λ (1− λ γ) + λ γ

∑k
j=1 zj

1 + (k − 1)λ γ
. (20)

The rhs of (20) will be of interest in the following. Let us
therefore define, for each i,

h(i) =
λ (1− λ γ) + λ γ

∑i
m=1 zm

1 + (i− 1)λ γ
. (21)

Plugging the expression in (20) back into (16), we find the
equivalent conditions

x̂i = (1− λ γ)−1
(
zi − h(k)

)
, if i ≤ k, (22a)

zi ≤ h(k), if i > k. (22b)

Notice that the requirement x̂i > 0 for i ≤ k implies that
zi > h(k) for i ≤ k. The foregoing discussion is summarized
in the following proposition.

Proposition 3. Let x̂ = Tλ,γ(z), for λ γ < 1. Also, let k
denote the number of non-zeros of x̂. Then,

x̂ = (1− λ γ)−1 soft
(
z, h(k)

)
, (23)

where

h(k) =
λ (1− λ γ) + λ γ

∑k
m=1 |zm|

1 + (k − 1)λ γ
, (24)

(with the convention
∑0
m=1 |zm| = 0).

We remark that the description of the threshold function in
Prop. 3 is implicit because the integer k in (23), namely the
number of non-zeros in x̂, depends on x̂. We next discuss how
to determine the integer k. We will present two different search
schemes for finding the correct value of k. The following
lemma will be useful for that end.

Lemma 1. Suppose z1 ≥ z2 ≥ · · · zn ≥ 0 and λ γ < 1. Let
h(i) be defined as in (21). Then,

(a) if zi+1 > h(i), then zi > h(i− 1),
(b) if zi ≤ h(i), then zi+1 ≤ h(i+ 1).

Proof: See Appendix B.

We can use this lemma to develop a procedure for determin-
ing k. It follows from the lemma that we can start from k = 0
and keep increasing k until h(k) > zk+1. This procedure is
summarized in Algorithm 1.

If k is suspected to be small, then this algorithm terminates
quickly. In the worst case, the algorithm will execute the
‘while’ loop n times. If, however, n is large and k is not
expected to be small, then a binary search for k might
be computationally more suitable. The following discussion,
that relies on Lemma 1 implies that such a binary search
terminates.

Algorithm 1 Realization of Tλ,γ – Linear Search for k
Require: y ∈ Rn
z ← descending-sort(|y|)
k ← 0
while h(k) < zk+1 do
k ← k + 1 {increment k}

end while
x̂← (1− λ γ)−1 soft

(
y, h(k)

)
.

Suppose we pick an arbitrary i and check the following
conditions.

zi > h(i), (25a)
zi+1 ≤ h(i). (25b)

Notice that since zi ≥ zi+1, the conditions cannot be violated
simultaneously. Now observe that
• If both conditions hold, the current guess of i is equal to

the sought k.
• If (25a) holds and (25b) is violated, then by Lemma 1, k

must be greater than i.
• If (25b) holds and (25a) is violated, then again by

Lemma 1, k must be less than i.
These observations lead to an implementation of Tλ,γ

as in Algorithm 2. In contrast to the O(n) complexity of
Algorithm 1, this algorithm has O

(
log(n)

)
complexity.

Algorithm 2 Realization of Tλ,γ – Binary Search for k
Require: y ∈ Rn
z ← descending-sort(|y|)
flag← true
if z1 < λ then
k ← 0
flag← false

else if zn > h(n) then
k ← n
flag← false

else
k0 ← 0 {left end of the interval}
k1 ← n {right end of the interval}

end if
while flag do
k ← b(k0 + k1)/2c {middle of the working interval}
if zk > h(k) and zk+1 ≤ h(k) then

flag← false {correct value of k is found}
else if zk ≤ h(k) then
k1 ← k {update the right end}

else
k0 ← k {update the left end}

end if
end while
x← (1− λ γ)−1 soft

(
y, h(k)

)
.

C. Tuning the Parameters of the Threshold Function
Let us now discuss some special cases to better understand

the role of the parameters λ and γ. As in the previous
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subsection, we will assume that z1 ≥ · · · ≥ zn ≥ 0 and
x̂ = Tλ,γ(z).

Observe first that h(0) = λ. If zi < λ for all i, then x̂ = 0.
Thus the deadzone of the threshold function is a cube of width
λ in Rn.

Suppose now that z1 > λ. In that case, we will definitely
have x̂1 > 0. We find that

h(1) = λ+ λγ(z1 − λ). (26)

Notice that in order for x̂2 to be non-zero, the threshold
that z2 needs to exceed has increased from λ by an amount
proportional to (z1 − λ). The higher z1 is, the higher will
be the new threshold. In fact, observe that as λ γ → 1, the
threshold converges to z1. Since z2 ≤ z1, we can therefore
force only a single component to survive by choosing γ close
to 1/λ. When z2 < h(1), we find that,

x̂1 = z1 − λ. (27)

Thus the single surviving component is obtained by soft
thresholding the largest component with λ.

The following proposition provides further information on
how the potential thresholds h(i) behave for arbitrary i.

Proposition 4. Suppose z1 ≥ z2 ≥ · · · zn ≥ 0 and
λ γ < 1. Let h(i) be defined as in (21). If zi+1 > h(i), then
zi+1 > h(i+ 1) > h(i).

Proof: See Appendix C.

We know that if zi+1 > h(i), then h(i) is not the actual
threshold and k > i. Prop. 4 implies that h(k) is actually
greater than h(i), but it is bounded above by zi+1. In fact, we
can deduce from Prop. 4 that

z1 ≥ · · · ≥ zk > h(k) ≥ h(k− 1) ≥ · · · ≥ h(0) = λ. (28)

In the case where the observations are purely noise, we would
like to set x̂i = 0 for all i. This motivates choosing λ = cσ,
where σ denotes the noise standard deviation and c is a
constant around unity. Once we fix the value of λ, the number
of non-zero components, k, and the threshold h(k) will depend
on γ (and z). The following proposition provides precise
bounds on γ.

Proposition 5. Let x̂ = Tλ,γ(z) where λ γ < 1 and zi ≥ 0
for all i. x̂1 ≥ · · · ≥ x̂k > 0 and x̂k+1 = · · · = x̂n = 0 if and
only if

λ γ >
(zk+1 − λ)+

(zk+1 − λ)+ +
∑k
i=1 (zi − zk+1)

, (29a)

λ γ <
(zk − λ)+

(zk − λ)+ +
∑k−1
i=1 (zi − zk)

. (29b)

Proof: See Appendix D.

Prop. 5 suggests that, if we would like to retain more
components in the estimate x̂, then we need to choose a
small γ so that λγ is small. Also, if the signal is scaled by
multiplying with a factor β, then the numbers on the rhs in
(29) stay approximately the same. Therefore, the constant λ γ
controls the number of non-zeros, almost independently of the
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Suppose now that z1 > �. In that case, we will definitely
have x̂1 > 0. We find that

h(1) = � + ��(z1 � �). (26)

Notice that in order for x̂2 to be non-zero, the threshold
that z2 needs to exceed has increased from � by an amount
proportional to (z1 � �). The higher z1 is, the higher will
be the new threshold. In fact, observe that as � � ! 1, the
threshold converges to z1. Since z2  z1, we can therefore
force only a single component to survive by choosing � close
to 1/�. When z2 < h(1), we find that,

x̂1 = z1 � �. (27)

Thus the single surviving component is obtained by soft
thresholding the largest component with �.

The following proposition provides further information on
how the potential thresholds h(i) behave for arbitrary i.

Proposition 4. Suppose z1 � z2 � · · · zn � 0 and
� � < 1. Let h(i) be defined as in (21). If zi+1 > h(i), then
zi+1 > h(i + 1) > h(i).

Proof. See Appendix C.

We know that if zi+1 > h(i), then h(i) is not the actual
threshold and k > i. Prop. 4 implies that h(k) is actually
greater than h(i), but it is bounded above by zi+1. In fact, we
can deduce from Prop. 4 that

z1 � · · · � zk > h(k) � h(k� 1) � · · · � h(0) = �. (28)

In the case where the observations are purely noise, we would
like to set x̂i = 0 for all i. This motivates choosing � = c�,
where � denotes the noise standard deviation and c is a
constant around unity. Once we fix the value of �, the number
of non-zero components, k, and the threshold h(k) will depend
on � (and z). The following proposition provides precise
bounds on �.

Proposition 5. Let x̂ = T�,�(z) where � � < 1 and zi � 0
for all i. x̂1 � · · · � x̂k > 0 and x̂k+1 = · · · = x̂n = 0 if and
only if

� � >
(zk+1 � �)+

(zk+1 � �)+ +
Pk

i=1 (zi � zk+1)
, (29a)

� � <
(zk � �)+

(zk � �)+ +
Pk�1

i=1 (zi � zk)
. (29b)

Proof. See Appendix D.

Prop. 5 suggests that, if we would like to retain more
components in the estimate x̂, then we need to choose a
small � so that �� is small. Also, if the signal is scaled by
multiplying with a factor �, then the numbers on the rhs in
(29) stay approximately the same. Therefore, the constant � �
controls the number of non-zeros, almost independently of the
scale. To summarize, the following may serve as a guide for
the selection of the parameters � and �.

• � can be chosen proportional to the noise standard
deviation.

• Once � is chosen, � can be selected independently of
the scale of the signal but should satisfy � � < 1. The
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Fig. 4. Average SNR gains with respect to �, �, where � is fixed and � is
varied. K denotes the number of non-zero components present in the clean
signal.
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(b) K = 2
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Fig. 5. Average SNR gains with respect to the product ��, where � is fixed
and � is varied. K denotes the number of non-zero components present in
the clean signal. As � varies, the value of �� that maximizes the SNR stays
roughly constant.

product � � determines the number of non-zeros in the
estimate. Higher it is, lower the number of non-zeros will
be.

In order to demonstrate the foregoing discussion, we now
consider two simple experiments on synthetic signals.

In both experiments, the desired signal is of length 10 and
it has K non-zero components, where the non-zero values are
obtained by sampling from a Gaussian distribution. We add
Gaussian noise to this signal so that the observation SNR is
5 dB.

For the first experiment, we apply T�,� to the observation
for a fixed � = �/2 and varying �. We repeat the experiment
for 10K trials to obtain an average figure. The average gain in
SNR (dB) with respect to � � is shown in Fig. 4. We see from
the figure that the best � � value decreases with increasing
K. This is in line with Prop. 5, which suggests that in order
for the reconstruction to have more non-zeros, the product � �
must be smaller.

In a second experiment, we demonstrate that the best choice
of the product �� is not affected much by the scale of
the observations. For this, we vary the standard deviation of
the noise, �, as well as the signal energy so that the SNR
stays constant at 5 dB. We set � = �/2 as in the previous
experiment. For fixed Kvalue and varying �, we apply the
threshold using a range of � values satisfying �� < 1 and
compute the gain in SNR. For each value of � and �, an
average SNR gain value is obtained by repeating this for 10K
trials. The resulting SNR gain images are shown in Fig. 5, for
K = 1and K = 2. Observe that for both K = 1 and K = 2,
the best choice of � � stays approximately constant as � varies.

Fig. 4. Average SNR gains with respect to λ, γ, where λ is fixed and γ is
varied. K denotes the number of non-zero components present in the clean
signal.
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Suppose now that z1 > �. In that case, we will definitely
have x̂1 > 0. We find that

h(1) = � + ��(z1 � �). (26)

Notice that in order for x̂2 to be non-zero, the threshold
that z2 needs to exceed has increased from � by an amount
proportional to (z1 � �). The higher z1 is, the higher will
be the new threshold. In fact, observe that as � � ! 1, the
threshold converges to z1. Since z2  z1, we can therefore
force only a single component to survive by choosing � close
to 1/�. When z2 < h(1), we find that,

x̂1 = z1 � �. (27)

Thus the single surviving component is obtained by soft
thresholding the largest component with �.

The following proposition provides further information on
how the potential thresholds h(i) behave for arbitrary i.

Proposition 4. Suppose z1 � z2 � · · · zn � 0 and
� � < 1. Let h(i) be defined as in (21). If zi+1 > h(i), then
zi+1 > h(i + 1) > h(i).

Proof. See Appendix C.

We know that if zi+1 > h(i), then h(i) is not the actual
threshold and k > i. Prop. 4 implies that h(k) is actually
greater than h(i), but it is bounded above by zi+1. In fact, we
can deduce from Prop. 4 that

z1 � · · · � zk > h(k) � h(k� 1) � · · · � h(0) = �. (28)

In the case where the observations are purely noise, we would
like to set x̂i = 0 for all i. This motivates choosing � = c�,
where � denotes the noise standard deviation and c is a
constant around unity. Once we fix the value of �, the number
of non-zero components, k, and the threshold h(k) will depend
on � (and z). The following proposition provides precise
bounds on �.

Proposition 5. Let x̂ = T�,�(z) where � � < 1 and zi � 0
for all i. x̂1 � · · · � x̂k > 0 and x̂k+1 = · · · = x̂n = 0 if and
only if

� � >
(zk+1 � �)+

(zk+1 � �)+ +
Pk

i=1 (zi � zk+1)
, (29a)

� � <
(zk � �)+

(zk � �)+ +
Pk�1

i=1 (zi � zk)
. (29b)

Proof. See Appendix D.

Prop. 5 suggests that, if we would like to retain more
components in the estimate x̂, then we need to choose a
small � so that �� is small. Also, if the signal is scaled by
multiplying with a factor �, then the numbers on the rhs in
(29) stay approximately the same. Therefore, the constant � �
controls the number of non-zeros, almost independently of the
scale. To summarize, the following may serve as a guide for
the selection of the parameters � and �.

• � can be chosen proportional to the noise standard
deviation.

• Once � is chosen, � can be selected independently of
the scale of the signal but should satisfy � � < 1. The
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Fig. 5. Average SNR gains with respect to the product ��, where � is fixed
and � is varied. K denotes the number of non-zero components present in
the clean signal. As � varies, the value of �� that maximizes the SNR stays
roughly constant.

product � � determines the number of non-zeros in the
estimate. Higher it is, lower the number of non-zeros will
be.

In order to demonstrate the foregoing discussion, we now
consider two simple experiments on synthetic signals.

In both experiments, the desired signal is of length 10 and
it has K non-zero components, where the non-zero values are
obtained by sampling from a Gaussian distribution. We add
Gaussian noise to this signal so that the observation SNR is
5 dB.

For the first experiment, we apply T�,� to the observation
for a fixed � = �/2 and varying �. We repeat the experiment
for 10K trials to obtain an average figure. The average gain in
SNR (dB) with respect to � � is shown in Fig. 4. We see from
the figure that the best � � value decreases with increasing
K. This is in line with Prop. 5, which suggests that in order
for the reconstruction to have more non-zeros, the product � �
must be smaller.

In a second experiment, we demonstrate that the best choice
of the product �� is not affected much by the scale of
the observations. For this, we vary the standard deviation of
the noise, �, as well as the signal energy so that the SNR
stays constant at 5 dB. We set � = �/2 as in the previous
experiment. For fixed Kvalue and varying �, we apply the
threshold using a range of � values satisfying �� < 1 and
compute the gain in SNR. For each value of � and �, an
average SNR gain value is obtained by repeating this for 10K
trials. The resulting SNR gain images are shown in Fig. 5, for
K = 1and K = 2. Observe that for both K = 1 and K = 2,
the best choice of � � stays approximately constant as � varies.

Fig. 5. Average SNR gains with respect to the product λγ, where λ is fixed
and γ is varied. K denotes the number of non-zero components present in
the clean signal. As σ varies, the value of λγ that maximizes the SNR stays
roughly constant.

scale. To summarize, the following may serve as a guide for
the selection of the parameters λ and γ.
• λ can be chosen proportional to the noise standard

deviation.
• Once λ is chosen, γ can be selected independently of

the scale of the signal but should satisfy λ γ < 1. The
product λ γ determines the number of non-zeros in the
estimate. Higher it is, lower the number of non-zeros will
be.

In order to demonstrate the foregoing discussion, we now
consider two simple experiments on synthetic signals.

In both experiments, the desired signal is of length 10 and
it has K non-zero components, where the non-zero values are
obtained by sampling from a Gaussian distribution. We add
Gaussian noise to this signal so that the observation SNR is
5 dB.

For the first experiment, we apply Tλ,γ to the observation
for a fixed λ = σ/2 and varying γ. We repeat the experiment
for 10K trials to obtain an average figure. The average gain in
SNR (dB) with respect to λ γ is shown in Fig. 4. We see from
the figure that the best λ γ value decreases with increasing
K. This is in line with Prop. 5, which suggests that in order
for the reconstruction to have more non-zeros, the product λ γ
must be smaller.

In a second experiment, we demonstrate that the best choice
of the product λγ is not affected much by the scale of
the observations. For this, we vary the standard deviation of
the noise, σ, as well as the signal energy so that the SNR



7

stays constant at 5 dB. We set λ = σ/2 as in the previous
experiment. For fixed Kvalue and varying σ, we apply the
threshold using a range of γ values satisfying λσ < 1 and
compute the gain in SNR. For each value of σ and γ, an
average SNR gain value is obtained by repeating this for 10K
trials. The resulting SNR gain images are shown in Fig. 5, for
K = 1and K = 2. Observe that for both K = 1 and K = 2,
the best choice of λ γ stays approximately constant as σ varies.

D. Extension to Cn

For x ∈ Cn, we extend Pγ straightforwardly as,

P cγ (x) = γ



n−1∑

i=1

n∑

j=i+1

|xi xj |


+ ‖x‖1. (30)

The threshold function is similarly defined as,

T cλ,γ(z) = arg min
x∈Cn

1

2
‖x− z‖22 + λP cγ (x). (31)

Fortunately, the threshold function derived for Rn applies for
Cn with a little modification. The following observation is
useful for showing that.

Lemma 2. Suppose z ∈ Cn and x̂ = T cλ,γ(z). If |x̂i| > 0,
then arg(x̂i) = arg(zi).

Proof: Suppose arg(x̂i) 6= arg(zi). Define x̃ such that
|x̃i| = |x̂i| for all i and for |x̃i| > 0, set arg(x̃i) = arg(zi).
Then, P cγ (x̃) = P cγ (x̂) but ‖z− x̃‖22 < ‖z− x̂‖22, contradicting
the fact that x̂ minimizes the cost in (31).

With the help of this lemma, we obtain an expression for
T cλ,γ in terms of Tλ,γ .

Proposition 6. Suppose z ∈ Cn. Let |z| denote the vec-
tor containing the magnitudes of the components of z. Let
x̂ = T cλ,γ(z) and u = Tλ,γ(|z|). Then, x̂k = uk e

j arg(zk).
Proof: Notice that |zk| = zk e

−j arg(zk). Using this
observation, it can be shown by a change of variables that
if x̃ = T cλ,γ(|z|), then x̃k = xk e

−j arg(zk). Now since
arg(|zk|) = 0, for all k, it follows by Lemma 2 that x̃k are
real and non-negative. Thus, for the input |z|, we can restrict
the minimization in (31) to Rn. Thus x̃ = Tλ,γ(|z|) = u and
the claim follows.

It follows from this proposition that the threshold function
on Cn can be realized by applying Tλ,γ to the magnitudes
of the input, followed by a correction of the argument of the
complex number. For this reason, in the following, we will
not differentiate between Tλ,γ and T cλ,γ .

E. An Extension to Sub-Groups

We have so far considered a vector x ∈ Cn to com-
prise a group belonging to a larger signal. We now add
an additional layer and consider subgroups of x to define a
hybrid penalty, that can be used to complement `2,1 norms.
In this setting, we refer to xas a ‘super-group’. Specifically,
suppose x is partitioned into m non-overlapping sub-groups,
i.e. x =

[
x(1) x(2) . . . x(m)

]
. Also, let w denote the

length-mvector whose ithcomponent is wi = ‖x(i)‖2. We
define a hybrid penalty P̃γ(x) as,

P̃γ(x) = Pγ(w). (32)

Observe that,

P̃γ(x) =
γ

2

(
‖w‖21 − ‖w‖22

)
+ ‖w‖1 (33)

=
γ

2

(
‖x‖22,1 − ‖x‖22

)
+ ‖x‖2,1, (34)

where ‖x‖2,1 =
∑m
i=1 ‖x(i)‖2. Therefore, P̃γ is γ-weakly

convex. The threshold function of P̃γ is similarly defined as

T̃λ,γ(z) = arg min
x

1

2
‖x− z‖22 + λ P̃γ(x). (35)

Thanks to the weak-convexity of P̃λ,γ , T̃λ,γ is well-defined for
λ γ < 1. T̃λ,γ can be easily described using Tλ,γ , as follows
(see also [19] for a discussion of convex multi-layer penalties).

Proposition 7. Suppose a vector z partitioned into mgroups
where the ith group is denoted as z(i). Also, let wdenote the
length-mvector whose ith component is wi = ‖z(i)‖2. Let
x̂ = T̃λ,γ(z), ŵ = Tλ,γ(w). If we partition x̂ into m groups
similarly as z (with x̂(i)denoting the ithgroup), we have,

x̂(i) =





ŵi
wi

z(i), if wi > 0,

0, if wi = 0.
(36)

Proof: See Appendix E.

In words, this proposition implies that the orientation of
x(i)is the same as that of z(i). To find the length of x̂(i), i.e.,
‖x̂(i)‖2, we apply the thresholding operator Tλ,γ to w. We will
consider an application of this penalty and threshold function
in Sec. III for a convex denoising formulation.

III. APPLICATION-I : CONVEX DENOISING WITH A
SPARSIFYING FRAME

We now consider the application of the proposed penalty in
a denoising problem, when a sparsifying frame is given. That
is, we assume that we have available a linear transform with a
stable inverse (see [10] for a detailed discussion) which allows
to represent the signal with high fidelity using a small number
of transform domain coefficients. We will specifically seek a
convex formulation for this problem.

A. A Convex Denoising Formulation

Let y be a noisy observation of a clean signal xc for
which a sparsifying frame is given. Let S and S∗ denote
the analysis and synthesis operators for the frame [10]. We
assume that S∗ S = I , i.e., the frame is Parseval [10]. We have
two choices for formulating the denoising problem, namely
synthesis and analysis prior formulations [14], [26]. The two
behave quite differently under a non-convex penalty such as
the one considered in this paper.

In the setting described above, the synthesis prior denoising
formulation is,

min
t

1

2
‖y − S∗ t‖22 + λPγ(t). (37)
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If we denote the minimizer as t̂, the denoised estimate is given
as x̂ = S∗ t̂. In order to investigate convexity, let us rewrite
the cost function in (37) as

[
1

2
‖y − S∗ t‖22 −

α

2
‖t‖22

]
+
[α

2
‖t‖22 + λPγ(t)

]
. (38)

Notice that the second term in square brackets in (38) is convex
if λ γ ≤ α. The Hessian of the first term in square brackets is
S S∗ − αI . Thus, the first term is also convex if S S∗ � αI .
In that case, the problem in (37) will be convex. However,
if the frame is overcomplete, the condition S S∗ � αI is not
satisfied for α > 0. Therefore, we can guarantee the convexity
of the synthesis prior problem only for γ = 0, for which Pγ is
equivalent to an `1 norm. This leads us to consider the analysis
prior formulation given as,

min
x

1

2
‖y − x‖22 + λPγ(S x). (39)

Proposition 8. Suppose S is the analysis operator of a
Parseval frame. The problem in (39) is convex if λ γ ≤ 1.

Proof: Since the frame is tight, we have ‖Sx‖22 = ‖x‖22.
Therefore the cost function in (39) can be written as,

1

2
‖y − x‖22 −

1

2
‖x‖22 +

1

2
‖Sx‖22 + λPγ(S x)

=
1

2
‖y‖22 − 〈x, y〉

︸ ︷︷ ︸
f1(x)

+
1

2
‖Sx‖22 + λPγ(S x)
︸ ︷︷ ︸

f2(Sx)

. (40)

In (40), f1 is an affine function and is therefore convex.
The function f2(x) in (40) is convex when λ γ ≤ 1, by
Prop. 1. Since pre-composition with a linear operator preserves
convexity [16], f̃(x) = f2(Sx) is also convex. Thus the cost
function in (39) can be expressed as the sum of two convex
functions and is therefore convex.

1) The Douglas-Rachford Algorithm: In order to obtain a
minimizer of (39), we adapt the Douglas-Rachford algorithm
[22], [13], [11]. The Douglas-Rachford algorithm is suitable
for minimization problems of the form

min
t
f(t) + g(t), (41)

where both f and g are convex. The Douglas-Rachford itera-
tions for such a problem are,

tk+1 =
1

2
tk +

1

2

(
2Jαf − I

)(
2Jαg − I

)
tk, (42)

where α > 0 is a parameter and Jαf , Jαg are proximity
operators associated with f and g (as defined in (5)). The
sequence tk constructed in (42) converges to some t∗ such
that Jαg(t∗) minimizes (41).

2) Adapting the Douglas-Rachford Algorithm: The prob-
lem in (39) is not readily suitable for the application of the
Douglas-Rachford algorithm. We now transform the problem
to write it in a suitable form.

Since S∗ S = I , we have

‖x− y‖22 = ‖Sy − Sx‖22. (43)

Now if R(S) denotes the range of S, we can change variables
and obtain a problem equivalent to (39) as,

min
u

1

2
‖S y − u‖22 + λPγ(u)

︸ ︷︷ ︸
f(u)

+ iR(S)(u)
︸ ︷︷ ︸
g(u)

, (44)

where iR(S) is the indicator function of R(S) [16]. If u∗

denotes a minimizer of (44), then S∗ u∗ minimizes (39). In this
formulation, both f and g are convex, provided that λ γ ≤ 1.
Thus the Douglas-Rachford algorithm is applicable for this
splitting. We remark that in this setting, the proximity operator
for g = iR(S) is simply a projection onto R(S) (see e.g.
[11]), which can be achieved by applying S S∗, thanks to the
Parseval property of the frame. The proximity operator for f
can be expressed in terms of the threshold function as follows.

Jαf (z)

= arg min
u

1

2α
‖z − u‖22 +

1

2
‖Sy − u‖22 + λPγ(u)

(45a)

= arg min
u

1

2

∥∥∥∥u−
α

α+ 1

(
Sy +

z

α

)∥∥∥∥
2

2

+
α

α+ 1
λPγ(u)

(45b)

= T(β λ),γ

(
β
(
Sy +

z

α

))
, (45c)

where β =
α

α+ 1
. We remark that in passing from (45a) to

(45b), we discarded an additive term and removed a positive
factor from the cost function (equalities remain valid because
we are seeking the minimizer).

Resulting pseudocode for the Douglas-Rachford iterations
for this problem is given in Algorithm 3.

Algorithm 3 Analysis Prior Denoising Algorithm
Initialize α > 0, t.
Set β ← (1 + α)−1 α
repeat
u← S S∗ t
z ← Tβ λ,γ

(
β
(
Sy + α−1(2u− t)

))

t← z + t− u
until convergence
x∗ ← S∗ t

B. Numerical Experiment

We now demonstrate how the denoising formula-
tion/algorithm performs on an audio signal and compare it
against formulations that employ different regularizers. The
clean signal is a speech signal, sampled at 16 kHz, whose
spectrogram is shown in Fig. 7a. We use the short-time Fourier
transform (STFT) as the tight frame in this experiment. The
window size is 60 ms (960 samples) and the hop-size is 15 ms
(240 samples).

For regularization, we compare the `1 norm, E-Lasso, the
`2,1norm and two different versions of the proposed penalty.
Our aim in this experiment is two-fold. First, we demonstrate
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Fig. 6. Definition of the groups in the time-frequency lattice used in the
denoising experiment in Section III-B. The parameters l and w denote the
length along the time axis and the width along the frequency axis respectively.

`2,1 norm, we take w = 1, l = 8. With this choice, we aim to
collect the coefficients belonging to a harmonic into a single
group. However, unlike PELand P� , `2,1norm regularization
does not specifically seek to isolate the harmonics like PEL and
P� . In order to obtain such an effect, we add an additional
layer of grouping as depicted in Fig. 6 and use the penalty
P̃� introduced in Sec.II-E. We stack 16 neighboring groups
along the frequency axis, used in the `2,1norm to define non-
overlapping super-groups for P̃� .

We produce a noisy observation by adding noise (see
Fig. 7b) consisting of ambient sounds recorded in a casino
(machine sounds and crowd noise). Notice that energy of
the ambient noise is not uniform over the frequencies and
decreases with increasing frequency. Therefore, this noise can
be considered pink. The input SNR is 5 dB. The spectrogram
of the noisy signal is shown in Fig. 8a. For this observation, we
perform denoising using the different regularizers in the anal-
ysis prior formulation, namely (39). The denoising algorithms
for the different regularizers can be obtained by replacing T�,�

with the corresponding threshold functions in Algorithm 3.
The value of the regularizer weight � is selected by a sweep
search for the `1 norm, E-Lasso and the `2,1 norm (output
SNR maximizing value is chosen). For P�,� , we set � to be
half the value of � used for the `1 norm and perform a sweep
search for � subject to � < 1/�, to maximize the output SNR.
For P̃� , we similarly set � equal to half the value used for the
`2,1norm and search for the best �. The optimal choices of
� were found as 2.68 and 7.85 for P� and P̃� , respectively.

The resulting reconstructions are shown in Fig. 8. The
output SNRs are 6.42 dB, 6.54 dB, 6.67 dB for `1 regulariza-
tion, PEL and P� respectively. Although the SNRs are close to
each other, the reconstructions show different behaviors. Both
`1 regularization and the proposed regularization have been
successful in removing noise in the time-frequency regions
with no activity. However since E-Lasso always keeps a
component within a group, it has been less successful in
suppressing noise in silent regions. We see that especially for
higher frequencies, `1 regularization suppresses the harmonics
of the speech signal. In contrast, the proposed penalty admits
a smaller weight � and is able to retain high frequency
harmonics, while achieving a similar suppression of noise as
`1 regularization.

For `2,1 regularization and P̃�regularization, the output
SNRs are 6.09 and 7.55 dB, respectively. We observe that
despite its lower SNR, `2,1preserves the harmonics better than
the `1norm. However, especially in the low frequency region,
noise suppression is modest. While this can be overcome
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Fig. 7. Spectrograms of (a) the clean speech and (b) the noise signal used in
the analysis prior denoising experiment.

with a higher threshold � for lower frequencies, such an
approach requires choosing �in a frequency dependent man-
ner, which complicates the application. We observe however
that P̃�achieves suppression of noise in a wide frequency
range, without having to tune parameters for each frequency
separately. Specifically, noise within harmonics is eliminated
similarly as in the reconstructions obtained by PEL and P� .
We also remark that specialized single-channel enhancement
methods or more sophisticated penalties (such as weighted
group penalties, like those in [19], [28]) can be used to
achieve a superior performance than that of the proposed
denoising method. Nevertheless, we think that the proposed
penalty function can be used to complement or modify such
alternatives as demonstrated here.

IV. APPLICATION II : DECONVOLUTION

In a second application, we consider a sparse deconvo-
lution problem. In order to be able to handle an arbitrary
convolution operator, we forgo convexity and consider a non-
convex formulation. We provide an algorithm for the provided
formulation and discuss its convergence. We also compare the
performance of the penalty/threshold function with a state-of-
the-art iterative thresholding method.

A. A Non-Convex Formulation and a Convergent Algorithm

Consider a minimization formulation as

min
x

⇢
D(x) =

1

2
ky �H xk22 + �P�(x)

�
, (46)

where H denotes a convolution operator and P� is the
proposed penalty. We remark that if H is not invertible, then
D(x) may not be convex unless � = 0 (see the discussion
in the begining of Sec. III-A). But if � = 0, P� is the `1
norm. For this reason, unlike Section III, we will not restrict
the cost function to be convex in this section. We employ the
forward-backward splitting algorithm (FBS) [12], [11], [3] for
obtaining a local minimizer of (46). In the current context,
FBS constructs a sequence defined as,

xk+1 = T(↵�),�

�
xk � ↵HT (Hxk � y)

�
. (47)

We remark that T(↵�),� is well-defined when ↵�� < 1. This
sets an upper bound on ↵. If, in addition, ↵ < 1/�(H),
where �(H) denotes the spectral norm of H , it can also

Fig. 6. Definition of the groups in the time-frequency lattice used in the
denoising experiment in Section III-B. The parameters l and w denote the
length along the time axis and the width along the frequency axis respectively.

the difference between the proposed penalty, E-Lasso and
the `1norm. Second, we show that the proposed penalty can
be used to complement the `2,1 norm to obtain enhanced
reconstructions.

In order to describe the group penalties, consider Fig. 6,
which introduces notation for PEL (E-Lasso penalty), Pγ
(proposed) and `2,1 norm. For PEL and Pγ , we select the
length along the time axis as l = 1 and the width along the
frequency axis as w = 16. This covers a frequency bandwidth
of 320 Hz. Our aim is to exploit the isolated appearance of the
harmonics viewed along the frequency axis. In contrast, for the
`2,1 norm, we take w = 1, l = 8. With this choice, we aim to
collect the coefficients belonging to a harmonic into a single
group. However, unlike PELand Pγ , `2,1norm regularization
does not specifically seek to isolate the harmonics like PEL and
Pγ . In order to obtain such an effect, we add an additional
layer of grouping as depicted in Fig. 6 and use the penalty
P̃γ introduced in Sec.II-E. We stack 16 neighboring groups
along the frequency axis, used in the `2,1norm to define non-
overlapping super-groups for P̃γ .

We produce a noisy observation by adding noise (see
Fig. 7b) consisting of ambient sounds recorded in a casino
(machine sounds and crowd noise). Notice that energy of
the ambient noise is not uniform over the frequencies and
decreases with increasing frequency. Therefore, this noise can
be considered pink. The input SNR is 5 dB. The spectrogram
of the noisy signal is shown in Fig. 8a. For this observation, we
perform denoising using the different regularizers in the anal-
ysis prior formulation, namely (39). The denoising algorithms
for the different regularizers can be obtained by replacing Tλ,γ

with the corresponding threshold functions in Algorithm 3.
The value of the regularizer weight λ is selected by a sweep
search for the `1 norm, E-Lasso and the `2,1 norm (output
SNR maximizing value is chosen). For Pλ,γ , we set λ to be
half the value of λ used for the `1 norm and perform a sweep
search for γ subject to γ < 1/λ, to maximize the output SNR.
For P̃γ , we similarly set λ equal to half the value used for the
`2,1norm and search for the best γ. The optimal choices of
γ were found as 2.68 and 7.85 for Pγ and P̃γ , respectively.

The resulting reconstructions are shown in Fig. 8. The
output SNRs are 6.42 dB, 6.54 dB, 6.67 dB for `1 regulariza-
tion, PEL and Pγ respectively. Although the SNRs are close to
each other, the reconstructions show different behaviors. Both
`1 regularization and the proposed regularization have been
successful in removing noise in the time-frequency regions
with no activity. However since E-Lasso always keeps a
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Fig. 6. Definition of the groups in the time-frequency lattice used in the
denoising experiment in Section III-B. The parameters l and w denote the
length along the time axis and the width along the frequency axis respectively.

`2,1 norm, we take w = 1, l = 8. With this choice, we aim to
collect the coefficients belonging to a harmonic into a single
group. However, unlike PELand P� , `2,1norm regularization
does not specifically seek to isolate the harmonics like PEL and
P� . In order to obtain such an effect, we add an additional
layer of grouping as depicted in Fig. 6 and use the penalty
P̃� introduced in Sec.II-E. We stack 16 neighboring groups
along the frequency axis, used in the `2,1norm to define non-
overlapping super-groups for P̃� .

We produce a noisy observation by adding noise (see
Fig. 7b) consisting of ambient sounds recorded in a casino
(machine sounds and crowd noise). Notice that energy of
the ambient noise is not uniform over the frequencies and
decreases with increasing frequency. Therefore, this noise can
be considered pink. The input SNR is 5 dB. The spectrogram
of the noisy signal is shown in Fig. 8a. For this observation, we
perform denoising using the different regularizers in the anal-
ysis prior formulation, namely (39). The denoising algorithms
for the different regularizers can be obtained by replacing T�,�

with the corresponding threshold functions in Algorithm 3.
The value of the regularizer weight � is selected by a sweep
search for the `1 norm, E-Lasso and the `2,1 norm (output
SNR maximizing value is chosen). For P�,� , we set � to be
half the value of � used for the `1 norm and perform a sweep
search for � subject to � < 1/�, to maximize the output SNR.
For P̃� , we similarly set � equal to half the value used for the
`2,1norm and search for the best �. The optimal choices of
� were found as 2.68 and 7.85 for P� and P̃� , respectively.

The resulting reconstructions are shown in Fig. 8. The
output SNRs are 6.42 dB, 6.54 dB, 6.67 dB for `1 regulariza-
tion, PEL and P� respectively. Although the SNRs are close to
each other, the reconstructions show different behaviors. Both
`1 regularization and the proposed regularization have been
successful in removing noise in the time-frequency regions
with no activity. However since E-Lasso always keeps a
component within a group, it has been less successful in
suppressing noise in silent regions. We see that especially for
higher frequencies, `1 regularization suppresses the harmonics
of the speech signal. In contrast, the proposed penalty admits
a smaller weight � and is able to retain high frequency
harmonics, while achieving a similar suppression of noise as
`1 regularization.

For `2,1 regularization and P̃�regularization, the output
SNRs are 6.09 and 7.55 dB, respectively. We observe that
despite its lower SNR, `2,1preserves the harmonics better than
the `1norm. However, especially in the low frequency region,
noise suppression is modest. While this can be overcome
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Fig. 7. Spectrograms of (a) the clean speech and (b) the noise signal used in
the analysis prior denoising experiment.

with a higher threshold � for lower frequencies, such an
approach requires choosing �in a frequency dependent man-
ner, which complicates the application. We observe however
that P̃�achieves suppression of noise in a wide frequency
range, without having to tune parameters for each frequency
separately. Specifically, noise within harmonics is eliminated
similarly as in the reconstructions obtained by PEL and P� .
We also remark that specialized single-channel enhancement
methods or more sophisticated penalties (such as weighted
group penalties, like those in [19], [28]) can be used to
achieve a superior performance than that of the proposed
denoising method. Nevertheless, we think that the proposed
penalty function can be used to complement or modify such
alternatives as demonstrated here.

IV. APPLICATION II : DECONVOLUTION

In a second application, we consider a sparse deconvo-
lution problem. In order to be able to handle an arbitrary
convolution operator, we forgo convexity and consider a non-
convex formulation. We provide an algorithm for the provided
formulation and discuss its convergence. We also compare the
performance of the penalty/threshold function with a state-of-
the-art iterative thresholding method.

A. A Non-Convex Formulation and a Convergent Algorithm

Consider a minimization formulation as

min
x

⇢
D(x) =

1

2
ky �H xk22 + �P�(x)

�
, (46)

where H denotes a convolution operator and P� is the
proposed penalty. We remark that if H is not invertible, then
D(x) may not be convex unless � = 0 (see the discussion
in the begining of Sec. III-A). But if � = 0, P� is the `1
norm. For this reason, unlike Section III, we will not restrict
the cost function to be convex in this section. We employ the
forward-backward splitting algorithm (FBS) [12], [11], [3] for
obtaining a local minimizer of (46). In the current context,
FBS constructs a sequence defined as,

xk+1 = T(↵�),�

�
xk � ↵HT (Hxk � y)

�
. (47)

We remark that T(↵�),� is well-defined when ↵�� < 1. This
sets an upper bound on ↵. If, in addition, ↵ < 1/�(H),
where �(H) denotes the spectral norm of H , it can also

Fig. 7. Spectrograms of (a) the clean speech and (b) the noise signal used
in the analysis prior denoising experiment.

component within a group, it has been less successful in
suppressing noise in silent regions. We see that especially for
higher frequencies, `1 regularization suppresses the harmonics
of the speech signal. In contrast, the proposed penalty admits
a smaller weight λ and is able to retain high frequency
harmonics, while achieving a similar suppression of noise as
`1 regularization.

For `2,1 regularization and P̃γregularization, the output
SNRs are 6.09 and 7.55 dB, respectively. We observe that
despite its lower SNR, `2,1preserves the harmonics better than
the `1norm. However, especially in the low frequency region,
noise suppression is modest. While this can be overcome
with a higher threshold λ for lower frequencies, such an
approach requires choosing λin a frequency dependent man-
ner, which complicates the application. We observe however
that P̃γachieves suppression of noise in a wide frequency
range, without having to tune parameters for each frequency
separately. Specifically, noise within harmonics is eliminated
similarly as in the reconstructions obtained by PEL and Pγ .
We also remark that specialized single-channel enhancement
methods or more sophisticated penalties (such as weighted
group penalties, like those in [19], [28]) can be used to
achieve a superior performance than that of the proposed
denoising method. Nevertheless, we think that the proposed
penalty function can be used to complement or modify such
alternatives as demonstrated here.

IV. APPLICATION II : DECONVOLUTION

In a second application, we consider a sparse deconvo-
lution problem. In order to be able to handle an arbitrary
convolution operator, we forgo convexity and consider a non-
convex formulation. We provide an algorithm for the provided
formulation and discuss its convergence. We also compare the
performance of the penalty/threshold function with a state-of-
the-art iterative thresholding method.

A. A Non-Convex Formulation and a Convergent Algorithm

Consider a minimization formulation as

min
x

{
D(x) =

1

2
‖y −H x‖22 + λPγ(x)

}
, (46)

where H denotes a convolution operator and Pγ is the
proposed penalty. We remark that if H is not invertible, then
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(c) E-Lasso Reconstruction
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(e) `2,1 Norm Regularization
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(b) `1 Regularization
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(d) Proposed Regularization
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(f) Hybrid (`2,1& Prop.) Reg.
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Fig. 8. Spectrograms of (a) the noisy signal and the reconstructions using
(b) the `1 norm, (c) the E-Lasso penalty, (d) the proposed penalty, (e) the
`2,1norm, (f) the hybrid penalty in Sec. II-E obtained by combining the
`2,1norm with the proposed penalty.

be shown using majorization-minimization techniques [21]
that the sequence in (47) monotonically decreases the cost,
i.e., D(xk+1) < D(xk). Attouch et al. show in [3] that
the algorithm (47) converges under the following additional
conditions,

(i) P is a Kurdyka-Lojasiewicz function ([3], Defn. 2.4),
(ii) xk’s form a bounded sequence.

Both of these conditions are satisfied for our setup. We first
remark that the proposed penalty function P� is continuous
and for each orthant in Rn, it can be expressed as a polynomial
function. Therefore P� (therefore P�) is semi-algebraic (see
Defn. 2.1 in [3]) and hence is a Kurdyka-Lojasiewicz function
(see the discussion at the end of Sec. 2.2 in [3]). Also, the
proposed penalty is coercive, i.e., P�(x) increases without
bound as kxk2 increases. Therefore D(x) is also coercive
and any sequence that monotonically decreases D(x) lies in
a bounded set. To summarize, the following proposition is a
corollary of Thm. 5.1 of [3].

Proposition 9. If ↵ < min(�(H), 1/(� �)), then xk’s in (47)
decrease the cost D(x) monotonically, and converge to a local
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Fig. 9. Signals from the deconvolution experiment. (a) The seismic wavelet
which is assumed to be known, (b) the sparse reflectivity signal, (c) observed
noisy seismic trace.

minimizer.

B. Numerical Experiment

In exploration seismology [30], [25], the goal is to estimate
an unknown reflectivity signal x from the observed seismic
trace y, which is related to x as,

y = h ⇤ x + w, (48)

where h represents the seismic wavelet and w denotes white
noise. Denoting the convolution operator with h as H , we
can use the formulation in (46) to estimate x from y. We will
assume that the seismic wavelet, h, is known. Specifically, we
experiment with the band-pass Ricker wavelet (dominant fre-
quencies in the range 10 ⇠ 40 Hz), sampled at fs = 300 Hz,
which is shown in Fig. 9a. We remark that the operator H
used in the experiments is severely ill conditioned.

We use a synthetic sparse reflectivity signal for this experi-
ment. The signal is selected by sampling a stochastic process
where the probability of observing a non-zero at a specific
sample is 0.1, provided that a non-zero has not occured in the
last 10 samples. The value of the non-zero sample is obtained
by sampling a normal distribution. Notice that, this process
is not a sparse Bernoulli process but a Markov process due
to the dependence on the past. The resulting synthetic x, of
length N = 512 is shown in Fig. 9b. The observed seismic
trace y, generated according to (48) is shown in Fig. 9c. We
used zero-mean white Gaussian noise to produce y. The input
SNR for this observation is 5 dB.

We compared the performance of the proposed algorithm
with the sparse-group lasso formulation (SGL) [29] and the
iterated p-shrinkage (IPS) algorithm [33], which was observed
to perform very well for sparse deconvolution (see e.g. the
comparisons in [27]).

Fig. 8. Spectrograms of (a) the noisy signal and the reconstructions using
(b) the `1 norm, (c) the E-Lasso penalty, (d) the proposed penalty, (e) the
`2,1norm, (f) the hybrid penalty in Sec. II-E obtained by combining the
`2,1norm with the proposed penalty.

D(x) may not be convex unless γ = 0 (see the discussion
in the begining of Sec. III-A). But if γ = 0, Pγ is the `1
norm. For this reason, unlike Section III, we will not restrict
the cost function to be convex in this section. We employ the
forward-backward splitting algorithm (FBS) [12], [11], [3] for
obtaining a local minimizer of (46). In the current context,
FBS constructs a sequence defined as,

xk+1 = T(αλ),γ

(
xk − αHT (Hxk − y)

)
. (47)

We remark that T(αλ),γ is well-defined when αλγ < 1. This
sets an upper bound on α. If, in addition, α < 1/σ(H),
where σ(H) denotes the spectral norm of H , it can also
be shown using majorization-minimization techniques [21]
that the sequence in (47) monotonically decreases the cost,
i.e., D(xk+1) < D(xk). Attouch et al. show in [3] that
the algorithm (47) converges under the following additional
conditions,

(i) P is a Kurdyka-Lojasiewicz function ([3], Defn. 2.4),
(ii) xk’s form a bounded sequence.

Both of these conditions are satisfied for our setup. We first
remark that the proposed penalty function Pγ is continuous
and for each orthant in Rn, it can be expressed as a polynomial
function. Therefore Pγ (therefore Pγ) is semi-algebraic (see
Defn. 2.1 in [3]) and hence is a Kurdyka-Lojasiewicz function
(see the discussion at the end of Sec. 2.2 in [3]). Also, the
proposed penalty is coercive, i.e., Pγ(x) increases without
bound as ‖x‖2 increases. Therefore D(x) is also coercive
and any sequence that monotonically decreases D(x) lies in
a bounded set. To summarize, the following proposition is a
corollary of Thm. 5.1 of [3].

Proposition 9. If α < min(σ(H), 1/(λ γ)), then xk’s in (47)
decrease the cost D(x) monotonically, and converge to a local
minimizer.

B. Numerical Experiment

In exploration seismology [30], [25], the goal is to estimate
an unknown reflectivity signal x from the observed seismic
trace y, which is related to x as,

y = h ∗ x+ w, (48)

where h represents the seismic wavelet and w denotes white
noise. Denoting the convolution operator with h as H , we
can use the formulation in (46) to estimate x from y. We will
assume that the seismic wavelet, h, is known. Specifically, we
experiment with the band-pass Ricker wavelet (dominant fre-
quencies in the range 10 ∼ 40 Hz), sampled at fs = 300 Hz,
which is shown in Fig. 9a. We remark that the operator H
used in the experiments is severely ill conditioned.

We use a synthetic sparse reflectivity signal for this experi-
ment. The signal is selected by sampling a stochastic process
where the probability of observing a non-zero at a specific
sample is 0.1, provided that a non-zero has not occured in the
last 10 samples. The value of the non-zero sample is obtained
by sampling a normal distribution. Notice that, this process
is not a sparse Bernoulli process but a Markov process due
to the dependence on the past. The resulting synthetic x, of
length N = 512 is shown in Fig. 9b. The observed seismic
trace y, generated according to (48) is shown in Fig. 9c. We
used zero-mean white Gaussian noise to produce y. The input
SNR for this observation is 5 dB.

We compared the performance of the proposed algorithm
with the sparse-group lasso formulation (SGL) [29] and the
iterated p-shrinkage (IPS) algorithm [33], which was observed
to perform very well for sparse deconvolution (see e.g. the
comparisons in [27]).

SGL aims to achieve sparsity within groups and uses as
few groups as possible for reconstruction. The SGL penalty is
given as,

PSGL(x) = β ‖x‖1 + (1− β)
∑

i

‖x(i)‖2, (49)

where β ∈ (0, 1) and ‖x(i)‖2 denotes the `2 norm of the ith

group. Replacing Pγ with PSGL in (46), we obtain the SGL
formulation. We set β = 0.95 as in [29] and make a sweep
search for selecting λ. The groups consist of neighboring
intervals of length 8.
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(c) E-Lasso Reconstruction
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(e) `2,1 Norm Regularization
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(b) `1 Regularization
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(d) Proposed Regularization

0 1 2 3 4

Time (seconds)

0

0.5

1

1.5

2

2.5

F
re

q
u
e
n
cy

 (
kH

z)

(f) Hybrid (`2,1& Prop.) Reg.
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Fig. 8. Spectrograms of (a) the noisy signal and the reconstructions using
(b) the `1 norm, (c) the E-Lasso penalty, (d) the proposed penalty, (e) the
`2,1norm, (f) the hybrid penalty in Sec. II-E obtained by combining the
`2,1norm with the proposed penalty.

be shown using majorization-minimization techniques [21]
that the sequence in (47) monotonically decreases the cost,
i.e., D(xk+1) < D(xk). Attouch et al. show in [3] that
the algorithm (47) converges under the following additional
conditions,

(i) P is a Kurdyka-Lojasiewicz function ([3], Defn. 2.4),
(ii) xk’s form a bounded sequence.

Both of these conditions are satisfied for our setup. We first
remark that the proposed penalty function P� is continuous
and for each orthant in Rn, it can be expressed as a polynomial
function. Therefore P� (therefore P�) is semi-algebraic (see
Defn. 2.1 in [3]) and hence is a Kurdyka-Lojasiewicz function
(see the discussion at the end of Sec. 2.2 in [3]). Also, the
proposed penalty is coercive, i.e., P�(x) increases without
bound as kxk2 increases. Therefore D(x) is also coercive
and any sequence that monotonically decreases D(x) lies in
a bounded set. To summarize, the following proposition is a
corollary of Thm. 5.1 of [3].

Proposition 9. If ↵ < min(�(H), 1/(� �)), then xk’s in (47)
decrease the cost D(x) monotonically, and converge to a local
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Fig. 9. Signals from the deconvolution experiment. (a) The seismic wavelet
which is assumed to be known, (b) the sparse reflectivity signal, (c) observed
noisy seismic trace.

minimizer.

B. Numerical Experiment

In exploration seismology [30], [25], the goal is to estimate
an unknown reflectivity signal x from the observed seismic
trace y, which is related to x as,

y = h ⇤ x + w, (48)

where h represents the seismic wavelet and w denotes white
noise. Denoting the convolution operator with h as H , we
can use the formulation in (46) to estimate x from y. We will
assume that the seismic wavelet, h, is known. Specifically, we
experiment with the band-pass Ricker wavelet (dominant fre-
quencies in the range 10 ⇠ 40 Hz), sampled at fs = 300 Hz,
which is shown in Fig. 9a. We remark that the operator H
used in the experiments is severely ill conditioned.

We use a synthetic sparse reflectivity signal for this experi-
ment. The signal is selected by sampling a stochastic process
where the probability of observing a non-zero at a specific
sample is 0.1, provided that a non-zero has not occured in the
last 10 samples. The value of the non-zero sample is obtained
by sampling a normal distribution. Notice that, this process
is not a sparse Bernoulli process but a Markov process due
to the dependence on the past. The resulting synthetic x, of
length N = 512 is shown in Fig. 9b. The observed seismic
trace y, generated according to (48) is shown in Fig. 9c. We
used zero-mean white Gaussian noise to produce y. The input
SNR for this observation is 5 dB.

We compared the performance of the proposed algorithm
with the sparse-group lasso formulation (SGL) [29] and the
iterated p-shrinkage (IPS) algorithm [33], which was observed
to perform very well for sparse deconvolution (see e.g. the
comparisons in [27]).

Fig. 9. Signals from the deconvolution experiment. (a) The seismic wavelet
which is assumed to be known, (b) the sparse reflectivity signal, (c) observed
noisy seismic trace.

TABLE I
SRER PERFORMANCE COMPARISON FOR DECONVOLUTION

SNRin Method E(SRER) σ(SRER)

5 dB
SGL 10.08 0.92
IPS 9.18 2.29

Proposed 11.36 1.42

10 dB
SGL 14.58 0.91
IPS 14.99 3.36

Proposed 16.63 1.51

15 dB
SGL 19.41 0.87
IPS 21.87 1.77

Proposed 21.82 1.46

20 dB
SGL 24.19 0.87
IPS 24.08 1.50

Proposed 27.09 1.41

IPS employs a threshold function depending on two param-
eters, namely λ and p. The parameter p determines the shape
of the threshold function and defines a family of functions
that lie between soft (p = 1) and hard threshold (p → −∞).
We selected p = −1/2, which gave fairly good results. The
parameter λ is the threshold value and is selected with a sweep
search.

Finally, for Pγ , we use the same groups as SGL. We set
γ = 0.9/λ and select λ with a sweep search. We remark that
for the current setup, since the distance between two non-zeros
of xis at least 10, each group of size 8 contains at most a single
non-zero. This is the reason for choosing λγ close to unity. If
multiple zeros were expected within a group, a lower value of
γwould be more feasible.

We considered four different input SNRs (5, 10, 15, 20 dB)
and evaluated the deconvolution performance using signal
to reconstruction error ratio (SRER), ‖x‖2/‖x − x̂‖2, where
x̂denotes the estimate. For each input SNR value, we repeat
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TABLE I
SRER PERFORMANCE COMPARISON FOR DECONVOLUTION

SNRin Method E(SRER) �(SRER)

5 dB
SGL 10.08 0.92
IPS 9.18 2.29

Proposed 11.36 1.42

10 dB
SGL 14.58 0.91
IPS 14.99 3.36

Proposed 16.63 1.51

15 dB
SGL 19.41 0.87
IPS 21.87 1.77

Proposed 21.82 1.46

20 dB
SGL 24.19 0.87
IPS 24.08 1.50

Proposed 27.09 1.41

SGL aims to achieve sparsity within groups and uses as
few groups as possible for reconstruction. The SGL penalty is
given as,

PSGL(x) = � kxk1 + (1� �)
X

i

kx(i)k2, (49)

where � 2 (0, 1) and kx(i)k2 denotes the `2 norm of the ith

group. Replacing P� with PSGL in (46), we obtain the SGL
formulation. We set � = 0.95 as in [29] and make a sweep
search for selecting �. The groups consist of neighboring
intervals of length 8.

IPS employs a threshold function depending on two param-
eters, namely � and p. The parameter p determines the shape
of the threshold function and defines a family of functions
that lie between soft (p = 1) and hard threshold (p ! �1).
We selected p = �1/2, which gave fairly good results. The
parameter � is the threshold value and is selected with a sweep
search.

Finally, for P� , we use the same groups as SGL. We set
� = 0.9/� and select � with a sweep search. We remark that
for the current setup, since the distance between two non-zeros
of xis at least 10, each group of size 8 contains at most a single
non-zero. This is the reason for choosing �� close to unity. If
multiple zeros were expected within a group, a lower value of
�would be more feasible.

We considered four different input SNRs (5, 10, 15, 20 dB)
and evaluated the deconvolution performance using signal
to reconstruction error ratio (SRER), kxk2/kx � x̂k2, where
x̂denotes the estimate. For each input SNR value, we repeat
the experiment for 500 different noise realizations to obtain
average and standard deviation statistics of the performance.
We set ↵ to be near the upper bound allowed in Prop. 9. We
remark that the proposed formulation and IPS are essentially
non-convex formulations but we have seen that both algo-
rithms converge in our experiments (as claimed by Prop. 9
and in [33]). We also experimented with debiasing but for
the SNR range considered in these experiments, we found
that debiasing actually results in lower SRER for all of the
methods.

We observed an interesting trend with respect to different
input SNRs. For low input SNRs, the proposed formulation
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Fig. 10. Reliability plots comparing the proposed algorithm and iterative p-
shrinkage (IPS) [33]. Each figure shows the signal to reconstruction error with
respect to iterations. Solid and dashed lines belong to the proposed algorithm
and IPS respectively. The means are marked with white circles. The other lines
indicate three times the standard deviation from the means for each method.

performs better than the other two methods, in terms of
average SRER. As the input SNR increases, the best SRER
achieved with IPS sometimes surpasses those of the proposed
formulation and SGL. However, the performance of IPS varies
more with respect to different trials. On average, the proposed
formulation performs better than both methods. Also, the
proposed threshold function requires fewer iterations to fairly
converge, although the iterations are computationally more
costly. In order to visualize these, we show in Fig. 10 the
SRER performance with respect to iterations for input SNRs
5 and 15 dB. Here, in addition to average SRER, three
times the standard deviation of the SRER with respect to
iterations is also shown. For the limits, the average SRER
and the standard deviation of the SRER for the different
algorithms are tabulated in Table I. In conclusion, the proposed
penalty/formulation yields a better average SRER over SGL,
which targets a similar property. However, its performance is
less consistent with respect to SGL as seen by a comparison of
�(SRER). On the other hand, the proposed method is favorable
compared to IPS. Especially for high input SNRs, the average
SRER returned by IPS can be higher but stability is poorer. We
think this is partly due to the clean sparse reflectivity signal
which enforces a certain distance between the zeros. This
property is taken into account by the proposed formulation
but the IPS, which performs very well for arbitrary sparse
signals, does not make use of this information.

V. CONCLUSION

We proposed a group separable penalty function suitable
for signals showing a sparse behavior both across and within
groups of coefficients. We derived an associated threshold
function T�,� and studied how it behaves as its parameters
vary. We argued that a good strategy is to choose � pro-
portional to the noise standard deviation and � according to
how many non-zero coefficients are expected in each group.
Specifically, as � ! 1/�, we showed that in each group, there

Fig. 10. Reliability plots comparing the proposed algorithm and iterative p-
shrinkage (IPS) [33]. Each figure shows the signal to reconstruction error with
respect to iterations. Solid and dashed lines belong to the proposed algorithm
and IPS respectively. The means are marked with white circles. The other lines
indicate three times the standard deviation from the means for each method.

the experiment for 500 different noise realizations to obtain
average and standard deviation statistics of the performance.
We set α to be near the upper bound allowed in Prop. 9. We
remark that the proposed formulation and IPS are essentially
non-convex formulations but we have seen that both algo-
rithms converge in our experiments (as claimed by Prop. 9
and in [33]). We also experimented with debiasing but for
the SNR range considered in these experiments, we found
that debiasing actually results in lower SRER for all of the
methods.

We observed an interesting trend with respect to different
input SNRs. For low input SNRs, the proposed formulation
performs better than the other two methods, in terms of
average SRER. As the input SNR increases, the best SRER
achieved with IPS sometimes surpasses those of the proposed
formulation and SGL. However, the performance of IPS varies
more with respect to different trials. On average, the proposed
formulation performs better than both methods. Also, the
proposed threshold function requires fewer iterations to fairly
converge, although the iterations are computationally more
costly. In order to visualize these, we show in Fig. 10 the
SRER performance with respect to iterations for input SNRs
5 and 15 dB. Here, in addition to average SRER, three
times the standard deviation of the SRER with respect to
iterations is also shown. For the limits, the average SRER
and the standard deviation of the SRER for the different
algorithms are tabulated in Table I. In conclusion, the proposed
penalty/formulation yields a better average SRER over SGL,
which targets a similar property. However, its performance is
less consistent with respect to SGL as seen by a comparison of
σ(SRER). On the other hand, the proposed method is favorable
compared to IPS. Especially for high input SNRs, the average
SRER returned by IPS can be higher but stability is poorer. We
think this is partly due to the clean sparse reflectivity signal
which enforces a certain distance between the zeros. This
property is taken into account by the proposed formulation
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but the IPS, which performs very well for arbitrary sparse
signals, does not make use of this information.

V. CONCLUSION

We proposed a group separable penalty function suitable
for signals showing a sparse behavior both across and within
groups of coefficients. We derived an associated threshold
function Tλ,γ and studied how it behaves as its parameters
vary. We argued that a good strategy is to choose λ pro-
portional to the noise standard deviation and γ according to
how many non-zero coefficients are expected in each group.
Specifically, as γ → 1/λ, we showed that in each group, there
remains at most one non-zero coefficient (when the largest
coefficient exceeds the threshold λ).

We think that the proposed penalty/threshold would be of
interest in several areas, such as EEG source localization [15],
seismic deconvolution [30], [25], audio processing, specifically
decomposing audio signals into transient and tonal compo-
nents [20], [7], low-rank matrix recovery [8], [23] with a
bound on the rank. We hope to consider such applications
in future work.
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APPENDIX A
PROOF OF PROP. 2

Recall that x̂ = Tλ,γ(z) is the minimizer of Cλ,γ(x|z) in
(6) with respect to x.
(a) Let zi ≥ 0.

Assume x̂i > zi. Define a new vector x∗ as

x∗i = max
(
zi − (x̂i − zi), 0

)
, (50)

x∗m = x̂m, if m 6= i. (51)

Then, ‖x∗ − z‖22 ≤ ‖x̂ − z‖22 and P (x∗) < P (x̂).
Therefore, Cλ,γ(x∗|z) < Cλ,γ(x̂|z). In words, x∗ achieves
a strictly lower cost than x̂, which is a contradiction. Thus
we must have, x̂i ≤ zi.
Assume x̂i < 0. Define a new vector x∗ as

x∗i = 0, (52)
x∗m = x̂m, if m 6= i. (53)

Then, ‖x∗ − z‖22 < ‖x̂ − z‖22 and P (x∗) < P (x̂).
Therefore, x∗ achieves a strictly lower cost than x̂, which
is a contradiction. Thus we must have, x̂i ≥ 0.
The second part of the claim follows similarly.

(b) By part (a), we can assume without loss of generality that
z has non-negative components. Assume zi > zm ≥ 0.
Note that by part (a), x̂i ≥ 0, x̂m ≥ 0. Suppose now that
x̂i < x̂m. Define a new vector x∗ as

x∗i = x̂m, (54)
x∗m = x̂i, (55)
x∗l = x̂l, if l 6= i or l 6= m. (56)

Then, Pγ(x∗) = Pγ(x̂). We obtain after some algebraic
manipulations that

1

2

(
‖x̂− z‖22 − ‖x∗ − z‖22

)

= − (zm − zi) (x̂m − x̂i) > 0. (57)

It thus follows Cλ,γ(x∗|z) < Cλ,γ(x̂|z), which is a
contradiction. Thus x̂i ≥ x̂m.

(c) Without loss of generality, assume z has non-negative
components. Assume also that zi = zm ≥ 0. By part
(a), we will have x̂i ≥ 0, x̂m ≥ 0. Suppose now that
x̂i > x̂m ≥ 0. Set a = (x̂i + x̂m)/2 and define a new
vector x∗ as

x∗i = x∗m = a, (58)
x∗l = x̂l, if l 6= i or l 6= m. (59)

Observe that ‖x̂‖1 = ‖x∗‖1 and ‖x̂‖2 > ‖x∗‖2. Using
zi = zm, we first note,

1

2

(
‖x̂− z‖22 − ‖x∗ − z‖22

)
=

1

2

(
‖x̂‖22 − ‖x∗‖22

)
. (60)

Also, since Pγ(·) = γ
2 (‖ · ‖21 − ‖ · ‖22) + ‖ · ‖1, we find

Pγ(x̂)− Pγ(x∗) =
γ

2
(‖x∗‖22 − ‖x̂‖22). (61)

Using these, we obtain,

Cλ,γ(x̂|z)− Cλ,γ(x∗|z) =
1− λγ

2
(‖x̂‖22 − ‖x∗‖22)

> 0. (62)

Thus x∗ achieves a lower cost than x̂, which is a con-
tradiction. Therefore x̂i ≤ x̂m. Changing the roles of the
indices m and i, we must also have x̂m ≤ x̂i. Therefore,
x̂i = x̂m.

APPENDIX B
PROOF OF LEMMA 1

(a) Since zi’s are ordered, the assumption zi+1 > h(i) implies

zi ≥ zi+1 >
λ (1− λ γ) + λ γ

∑i
j=1 zj

1 + (i− 1)λ γ
. (63)

This in turn implies

zi(1 + (i− 1)λ γ) > λ (1− λ γ) + λ γ

i∑

j=1

zj . (64)

Subtracting λ γ zi from both sides and rearranging, we
obtain

zi >
λ (1− λ γ) + λ γ

∑i−1
j=1 zj

1 + (i− 2)λ γ
= h(i− 1). (65)

(b) The proof of this part is similar. Since zi+1 ≤ zi, the
assumption zi ≤ h(i) implies

zi+1(1 + (i− 1)λ γ) ≤ λ (1−λ γ) +λ γ

i∑

j=1

zj . (66)
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Adding λ γ zi+1 to both sides and rearranging, we obtain

zi+1 ≤
λ (1− λ γ) + λ γ

∑i+1
j=1 zj

1 + i λ γ
= h(i+ 1). (67)

APPENDIX C
PROOF OF PROP. 4

Assume zi+1 > h(i). This inequality implies, by the
definition of h(i) in (21) that

λ (1− λ γ) + λ γ

i∑

j=1

zj < (1 + (i− 1)λ γ) zi+1. (68)

We first show that zi+1 > h(i+ 1). Using (68) in h(i+ 1),
we find

h(i+ 1) =
λ (1− λ γ) + λ γ

∑i
j=1 zj + λ γzi+1

1 + i λ γ
(69)

<
(1 + (i− 1)λ γ) zi+1 + λ γzi+1

1 + i λ γ
(70)

=
(1 + i λ γ) zi+1

1 + i λ γ
(71)

= zi+1. (72)

Let us now show that h(i + 1) > h(i). Notice that for
positive a, b, c, d,

a+ c

b+ d
>
a

b
, (73)

if and only if ad < bc. Now if we set

a = λ (1− λ γ) + λ γ

i∑

j=1

zj , (74)

b = (1 + (i− 1)λ γ) , (75)
c = λ γ zi+1, (76)
d = λ γ, (77)

then h(i) = a/b and h(i+ 1) = (a+ c)/(b+d). But we have,
by (68)

a d

b c
=
λ (1− λ γ) + λ γ

∑i
j=1 zj

(1 + (i− 1)λ γ) zi+1
< 1. (78)

Thus h(i+ 1) > h(i).

APPENDIX D
PROOF OF PROP. 5

We have that x̂1 ≥ · · · ≥ x̂k > 0 and x̂k+1 = · · · = x̂n = 0
if and only if zk > h(k) > zk+1. Plugging in the definition
of h(k) in (21), into the inequality zk > h(k), we obtain

zk
(
1 + (k − 1)λ γ

)
> λ (1− λγ) + λγ

k∑

i=1

zi. (79)

Redistributing zk’s we can write,

zk (1− λ γ) > λ (1− λγ) + λγ

k−1∑

i=1

(zi − zk). (80)

This is equivalent to

(zk − λ) (1− λ γ) > λγ

k−1∑

i=1

(zi − zk). (81)

Dividing both sides by the positive (zk − λ)λ γ, we find,

1

λ γ
− 1 >

∑k−1
i=1 (zi − zk)

zk − λ
. (82)

Rearranging this equation, we obtain (29b). (29a) can be
shown similarly.

APPENDIX E
PROOF OF PROP. 7

In addition to the notation introduced in the proposition
statement, let us also define w̃ to be length-mvector such that
w̃i = ‖x̂(i)‖2. We first observe that if z(i) = 0, then x̂(i) = 0,
for otherwise we could reduce the cost by setting x̂(i) = 0.
Let us denote

∂Pγ(w̃) = (γ‖w̃‖1 + 1) sign(w̃)− γw̃, (83)

where ‘ sign’ is the set valued mapping defined in (15). Then,
the optimality conditions for (35) imply that

0 ∈ x̂(i)−z(i)+λ
(
∂Pγ(w̃)

)
i
u(i), for i = 1, 2, . . . ,m, (84)

where u(i) is a unit norm vector such that 〈x̂(i), u(i)〉 =
‖x̂(i)‖2. That is, if x̂(i) 6= 0, then x̂(i) = ‖x̂(i)‖2 u(i). This in
turn implies that if x̂(i) 6= 0, then since z(i) 6= 0 (by the ob-
servation noted above), we must also have z(i) = ‖z(i)‖2u(i),
or 〈z(i), u(i)〉 = ‖z(i)‖2. Taking inner products with u(i) in
(84), we thus find,

0 ∈ w̃i − wi + λ
(
∂Pγ(w̃)

)
i
, for i = 1, 2, . . . ,m. (85)

But these are the optimality conditions for the problem of
minimizing Cλ,γ(·|w). Therefore, w̃ = Tλ,γ(w) and the claim
follows.
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[27] I. W. Selesnick and İ. Bayram. Enhanced sparsity by non-separable
regularization. IEEE Transactions on Signal Processing, 64(9):2298–
2313, May 2016.

[28] K. Siedenburg and M. Dörfler. Structured sparsity for audio signals. In
Proc. Int. Conf. on Digital Audio Effects (DAFx), 2011.

[29] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. A sparse-group
lasso. Journal of computational and graphical statistics, 22(2):231–245,
2013.

[30] A. K. Takahata, E. Z. Nadalin, R. Ferrari, L. T. Duarte, R. Suyama,
R. R. Lopes, J. M. T. Romano, and M. Tygel. Unsupervised processing
of geophysical signals: A review of some key aspects of blind deconvo-
lution and blind source separation. IEEE Signal Processing Magazine,
29(4):27–35, July 2012.

[31] Gerhard Tutz and Jan Ulbricht. Penalized regression with correlation-
based penalty. Statistics and Computing, 19(3):239–253, 2009.

[32] J.-P. Vial. Strong and weak convexity of sets and functions. Mathematics
of Operations Research, 8:231–259, May 1983.

[33] J. Woodworth and R. Chartrand. Compressed sensing recovery via
nonconvex shrinkage penalties. arXiv:1504.02923v1, 2015.

[34] M. Yuan and Y. Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B,
68(1):49–67, 2006.

[35] Y. Zhou, R. Jin, and S. Hoi. Exclusive lasso for multi-task feature
selection. In Proc. Int. Conf. Artificial Intelligence and Statististics,
2010.

[36] H. Zou and T. Hastie. Regularization and variable selection via the
elastic net. J. R. Statist. Soc. B, 67(2):301–320, April 2005.

http://arxiv.org/abs/1511.01966
http://arxiv.org/abs/1504.02923

	I Introduction
	II A Weakly Convex Penalty
	II-A The Penalty and the Threshold Function on R2
	II-A1 The Penalty Function
	II-A2 The Threshold Function

	II-B The Penalty and the Threshold Function on Rn
	II-C Tuning the Parameters of the Threshold Function
	II-D Extension to Cn
	II-E An Extension to Sub-Groups

	III Application-I : Convex Denoising with a Sparsifying Frame
	III-A A Convex Denoising Formulation
	III-A1 The Douglas-Rachford Algorithm
	III-A2 Adapting the Douglas-Rachford Algorithm

	III-B Numerical Experiment

	IV Application II : Deconvolution
	IV-A A Non-Convex Formulation and a Convergent Algorithm
	IV-B Numerical Experiment

	V Conclusion
	Appendix A: Proof of Prop. ??
	Appendix B: Proof of Lemma ??
	Appendix C: Proof of Prop. ??
	Appendix D: Proof of Prop. ??
	Appendix E: Proof of Prop. ??
	References

