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A Fast Algorithm for Maximum Likelihood
Estimation of Harmonic Chirp Parameters

Tobias Lindstrøm Jensen, Jesper Kjær Nielsen, Member, IEEE, Jesper Rindom Jensen, Member, IEEE,
Mads Græsbøll Christensen, Senior Member, IEEE, and Søren Holdt Jensen, Senior Member, IEEE

Abstract—The analysis of (approximately) periodic signals is
an important element in numerous applications. One general-
ization of standard periodic signals often occurring in practice
are harmonic chirp signals where the instantaneous frequency
increases/decreases linearly as a function of time. A statistically
efficient estimator for extracting the parameters of the harmonic
chirp model in additive white Gaussian noise is the maximum
likelihood (ML) estimator which recently has been demonstrated
to be robust to noise and accurate — even when the model order
is unknown. The main drawback of the ML estimator is that
only very computationally demanding algorithms for computing
an estimate are known. In this paper, we give an algorithm
for computing an estimate to the ML estimator for a number
of candidate model orders with a much lower computational
complexity than previously reported in the literature. The lower
computational complexity is achieved by exploiting recursive
matrix structures, including a block Toeplitz-plus-Hankel struc-
ture, the fast Fourier transform, and using a two-step approach
composed of a grid and refinement step to reduce the number
of required function evaluations. The proposed algorithms are
assessed via Monte Carlo and timing studies. The timing studies
show that the proposed algorithm is orders of magnitude faster
than a recently proposed algorithm for practical sizes of the
number of harmonics and the length of the signal.

Index Terms—Fundamental frequency estimation, linear chirp
models, Toeplitz, Hankel, fast algorithms, pitch.

I. INTRODUCTION

THE analysis of periodic signals is an important signal
processing task and problem since such signals are en-

countered in many applications, including music processing
[1], [2], speech processing [3], [4], sonar [5], order analysis
[6], and electrocardiography (ECG) [7] to name a few. Such
signals can be modeled as a weighted sum of sinusoids,
which is known as the harmonic model, whose frequencies
are integral multiples of a common, constant fundamental
frequency.
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Many natural signals are not stationary, and hence the
harmonic model might be unsuitable. The harmonic chirp
model is a generalization of the harmonic model where the
instantaneous frequency of the harmonics changes linearly as
a function of time. This type of model was investigated in
[8]–[11] and shown to be more accurate than the traditional
harmonic model in many practical scenarios where the pitch
of the signal is not stationary. The parameters of the model are
the amplitudes of the harmonics, the fundamental frequency,
and the fundamental chirp rate.

One method to estimate the unknown parameters of the
harmonic chirp model is the non-linear least-squares (NLS)
estimator for the harmonic chirp model that is identical to the
maximum likelihood (ML) estimator under a white Gaussian
noise assumption. Under these conditions, a number of approx-
imate methods were investigated in [10] along with the NLS
method with the conclusion that 1) NLS is the most accurate
method for any SNR, 2) the NLS method yields the best noise
variance estimation accuracy and can hence provide the best
model order selection performance, 3) the NLS estimator is
the most robust estimator when the model is incorrect such as
for frequency modulation. The main drawback of the NLS
estimator is that it is considered “computational intensive”
which gave rise to work on approximate but less accurate
methods [10]. The reason is that the objective function for
the NLS objective function has a very oscillating behavior like
many NLS estimators for similar models which have motivated
the use of the grid method (possibly combined with other
methods) as in the RELAX algorithm [12], [13], weighted
RELAX for time of arrival estimation [14], [15], Capon and
APES spectral estimators [16], [17].

For most applications, the model order is also unknown and
should be estimated as well on a segment-by-segment basis
[10], [11]. However, model order selection methods require
that we can compute the estimates/solutions of the estimator
for a number of candidate model orders, e.g., l = 1, . . . , L,
see e.g. [18]. This requires that we solve the underlying
optimization problem L times and the standard approach is to
treat these as L individual optimization problems [10], [11].

In this paper, we will present a fast algorithm for the
NLS estimator for harmonic chirp signals. A fast algorithm
is achieved using three strategies. 1) Reduce the number of
objective function evaluations by decreasing the grid resolution
and instead rely on a two step approach of first approximately
finding the region of the global optimum and then use an
iterative method for refining the solution. 2) Formulate the
problem as a single joint problem by nesting the L problems
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together, such that it is possible to exploit recursive updating
from candidate model order l to l + 1 (instead of treating
the overall problem as L individual problems). 3) Exploit
the matrix structures of the problem and form an algorithm
with recursive in-order solvers for block Toeplitz-plus-Hankel
linear systems of equations and employing the fast Fourier
transform (FFT) for efficient evaluation of necessary quan-
tities on a uniform grid. We also propose a fast recursive
method for an approximate NLS method called harmonic
chirp summation (HCS), denoted harmochirp-gram in [10].
The proposed algorithms have a computational complexity
that is orders of magnitude lower than previously known, and
both the proposed NLS and HCS algorithms will have the
same asymptotic computational complexity as the less accurate
harmonic separate-estimate (Harmonic-SEES) method of [10].
Furthermore, we will show that the time index selection has
an impact on the Cramér-Rao lower bound (CRLB) for the
harmonic chirp model similar to the non-harmonic chirp model
[19]. Specifically, a symmetric time index will reduce the
CRLB for the fundamental frequency by up to a factor of
16 compared to a conventional time index selection.

To the best of our knowledge, only the complex-valued
harmonic chirp model has been considered in the scientific
literature despite that we know of no applications where such
complex-valued models appear naturally. On the contrary,
many applications of the harmonic chirp model have naturally
real-valued signals. To apply an estimator for complex-valued
signals on real-valued signals then requires a conversion from
real- to complex-valued data and this produces an estimation
error that increases as any energy of the signal approaches
DC or half the Nyquist rate [20]. The complex-valued model
is also used in the non-harmonic linear chirp model [19], [21],
[22], higher order models [23] and superimposed chirps [24].
In this paper, we instead use the real-valued model.

The remaining part of the paper is organized as follows.
In Sec. II, we outline the standard algorithm for the NLS
estimator. Sec. III contains analysis and a description of the
implication of using a symmetric time index on the objective
function and the CRLB. Sec. IV gives an analysis of the behav-
ior of the objective function and gives some recommendations
with respect to the grid resolution. We analyze the matrix
structure of the problem and give a fast recursive algorithm for
computing the NLS objective function in Sec. V and the HCS
objective function in Sec. VI. We present a comparison with
the CRLB and timings of the proposed method in Sec. VII
and conclude on the results in Sec. VIII.

Notation: Let R denote the set of real numbers, let C denote
the set of complex numbers, and let <(x), =(x) denote the
real and imaginary part of x ∈ C, respectively. The notation
xT denotes the transpose of a vector x and xH = (x∗)T the
Hermitian transpose. For a vector x, diag(x) denotes a square
matrix with the vector x on the diagonal and zeros elsewhere.
We will use the notation [xl]j ∈ RS×Q to denote the jth sub-
block of xl ∈ RSl×Q. The Hadamard (element-wise) product
is � and the Kronecker product is ⊗.

II. STANDARD ALGORITHM

The real-valued harmonic chirp model is given by

x(n) =
∑̀
l=1

al cos(ψl(n))− bl sin(ψl(n)) + e(n) (1)

for time index n = n0, . . . , n0 + N − 1, instantaneous phase
ψl(n) = l(ω0n + 1

2β0n
2) in radians/sample and (true) model

order `. In a vector form, this can be written as

x = Z`(ω0, β0)α` + e (2)

where

x =
[
x(n0) · · · x(n0 +N − 1)

]T
(3)

e =
[
e(n0) · · · e(n0 +N − 1)

]T
(4)

Zl(ω, β) =
[
Cl(ω, β) Sl(ω, β)

]
(5)

Cl(ω, β) =
[
c(ω, β) · · · c(lω, lβ)

]
(6)

Sl(ω, β) =
[
s(ω, β) · · · s(lω, lβ)

]
(7)

c(ω, β) =
[
cos(ωn0 + 1

2βn
2
0) · · · (8)

cos(ω(n0 +N − 1) + 1
2β(n0 +N − 1)2)

]T
s(ω, β) =

[
sin(ωn0 + 1

2βn
2
0) · · · (9)

sin(ω(n0 +N − 1) + 1
2β(n0 +N − 1)2)

]T
αl =

[
aTl −bTl

]T
(10)

al =
[
a1 · · · al

]T
(11)

bl =
[
b1 · · · bl

]T
. (12)

We will assume that Z`(ω0, β0) has no linearly dependent
columns such that the linear parameters in (2) are identifiable,
i.e., we assume that N ≥ 2l and ω mod π 6= 0 if β mod 2π =
0. Notice that the last two conditions pertain to the critical
sampling of the signal. When the noise is white and Gaussian,
the ML estimator of ω0 and β0 with known model order ` is

(ω̂0, β̂0) = argmax
ω0,β0

J`(ω0, β0) (13)

with the non-linear objective function

Jl(ω0, β0) =

xTZl(ω0, β0)
[
ZTl (ω0, β0)Zl(ω0, β0)

]−1
ZTl (ω0, β0)x

(14)

see, e.g., [9]. In other settings, (13) is simply referred to as
the non-linear least-squares (NLS) estimator. In this model, we
have not included any DC component since many signals such
as audio and speech signals do not have a DC components.
Moreover, ignoring the DC-term, makes the derivations in
the following sections much simpler. In (13) we have not
assumed any bounds on the parameters (ω0, β0). We will
in the following constrain our selves to the case where the
instantaneous frequency of the lth harmonic

ωl(n) = l(ω0 + β0n), l = 1, . . . , ` (15)

is positive ωl(n) > 0 and Nyquist sampled ωl(n) < π. In this
paper we work extensively with the choice of a symmetric time
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index n0 = −N−12 mostly because this minimizes the CRLB
for the fundamental frequency and makes the Hessian diagonal
(this is discussed in detail in Sec. III). With a symmetric time
index, ω0 and β0 must then satisfy

0 < ω0 − |β0|
(N − 1)

2
, ω0 + |β0|

(N − 1)

2
<

2π

2`
. (16)

We may add additional bounds on the form ω0 ≤ ω0 ≤ ω0

if we have additional a priori information and in essence then
form a MAP estimator. The inequalities above can also be
translated into bounds on the rate parameter

|β0| <
2ω0

N − 1
, |β0| <

2π

`(N − 1)
− 2ω0

N − 1
. (17)

Similar to the fundamental frequency we may add additional
bounds β

0
≤ β0 ≤ β0 if we have additional a priori

information. In the case of a Nyquist sampled signal, the
feasible set without any additional bounds is,

Ql =
{

[ω0, β0] | 0 < ω0 − |β0|
(N − 1)

2
,

ω0 + |β0|
(N − 1)

2
<

2π

2l

}
, l = ` . (18)

The feasible set is illustrated in Fig. 1 for various ls along
with an indication of the impact of possible additional bounds
using ω0, ω0, β0

, β0.

β0

ω0

Q1
π

(N−1)

− π
(N−1)

π

Q2
π

2(N−1)

− π
2(N−1)

π
2

Q3
π

3(N−1)

− π
3(N−1)

π
3

β0

β
0

ω0 ω0

Figure 1. Example of the feasible set Ql for model orders l = 1, 2, 3 and
indication of possible additional bounds ω0, ω0, β0

, β0.

Since the model order is unknown, it is necessary to
use model order selection. For many standard model order
selection methods, as outlined in e.g. [18], this implies that
we need to compute a solution for all model orders up to a
certain maximum model order l = 1, . . . , L selected such that
` ≤ L. Thus, we are interested in solving all the problems

ω̂0,l, β̂0,l = argmax
[ω0,β0]∈Ql

Jl(ω0, β0), l = 1, . . . , L . (19)

Then many common model order selection methods will
estimate the model as

ˆ̀= argmin
l=1,...,L

Υ(ω̂0,l, β̂0,l) + Φ(l) (20)

Algorithm 1 The straightforward (naïve) algorithm for com-
puting the NLS objective Jl for all model orders up to L, chirp
rates Bl and fundamental frequencies Ωl(β0). One approach
will be to have a uniform and equal resolution for all candidate
model orders and then select |B|l = Kl = O(K1/l) =
O(K/l) and |Ωl(β0)| = O(Fl) = O(F1/l) = O(F/l)

for l ∈ {1, 2, 3, . . . , L} do
for β0 ∈ Bl do

for ω0 ∈ Ωl(β0) do
Form Zl(ω0, β0) O(lN)
Form wl(ω0, β0) = Zl(ω0, β0)Tx O(lN)
Form Al(ω0, β0) = Zl(ω0, β0)TZl(ω0, β0) O(l2N)
Solve Al(ω0, β0)αl(ω0, β0) = wl(ω0, β0) O(l3)
Calc. Jl(ω0, β0) = wT

l (ω0, β0)αl(ω0, β0) O(l)
end for

end for
end for

where Υ(ω̂0,l, β̂0,l) is a fitting measure and Φ(l) is model
complexity measure. The fitting measure is typically the
negative log-likelihood, which depends on Jl via

Υ(ω̂0,l, β̂0,l) = −N ln
[
xTx− Jl(ω̂0,l, β̂0,l)

]
/2 + const. ,

(21)
whereas the model complexity measure can be, e.g., AIC,
MDL [10], or MAP [11]. Solving the problem in (20) is easy if
we know Jl(ω̂0,l, β̂0,l) for all candidate model orders since L
is often small. Computing Jl(ω̂0,l, β̂0,l), however, is difficult
since the problem in (19) is non-linear with an oscillating
multi-modal objective function. The focus in this paper is,
therefore, to solve the problem in (19) reliably and efficiently
for all candidate model orders.

A reliable approach is to use the grid method [10] where
we evaluate the objective function at a number of points for
each model order l = 1, . . . , L. Let Gl ⊂ Ql be the points on
the grid where Ωl(β0) are the points on the frequency grid and
Bl are points on the rate grid such that Gl = {[ω0, β0] |β0 ∈
Bl, ω0 ∈ Ωl(β0)}. Then a straightforward approach to evaluate
the NLS objective function on a grid is given in Algorithm 1.

Algorithm 1 was also considered in [10], [11], and found
to have a high computational burden. This is also easy to see
if we calculate the computational complexity of Algorithm 1.
Let Kl = |Bl| be the number of rate points and let |Ωl(β0)| =
O(Fl) be the number of frequency points1. The computational
complexity of Algorithm 1 is then

O
(

L∑
l=1

KlFl(l
2N + l3)

)
. (22)

To shed a bit more light on the computational complexity
above, consider again Fig. 1. If we apply a uniform frequency
and rate grid with the same resolution for all candidate model
orders l = 1, . . . , L, then Kl = K1/l and Fl = F1/l since
the feasible set Ql shrinks as l increases. Define K = K1 and

1here we have neglected the dependency of β0 but in practice it is often
small, e.g., from Fig. 1 we observe that the feasible set Ql takes a constant
1
2

of the corresponding square area and the big-O notation is still correct.
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F = 2F1
2, then the computational complexity of Algorithm 1

is

O
(

L∑
l=1

KlFl(l
2N + l3)

)
= O

(
KF

L∑
l=1

1

l2
(l2N + l3)

)
= O

(
KF (LN + L2)

)
. (23)

Often K and F depend on L and/or N . Using the setting F =
O(N3/2) and K = O(N5/2) as recommended in [10] we have
an algorithm with a computational complexity of O(LN5 +
L2N4). The parameter N is typically big since we can use
long(er) segments for the harmonic chirp model without (to
some extend) violating the model assumptions compared to
a standard harmonic model with β0 = 0 [11]. We therefore
observe that the standard method for using the NLS estimator
is very costly which motivated faster but suboptimal methods
[10].

The following three sections show how to improve upon
the standard algorithm, reducing the computational complexity
from O(LN5 + L2N4) to O(N2L2 log(N)). In Sec. III, we
show the impact of the time index n0 on the objective function
and the CRLB, and Sec. IV shows an appropriate selection of
the grid size when the time index is selected symmetrically
n0 = −N−12 . In Sec V we show how to exploit the matrix
structures to efficiently evaluate the objective function.

III. CONSEQUENCES OF SYMMETRIC TIME INDEX

In this section, we show two important consequences of the
use of a symmetric time index n0 = −N−12 : 1) the Hessian
at the solution will be approximately diagonal and 2) this will
minimize the CRLB for the fundamental frequency. These two
consequences are presented in the following two subsections.

A. The Hessian for the Harmonic Chirp Model

The Hessian of Jl(ω0, β0) at the global maximum is

Ψ(ξ̂) =
∂2

∂ξ∂ξT
Jl(ω̂0, β̂0) =

∂2

∂ξ∂ξT
xHPZ(ξ)x

∣∣∣
ξ=ξ̂

.

(24)
where ξ =

[
ω0 β0

]T
and

PZ(ξ) = Zl(ξ)
[
ZTl (ξ)Zl(ξ)

]−1
ZTl (ξ) . (25)

To the best of our knowledge, an analytical expression for
the Hessian does not exist. As we have detailed in App. A,
however, an approximate analytical expression can be derived
provided that: 1) the data size is large enough to satisfy
that the columns of Zl(ξ̂) are approximately orthogonal, and
2) the SNR is large enough so that x ≈ Zl(ξ̂)α̂l. Under
these two approximations, we have shown in App. A that the
approximate Hessian is given by

Ψ(ω̂0, β̂0) ≈ −N(N2 − 1)
∑l
i=1A

2
i i

2

12

·
[

1 n0 + N−1
2

n0 + N−1
2 (N2 − 4)/60 +

(
n0 + N−1

2

)2] (26)

2the factor 2 is for convenience, as we will later use F as the FFT length,
but will have no influence in the derived computational complexity.

where
Ai =

√
a2i + b2i . (27)

From (26), we see that the approximate Hessian of the
objective function at the solution is diagonal for a symmetric
time index, i.e., for n0 = −N−12 . If n0 is set to the traditional
choice of 0 as in [10], it is clear that the fundamental frequency
and chirp rate are coupled. To illustrate the importance of this
observation, we show two objective functions evaluated for the
same data x using the symmetric time index n0 = − (N−1)

2
in Fig. 2 and the non-symmetric choice n0 = 0 in Fig. 3. For
the symmetric case, the curvature of the objective function
is approximately aligned with the standard axes which is
not the case for the curvature of the non-symmetric case.
We observe that, at least visually, the estimated chirp rate
parameter at the maximum β̂0 will be the same. However,
the fundamental frequency will not be the same but is related
via ω̂′0 ≈ ω̂0− β̂0N−12 where ω̂0 is the fundamental frequency
estimate for a symmetric time index and ω̂′0 is the fundamental
frequency estimate for the time index n0 = 0. Notice also
that restricting the instantaneous frequency to be positive and
having a Nyquist sampled signal give different shapes of the
feasible region.

In [11], the estimator works by alternating optimization
over ω0 and β0 (independently) starting at β0 = 0. Such an
alternating approach will work if |β0| is not too large but the
method may get trapped in a local minima/maxima on the
example presented in Fig. 2 and 3. An alternating method
may be a reasonable approach in a speech application but not
for a general purpose estimator.

0.1 0.2 0.3 0.4 0.5 0.6

−5

0

5

·10−3

ω0

β
0

Figure 2. Example of an objective function withN = 100, true and candidate
model order l = ` = 5, symmetric time index n0 = −N−1

2
, noise free. The

marker × indicates the maximum on the grid.

0.1 0.2 0.3 0.4 0.5 0.6

−5

0

5

·10−3

ω′0

β
′ 0

Figure 3. Example of an objective function withN = 100, true and candidate
model order l = ` = 5, non-symmetric time index n0 = 0, noise free. The
marker × indicates the maximum on the grid.
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B. The CRLB for the Harmonic Chirp Model

The parameter vector we wish to derive the CRLB for is

θ =
[
αTl ξT

]T
=
[
αTl ω0 β0

]T
. (28)

Focusing on the parameters ω0, β0 and using the results in
Appendix B, the asymptotic inverse Fisher information matrix
(FIM) is then

I−1a,n0
(ω0, β0) =

24σ2

N(N2 − 1)(N2 − 4)
∑l
i=1A

2
i i

2

·
[

(N2 − 4) + 60
(
n0 + N−1

2

)2 −60
(
n0 + N−1

2

)
−60

(
n0 + N−1

2

)
60

]
.

(29)

Thus, the asymptotic CRLBs for any unbiased estimator of the
fundamental frequency and the chirp rate are

Varn0
(ω̂0) ≥ 24σ2

N(N2 − 1)(N2 − 4)
∑l
i=1A

2
i i

2

·
(
N2 − 4 + 60

(
n0 +

N − 1

2

)2
)

(30)

Varn0(β̂0) ≥ 1440σ2

N(N2 − 1)(N2 − 4)
∑l
i=1A

2
i i

2
. (31)

It is interesting to note that with n0 = −N−12 , the asymptotic
inverse FIM I−1

a,−N−1
2

(ω0, β0) is diagonal and minimizes the
CRLB for the fundamental frequency. In fact, the asymptotic
ratio of Varn0

(ω̂0) for the selection n0 = 0 versus n0 = −N−12
is

lim
N→∞

Var0(ω̂0)

Var−N−1
2

(ω̂0)
= lim
N→∞

N2 − 4 + 15(N − 1)2

N2 − 4
= 16 .

(32)
Thus, it is possible to estimate the fundamental frequency ω0

much more accurately by using a symmetric time index. Notice
that the choice of a symmetric time index is only conceptual,
will not introduce a delay in a signal processing system, also
work for an even N , and that the asymptotic CRLB for the
chirp rate does not depend on the start index n0.

The argument for using a symmetric time index for
complex-valued data and ` = 1 (non-harmonic model) was
given in [19] (see also the comment [25]). It is difficult to come
with an intuitive or physical explanation of this phenomenon
as also noted in [19]. Interestingly, the selection of symmetric
time index also leads to minimum quantization distortion for
certain sinusoidal coding schemes [26]. However, we will in
the following shed some additional light on the choice of time
index by considering linear transformation of the parameters
of the harmonic linear chirp model.

Consider the linear transform from parameters ξ =[
ω0 β0

]T
at the center ξ to the start point of the segment

ξ′ =

[
ω′0
β′0

]
=

[
1 −N−12
0 1

] [
ω0

β0

]
= g(ξ) . (33)

Estimator efficiency is preserved over linear transforms [27].
However, the inverse FIM is different. For simplicity, consider
the asymptotic inverse FIM instead of the exact FIM, but use

the linear transformation rule for the inverse FIM [27, Eq.
(3.30)]

I′−1
a (ξ′) =

∂g(ξ)

∂ξ
I−1

a,−N−1
2

(ξ)
∂g(ξ)T

∂ξ
. (34)

For the considered linear transform we have the Jacobian
∂g(ξ)

∂ξ
=

[
1 −N−12
0 1

]
(35)

and then
I′−1

a (ξ′) = I−1a,0 (ξ) . (36)

That is the same asymptotic inverse FIM in (29) with n0 = 0.
A similar derivation is possible with the reverse/inverse linear
transformation [

1 −N−12
0 1

]−1
=

[
1 N−1

2
0 1

]
. (37)

The key reason for this effect is that if n0 6= −(N − 1)/2,
then the model dictates there will be dependency between the
estimates of the parameters ω0 and β0 and this dependency
can be removed via a linear transformation. We remark that if
the estimator is not efficient, then it is not clear if the linear
transform (33) is the best choice.

IV. GRID RESOLUTION

In order to keep the computationally burden of the grid
method for joint fundamental frequency and chirp rate as low
as possible, we will establish how finely the objective function
should be sampled in these parameters to approximately locate
the global maximum of the objective function. It is then
possible to rely on a two step method where 1) the region of
the global maximum is located using a grid method providing
a “rough”/approximate solution 2) the “rough”/approximate
solution is then refined using an iterative algorithm. Another
approach is to select the grid size fine enough to achieve the
CRLB as in [10]—however, the CRLB relies on unknown
parameters. We will in the simulation Sec. VII show that
a two step approach can also achieve the CRLB and is
computationally much more efficient.

We use the approach in [28] to identify an appropriate grid
size and start with a second order Taylor approximation of
a function f : R 7→ R around a local maximum with no
active constraints x̂ such that the derivative is f ′(x̂) = 0.
The objective function f(x) has approximately decreased by
a factor of g from the value f(x̂) when x is given by

x = x̂±
√

2
1− g
g

f(x̂)

f ′′(x̂)
, f ′′(x) =

∂2f(x)

∂x2
. (38)

For the problem of joint fundamental frequency and chirp rate
parameter estimation with ξ =

[
ω0 β0

]T
, the objective func-

tion at the solution can be approximated using the asymptotic
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result in (104) and the high-SNR approximation x ≈ Z`(ξ̂)α`
as

J`(ξ̂) = xTZ`(ξ̂)
[
Z`(ξ̂)TZ`(ξ̂)

]−1
Z`(ξ̂)Tx (39)

≈ 2

N
‖Z`(ξ̂)Tx‖22 (40)

≈ 2

N
‖Z`(ξ̂)TZ`(ξ̂)α‖22 (41)

≈ N

2
‖α‖22 (42)

≈ N

2

∑̀
l=1

A2
l , Al =

√
a2l + b2l . (43)

The Hessian is approximately given by (26). Since the ap-
proximate Hessian (26) is diagonal, we can simply apply (38)
twice. Notice that this approach would be difficult to apply
if the time index was not symmetric since the approximate
Hessian would not be diagonal. For fixed signal energy with
f(ω̂0) = J`(ω̂0, β̂0) or f(β̂0) = J`(ω̂0, β̂0), the ratio f/f ′′

in (38) will be the smallest with the selection Al = 0,
l = 1, · · · , `− 1 and A` = A. We then obtain (g ≥ 1):

ω0 ≈ ω̂0 ±
√

12
g − 1

g

1

N`
(44)

β0 ≈ β̂0 ±
√

12
g − 1

g

√
60

N2`
. (45)

If we set g = 1.15, we obtain the grid resolution for the chirp
rate and the fundamental frequency as

∆ω0
=

√
12
g − 1

g

1

N`

∣∣∣
g=1.15

≈ 1.25

N`
(46)

∆β0
=

√
12
g − 1

g

√
60

N2`

∣∣∣
g=1.15

≈ 9.69

N2`
. (47)

Since ` is unknown we use the upper bound L for all candidate
model orders and select the resolutions

∆ω0 =
c1
NL

(48)

∆β0
=

c2
N2L

(49)

with constants c1, c2. On the other hand, following the con-
straints outlined in Fig. 1 implies that we are using

F = 2π/
c1
NL

= O(NL) (50)

K =
2π

(N − 1)
/
c2
N2L

= O(NL) (51)

grid points. The selections (50)–(51) should be compared with
the settings F = O(N3/2) and K = O(N5/2) suggested in
[10]. Notice that the constants implied by (46)–(47) are c1 =
1.25 and c2 = 9.69 yields

F = 2π/c1NL ≈ 5NL (52)
K = 2π/c2NL ≈ 0.65NL . (53)

For the harmonic model the selection F = 5NL was also
discussed and justified in [28], [29]. In Sec. VII we will
empirically assess a selection of the constant K with fixed
F = 5NL and show that K = NL is sufficient to achieve the
CRLB.

V. A FAST ALGORITHM FOR THE NLS ESTIMATOR

In the following we give a fast algorithm for evaluating the
NLS objective on the grid Gl ∀ l = 1, . . . , L. Specifically, we
will assume that the grids are nested and uniform. A nested
grid implies that GL ⊆ GL−1 · · · ⊆ G1. A nested and uniform
grid then implies that if (ω0, β0) ∈ Gl then (lω0, lβ0) ∈ G1.
The nested and uniform setting bring three key possibilities
that we will exploit:

1) A uniform frequency grid Ωl(β0) ⊆ {2π f−1F }
F/2
f=2 (f =

1 is removed since this corresponds to DC) allows for
computing necessary quantities efficiently via FFTs.

2) A uniform frequency and rate grid will allow us to obtain
necessary quantities for model order l = 2, . . . , L based
only from computed quantities from model order l = 1.

3) A nested grid will allow us to recursively update neces-
sary quantities from model order l − 1 to l.

A key property we will exploit in the following is that the
vectors c(ω, β) and s(ω, β) defined in (9)–(10) can be split
into two vector functions

c(ω, β) + js(ω, β) = z(ω)� g(β) (54)

where

z(ω) =
[
exp(jωn0) · · · exp(jω(n0 +N − 1))

]T∈ CN
(55)

g(β) =
[
exp(j 12βn

2
0) · · · exp(j 12β(n0 +N − 1)2)

]T∈ CN .
(56)

Notice that z(ω) can be time shifted to time index 0 using

z(ω) = exp (−jω0n0) z0(ω) . (57)

This form is of interest since z0(ω)Hx is a discrete time
Fourier transform (DTFT) in standard form with start index 0
at a single frequency ω of a signal x.

The following 3 subsections will give fast methods for
handling the following steps of Algorithm 1:
• Sec. V-C: form wl(ω0, β0) = Zl(ω0, β0)Tx
• Sec. V-B: form Al(ω0, β0) = Zl(ω0, β0)TZl(ω0, β0)
• Sec. V-A: solve Al(ω0, β0)αl(ω0, β0) = wl(ω0, β0) .

A. Solving the linear system

One key problem in Algorithm 1 is to efficiently compute
the solution of the linear system

Al(ω0, β0)αl(ω0, β0) = wl(ω0, β0) . (58)

Firstly, the coefficient matrix Al(ω0, β0) =
ZTl (ω0, β0)Zl(ω0, β0) consists of four terms given by

cT (iω0, iβ0)c(kω0, kβ0) = ti−k(ω0, β0) + hi+k(ω0, β0) ,
(59)

sT (iω0, iβ0)s(kω0, kβ0) = ti−k(ω0, β0)− hi+k(ω0, β0)
(60)

sT (iω0, iβ0)c(kω0, kβ0) = t̃i−k(ω0, β0) + h̃i+k(ω0, β0) ,
(61)

cT (iω0, iβ0)s(kω0, kβ0) = −t̃i−k(ω0, β0) + h̃i+k(ω0, β0) ,
(62)
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for i, k ∈ {1, 2, . . . , l} where

ti−k(ω0, β0) =
1

2

n0+N−1∑
n=n0

cos
[
(i− k)ω0n+ (i− k)β0n

2/2
]
,

(63)

hi+k(ω0, β0) =
1

2

n0+N−1∑
n=n0

cos
[
(i+ k)ω0n+ (i+ k)β0n

2/2
]
,

(64)

t̃i−k(ω0, β0) =
1

2

n0+N−1∑
n=n0

sin
[
(i− k)ω0n+ (i− k)β0n

2/2
]

(65)

h̃i+k(ω0, β0) =
1

2

n0+N−1∑
n=n0

sin
[
(i+ k)ω0n+ (i+ k)β0n

2/2
]
.

(66)

Note also the symmetries ti−k(ω0, β0) = tk−i(ω0, β0) and
t̃i−k(ω0, β0) = −t̃k−i(ω0, β0). Using these definitions, the
matrix Al(ω0, β0) can be partitioned as

Al(ω0, β0) =

[
T l(ω0, β0) T̃

T

l (ω0, β0)

T̃ l(ω0, β0) T l(ω0, β0)

]

+

[
H l(ω0, β0) H̃

T

l (ω0, β0)

H̃ l(ω0, β0) −H l(ω0, β0)

]
(67)

where

T l(ω, β) =


t0(ω, β) t1(ω, β) · · · tl−1(ω, β)
t1(ω, β) t0(ω, β) · · · tl−2(ω, β)

...
...

. . .
...

tl−1(ω, β) tl−2(ω, β) · · · t0(ω, β)


(68)

T̃ l(ω, β) =


t̃0(ω, β) −t̃1(ω, β) · · · −t̃l−1(ω, β)
t̃1(ω, β) t̃0(ω, β) · · · −t̃l−2(ω, β)

...
...

. . .
...

t̃l−1(ω, β) t̃l−2(ω, β) · · · t̃0(ω, β)


(69)

H l(ω, β) =


h2(ω, β) h3(ω, β) · · · hl+1(ω, β)

h3(ω, β) h4(ω, β)
... hl+2(ω, β)

...
... ...

...
hl+1(ω, β) hl+2(ω, β) · · · h2l(ω, β)


(70)

H̃ l(ω, β) =


h̃2(ω, β) h̃3(ω, β) · · · h̃l+1(ω, β)

h̃3(ω, β) h̃4(ω, β)
... h̃l+2(ω, β)

...
... ...

...
h̃l+1(ω, β) h̃l+2(ω, β) · · · h̃2l(ω, β)


(71)

and T l(ω0, β0), T̃ l(ω0, β0) are Toeplitz matrices whereas
H l(ω0, β0), H̃ l(ω0, β0) are Hankel matrices. When β0 = 0
and selecting n0 = −N−12 , then T̃ l(ω0, β0) = H̃ l(ω0, β0) =
0 because sin is an odd function and each term symmetric
around zero cancels out in (65)–(66). Hence, we obtain two
separate Toeplitz-plus-Hankel systems (see [29]) which can be
solved using, e.g., the algorithm suggested in [30]. However,

when β0 6= 0, this is no longer the case. We will instead
handle the matrix structure in (67) by extending the recursive
algorithm [30] to block Toeplitz-plus-Hankel in Appendix C.

We can now exploit two important structures of the problem:
1) the linear system can be solved recursively 2) the grids
are nested Gl ⊆ Gl−1. These observations imply that we can
obtain the solutions αl(ω0, β0)∀ (ω0, β0) ∈ Gl by performing
a recursive update from a subset of the “previous” solutions
αl−1(ω0, β0)∀ (ω0, β0) ∈ Gl ⊆ Gl−1. In Appendix C it is
shown that one recursive update of a solution from order l −
1 to l has a computational complexity of O(l) such that it
is possible to compute αl(ω0, β0)∀ (ω0, β0) ∈ Gl with the
computational complexity O(l|Gl|).

It is well known that when ω0 is small then Al(ω0, β0)
becomes ill-conditioned, see e.g. [20]. In-particular, if the
frequency is ω0 = 2π/N and β0 = 0, then there will be
one period in the observed signal and the condition number is
κ(Al(2π/N, 0)) = 1 since all the columns of Zl(2π/N, 0) are
orthogonal. However, if there is a half period in the observed
signal, then for N = 100, κ(A6(π/N, 0) ≈ 2.5 · 106. To this
end, we add regularization in the implementations with the
modified system Al(ω0, β0) + εN2 I2l using ε = 10−8. Notice
this can be handled by considering the modified diagonal
t0(ω0, β0) + εN2 in (68). Regularization can be seen as an
intermediate solution between the NLS method (ε = 0) and
the harmonic chirp summation method ε = ∞ (i.e. the
harmochirp-gram in [10]) explained in Sec. VI.

B. Forming the coefficient matrix

The coefficients of the Toeplitz and Hankel matrices,
e.g. (63) can also be computed efficiently. Using (54), we have

tl(ω0, β0) = 1
2

n0+N−1∑
n=n0

cos
(
lω0n+ lβ0n

2/2
)

(72)

= 1
2c(lω0, lβ0)T1 (73)

= 1
2<
(
z(lω0)Hg(−lβ0)

)
. (74)

Notice that because the parameters ω0 and β0 only occurs on
the form lω0 and lβ0, then

tl(ω0, β0) = t1(lω0, lβ0) . (75)

This implies that if t1(ω0, β0) is computed on a uniform grid
(ω0, β0) ∈ G1, then tl(ω0, β0) can be obtained by extraction
from that grid using (75). The key is that only t1(ω0, β0)
needs to be computed for all (ω0, β0) ∈ G1. Notice that
Equation (74) is a DTFT (with start index n0) at a single
frequency of the chirp signal g(−lβ0). So for l = 1 and
each β0 ∈ B1, the values t1(ω0, β0) can be computed for
all ω0 ∈ Ωl(β0) using a single FFT of the signal g(β0).
Most definitions of the DFT and FFT assume a start index
of 0, so for most FFTs the output would need to be phase-
shifted following (57). A similar analysis is possible for
hl(ω0, β0), t̃l(ω0, β0) and h̃l(ω0, β0). We also have the special
case l = 0 with t0(ω0, β0) = N

2 and t̃0(ω0, β0) = 0.
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C. Forming the right-hand side

The right-hand side of (58) wl(ω0, β0) = ZTl (ω0, β0)x can
also be updated recursively based on a simple precomputed
quantity. We rewrite the right-hand side (see (5)) using (54)
as

ZTl (ω0, β0)x =

[
CT
l (ω0, β0)x

STl (ω0, β0)x

]
(76)

=


CT
l−1(ω0, β0)x
cT (lω0, lβ0)x

STl−1(ω0, β0)x
sT (lω0, lβ0)x

 (77)

=


CT
l−1(ω0, β0)x

<
(
zH(lω0)(g(−lβ0)� x)

)
STl−1(ω0, β0)x

−=
(
zH(lω0)(g(−lβ0)� x)

)
 . (78)

The interpretation of the above is that the right-hand side can
be recursively updated for every l by first de-chirping the
source signal x using g(−lβ0) followed by a DTFT at the
frequency lω0. Let

v(ω0, β0) = zH(ω0)(g(−β0)� x) . (79)

If v(ω0, β0) is computed on the grid (ω0, β0) ∈ G1 then
v(lω0, lβ0) is also on this grid (based on our initial as-
sumption). Since the product with z(ω0)H represents the
DTFT at a single frequency, we may compute this product
for all ω0 ∈ Ωl(β0) using a single FFT (possible with a
phase-shift following (57) depending on the definition). The
computational complexity for computing v(ω0, β0) for all
(ω0, β0) ∈ G1 is then simply K1 = K FFTs of length F .

D. Computational Complexity Analysis

The proposed algorithm is presented in Algorithm 2. The
linear system (67) is solved recursively in order using the
recursive block Toeplitz-plus-Hankel solver outlined in Sec. C.
In particular, the recursive block Toeplitz-plus-Hankel solver
will have a linear computational complexity O(l) for updating
the solution from order l − 1 to l. Using Ωl(β0) = O(F/l),
the computational complexity of Algorithm 2 is then

O
(
KF logF +

L∑
l=1

(K/l)(F/l)(1/l + l)

)
= O(KF log(F ) +KF log(L)) = O(KF log(F )) (80)

where we used the inequality
∑k
n=1 1/n < log(k) +

1 for a harmonic series. Using the grid selection (50)–
(51), Algorithm 2 then has the computational complexity
O(N2L2 log(NL)) = O(N2L2 log(N)) since N ≥ 2L + 3
(number of observations larger than the number of unknown).
This is orders of magnitude lower than the standard algorithm
O(LN5+L2N4) as proposed in [10] (with the notation in this
paper and using the proposed feasible set). For comparison, the
computational complexity of the harmonic separate-estimate
method in [10] for computing estimates for all candidate model
orders is O(

∑L
l=1N

2l logN) = O(N2L2 log(N)), i.e., the

Algorithm 2 Proposed algorithm for computing the NLS
objective function Jl(ω0, β0) for l = 1, . . . , L, for uniform
chirp rates Bl with Kl = |Bl| = O(K/l) and fundamental
frequencies Ωl(β0) with Fl = |Ωl(β0)| = O(F/l) selected
such that GL ⊆ GL−1 · · · ⊆ G1 and for all (ω0, β0) ∈ Gl we
have (lω0, lβ0) ∈ G1.

for β0 ∈ B1 do
Compute v(ω0, β0)∀ω0 ∈ Ω1(β0)

using (79) O(F logF )

Compute t1(ω0, β0), t̃1(ω0, β0), h1(ω0, β0), h̃1(ω0, β0)
∀ω0 ∈ Ω1(β0) using e.g. (74) O(F logF )

end for
for l ∈ {1, 2, 3, . . . , L} do
for β0 ∈ Bl do

for ω0 ∈ Ωl(β0) do
Update right-hand size wl(ω0, β0) recursively from
v using (78)–(79) O(1)

Update coefficient matrix Al(ω0, β0) recursively from
t1, t̃1, h1, h̃1 using e.g. (75) and (68)–(71) O(1)

Solve Al(ω0, β0)αl(ω0, β0) = wl(ω0, β0)
recursively via the block-TH algorithm O(l)

Compute Jl(ω0, β0) = wT
l (ω0, β0)αl(ω0, β0) O(l)

end for
end for

end for

same computational complexity as the proposed algorithm for
the NLS method.

Notice here that the asymptotic computational complexity
of forming the right-hand side and the entries in the coefficient
matrix using FFTs in the initialization step is higher than
solving the linear system of equations. For practical sizes of
K,N,L, F and due to the large constant involved in the block-
TH algorithm, this part of the algorithm may still take up a
significant portion of required computations in Algorithm 2.

VI. HARMONIC CHIRP SUMMATION

Similar to the harmonic summation algorithm [31], [32] for
the estimation of the fundamental frequency for the standard
harmonic model, we may form an approximate NLS estimator
denoted harmonic chirp summation (HCS) (also called the
harmochirp-gram [10]) using the approximation (104). In par-
ticular, if the data size N is large enough we may approximate
Z(ω0, β0)TZ(ω0, β0)T as diagonal. This estimator is then
governed by the objective function

Ĵl(ω0, β0) = xTZl(ω0, β0)Zl(ω0, β0)Tx (81)

= ‖Zl(ω0, β0)Tx‖22 . (82)

Notice this is also a scaled version of the approximation in
(40). Using (5)–(7) and (54), the objective for model order
l = 1 can be written as

Ĵ1(ω0, β0) = ‖
[
c(ω0, β0) s(ω0, β0)

]T
x‖22 (83)

= |c(ω0, β0) + js(ω0, β0))Hx|2 (84)

= |(z(ω0)� g(β0))Hx|2 . (85)
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The objective function for the harmonic chirp summation may
then be rewritten using (5)–(7) and (83) (see also [33]):

Ĵl(ω0, β0) = ‖Zl(ω0, β0)Tx‖22 (86)

=
∥∥∥[Cl(ω0, β0) Sl(ω0, β0)

]T
x
∥∥∥2
2

(87)

=

l∑
i=1

‖
[
c(iω0, iβ0) s(iω0, iβ0)

]T
x‖22 (88)

=

l∑
i=1

Ĵ1(iω0, iβ0) (89)

such that the objective function for candidate model order l
can be computed from the objective function for model order
1. Further, it is possible to update the objective function from
model order l − 1 to l recursively

Ĵl(ω0, β0) =

l∑
i=1

Ĵ1(iω0, iβ0) = Ĵl−1(ω0, β0) + Ĵ1(lω0, lβ0) .

(90)
The computational complexity for computing Ĵ1(ω0, β0)
using (85) for a uniform frequency and rate grid is
O(KF logF ). Computing the objective function for the
remaining model orders on a subgrid Ql ⊂ Q1, l =
1, . . . , L is then O(

∑L
l=2KlFl) = O(KF

∑L
l=2 1/l2) =

O(KF ). The total computational complexity is then
O(KF logF ), the same as the proposed fast NLS method
(80). Using the suggested grid selection (50)–(51) (F =
O(NL), K = O(NL)), the computational complexity is
O(N2L2 log(NL)) = O(N2L2 log(N)). From (85) we also
observe that Ĵl(ω0,−β0) = Ĵl(−ω0, β0) such that for sym-
metric rate grids, it is (almost) possible to obtain half of the
objective function for free since the coefficients for negative
frequencies are already computed by the FFT.

VII. SIMULATIONS

In this section, we evaluate MATLAB implementations
of the presented algorithms in terms of accuracy and com-
putational savings by Monte Carlo simulations and timing
benchmarks3. In particular, we will investigate the behavior of
the NLS method and empirically identify a usable value for K,
with fixed F = 5NL as suggested in [28], [29]. Notice that
we are not proposing any new method but simply improving
upon the computational complexity of the known NLS method
so we also refer to [10], [11] for additional assessments.

A. Accuracy

We assess the accuracy of the exact NLS method and the
HCS method using Monte Carlo simulations with r = 2000
repetitions of the model (2) using a symmetric time index and
with white Gaussian noise such that the ML and NLS estimator
coincide. We find the maximum on the grid and refine using
the Nelder-Mead method [34] constrained into plus/minus one
grid interval for both the pitch and rate parameter. For the
refinement step both the NLS and HCS methods use the exact

3Code available via tinyurl.com/tljvbn
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Figure 4. Estimation accuracy for different methods, the asymptotic CRLB
and the mean exact CRLB for all the realizations. Varying ω. Settings: N =
250, ` = L = 6, β0 ∈ [−3/N2, 3/N2) drawn uniformly, constant amplitude√
a2l + b2l = 1, l = 1, . . . , L and phase drawn from a uniform distribution

in the interval [0, 2π) for each Monte Carlo repetition. F = 5NL, SNR =
10 [dB]

NLS objective function. In the following, we compare the root-
mean-squared (RMS) error result with the asymptotic CRLBs
in (31)–(30). Further, we compute the exact CRLB for all
realizations using the diagonal of the inverse of (112) and
compute the mean exact CRLB for all the realizations, as in
[35].

In the first experiment, we assess the performance at low
fundamental frequencies. This is of particular interest since
this is one motivation for using the real-valued data model. In
particular, a mapping from real to complex-valued data will
decrease estimation accuracy for low fundamental frequencies
[20]. We select N = 250, ` = L = 6, draw the rate β0
uniformly from [−3/N2/12, 3/N2) and vary the fundamental
frequency ω0 from 2π0.75/N to 2π1.25/N . As shown in
Fig. 4, for low fundamental frequencies, the HCS method is
not accurate as also reported in [10]. We also observe that
the methods cannot achieve the asymptotic CRLB but for
frequencies higher than 1 cycles/frame the NLS methods can
achieve the mean exact CRLB. Further, the selection K = NL
and K = 5NL shows about the same performance, but the
selection K = round(

√
NL) and K = round( 1

4NL) (round to
nearest integer) does not provide as accurate estimates. From
a computational perspective, we should then select K = NL.

For the next experiment we also select N = 250, ` = L = 6
and β0 ∈ [−3/N2/12, 3/N2) but randomly select a higher

tinyurl.com/tljvbn
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√
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NLS K = NL NLS K = 5NL
Mean exact CRLB Asymptotic CRLB

−10 −5 0 5 10 15
10−6

10−5

10−4

10−3

SNR [dB]
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Figure 5. Estimation accuracy for different methods, the asymptotic CRLB
and the mean exact CRLB for all the realizations. Varying SNR. Settings:
N = 250, ` = L = 6, ω0 ∈ 2π · [4/N, 8/N), β0 ∈ [−3/N2, 3/N2),
constant amplitude

√
a2l + b2l = 1, l = 1, . . . , L and phase drawn from a

uniform distribution in the interval [0, 2π) for each Monte Carlo repetition.
F = 5NL.

fundamental frequency ω0 ∈ 2π · [4/N, 8/N) drawn uniformly
and the results being shown in Fig. 5. We observe that the
mean of the exact CRLB and asymptotic CRLB are approxi-
mately equal and all the considered methods can achieve these
bounds from approximately −2 [dB].

B. Timings

For comparing the computational speed at relevant dimen-
sions, we ran different MATLAB implementations of the
presented algorithms: Algorithm 1, Algorithm 2 exploiting
symmetry in the rate grid as outlined in Sec. C-A, the
HCS method using the recursive implementation presented
in Sec. VI. The simulations were executed on an Intel(R)
Core(TM) i7-5600U CPU 2.6 GHz with Ubuntu Linux kernel
3.19.0-43-generic and MATLAB R2015a (8.5.0.197613). The
timings were obtained by running the algorithms three times
to obtain the execution times τ1, τ2, τ3. The reported execution
times are then τ = min(τ1, τ2, τ3). This is the same procedure
used in Pythons timeit module [36] (when the execution
time is larger than 0.2 [s]) and used as an attempt to eliminate
the influence of other system processes. Fig. 6 illustrate
the running time for varying N and L, respectively. The
dotted lines are the corresponding timing with the Nelder-
Mead refinement step with the same settings as used in the

100 200 300 400 500

10−1

101

103

N

τ
[s

]

NLS: Algorithm 1
NLS: Algorithm 2 (symmetric B)
HCS (recursive)

3 4 5 6 7 8

10−1

101

103

L

τ
[s

]

Figure 6. The computation time for four algorithms. Top: L = 8 Bottom:
N = 256. The dotted lines are the corresponding timing including the Nelder-
Mead refinement step for the NLS and HCS methods.

previous section. For the NLS and HCS algorithms we select
F = 5NL and K = NL as in the previous section. From
Fig. 6 it is clear that the proposed Algorithm 2 offers a much
faster algorithm than the standard Algorithm 1. Notice that
the standard Algorithm 1 will be many times faster than the
corresponding algorithm in [10] since the number of grid
evaluations is greatly reduced. The HCS algorithm in the
recursive form may be of interest since it offers even faster
algorithms and can be the method of choice if the HCS method
is accurate enough, e.g., when the fundamental frequency is
large enough compared to the frame size N .

VIII. CONCLUSION

In this paper, we have proposed an algorithm for computing
an estimate of the non-linear least-squares estimator for the
harmonic chirp model. The proposed algorithm is orders
of magnitude faster than previously known algorithms. The
proposed algorithm is obtained based on three strategies: 1)
Take a two-step approach using first the grid method with a
coarse grid followed by a refinement step 2) Formulate the
problem such that the problem can be seen as a number of
nested problems that allows for recursive updating from model
order l to l+1. 3) Exploit the matrix structures of the problem,
in particular, a recursive block Toeplitz-plus-Hankel solver for
linear systems and Fast Fourier Transforms. Furthermore, we
showed the impact of the choice of a symmetric time index.
In particular, a symmetric time index reduces the Cramér-Rao
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lower bound for the fundamental frequency by approximately
a factor of 16 compared to conventional time index selection.

APPENDIX A
APPROXIMATE HESSIAN

In this appendix, we derive an analytic, but approximate
expression for the Hessian matrix Ψ(ξ̂) of the objective
function in (14) where ξ =

[
ω0 β0

]T
. The Hessian is defined

in (24), and the approximate expression is derived using the
following two assumptions.

a) Asymptotic assumption: We assume that the data size
N is large enough so that we can use the asymptotic result
[37, App. A]

lim
N→∞

1

N t+1

N∑
m=1

mt exp(j(θ1m+ θ2m
2)) = 0 (91)

for t ≥ 0 as a good approximation. In our context, this
asymptotic result can be used to show that

lim
N→∞

CT (ξ)N tC(ξ)

1TN t1
= lim
N→∞

ST (ξ)N tS(ξ)

1TN t1
=

1

2
I l (92)

lim
N→∞

ST (ξ)N tC(ξ)

1TN t1
= 0 (93)

where C(ξ) and S(ξ) are given in (6) and (7), respectively,
and

1 =
[
1 · · · 1

]T
(94)

N = diag(
[
n0 · · · n0 +N − 1

]
) . (95)

b) Large SNR assumption: We assume that the SNR is
large enough so that

x ≈ Zl(ξ̂)α̂l . (96)

This assumption is used to simplify the expression of the
Hessian matrix which, as detailed in (24), is the second order
derivative of the objective. Finding this derivative involves
computing the second-order differential of the projection ma-
trix PZ(ξ̂) given in (25). The expression for this differential
is e.g. given in [38, App. C], and under the large SNR
approximation, the expression of the (n,m)’th element of the
Hessian matrix can be simplified as

[Ψ(ξ̂)]nm ≈ −2α̂Tl T
T
n (ξ̂)

[
IN − PZ(ξ̂)

]
Tm(ξ̂)α̂l (97)

for (n,m) ∈ {1, 2} where Zl(ξ) is given in (5) and

T 1(ξ) =
∂Zl(ξ)

∂ω0
=
[
−NSl(ξ)L NCl(ξ)L

]
(98)

T 2(ξ) =
∂Zl(ξ)

∂β0
=

1

2

[
−N2Sl(ξ)L N2Cl(ξ)L

]
(99)

L = diag(
[
1 2 · · · l

]
) . (100)

A. Combining the two assumptions

We now use the asymptotic results in (92) and (93) to
approximate the various terms in (97). First, we can derive
from (92), (93), (5), (98), and (99) that

lim
N→∞

ZTl (ξ)Zl(ξ)

1T1
=

1

2
I2l (101)

lim
N→∞

T Tn (ξ)Zl(ξ)

1TNn1
=

1

2n

[
0 −L
L 0

]
(102)

lim
N→∞

T Tn (ξ)Tm(ξ)

1TNn+m1
=

1

2nm

[
L2 0

0 L2

]
(103)

for (n,m) ∈ {1, 2}. For a finite N , we now use these
asymptotic limits as the approximations

ZTl (ξ)Zl(ξ) ≈ 1T1

2
I2l (104)

T Tn (ξ)Zl(ξ) ≈ 1TNn1

2n

[
0 −L
L 0

]
(105)

T Tn (ξ)Tm(ξ) ≈ 1TNn+m1

2nm

[
L2 0

0 L2

]
. (106)

Inserting the above into (97) yields

[Ψ(ξ̂)]nm ≈ − 2α̂Tl
1TNn+m1

2nm

[
L2 0

0 L2

]
α̂l

+2α̂Tl
1TNn1

2n

[
0 −L
L 0

]
2

1T1

1TNm1

2m

[
0 L
−L 0

]
α̂l

= − 1

nm

(
1TNn+m1− 1TNn11TNm1

1T1

)
· α̂Tl

[
L2 0

0 L2

]
α̂l . (107)

The following identities can be derived

1TN21− 1TN11TN1

1T1
=
N(N2 − 1)

12
(108)

1TN31− 1TN11TN21

1T1
= 1TN31− 1TN211TN1

1T1

=
N(N2 − 1)

6

(
n0 +

N − 1

2

)
(109)

1TN41− 1TN211TN21

1T1
=
N(N2 − 1)

3

·
[N2 − 4

60
+

(
n0 +

N − 1

2

)2 ]
. (110)

By inserting the above expressions in (107) and using (27), we
obtain the final expression in (26) for the approximate Hessian
matrix.

APPENDIX B
CRLB FOR HARMONIC CHIRP MODEL

The parameter vector we wish to derive the CRLB for is

θ =
[
αTl ξT

]T
=
[
αTl ω0 β0

]T
. (111)

The (n,m)’th element of the Fisher information matrix (FIM)
for this parameter vector is given by [27]

[I(θ)]nm = σ−2
∂µT (θ)

∂θn

∂µ(θ)

∂θm
(112)
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for (n,m) ∈ {1, 2, . . . , 2l + 2} where

µ(θ) = Zl(ξ)αl . (113)

For the partial derivatives, we have that

∂µ(θ)

∂αl
= Zl(ξ) (114)

∂µ(θ)

∂ω0
= T 1(ξ)αl (115)

∂µ(θ)

∂β0
= T 2(ξ)αl (116)

where T 1(ξ) and T 2(ξ) are given in (98) and (99), respec-
tively. Consequently, if we define the matrix

∆(θ) =
[
Zl(ξ) T 1(ξ)αl T 2(ξ)αl

]
, (117)

the FIM is given by

I(θ) =
1

σ2
∆T (θ)∆(θ) . (118)

Unfortunately, we cannot find an exact closed-form expression
for the inverse FIM. However, if we use the asymptotic results
in (101)-(103) as approximations as in (104)-(106), we obtain
the approximate FIM in (119) on the top of page 13, which
is also often referred to as the asymptotic FIM, and this FIM
can be inverted analytically. Here, we are only interested in
the CRLB for the chirp rate and the fundamental frequency
parameters, and we, therefore, partition the asymptotic FIM as

Ia(θ) =

A b c

bT d e
cT e f

 =

[
A B

BT D

]
(120)

with implicit definitions. The inverse of the latter matrix is

I−1a (θ) =

[× ×
× (D −BTA−1B)−1

]
(121)

where we have only written out the lower right 2× 2 matrix
whose diagonal elements are the CRLB for the fundamental
frequency and the chirp rate, respectively. A closer inspection
of this lower right matrix reveals that

D −BTA−1B = −Ψ(ξ)/2 (122)

where Ψ(ξ) is the Hessian matrix derived in App. A. Conse-
quently,

D −BTA−1B =
N(N2 − 1)

∑l
i=1A

2
i i

2

24σ2

·
[

1
(
n0 + N−1

2

)(
n0 + N−1

2

)
N2−4
60 +

(
n0 + N−1

2

)2] ,

(123)

and the asymptotic inverse FIM is then given in (29).

APPENDIX C
A BLOCK-TOEPLITZ PLUS BLOCK-HANKEL SOLVER

In this appendix, we will give a block Toeplitz-plus-Hankel
algorithm for solving linear systems of equations with blocks
of size S and Q right hand sides. We will drop the dependency
on ω0, β0 in the following to improve readability and highlight
the fact that the following deviations are more general. The
derived algorithm is a block version of the algorithm presented
in [30] (with blocks of size S × S). A very similar algorithm
was independently, but less thoroughly, derived in [39].

For the application derived in this paper, we are interested
in the case with S = 2, Q = 1 on the form([

T l T̃
T

l

T̃ l T̄ l

]
+

[
H l H̃ l

H̃ l H̄ l

])[
ã
â

]
= R̄lāl =

[
b̃

b̂

]
= b̄l

(124)
where T l = T Tl , T̄ l = T̄

T
l , T̃ l indicates Toeplitz ma-

trices, and H l, H̃ l, H̄ l indicates Hankel matrices, with
T l, T̃ l, T̄ l,H l, H̃ l, H̄ l ∈ Rl×l and āl ∈ RSl×Q, b̄l ∈
RSl×Q. With an appropriate permutation matrix Πl, we can
obtain the symmetric matrix

Rl =


R1,1 R1,2 . . . R1,l

R2,1 R2,2 . . . R2,l

...
...

. . .
...

Rl,1 Rl,2 . . . Rl,l

 = ΠlR̄lΠ
T
l ∈ RSl×Sl

(125)
with the following permuted relations

Rlal = bl, Πlāl = al, Πlb̄l = bl . (126)

For the case S = 2, the block are given as

Ri,j =

[
(T l)i,j + (H l)i,j (T̃ l)j,i + (H̃ l)i,j
(T̃ l)i,j + (H̃ l)i,j (T̄ l)i,j + (H̄ l)i,j

]
∈ RS×S .

(127)
The algorithm proposed for the scalar case in [30] contains
a data dependent and a data independent step. The following
derivation will follow this approach.

1) The data dependent step: Assume that we have com-
puted the solutions to the following systems

Rlγl = el, l = 1, . . . , L (128)

where el =
[
0 · · · 0 IS

]T ∈ RSl×S , γl ∈ RSl×S and
IS ∈ RS×S is the identity matrix. Consider the recursive form
of the matrix and the right-hand side

Rl =

[
Rl−1 rl−1
rTl−1 [rl]l

]
∈ RSl×Sl, bl =

[
bl−1
[bl]l

]
∈ RSl×Q .

(129)
Following the same analysis as in [40]

Rl

[
al−1

0

]
=

[
bl−1

rTl−1al−1

]
=

[
bl−1

[bl]l − λl

]
= bl− elλl (130)

with
λl = [bl]l − rTl−1al−1 . (131)

Then [
al−1

0

]
= R−1l bl −R−1l elλl = al − γlλl . (132)
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Ia(θ) = σ−2


1T 1
2 I2l

1TN1
2

[
0 L
−L 0

]
αl

1TN21
4

[
0 L
−L 0

]
αl

1TN1
2 αTl

[
0 −L
L 0

]
1TN21

2 αTl

[
L2 0

0 L2

]
αl

1TN31
4 αTl

[
L2 0

0 L2

]
αl

1TN21
4 αTl

[
0 −L
L 0

]
1TN31

4 αTl

[
L2 0

0 L2

]
αl

1TN41
8 αTl

[
L2 0

0 L2

]
αl

 (119)

Using the above, an algorithm can then compute the solution
to Rlal = bl using the recursive updates

λl = [bL]l − rTl−1al−1 (133)

al =

[
al−1

0

]
+ γlλl . (134)

2) The data independent step: In the data independent step,
we focus on solving

Rl+1γl+1 = el+1 (135)

efficiently given the solution γl to Rlγl = el. Due to the
block Toeplitz-plus-Hankel structure of Rl, we have

Rl =


t0 tT1 . . . tTl−1

t1 t0
. . . tTl−2

...
. . . . . .

...
tl−1 tl−2 . . . t0

+


h2 h3 . . . hl+1

h3 h4
... hl+2

...
... ...

...
hl+1 hl+2 . . . h2l


(136)

where ti ∈ RS×S , i = 0, . . . , l− 1, hi ∈ RS×S , i = 2, . . . , 2l.
From this, it follows that

(Ll +LTl )Rl −Rl(Ll +LTl ) =
t1 − tT1 −tT2 . . . −tl−1 0
t2 0 . . . 0 tTl−1
...

...
...

...
tl−1 0 . . . 0 tT2
0 −tl−1 . . . −t2 tT1 − t1



+


0 −h2 . . . −hl−1 −hl + hl+2

h2 0 . . . 0 hl+3

...
...

...
...

hl−1 0 . . . 0 h2l

hl − hl+2 −hl+1 . . . −h2l 0


(137)

= qle
T
1 − e1qTl + rle

T
l − elrTl (138)

where Ll is a lower triangular shift matrix of size Sl × Sl:

Ll =


0 0 0 · · · 0

IS 0 0
. . .

...
0 IS 0 0
...

. . . . . . . . . 0
0 · · · 0 IS 0

 , (139)

and

ql =


t0

t2 + h2

...
tl + hl

 , rl =


tTl + hl+2

tTl−1 + hl+1

...
tT1 + h2l+1

 , l = 1, . . . , L−1.

(140)
Notice that in the scalar case S = 1 we have the form
presented in [30]. The vector rl is also shown in (129).
Multiplying (138) with the symmetric matrix R−1l from both
the right and left yields

R−1l (Ll+L
T
l )−(Ll+L

T
l )R−1l = φlψ

T
l −ψlφTl −ρlγTl +γlρ

T
l

(141)
where φl, ψl, and ρl are the solutions to

Rlφl = ql, l = 1, . . . , L− 1 (142)
Rlψl = e1, l = 1, . . . , L− 1 (143)
Rlρl = −rl, l = 1, . . . , L− 1. (144)

By multiplying el on the right of (141) and solve for the
second last term on the right hand side, we have

ρl[γl]
T
l = (Ll +LTl )γl −R−1l

[
el−1

0

]
+ γl[ρl]

T
l + φl[ψl]

T
l −ψl[φl]Tl , βl . (145)

With this definition, βl can be related to update formulas for
γl+1. To derive this, we write (135) using (129) as[

Rl rl
rTl [rl+1]l+1

] [
[γl+1]1:l
[γl+1]l+1

]
=

[
0
IS

]
. (146)

Using (144), the above can be restated as

R−1l rl = −ρl = −[γl+1]1:l[γl+1]−1l+1 (147)

[γl+1]l+1 =
(
[rl+1]l+1 + rTl ρl

)−1
. (148)

By combining (145), (147), and (148), we can get linear
complexity updates of γl+1

[γl+1]l+1 =
(
[rl+1] + rTl βl[γl]

−T
l

)−1
(149)

[γl+1]1:l = βl[γl]
−T
l [γl+1]l+1 . (150)

To calculate βl in (145) efficiently, we consider the second,
fourth, and fifth term.

2. Since

Rl

[
γl−1

0

]
=

[
Rl−1 rl−1
rTl−1 [rl]l

] [
γl−1

0

]
(151)

=

[
el−1

0

]
+ el(r

T
l−1γl−1) , (152)
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it follows that

R−1l

[
el−1

0

]
=

[
γl−1

0

]
− γl(rTl−1γl−1) . (153)

The last factor is simply

rTl−1γl−1 = rTl−1R
−1
l−1el−1 = −ρTl−1el−1 = −[ρl−1]Tl−1 .

(154)
4.-5. By using (142) and (143) with a similar analysis as in

(130)–(132) we obtain that these vectors can be updated
with linear computational complexity as

φl =

[
φl−1

0

]
+ γl([ql]l − rTl−1φl−1) (155)

ψl =

[
ψl−1

0

]
− γl(rTl−1ψl−1) . (156)

Then βl can now be written as

βl =
(
Ll +LTl

)
γl + γl([ρl]

T
l − [ρl−1]Tl−1)−

[
γl−1

0

]
+ φl[ψl]

T
l −ψl[φl]Tl . (157)

To summarize the data-independent step: given γl, rl,
[rl+1]l+1, ql, and [ρl−1]l−1, we can compute γl+1 with linear
complexity using the following algorithm:

1) Compute φl and ψl using (155) and (156).
2) Compute [ρl]l using (154).
3) Compute βl using (157).
4) Compute γl+1 using (149) and (150).

The data-dependent step can then be added, such that given
γl+1 and al:

5) Compute al+1 using (133)–(134).
This will yield a recursive algorithm with the computational
complexity dominated by matrix-matrix products (block-
vector times block as in e.g. (155)), yielding O(S3l) oper-
ations per recursion, and O(S3L2) for all l = 1, . . . , L −
1. Applying (133)–(134) costs O(S2L2Q), to a total of
O(L2(S3 +S2Q). This is the same as classic block-Levinson
algorithms with the computational complexity O(S3L2) for
Q = 1 [41].

A. Exploiting symmetry

With symmetric time index n0 = −N−12 and using (63)–
(66), we also have

tl(ω0, β0) = tl(ω0,−β0) (158)
hl(ω0, β0) = hl(ω0,−β0) (159)

t̃l(ω0, β0) = −tl(ω0,−β0) (160)

h̃l(ω0, β0) = −hl(ω0,−β0) . (161)

With the permutation used in (125), then

Rl(ω0, β0) = ΠAl(ω0, β0)ΠT

=


R1,1(ω0, β0) R1,2(ω0, β0) . . . R1,l(ω0, β0)
R2,1(ω0, β0) R2,2(ω0, β0) . . . R2,l−1(ω0, β0)

...
...

. . .
...

Rl,1(ω0, β0) Rl,2(ω0, β0) . . . Rl,l(ω0, β0)


(162)

where

Ri,j(ω0, β0) =

[
[Ri,j(ω0, β0)]1,1 [Ri,j(ω0, β0)]1,2
[Ri,j(ω0, β0)]2,1 [Ri,j(ω0, β0)]2,2

]
(163)

=

[
ti−j(ω0, β0)+hi+j(ω0, β0) −t̃i−j(ω0, β0)+h̃i+j(ω0, β0)

t̃i−j(ω0, β0)+h̃i+j(ω0, β0) ti−j(ω0, β0)−hi+j(ω0, β0))

]
(164)

Then

Ri,j(ω0,−β0) =

[
[Ri,j(ω0, β0)]1,1 −[Ri,j(ω0, β0)]1,2
−[Ri,j(ω0, β0)]2,1 [Ri,j(ω0, β0)]2,2

]
(165)

= Ri,j(ω0, β0)�
[

1 −1
−1 1

]
. (166)

Let
Rl(ω0, β0)γl(ω0, β0) = el (167)

then

Ri,j(ω0,−β0)

(
[γl]j �

[
1 −1
−1 1

])
= (Ri,j(ω0, β0)[γl]j)�

[
1 −1
−1 1

]
. (168)

This implies that

Rl(ω0,−β0)

(
γl(ω0, β0)�

(
1l ⊗

[
1 −1
−1 1

]))
= el

(169)
where 1l = [1, 1, . . . , 1]T ∈ Rl×1. The interpretation is that
all off-diagonal elements of each 2 × 2 block of γl(ω0, β0)
just need a sign-change to obtain the solution of the data-
independent step γl(ω0,−β0). This amounts to a 50% saving
in the data-independent step of the algorithm if Bl is symmet-
ric.
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