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Abstract

Stochastic approximation techniques play an important role in solving many problems
encountered in machine learning or adaptive signal processing. In these contexts, the statis-
tics of the data are often unknown a priori or their direct computation is too intensive, and
they have thus to be estimated online from the observed signals. For batch optimization
of an objective function being the sum of a data fidelity term and a penalization (e.g. a
sparsity promoting function), Majorize-Minimize (MM) methods have recently attracted
much interest since they are fast, highly flexible, and effective in ensuring convergence. The
goal of this paper is to show how these methods can be successfully extended to the case
when the data fidelity term corresponds to a least squares criterion and the cost function
is replaced by a sequence of stochastic approximations of it. In this context, we propose
an online version of an MM subspace algorithm and we study its convergence by using
suitable probabilistic tools. Simulation results illustrate the good practical performance of
the proposed algorithm associated with a memory gradient subspace, when applied to both
non-adaptive and adaptive filter identification problems.

Keywords : stochastic approximation, optimization, subspace algorithms, memory gradient methods,

descent methods, recursive algorithms, majorization-minimization, filter identification, Newton method,

sparsity, machine learning, adaptive filtering.

1 Introduction

A classical problem in data sciences consists of inferring the structure of a linear model linking
some observed random variables (Xn)n>1 in R

N×Q to some other observed random variables
(yn)n>1 in R

Q. Unless otherwise specified, we will assume in this work that the following
wide-sense stationarity properties hold:

(∀n ∈ N \ {0}) E(‖yn‖2) = ̺ (1)

E(Xnyn) = r (2)

E(XnX
⊤
n ) = R, (3)
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UMR CNRS 8049, Université Paris-Est, 77454 Marne la Vallée Cedex 2, France. E-mail:
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work was supported by the CNRS Imag’in project under grant 2015 OPTIMISME. Part of it was presented at
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where ̺ ∈ (0,+∞), r ∈ R
N , R ∈ R

N×N is a symmetric positive semi-definite matrix, E(·)
denotes the mathematical expectation, and ‖·‖ is the Euclidean norm. We will then be interested
in the following optimization formulation:

minimize
h∈RN

F (h), (4)

with1

(∀h ∈ R
N ) F (h) =

1

2
E
(
‖yn −X⊤

nh‖2
)
+Ψ(h), (5)

where Ψ is a function from R
N to R, playing the role of a regularization function. This penalty

function may for instance be useful to incorporate some prior knowledge about the sought pa-
rameter vector h, e.g. some sparsity requirement, possibly in some transformed domain. In
this paper, a family of differentiable, non necessarily convex, regularization functions [2] is con-
sidered. Problem (4) is encountered in numerous applications such as system identification,
channel equalization, linear prediction or interpolation, echo cancellation, interference removal,
and supervised classification. In the latter area, (Xn)n>1 are vectors (Q = 1) which may
correspond to features obtained through some nonlinear mapping of the data to be classified
in a given training sequence, and (yn)n>1 may be the associated (discrete-valued) class index
vector [3–5]. Although some other measures (e.g. the logistic regression function) are often
more effective in this context, the use of a least squares criterion may still be competitive for
simplicity reasons [6, 7], while the regularization term serves here to avoid overfitting which
could arise when the number of extracted features is large [8]. Signal reconstruction constitutes
another application field of interest. Then, the vector h corresponds to an unknown signal
related to some measurements (yn)n>1 obtained through products with matrices (X⊤

n )n>1, and
additionally corrupted by some noise process [9–11]. Each matrix X⊤

n with n ∈ N \ {0} cor-
responds to Q lines of the full acquisition matrix and it is here considered as random. Under
suitable stationarity assumptions, the classical least squares data fidelity term can be modeled
as E

(
‖yn − X⊤

nh‖2
)
/2, whereas due to the ill-posedness of the great majority of such inverse

problems, a regularization term Ψ needs to be introduced so as to obtain reliable estimates [12].
Many optimization algorithms can be devised to solve Problem (4) depending on the as-

sumptions made on Ψ [13–16]. In this work, we will be interested in Majorize-Minimize (MM)
algorithms [17, 18]. In such approaches, the iterates result from successive minimizations of
simple surrogates (e.g. quadratic surrogates) majorizing the cost-function. MM algorithms
are very flexible and benefit from good theoretical and practical convergence properties. How-
ever, the computation load resulting from the minimization of the majorant function may be
prohibitive in the context of large scale problems. The strategy we will adopt in this work is
to account for subspace acceleration [19], i.e., to constrain the inner minimization step to a
subspace of low dimension, typically restricted to the gradient computed at the current iterate
and to a memory part (e.g. the difference between the current iterate and a previous one). In
a number of recent works [2, 20, 21], MM subspace algorithms provide fast numerical solutions
to optimization problems involving smooth functions, in particular in the case of large-scale
problems. Note that, although our approach will require that Ψ is a differentiable function,
it has been shown that tight approximations of nonsmooth penalizations such as ℓ1 (resp. ℓ0)
functions, namely ℓ2− ℓ1 (resp. ℓ2− ℓ0) functions, can be employed and are often quite effective
in practice [2, 21]. Another advantage of the class of optimization methods under investigation
is that their convergence can be established under some technical assumptions, even in the case
when Ψ is a nonconvex function (see [2] for more details).

1The wide sense stationarity assumption makes F independent of the choice of n ∈ N \ {0} .
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One of the difficulties encountered in machine learning or adaptive processing is that Prob-
lem (4) cannot be directly solved since the second-order statistical moments ̺, r and R are
often unknown a priori or their direct computation is too intensive, and they have thus to be
estimated online. In the simple case when Ψ = 0, the classical Recursive Least Squares (RLS)
algorithm can be used for this purpose [22]. When Ψ is nonzero, stochastic approximation
algorithms have been developed such as the celebrated stochastic gradient descent (SGD) algo-
rithm [23–26] and some of its proximal extensions [27–30]. The convergence speed of SGD may
be relatively slow so that various extensions of it have been developed to alleviate this problem
(see [9, 31–33] and the references therein). Many efforts have also been devoted to developing
adaptive variants of this algorithm [34, 35], in particular when identifying filters having sparse
impulse responses (see e.g. [36–42]). In addition, in [43], a set theoretic approach is adopted for
online sparse estimation based on projections onto weighted ℓ1 balls, which is extended in [44]
by making use of generalized thresholding mappings. It is worth noting that a sparse RLS
algorithm was proposed in [45] for complex-valued signals in the case when Ψ is an ℓ1 norm. An
online variant of the RLS algorithm corresponding to a time weighted LASSO estimator was
also designed in [46] which relies on a coordinate descent approach. A similar problem was also
addressed in [47] by adopting a novel Bayes variational approach, for which weak theoretical
convergence guarantees however exist. If we except [48] where an adaptive primal-dual split-
ting is employed to deal with a total variation penalization, in almost all the works on sparse
adaptive filtering, the sparsity is directly imposed on the filter coefficients, without introducing
any linear transform of them.

Designing Majorize-Minimize optimization algorithms in a stochastic context constitutes a
challenging task since most of the existing works concerning these methods have been focused on
batch optimization procedures, and the related convergence proofs usually rely on deterministic
tools. We can however mention a few recent works [49–51] where stochastic MM algorithms have
been investigated for general loss functions under specific assumptions (e.g. the independence
of the involved random variables [49,50]), but without introducing any search subspace. Works
which are more closely related to ours are those based on Newton or quasi-Newton stochastic
algorithms [52–57], in particular the approaches in [54,55] provide extensions of BFGS algorithm,
but proving the convergence of these algorithms requires some specific assumptions. Like BFGS
approaches, MM subspace methods use a memory of previous estimates so as to accelerate the
convergence.

Our main contributions in this paper are:

• to propose an online version of the MM subspace algorithm from [2, 20], for a wide class
of penalized least squares problems,

• to derive a recursive form, with reduced complexity, of the resulting online MM subspace
method,

• to prove the convergence of the iterates produced by our method in the stochastic context,

• to show the good practical performance of this method when it is combined with a memory
gradient subspace.

In Section 2, we show how Problem (4) can be reformulated in a learning context. The
MM strategy which is proposed in this work is described in Section 3.1. In Section 3.3, we give
the form of the resulting recursive algorithm and, in Section 3.4, we evaluate its computational
complexity. A convergence analysis of the proposed stochastic Majorize-Minimize subspace
algorithm is performed in Section 4. In Section 5, two simulation examples in the context of
filter identification illustrate the good performance of our algorithm when a memory gradient
subspace is employed. Some conclusions are drawn in Section 7.
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Table 1: Smooth penalty functions ψs fulfilling Assumption 1 and their associated weighting
functions νs. All expressions are valid for t ∈ R, (λs, δs) ∈ (0,+∞)2 and κs ∈ [1, 2].

λ−1

s ψs(t) λ−1

s νs(t) Type Name

|t| − δs log(|t|/δs + 1) (|t| + δs)
−1 ℓ2 − ℓ1

{

t2 if |t| < δs
2δs|t| − δ2s otherwise

{

2 if |t| < δs
2δs/|t| otherwise

ℓ2 − ℓ1 Huber

C
o
n
v
e
x

log(cosh(t))

{

tanh(t)/t if t 6= 0

1 otherwise
ℓ2 − ℓ1 Green

(1 + t2/δ2s)
κs/2 − 1 κsδ

−2

s (1 + t2/δ2s)
κs/2−1 ℓ2 − ℓκs

1 − exp(−t2/(2δ2s)) δ−2

s exp(−t2/(2δ2s)) ℓ2 − ℓ0 Welsch

t2/(2δ2s + t2) 4δ2s/(2δ
2

s + t2) ℓ2 − ℓ0 Geman
-McClure

{

1 − (1 − t2/(6δ2s))
3 if |t| 6

√
6δs

1 otherwise

{

δ−2

s (1 − t2/(6δ2s))
2 if |t| 6

√
6δs

0 otherwise
ℓ2 − ℓ0 Tukey biweight

N
o
n
c
o
n
v
e
x

tanh(t2/(2δ2s)) δ−2

s (cosh(t2/(2δ2s))
−2 ℓ2 − ℓ0 Hyberbolic

tangent

log(1 + t2/δ2s) 2/(t2 + δ2s) ℓ2 − log Cauchy

1 − exp(1 − (1 + t2/(2δ2s))
κs/2) (κs/(2δ

2

s))(1 + t2/(2δ2s))
κs/2−1 exp(1 − (1 + t2/(2δ2s))

κs/2) ℓ2 − ℓκs − ℓ0 Chouzenoux

2 Problem formulation

In a learning context, function F can be replaced by a sequence (Fn)n>1 of stochastic approxi-
mations of it, which are defined as follows: for every n ∈ N \ {0},

(∀h ∈ R
N) Fn(h) =

1

2ϑn

n∑

k=1

ϑn−k‖yk −X⊤
k h‖2 +Ψ(h)

=
1

2
ρn − r⊤nh+

1

2
h⊤Rnh+Ψ(h), (6)

where ϑ ∈ (0, 1),

ϑn =
n−1∑

k=0

ϑk =




n if ϑ = 1
1− ϑn

1− ϑ
if ϑ ∈ (0, 1),

(7)

and ρn, rn, and Rn are given by

ρn =
1

ϑn

n∑

k=1

ϑn−k‖yk‖2 (8)

rn =
1

ϑn

n∑

k=1

ϑn−kXkyk (9)

Rn =
1

ϑn

n∑

k=1

ϑn−kXkX
⊤
k . (10)

In the case when ϑ = 1, we retrieve the classical sample estimates of ̺, r, and R. When
ϑ ∈ (0, 1), it can be interpreted as an exponential forgetting factor [22] which may be useful in
adaptive processing scenarios (see Section 6).

Hereafter, we will assume that the regularization function Ψ has the following form:

(∀h ∈ R
N ) Ψ(h) =

1

2
h⊤V0h− v⊤

0 h+

S∑

s=1

ψs(‖Vsh− vs‖) (11)

where v0 ∈ R
N , V0 ∈ R

N×N is a symmetric positive semi-definite matrix, and, for every
s ∈ {1, . . . , S}, vs ∈ R

Ps , Vs ∈ R
Ps×N , and ψs : R → R is a smooth function. The first two

terms in (11) can be viewed as an elastic net penalty [58], while various choices can be made for
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the last term. As shown in Table 1, in addition to quadratic regularization functions (obtained
when S = 1 and ψ1 = 0), ℓ2 − ℓ1 functions and smoothed ℓ2 − ℓ0 functions constitute standard
choices. The matrices (Vs)16s6S may be set to identity or they may serve to model possible
transforms or discrete differentiation operators, and vectors (vs)16s6S may be used to define
reference values.

Note that the regularization strategy adopted in [46] amounts to replacing Ψ in (6) by λnΨ
where Ψ is a (possibly weighted) ℓ1 norm and λn ∈ [0,+∞). Consistency results can then
be established under the assumption that ϑ = 1 and limn→+∞ λn = 0. Our approach here is
different, not only because we are interested in a wide class of regularization functions, but also
in the sense that we are looking for a solution to the fully regularized problem (4) instead of a
solution to the mean square criterion.

Our objective in the next section will be to propose an efficient recursive method for mini-
mizing functions (Fn)n>1.

3 Proposed method

3.1 Majorization property

At each iteration n ∈ N \ {0}, we propose to replace Fn by a surrogate function Θn(·,hn) based
on the current estimate hn (computed at the previous iteration). More precisely, a tangent
majorant function is chosen such that

(∀h ∈ R
N ) Fn(h) 6 Θn(h,hn) (12)

Fn(hn) = Θn(hn,hn). (13)

For the so-defined MM strategy to be worthwhile, the surrogate function has to be built in such
a way that its minimization is simple. For this purpose, the following assumptions will be made
on the regularization function Ψ defined in (11):

Assumption 1.

(i) For every s ∈ {1, . . . , S}, ψs is an even lower-bounded function, which is continuously
differentiable, and limt→0

t 6=0
ψ̇s(t)/t ∈ R, where ψ̇s denotes the derivative of ψs.

(ii) For every s ∈ {1, . . . , S}, ψs(
√
.) is concave on [0,+∞).

(iii) There exists ν ∈ [0,+∞) such that (∀s ∈ {1, . . . , S}) (∀t ∈ [0,+∞)) 0 6 νs(t) 6 ν, where
νs(t) = ψ̇s(t)/t.

2

These assumptions are satisfied by a wide class of functions Ψ [59], in particular those
corresponding to the choices of the potential functions (ψs)16s6S listed in Table 1.

Assumption 1 implies that each function ψs is majorized at every t ∈ R, by a quadratic
function, such that

(∀t′ ∈ R) ψs(t
′) 6 ψs(t) + ψ̇s(t)(t

′ − t) +
1

2
νs(|t|)(t′ − t)2. (14)

Note that the above inequality is at the core of iterative reweighted least-squares algorithms [60]
and of half quadratic methods [61] for the minimization of penalized quadratic functions. The
following majorization then straightforwardly results from (14):

2The function is extended by continuity when t = 0.
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Proposition 1. Under Assumption 1, for every n ∈ N \ {0} and h ∈ R
N , a tangent majorant

of Fn at h is

(∀h′ ∈ R
N ) Θn(h

′,h) = Fn(h) +∇Fn(h)
⊤(h′ − h)

+
1

2
(h′ − h)⊤An(h)(h

′ − h), (15)

where An(h) is given by

An(h) = Rn + V0 + V ⊤Diag
(
b(h)

)
V ∈ R

N×N (16)

V = [V ⊤
1 . . .V ⊤

S ]⊤ ∈ R
P×N (17)

v = [v⊤
1 . . . v

⊤
S ]

⊤ ∈ R
P (18)

with P = P1 + · · ·+ PS, and b(h) =
(
bi(h)

)
16i6P

∈ R
P is such that

b(h) =
[
ν1(‖V1h− v1‖)1⊤P1

. . . νS(‖VSh− vS‖)1⊤PS
]⊤
, (19)

where 1P ∈ R
P denotes a vector of size P with all entries equal to one.

If, we define, for every n ∈ N \ {0}, hn+1 as the minimizer of Θn(·,hn), we obtain an
online form of a half-quadratic algorithm [61]. Half-quadratic algorithms are known to be
effective batch optimization methods, but the use of such method requires the inversion of matrix
An(hn) at each iteration n, which may be intractable in the context of large scale problems.
Subsequently, we propose a subspace acceleration strategy so as to reduce the computational
cost of the proposed method.

3.2 Subspace acceleration strategy

The main idea of subspace acceleration is to restrict the minimization space to a subspace
spanned by a small number of vectors, instead of minimizing the majorant over the whole
space. The proposed MM subspace algorithm consists of defining the following sequence of
random vectors (hn)n>1:

(∀n ∈ N \ {0}) hn+1 ∈ argmin
h∈ranDn

Θn(h,hn), (20)

where h1 has to be set to an initial value, and ranDn denotes the range of a matrixDn ∈ R
N×Mn

that should satisfy the above assumption:

Assumption 2. For every n ∈ N \ {0}, {∇Fn(hn),hn} ⊂ ranDn.

Several approaches can be considered to construct Dn fulfilling Assumption 2 [20, Tab.I].
The simplest choice is to set Dn = [−∇Fn(hn),hn], so that (20) reads

hn+1 = un,2hn − un,1∇Fn(hn), (21)

where (un,1,un,2) is a pair of real-valued random variables. In the special case when un,2 = 1, we
recover the form of a SGD-like algorithm with step-size un,1. In the machine learning literature,
various forms of the step-size for SGD have been proposed [33], which often require to tune
up some parameters (e.g. a multiplicative factor) so as to get the best convergence profile on
the available dataset. On the contrary, the MM strategy allows us to automatically adjust
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(un,1,un,2) at each iteration. Another possibility is to take, for every n ∈ N\{0}, ranDn = R
N .

In that case, we recover the online half-quadratic method mentioned earlier, which may have
a high computational cost. A more efficient strategy that is at the roots of many works in
the context of batch optimization is to adopt an intermediate size subspace matrix, gathering
the gradient subspace [−∇Fn(hn),hn] complemented with few vectors containing information
regarding the previous iterates (e.g., previous gradient directions, previous iterates,...) [62–64].
In particular, the memory gradient subspace [65], defined as:

Dn =

{
[−∇Fn(hn),hn,hn − hn−1] if n > 1

[−∇Fn(h1),h1] if n = 1,
(22)

was observed to lead to fast convergence on several examples in the field of signal and image
restoration [21,66].

3.3 Recursive MM strategy

We derive in this section a recursive form of the proposed stochastic MM subspace algorithm
in (20), with the objective to limit its complexity. First, note that, according to (6), (11), and
the definition of functions (νs)16s6S in Assumption 1(iii), for every n ∈ N \ {0}, the gradient of
Fn is given by

(∀h ∈ R
N ) ∇Fn(h) = An(h)h− cn(h), (23)

where
cn(h) = rn + v0 + V ⊤Diag

(
b(h)

)
v ∈ R

N . (24)

Thus, using (15), we can rewrite (20) as

hn+1 = Dnun, (25)

where un is an R
Mn-valued random vector such that:

un = B†
nD

⊤
n

(
An(hn)hn −∇Fn(hn)

)

= B†
nD

⊤
n cn(hn), (26)

with
Bn = D⊤

nAn(hn)Dn (27)

and (·)† denoting the pseudo-inverse operation. It is important to note that, as Bn is of
dimension Mn × Mn where Mn is small (typically Mn = 3 for the choice of the subspace
in (22) when n > 1), this pseudo-inversion is light. This constitutes the key advantage of the
proposed approach.

By using (7), (9) and (10), the following recursive updates of (rn)n>1 and (Rn)n>1, can be
performed

(∀n ∈ N \ {0}) rn = rn−1 +
1

ϑn
(Xnyn − rn−1) (28)

Rn = Rn−1 +
1

ϑn
(XnX

⊤
n −Rn−1), (29)

where we have set r0 = 0 and R0 = ON and we have used the identity: ϑϑn−1/ϑn = 1− ϑ
−1

n .
Then, it follows from (16), (27) and (29) that

(∀n ∈ N \ {0}) Bn = D⊤
n

(
DR

n +DV0
n

)
+
(
DV

n

)⊤
Diag

(
b(hn)

)
DV

n , (30)
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where

(∀n ∈ N \ {0}) DR

n = RnDn ∈ R
N×Mn (31)

DV0
n = V0Dn ∈ R

N×Mn (32)

DV

n = V Dn ∈ R
P×Mn . (33)

Finally, let us assume, without loss of generality, that the algorithm is initialized with h1 =
D0u0, where D0 ∈ R

N×M0 and u0 ∈ R
M0 . Then, (23) and (25) yield

(∀n ∈ N \ {0}) ∇Fn(hn) = DA

n−1un−1 − cn(hn), (34)

where we have set
(∀n ∈ N) DA

n = An+1(hn+1)Dn ∈ R
N×Mn . (35)

By using (16), (29) and (31)-(33), the latter variable can be reexpressed as

DA

n = Rn+1Dn +DV0
n + V ⊤Diag

(
b(hn+1)

)
DV

n

= (1− 1

ϑn+1

)DR

n +
1

ϑn+1

Xn+1(X
⊤
n+1Dn) +DV0

n

+ V ⊤Diag
(
b(hn+1)

)
DV

n . (36)

The resulting relations are summarized in Algorithm 1, which can be understood as a recursive
implementation of Algorithm (20).

Algorithm 1: Stochastic MM subspace method

r0 = 0,R0 = ON

Initialize D0,u0

h1 = D0u0,D
R
0 = ON×Mn ,D

V0
0 = V0D0,D

V
0 = V D0

for n = 1, . . . do
1rn = rn−1 +

1

ϑn
(Xnyn − rn−1)

2cn(hn) = rn + v0 + V ⊤Diag
(
b(hn)

)
v

3DA
n−1 = (1− 1

ϑn
)DR

n−1 +
1

ϑn
Xn(X

⊤
nDn−1)

+D
V0
n−1 + V ⊤Diag

(
b(hn)

)
DV

n−1

4∇Fn(hn) = DA
n−1un−1 − cn(hn)

5Rn = Rn−1 +
1

ϑn
(XnX

⊤
n −Rn−1)

6Set Dn using ∇Fn(hn)
7DR

n = RnDn,D
V0
n = V0Dn,D

V
n = V Dn

8Bn = D⊤
n

(
DR

n +DV0
n

)
+
(
DV

n

)⊤
Diag

(
b(hn)

)
DV

n

9un = B
†
nD

⊤
n

(
cn(hn)

)

10hn+1 = Dnun

end

3.4 Complexity

Provided that the subspace dimensions (Mn)n∈N are small, Algorithm 1 has a low complexity,
as shown in Table 2.
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Table 2: Complexity in terms of multiplications for iteration n of Algorithm 1.
Step Complexity Complexity

for V ∈ R
P×N arbitrary when V = IN

1 N(Q+ 1)

2 (N + 1)P N

3 Mn−1

(
N(2Q+ P + 1) + P +Q

)
Mn−1

(
N(2Q+ 1) +Q

)

4 NMn−1

5 N(N + 1)Q/2

7 NMn(2N + P ) 2N2Mn

8 Mn

(
(Mn + 1)(N + P )/2 + P

)
NMn(Mn + 3)/2

9 O(M3
n) +Mn(N +Mn)

10 NMn

Indeed, the global complexity of a direct implementation of Algorithm 1, evaluated in terms
of multiplications at iteration n, is of the order of

N
(
P (Mn +Mn−1 + 1) +N(4Mn +Q)/2

)
,

if we assume that N ≫ max{Mn,Mn−1, Q}. The first term NP (Mn +Mn−1 + 1) corresponds
to an upper bound on the complexity induced by the use of matrices (Vs)16s6S within the
regularization term. Note that these matrices often have a sparse structure (in particular when
discrete derivative operators are employed) which may lead to a much lower computational cost.
Moreover, when V = IN , the identity matrix of RN , which is a scenario frequently encountered
in adaptive filtering, this term merely vanishes in the evaluation of the global complexity.

The computational complexity can also be reduced by taking advantage of the specific
form of matrices (Dn)n>1. Here, we focus our analysis on the example of the memory gradient
subspace defined in (22) although it should be noticed that the ideas hereinbelow could be easily
generalized to a wide class of subspaces where matrices (Dn)n>1 represent memory features (e.g.
[20, Tab. II].). For the particular case of subspace (22), we have:

(∀n > 1) DV

n = [−V ∇Fn(hn),V hn,V hn − V hn−1]. (37)

Since, for every n > 1,
V hn = V Dn−1un−1 = DV

n−1un−1, (38)

a recursive formula holds to compute the last two components of DV
n in (37). The initial

complexity of 3NP multiplications is thus reduced to N(P + 3). Similar recursive procedures
can be employed to compute (DV0

n )n>1 allowing the complexity to be reduced to N(N+3) from
3N2. In addition, we have, for every n > 1,

DR

n = [−Rn∇Fn(hn),h
R

n ,h
R

n −Rnhn−1], (39)

where, by using (29),

hR

n = Rnhn = (1− 1

ϑn
)Rn−1hn +

1

ϑn
XnX

⊤
nhn

= (1− 1

ϑn
)DR

n−1un−1 +
1

ϑn
XnX

⊤
nhn (40)

Rnhn−1 = (1− 1

ϑn
)hR

n−1 +
1

ϑn
XnX

⊤
nhn−1. (41)
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It can be further observed that last term (ϑn)
−1XnX

⊤
nhn−1 has already been computed in

Step 3 of Algorithm 1. Therefore, instead of 3N2 multiplications, we have now to perform
N(N + 2Q+4) ones. With these simplifications, in the case when V0 and V are null matrices,
the global complexity of the algorithm is equal to N2(Q+2)/2. When Q = 1, we thus recover the
order of complexity of the classical RLS algorithm. Since the objective function then reduces to a
quadratic function, Sherman-Morrison-Woodbury formula can be invoked to compute iteratively
the minimizer on the whole space in an efficient manner.

Note finally that the computation ofXnX
⊤
n with n ∈ N \ {0}, which needs to be performed in

Step 5, remains a main source of complexity. However, if (∀n > Q)Xn = [xn−Q+1, . . . ,xn] where
xn ∈ R

N (as it is the case in affine projection based algorithms for adaptive processing [67]), then
a recursive computation of XnX

⊤
n only requires xnx

⊤
n to be computed at each iteration n > Q.

If we further assume that the model is a one-dimensional convolutive one, i.e. xn corresponds
to shifted samples of a signal

(
x(n)

)
n>1

, then (∀n > N) xn = [x(n − N + 1), . . . , x(n)]⊤ and

xnx
⊤
n can be itself computed recursively with a complexity of N operations. Such ideas have

been deeply investigated in the literature on fast RLS algorithms [68].

4 Convergence study

Establishing the convergence of stochastic approximation algorithms is challenging [23, 29, 69–
71]. Throughout this section and the related appendices, it is assumed that ϑ = 1. The
underlying probability space being denoted by (Ω,F,P), we will say in short that a property is
P-a.s. satisfied if this property holds almost surely.

4.1 Assumptions

For every n ∈ N \ {0} , let Xn = σ
(
(Xk,yk)16k6n

)
be the sub-sigma algebra of F generated by

(Xk,yk)16k6n. In order to give a proof of convergence of the proposed stochastic MM subspace
algorithm, we will make the following additional assumption:

Assumption 3.

(i) R+ V0 is a positive definite matrix.

(ii)
(
(Xn,yn)

)
n>1

is a stationary ergodic sequence and, for every n ∈ N \ {0}, the elements
of Xn and the components of yn have finite fourth-order moments.

(iii) For every n ∈ N \ {0},

E(‖yn+1‖2 |Xn) = ̺ (42)

E(Xn+1yn+1 |Xn) = r (43)

E(Xn+1X
⊤
n+1 |Xn) = R. (44)

(iv) h1 is X1-measurable and, for every n ∈ N \ {0} , Dn is Xn-measurable.

The following asymptotic results will then be useful in the rest of our developments.

Lemma 1. Under Assumptions 3(ii) and 3(iii), the following properties hold:

(i) (ρn)n>1, (Rn)n>1, and (rn)n>1 converge P-a.s. to ̺, R and r, respectively

10



(ii)

+∞∑

n=1

n−1|ρn − ̺| < +∞ P-a.s.

+∞∑

n=1

n−1‖rn − r‖ < +∞ P-a.s.

+∞∑

n=1

n−1|||Rn −R||| < +∞ P-a.s.,

where ||| · ||| denotes the spectral matrix norm.

Proof. See Appendix A.

Remark 1.

(i) Assumptions 3(ii) and 3(iii) are more general than assuming that
(
(Xn,yn)

)
n>1

is an

independent identically distributed (i.i.d.) sequence and, for every n ∈ N \ {0} , the
elements of Xn and the components of yn have finite fourth-order moments.

(ii) Assumption 3(iv) is satisfied as soon as h1 is X1-measurable (e.g. h1 is deterministic)
and the subspace directions, i.e., the columns of Dn, only depend on

(
(Xk,yk,hk)

)
16k6n

.

This is actually the case for the various subspace constructions listed in [20, Tab. I], and,
in particular, for the memory gradient subspace given by (22).

4.2 Almost sure convergence

Let us give the following preliminary property:

Lemma 2. Under Assumptions 1, 2 and 3(ii)-3(iii), (hn)n>1 is P-a.s. bounded.3

Proof. See Appendix B.

Combining the previous lemma with classical results on the asymptotic behaviour of almost
supermartingales, the convergence of the sequence

(
Fn(hn)

)
n>1

can be established:

Lemma 3. Under Assumptions 1-3,
(
Fn(hn)

)
n>1

is P-a.s. convergent and
(
(hn+1−hn)

⊤An(hn)(hn+1−
hn)
)
n>1

is P-a.s. summable.

Proof. See Appendix C.

Lemma 3 allows us to deduce the following result on the sequence of gradients computed at
each iteration of the algorithm:

Lemma 4. Under Assumptions 1-3, (‖∇Fn(hn)‖)n>1 is P-a.s. square-summable.

Proof. See Appendix D.

By gathering all the previous results, our main convergence results can now be stated:

Proposition 2. Assume that Assumptions 1-3 hold. Then, the following hold:

(i) The set of cluster points of (hn)n>1 is almost surely a nonempty compact connected set.

3We say that a sequence of random vectors is almost surely bounded when the norms of all these vectors can
be bounded by some random variable with probability 1.
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(ii) Any element of this set is almost surely a critical point of F .

(iii) If the functions (ψs)16s6S are convex, then (hn)n>1 converges P-a.s. to the unique (global)
minimizer of F .

Proof. See Appendix E.

It can be noticed that the conclusion of Proposition 2(iii) is still valid if the functions (ψs)16s6S

are nonconvex, they are twice continuously differentiable, and the regularization constants
(λs)16s6S as defined in Table 1 are small enough so that the function F is strongly convex.

4.3 Convergence rate

Based on our recent results in [72], we provide a convergence rate result for Algorithm (20) in
the case when the functions (ψs)16s6S are convex and twice differentiable.

Proposition 3. Suppose that Assumptions 1-3 hold. Let ǫ ∈]0,+∞[ be such that ǫIN ≺ R+V0.
Then, there exists almost surely nǫ ∈ N \ {0} such that, for every n > nǫ, ∇2Fn(hn) � R −
ǫIN + V0 and

Fn(hn+1)− inf Fn 6 θ
(
Fn(hn)− inf Fn

)
(45)

where θ ∈ [0, 1).

More details about the expression of the decay rate can be found in [72].

5 Application to 2D system identification

5.1 Problem statement

We first demonstrate the efficiency of the proposed stochastic algorithm in a 2D system identi-
fication problem. We consider the following observation model:

y = S(h)x+w, (46)

where x ∈ R
L and y ∈ R

L represent the original and degraded versions of a given image,
h ∈ R

N is the vectorized version of an unknown two-dimensional blur kernel, S is the linear
operator which maps the kernel to its associated Hankel-block Hankel matrix form, and w ∈ R

L

represents a realization of an additive noise. When the images x and y are of very large size,
finding an estimate ĥ ∈ R

N of the blur kernel can be quite memory consuming, but one can
expect good estimation performance by learning the blur kernel through a sweep of blocks in
the dataset.

Let us denote by X ∈ R
L×N the matrix such that S(h)x = Xh. Then, we propose to

define ĥ as a solution to (4), where, for every n ∈ N \ {0}, yn ∈ R
Q and X⊤

n ∈ R
Q×N , are

subparts of y and X, respectively, corresponding to Q ∈ {1, . . . , L} lines of this vector/matrix.
For the regularization term Ψ, we consider, for every s ∈ {1, . . . , N} (S = N), an isotropic
penalization on the gradient between neighboring coefficients of the blur kernel, i.e., Ps = 2

and Vs =
[
∆h

s ∆v
s

]⊤
, where ∆h

s ∈ R
N (resp. ∆v

s ∈ R
N ) is the horizontal (resp. vertical)

gradient operator applied at pixel s. The smoothness of h is then enforced by choosing, for
every s ∈ {1, . . . , S} and u ∈ R, ψs(u) = λ

√
1 + u2/δ2 with (λ, δ) ∈ (0,+∞)2. Finally, in order

to guarantee the existence of a unique minimizer, the strong convexity of F is imposed by taking
v0 = 0 and V0 = τIN , where τ is a small positive value (typically τ = 10−10).
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5.2 Simulation results

The original image, presented in Figure 1(a), is a satellite image, of size 4096×4096 pixels. The
original blur kernel h with size 21×21, and the resulting blurred image, which has been corrupted
with a zero-mean white Gaussan noise with standard deviation σ = 0.03 (the blurred signal-to-
noise ratio equals 25.7 dB), are displayed in Figures 1(b)(c). Figure 1(d) presents the estimated
kernel, using Algorithm 1, with the subspace given by (22), leading to the so-called stochastic
MM memory gradient (S3MG) algorithm. Parameters (λ, δ) were adjusted so as to minimize
the normalized root mean square estimation error, here equal to 0.064. Figure 2 illustrates
the variations of this estimation error with respect to the computation time for the proposed
algorithm, the SGD algorithm with a decreasing stepsize proportional to n−1/2, the regularized
dual averaging (RDA) method with a constant stepsize from [49], and the accelerated stochastic
gradient averaging SAGA method with a constant stepsize from [73]. Tests were running on
an Intel(R) Xeon(R) E5-2630 @ 2.6GHz using a Matlab 7 implementation. Note that for the
latter three algorithms, the stepsize parameter was optimized manually so as to obtain the
best performance in terms of convergence speed. Finally, note that all tested algorithms were
observed to provide asymptotically the same estimation quality, whatever the size of the blocks.
In this example, as illustrated in Figure 3, the best trade-off in terms of convergence speed is
obtained for Q = 256 × 256.

(a) (b)

(c) (d)

Figure 1: (a) Original image. (b) Blurred and noisy image. (c) Original blur kernel. (d)
Estimated blur kernel, with relative error 0.064.
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Figure 2: Comparison of S3MG algorithm (solid black line), SGD algorithm with decreasing
stepsize ∝ n−1/2 (dashed-dotted red line), RDA algorithm with constant stepsize (dashed blue
line) and SAGA algorithm with constant stepsize (turquoise thin line).
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Figure 3: Effect of the block size Q on the convergence speed of S3MG.

6 Application to sparse adaptive filtering

6.1 Problem statement

As emphasized in Sections 2 and 3, one of the advantages of Algorithm 1 compared with some
other online optimization algorithms is that it is able to deal with adaptive data processing
problems. In this section, we apply the S3MG algorithm to the identification of a sparse time-
varying system. Given a real-valued discrete-time input signal

(
x(n)

)
n∈Z

, the output of the
system at time n > 1 is defined as

yn = X⊤
n hn + wn, (47)

where Xn = [x(n − N + 1), . . . , x(n)]⊤, wn models some measurement noise, and hn ∈ R
N

gathers the unknown filter taps at time n. Then, the objective is to provide an estimate of the
vector hn at each time by solving Problem (4) where the regularization function Ψ is chosen in
order to promote the sparsity of the impulse response of the time-varying filter.
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6.2 Simulation results

We generate data according to Model (47) where the input signal
(
x(n)

)
n∈Z

consists of iden-
tically and independent random binary values {−1,+1}. The measurement noise (wn)n∈Z is
white Gaussian with zero mean and variance 0.05. In order to evaluate the tracking capability
of the proposed S3MG method, the following time-varying linear system is considered:

hn =

{
h1 if n 6 L/2,

hL/2+1 if n > L/2 + 1.
(48)

The filter length N is equal to 200 and the output of the system is observed at every time
n ∈ {1, . . . , L} with L = 5000. The sparse impulse responses corresponding to vectors h1 and
hL/2+1 are represented in Figure 4.

We compute, for every n ∈ {1, . . . , L}, the Euclidean norm of the error between the current
estimate hn and the true filter coefficient vector hn. The minimal estimation error is obtained
for the nonconvex Welsch penalty function (see Table 1) and a smoothed ℓ2 − ℓ0 regularization
function is thus employed by setting S = N , v0 = 0, V0 = ON , and, for every s ∈ {1, . . . , N},
Ps = 1, vs = 0, while Vs ∈ R

1×N is the s-th vector of the canonical basis of RN .
We present the results generated by S3MG in Figure 5 for two values of the forgetting factor

ϑ, namely ϑ = 1 which corresponds to a non adaptive strategy, and ϑ = 0.995 which appears
to be the best choice in terms of tracking properties for this example.

We also show the results obtained with several state-of-the-art approaches in the context
of sparse adaptive filtering, namely SPAL [43], RLMS [74], RZAAPA [41] and SM-PAPA [75].
Note that, for each tested method, the involved parameters (stepsize, regularization weight,
blocksize) have been tuned manually in order to optimize the performance in terms of error
decay.

0 20 40 60 80 100 120 140 160 180 200
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0

0.5

1

1.5
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Figure 4: Values of the coefficients of the considered sparse filters h1 (top) and hL/2+1 (bottom).

7 Conclusion

In this work, we have proposed a stochastic MM subspace algorithm for online penalized least
squares estimation problems. The method makes it possible to use large-size datasets the
second-order moments of which are not known a priori. We have shown that the proposed
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Figure 5: Quadratic estimation error on the filter coefficients as a function of time index n for
various adaptive algorithms.

algorithm is of the same order of complexity as the classical RLS algorithm and that its compu-
tational cost can be reduced by taking advantage of specific forms of the search subspace. The
choice of a memory gradient subspace led to the S3MG algorithm whose good numerical perfor-
mance has been demonstrated in the context of 2D system identification for large scale image
processing problems. In the context of sparse adaptive filtering, S3MG has also been shown to
be competitive with respect to recent methods. Although an analysis of the convergence of the
proposed method has been carried out, it would be interesting to extend the obtained results to
weaker assumptions. In addition, in a nonstationary context, a theoretical study of the tracking
abilities of the algorithm should be conducted. Finally, let us emphasize that a detailed analysis
of the convergence rate of the proposed method has been undertaken in our recent paper [72].

A Proof of Lemma 1

Property (i) is a consequence of the ergodic theorem [76, Theorem 13.12]. In addition, the law
of the iterated logarithm for martingale difference sequences [77] ensures that

lim sup
n→+∞

|∑n
k=1

(‖yk‖2 − ̺)|
(
n log(log n)

)1/2 < +∞ P-a.s. (49)

lim sup
n→+∞

‖∑n
k=1

(Xkyk − r)‖
(
n log(log n)

)1/2 < +∞ P-a.s. (50)

lim sup
n→+∞

|||∑n
k=1

(XkX
⊤
k −R)|||

(
n log(log n)

)1/2 < +∞ P-a.s. (51)
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that is

lim sup
n→+∞

n1/2|ρn − ̺|
(
log(log n)

)1/2 < +∞ P-a.s. (52)

lim sup
n→+∞

n1/2‖rn − r‖
(
log(log n)

)1/2 < +∞ P-a.s. (53)

lim sup
n→+∞

n1/2|||Rn −R|||
(
log(log n)

)1/2 < +∞ P-a.s. (54)

Consequently, for every n0 ∈ N with n0 > 2,

+∞∑

n=n0

n−1|ρn − ̺| 6 sup
n>n0

(
n1/2|ρn − ̺|
(
log(log n)

)1/2

)( +∞∑

n=n0

n−3/2| log(log n)|1/2
)
. (55)

Since
∑+∞

n=2
n−3/2| log(log n)|1/2 < +∞, it follows from (52) that

∑+∞
n=n0

n−1|ρn − ̺| converges
P-a.s. to 0 as n0 → +∞, which means that the first line in Property (ii) is satisfied. By
proceeding similarly, (53) and (54) allow us to establish the remaining two assertions in Property
(ii).

B Proof of Lemma 2

For every n ∈ N \ {0}, minimizing Θn(·,hn) is equivalent to minimizing the function

(∀h ∈ R
N ) Θ̃n(h,hn) =

1

2
h⊤An(hn)h− cn(hn)

⊤h. (56)

It follows from Assumption 3(ii)-3(iii) and Lemma 1(i) that there exists Λ ∈ F such that
P(Λ) = 1 and, for every ω ∈ Λ,

lim
n→+∞

rn(ω) = r (57)

lim
n→+∞

Rn(ω) = R. (58)

Let ω ∈ Λ. According to Assumption 1(iii) and Eq. (19), b(h) is bounded as a function of
h. It is then deduced from (24) and (57) that

(
cn(hn)(ω)

)
n>1

is bounded, i.e. there exists

η ∈ [0,+∞) such that
(∀n ∈ N \ {0}) ‖cn(hn)(ω)‖ 6 η. (59)

In addition, as a consequence of (19) and Assumption 1(iii), for every n ∈ N \{0}, Diag
(
b(hn)

)

is a positive semidefinite matrix. Hence, because of (16), Assumptions 1(iii) and 3(i), and (58),
there exists ǫ ∈ (0,+∞) and n0 ∈ N \ {0} such that

(∀n > n0) An(hn)(ω) � R− ǫIN + V0 ≻ ON . (60)

(It suffices to choose ǫ lower than the minimum eigenvalue of R + V0). As a consequence of
(56), (59), (60), and the Cauchy-Schwarz inequality, we have

(∀n > n0)(∀h ∈ R
N )

1

2
h⊤(R− ǫIN + V0)h− η‖h‖ 6 Θ̃n(h,hn). (61)

Since R − ǫIN + V0 is a positive definite matrix, the lower bound corresponds to a coercive
function with respect to h. There thus exists ζ ∈ (0,+∞) such that, for every h ∈ R

N ,

‖h‖ > ζ ⇒ (∀n > n0) Θ̃n(h,hn)(ω) > 0. (62)
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On the other hand, since 0 ∈ span
(
Dn(ω)

)
, we have

Θ̃n(hn+1,hn)(ω) 6 Θ̃n(0,hn)(ω) = 0. (63)

The last two inequalities allow us to conclude that

(∀n > n0) ‖hn+1(ω)‖ 6 ζ. (64)

C Proof of Lemma 3

According to Assumption 2, the proposed algorithm is actually equivalent to

(∀n ∈ N \ {0}) hn+1 = hn +Dnũn (65)

ũn = argmin
ũ∈RM

Θn(hn +Dnũ,hn). (66)

By using (15) and cancelling the derivative of the function ũ 7→ Θn(hn +Dnũ,hn),

D⊤
n∇Fn(hn) +D⊤

nAn(hn)Dnũn = 0. (67)

Hence,

Θ(hn+1,hn)

= Fn(hn)−
1

2
ũ⊤
nD

⊤
nAn(hn)Dnũn

= Fn(hn)−
1

2
(hn+1 − hn)

⊤An(hn)(hn+1 − hn). (68)

In view of (12) and Proposition 1, this yields

(∀n ∈ N \ {0}) Fn(hn+1) +
1

2
(hn+1 − hn)

⊤An(hn)(hn+1 − hn) 6 Fn(hn). (69)

In addition, the following recursive relation holds

(∀h ∈ R
N ) Fn+1(h) = Fn(h) +

1

2
(ρn+1 − ρn)

− (rn+1 − rn)
⊤h+

1

2
h⊤(Rn+1 −Rn)h. (70)

As a consequence of Assumption 3(iv), for every n ∈ N \ {0}, hn+1 is Xn-measurable. It can
thus be deduced from (69) and the previous two relations that

E(Fn+1(hn+1) |Xn) +
1

2
(hn+1 − hn)

⊤An(hn)(hn+1 − hn) 6 Fn(hn) + χn (71)

where

χn =
1

2
E(ρn − ρn+1 |Xn)− E(rn − rn+1 |Xn)

⊤hn+1 +
1

2
h⊤
n+1E(Rn −Rn+1 |Xn)hn+1. (72)
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By using (8)-(10) with ϑ = 1 and Assumption 3(iii), we have

χn =
1

2(n + 1)

(
ρn − E(‖yn+1‖2 |Xn)

)

− 1

n+ 1

(
rn − E(Xn+1yn+1 |Xn)

)⊤
hn+1

+
1

2(n + 1)
h⊤
n+1

(
Rn − E(Xn+1X

⊤
n+1 |Xn)

)
hn+1

=
1

2(n + 1)

(
ρn − ̺

)
− 1

n+ 1

(
rn − r

)⊤
hn+1

+
1

2(n + 1)
h⊤
n+1

(
Rn −R

)
hn+1 (73)

which yields

|χn| 6
1

2(n+ 1)
|ρn − ̺|+ 1

n+ 1
‖rn − r‖‖hn+1‖

+
1

2(n + 1)
|||Rn −R||| ‖hn+1‖2. (74)

According to Lemma 2, (hn)n>1 is P-a.s. bounded, and Assumptions 3(ii)-3(iii) and Lemma 1(ii)
thus guarantee that

+∞∑

n=1

|χn| < +∞ P-a.s. (75)

Assumption 1(i) entails that, for every n ∈ N \ {0}, Fn is lower bounded by inf Ψ > −∞.
Furthermore, (71) leads to

E(Fn+1(hn+1)− inf Ψ |Xn)+
1

2
(hn+1−hn)

⊤An(hn)(hn+1−hn) 6 Fn(hn)− inf Ψ+ |χn|. (76)

Since, for every n ∈ N\{0}, Fn(hn)−inf Ψ and (hn+1−hn)
⊤An(hn)(hn+1−hn) are nonnegative,

(Fn(hn)− inf Ψ)n>1 is a nonnegative almost supermartingale [78]. By invoking now Siegmund-
Robbins lemma [79], it can be deduced from (75) that the desired convergence results hold.

D Proof of Lemma 4

According to (15), we have, for every φ ∈ R and n ∈ N \ {0},

Θn

(
hn − φ∇Fn(hn),hn

)
= Fn(hn)− φ‖∇Fn(hn)‖2 +

φ2

2

(
∇Fn(hn)

)⊤
An(hn)∇Fn(hn). (77)

Let
Φn ∈ Argmin

φ∈R
Θn

(
hn − φ∇Fn(hn),hn

)
. (78)

The following optimality condition holds:
(
∇Fn(hn)

)⊤
An(hn)∇Fn(hn)Φn = ‖∇Fn(hn)‖2. (79)

As a consequence of Assumption 2, (∀φ ∈ R) hn − φ∇Fn(hn) ∈ spanDn. It then follows from
(20) and (79) that

Θn

(
hn+1,hn

)
6 Θn

(
hn − Φn∇Fn(hn),hn

)

6 Fn(hn)−
Φn

2
‖∇Fn(hn)‖2 (80)
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which, by using (68), leads to

Φn‖∇Fn(hn)‖2 6 (hn+1 − hn)
⊤An(hn)(hn+1 − hn). (81)

Let ǫ > 0. Assumption 1(iii) and (16) yield, for every n ∈ N \ {0} ,

An(hn) � (|||Rn + V0|||+ ν|||V |||2)IN . (82)

Therefore, according to Assumptions 3(i) and 3(ii), and Lemma 1(i), there exists Λ ∈ F such
that P(Λ) = 1 and, for every ω ∈ Λ,

(∃n0 ∈ N \ {0})(∀n > n0) ON ≺ An(hn)(ω) � α−1
ǫ IN (83)

where
αǫ = (|||R + V0|||+ ν|||V |||2 + ǫ)−1 > 0. (84)

Let ω ∈ Λ. By using now (79), it can be deduced from (83) that, if n > n0 and ∇Fn(hn)(ω) 6= 0,
then

Φn(ω) > αǫ. (85)

Then, it follows from (81) that

αǫ

+∞∑

n=n0

‖∇Fn(hn)(ω)‖2

6

+∞∑

n=n0

(
hn+1(ω)− hn(ω)

)⊤
An(hn)(ω)

(
hn+1(ω)− hn(ω)

)
. (86)

By invoking Lemma 3, we can conclude that (‖∇Fn(hn)‖2)n>1 is P-a.s. summable.

E Proof of Proposition 2

It follows from Lemma 3 that
(
(hn+1 − hn)

⊤An(hn)(hn+1 − hn)
)
n>1

converges P-a.s. to 0. In

addition, we have seen in the proof of Lemma 2 that there exists Λ ∈ F such that P(Λ) = 1
and, for every ω ∈ Λ, (60) holds with ǫ ∈ (0,+∞) and n0 ∈ N\{0}. This implies that, for every
n > n0,

|||R − ǫIN + V0||| ‖hn+1(ω)− hn(ω)‖2

6
(
hn+1(ω)− hn(ω)

)⊤
An(hn)(ω)

(
hn+1(ω)− hn(ω)

)
(87)

where |||R− ǫIN +V0||| > 0. Consequently, (hn+1 − hn)n>1 converges P-a.s. to 0. In addition,
according to Lemma 2, (hn)n>1 belongs almost surely to a compact set. The result is then
obtained by invoking Ostrowski’s theorem [80, Theorem 26.1].
(ii) By using (23)-(24), we have

(∀n ∈ N \ {0}) ∇Fn(hn)−∇F (hn) = (Rn −R)hn − rn + r. (88)

Since (hn)n>1 is almost surely bounded, it follows from Lemma 1(i) that
(
∇Fn(hn)−∇F (hn)

)
n>1

converges P-a.s. to 0. Since Lemma 4 ensures that
(
∇Fn(hn)

)
n>1

converges P-a.s. to 0,(
∇F (hn)

)
n>1

also converges P-a.s. to 0. There thus exists Λ ∈ F such that P(Λ) = 1 and,

for every ω ∈ Λ, ∇F
(
hn(ω)

)
→ 0. Let ĥ be a cluster point of

(
hn(ω)

)
n>1

. There exists a
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subsequence
(
hkn(ω)

)
n>1

such that hkn(ω) → ĥ. As we have assumed that the regularization

functions (ψs)16s6S are continuously differentiable (see Assumption 1(i)), F is also continuously
differentiable, and

∇F (ĥ) = lim
n→+∞

∇F
(
hkn(ω)

)
= 0. (89)

This means that ĥ is a critical point of F .
(iii) Because of Assumption 3(i), when the functions (ψs)16s6S are convex, F is a strongly
convex function. It thus possesses a unique critical point ĥ, which is the global minimizer of F .
It follows from (i) and (ii) that, almost surely, the unique cluster point of (hn)n>1 is ĥ, which
shows that hn → ĥ P-a.s.
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