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Void Probabilities and Cauchy-Schwarz Divergence
for Generalized Labeled Multi-Bernoulli Models

Michael Beard, Ba-Tuong Vo, Ba-Ngu Vo, and Sanjeev Arulampalam

Abstract—The generalized labeled multi-Bernoulli (GLMB) is
a family of tractable models that alleviates the limitations of the
Poisson family in dynamic Bayesian inference of point processes.
In this paper, we derive closed form expressions for the void
probability functional and the Cauchy-Schwarz divergence for
GLMBs. The proposed analytic void probability functional is a
necessary and sufficient statistic that uniquely characterizes a
GLMB, while the proposed analytic Cauchy-Schwarz divergence
provides a tractable measure of similarity between GLMBs. We
demonstrate the use of both results on a partially observed
Markov decision process for GLMBs, with Cauchy-Schwarz
divergence based reward, and void probability constraint.

Index Terms—Random finite sets, Poisson point process, gen-
eralized labelled multi-Bernoulli, information divergence

I. INTRODUCTION

Point patterns are ubiquitous in nature, for example the
states of objects in multi-object systems such as the coordi-
nates of molecules in a liquid/crystal, trees in a forest, stars in
a galaxy and so on [1]–[3]. Point processes (specifically simple
finite point processes or random finite sets) are probabilistic
models for point patterns, derived from stochastic geometry -
the study of random geometrical objects ranging from collec-
tions of points to arbitrary closed sets [2], [4]. Point process
theory provides the tools for characterizing the underlying
laws of the point patterns and entails a diverse range of
applications areas, such as forestry [6], geology [7], biology
[8], [9], physics [10], computer vision [11], [12], wireless
networks [13]–[15], communications [16], [17], multi-target
tracking [18], [19], and robotics [31]–[33].

In addition to the probability distribution, the void-
probability functional (or simply void probabilities) is another
fundamental descriptor of a point process [1]–[3]. The void
probability on a given region is the probability that it contains
no points of the point process. Rényi’s celebrated theorem
states that the probability law of a simple point process is
uniquely determined by the void probabilities on the bounded
Borel sets [1]–[3]. Analytic expressions for the void prob-
abilities are available for point processes such as Poisson
and independent and identically distributed (IID) cluster. In
general, the void probabilities constitute an intuitive and
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powerful descriptor that also characterizes the more general
random closed sets via Choquet’s capacity theorem [4], [30].

Apart from characterizing point processes, measuring their
similarlies/differences is essential in the study of point pat-
terns. Information-based divergences are fundamental in the
statistical analysis of random variables [21], and divergences
such as Kullback-Leibler, Rényi, Csiszár-Morimoto (or Ali-
Silvey), and Cauchy-Schwarz have been developed for point
processes [19], [22], [26], [27], [29], [34]. However, in general
these divergences cannot be computed analytically. Arguably
the most tractable of these is the Cauchy-Schwarz divergence,
which admits a closed form expression for Poisson point
processes. Indeed the Cauchy-Schwarz divergence between
two Poisson point processes is given by half the squared L2-
distance between their intensity functions [29]. Moreover, this
result has also been extended to mixtures of Poisson point
processes [29].

While the Poisson model enjoys many elegant analytical
properties, it is too simplistic for problems such as dynamic
Bayesian inference of point processes, and a more suitable
model is the generalized labeled multi-Bernoulli (GLMB) [35].
For the standard multi-object system model, the family of
GLMB densities is a conjugate prior that is also closed under
the Chapman-Kolmogorov equation [35]. Thus, in a dynamic
Bayesian inference application, the posterior density of the
point process at each time epoch is a GLMB, which can
be tractably computed using the algorithm developed in [36].
Recent applications to problems in multi-object systems such
as multiple target tracking, sensor management, and simulta-
neous localization and mapping [33], [37]–[40], suggest that
the GLMB is a versatile model that offers good trade-offs
between tractability and fidelity.

In this paper, we derive a closed form void-probability func-
tional and Cauchy-Schwarz divergence for GLMBs1. Given the
theoretical significance of these results in point process theory,
their derivations are remarkably simple. Moreover, these re-
sults provide additional tools to tackle more complex problems
in multi-object systems. To demonstrate the use of both results,
we develop a principled solution to an observer trajectory
optimization problem for multi-target tracking, where the goal
is to obtain the most accurate estimates for an unknown and
time-varying number of targets, whilst maintaining a safe
distance from any of the targets. Using GLMBs to model
the collection of targets, we formulate the problem as a
constrained partially observed Markov decision process, with a

1Preliminary work on the Cauchy-Schwarz divergence for GLMBs, with
an application to trajectory planning for bearings-only tracking, has appeared
in the authors’ conference paper [41].
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Cauchy-Schwarz divergence based reward function and a void-
probability based constraint, both of which can be evaluated
analytically.

The paper is organized as follows. In Section II we provide
some background on random finite sets, void probabilities and
the Cauchy-Schwarz divergence. In Section III we describe
the GLMB point process model and its properties, including
analytic expressions for the void probability and Cauchy-
Schwarz divergence. In Section IV we present an application
of the new results, by developing a solution to a sensor
management problem for dynamic Bayesian inference of a
point process. Finally, we make some concluding remarks in
Section V.

II. BACKGROUND

In this work, we consider a state space X ⊆ Rd, and adopt
the inner product notation 〈f, g〉 ,

´
f (x) g (x) dx; the L2-

norm notation ‖f‖ ,
√
〈f, f〉; the multi-object exponential

notation fX ,
∏
x∈X f (x), with f∅ = 1 by convention.

Given a set S, 1S (·) denotes the indicator function of S, F (S)
denotes the class of finite subsets of S, and Si denotes the ith-
fold Cartesian product of S, with the convention S0 = {∅}.
The cardinality (or number of elements) of a finite set X is
denoted by |X|. The Kroneker delta function is denoted by
δn [·], which is 1 if the argument is equal to n, and 0 otherwise.

A. Random Finite Sets

Point process theory, in general, is concerned with random
counting measures. Our results are restricted to the simple-
finite point processes, which can be regarded as random finite
sets (RFSs) [5]. Hence, for compactness we omit the prefix
“simple-finite” and use the terms point process and RFS
interchangably. For an introduction to the subject we refer the
reader to the article [5], and for detailed treatments, textbooks
such as [1]–[3].

A random finite set (RFS) X , defined on the space X, is
a random variable taking values in F (X), i.e. a finite set-
valued random variable. Both the number of elements and the
value of the elements of an RFS are random. There are several
constructs for specifying the probability law of an RFS. The
most convenient of these for the exposition of the two main
results of this paper is the belief (or containment) functional
B, given by

B (S) = Pr (X ⊆ S) (1)

for any (closed) S ⊆ X [2], [4], [19], [30]. In fact, the belief
functional uniquely determines the probability law of a random
closed set (and hence an RFS) via Choquet’s capacity theorem.

B. Void Probability Functional

The void probability of an RFS X on a (compact) subset
S ⊆ X is the probability that S contains no points of X ,
i.e. Pr (X ∩ S = ∅), or equivalently the probability that X is
contained in the complement of S, i.e. Pr (X ⊆ X− S) [2],
[4]. Thus, in terms of the belief functional the void probability
(or avoidance) functional Q is given by

Q (S) = B (X− S) . (2)

As a consequence of Choquet’s capacity theorem [4], [30],
the probability law of an RFS is uniquely defined by the void
probability functional. Rényi also established, using a different
line of argument, that the law of a simple point process is
uniquely determined by the void probabilities on the bounded
Borel sets of X [1]–[3].

The void probability functional is a more intuitive descriptor
of an RFS than its probability distribution. Void probabilities
at different regions provide a sense of how the number and
locations of the points in an RFS are distributed across the state
space. The concept of void probability is also directly appli-
cable to the more general class of random closed sets. Indeed,
Choquet’s capacity theorem implies that the void probabilities
uniquely determine the probability law of a random closed set
[2], [4], [30]. Note that the void probability on a given region
for the union of two independent RFSs is simply the product
of their individual void probabilities.

C. Cauchy-Schwarz Divergence

Geometrically, the Cauchy-Schwarz divergence determines
the information “difference” between random variables, from
the angle subtended by their probability densities [24], [25].
Algebraically, it is based on the Cauchy-Schwarz inequality
for the inner product between the probability densities of the
random variables.

Since the belief functional is not a measure, the standard
notion of density as a Radon-Nikodym derivative is not
applicable. Nevertheless, an alternative notion of density can
be defined via Mahler’s set calculus [18], [19]. The belief
density of an RFS X is a non-negative function π on F (X)
such that for any S ⊆ X,

B (S) =

ˆ
S

π (X) δX, (3)

where the integral above is Mahler’s set integral defined by
[18], [19]
ˆ
S

π (X) δX =

∞∑
i=0

1

i!

ˆ
Si

π ({x1, ..., xi}) d (x1, ..., xi) (4)

(note that since S0 = {∅}, the integral over S0 is simply
π (∅)). That is, the set integral of the belief density π over a
region S, yields the probability that X is contained in S. Note
that π (X) has dimension K−|X|, where K denotes the unit
of hyper-volume on X.

While the belief density π is not a probability density, the
dimensionless function on F (X) defined by π (X)K |X| is
indeed a probability density with respect to the measure µ
given by [23]

µ (T ) =

∞∑
i=0

1

i!Ki

ˆ
X i

1T ({x1, ..., xi}) d (x1, ..., xi) (5)

for any measurable T ⊆ F (X).
In [29], the Cauchy-Schwarz divergence was extended to

random finite sets via the inner product of their probability
densities relative to the reference measure µ. Using the re-
lationship between probablity density and belief density, the
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Cauchy-Schwarz divergence between two RFSs, with respec-
tive belief densities φ and ϕ, is given by

DCS(φ, ϕ) = − ln

´
K |X|φ(X)ϕ(X)δX√́

K |X|φ2(X)δX
´
K |X|ϕ2(X)δX

. (6)

Note that DCS (φ, ϕ) is invariant to the unit of hyper-volume
K (using the same line of arguments as in [29, Section III-A]).

D. Poisson Point Process

The intensity function of an RFS X , is a non-negative
function v (on X) whose integral over any (Borel) S ⊆ X
gives the expected number of elements of the RFS that are in
S [1]–[3], i.e.

E [|X ∩ S|] = 〈1S , v〉 . (7)

Since 〈1S , v〉 is the expected number of points of X in
the region S, the intensity value v (x) can be interpreted as
the instantaneous expected number of points per unit hyper-
volume at x. Thus, in general, v (x) is not dimensionless, but
has units of K−1. The intensity function is the first moment
of an RFS, and can be computed from the belief density π by
[18], [19]

v (x) =

ˆ
π ({x} ∪X) δX. (8)

A Poisson point process is completely characterized by its
intensity function v. The cardinality of a Poisson point process
is Poisson distributed with mean 〈1, v〉, and conditional on
the cardinality, its elements are independently and identi-
cally distributed (i.i.d.) according to the probability density
v (·) / 〈1, v〉 [1]–[3]. It is implicit that 〈1, v〉 is finite, since we
only consider simple-finite point processes.

The void probability functional and belief density of a
Poisson point process with intensity function v are given,
respectively, by [2], [3], [18], [19]

Q (S) = e−〈1S ,v〉, (9)
π (X) = e−〈1,v〉vX . (10)

Moreover, the Cauchy-Schwarz divergence between two Pois-
son point processes is given by half the squared L2-distance
between their intensity functions [29]. As a consequence, the
Bhattacharyya distance between the probability distributions of
two Poisson point processes is the squared Hellinger distance
between their respective intensity measures. For Gaussian
mixture intensity functions, the Cauchy-Schwarz divergence
can be evaluated analytically. These results were also extended
to mixtures of Poisson point processes [29].

III. GENERALIZED LABELED MULTI-BERNOULLI

The Poisson point process is endowed with many elegant
mathematical properties [1], [2], [20], including analytic void
probabilities and Cauchy-Schwarz divergence, but it is rather
simplistic for many practical problems. Bayesian inference
of hidden (possibly dynamic) point processes from observed
data is a fundamental problem that arises in multi-object
systems, with applications spanning several disciplines. For
most data models, the posterior distributions of the underlying

point processes are not Poisson [18], [19]. Although Poisson
approximations, such as probability hypothesis density (PHD)
filters, are numerically attractive [18], the Poisson model can
neither capture the dependence between the points, nor permit
the inference of the trajectories of the points over time.

The generalized labelled multi-Bernoulli (GLMB) is a
class of tractable models for on-line Bayesian inference that
alleviates the limitations of the Poisson model [35], [36].
Although sophisticated models in the spatial point process
literature such as Cox, Neyman-Scott, Gauss-Poisson, Markov
(or Gibbs) [1]–[3], are able to accommodate interactions such
as repulsion, attraction or clustering, they cannot capture
exactly the general inter-point dependencies in the posterior
distribution that transpires through the data. In other words,
they are not conjugate with respect to the standard multi-object
measurement likelihood function. Moreover, these models are
neither amenable to on-line computation, nor to the inference
of trajectories.

In this section, we revisit the GLMB model [35] and some
of its analytical properties. In addition, we present closed form
expressions for the void probability functional and the Cauchy-
Schwarz divergence for the GLMB.

A. Labeled RFS

Let L be a discrete space, and L : X×L → L be the
projection defined by L (x, `) = `. Then L (x) is called the
label of the point x ∈ X×L, and a finite subset X of X×L is
said to have distinct labels if and only if X and its label set
L (X) = {L (x) : x ∈ X} have the same cardinality.

A labeled RFS is a marked point process with state space X
and mark space L such that each realization has distinct labels
[35]. In dynamic Bayesian inference, the posterior distribution
of the underlying point process is computed recursively in time
as data arrives, and the distinct labels provide a means of
identifying the trajectories of individual points. A trajectory is
defined as a time-sequence of points with the same label. The
distinct label property ensures that, at any given time instant,
no two points can share the same label, and hence no two
trajectories can share any common points.

The unlabeled version of a labeled RFS is its projection
from X×L into X, and is obtained by simply discarding the
labels. The cardinality distributions of a labeled RFS and its
unlabeled counterpart are identical [35]. However, the intensity
function v (·, ·) (defined on X×L) of a labeled RFS is related
to its unlabeled counterpart v (·) (defined on X) by [35]

v (x) =
∑
`∈L

v (x, `) . (11)

For the rest of the paper, points are represented by lowercase
(e.g. x, x), while point patterns (or finite sets of points) are
represented by uppercase (e.g. X , X). Symbols for labeled
points, labeled point patterns, and their distributions are bolded
(e.g. x, X, π) to distinguish them from unlabeled ones, and
spaces are represented by blackboard bold (e.g. X, Z, L).
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B. GLMBs and their Properties

A GLMB is a labeled RFS with belief density on F (X×L)
of the form

π (X) = ∆ (X)
∑
c∈C

w(c) (L (X))
[
p(c)
]X

, (12)

where ∆ (X) , δ|X| (|L (X)|) is the distinct label indicator, C
is a discrete and finite index set, each p(c) (·, `) is a probability
density on X, and each w(c) (L) is non-negative with∑

L⊆L

∑
c∈C

w(c) (L) = 1. (13)

By convention, p(c) (x, `) are measured in units of K−1, and
consequently, π (X) has units of K−|X|. The belief density
(12) is a mixture of multi-object exponentials, with each com-
ponent consisting of a weight w(c) (L (X)) that depends only
on the labels of X, and a multi-object exponential

[
p(c)
]X

.
Such a structure provides the flexibility for the GLMB to
capture the dependence between points that transpires via
the data, and also admits a number of convenient analytical
properties, which are summarised as follows.
• For the standard multi-object system model that accounts

for thinning, Markov shifts and superposition, the GLMB
family is a conjugate prior, and is also closed under the
Chapman-Kolmogorov equation [35].

• The GLMB density can be approximated to any L1-norm
error by truncating components [36]. More precisely, let
us explicitly denote the dependence on the index set C
of a (possibly unnormalized) GLMB density by

fC(X) = ∆ (X)
∑
c∈C

w(c) (L (X))
[
p(c)
]X

(14)

and let ‖f‖1 ,
´
|f (X)| δX denote the L1-norm of

f : F (X×L)→ R. If D ⊆ C then

||fC − fD||1=
∑

c∈C−D

∑
L⊆L

w(c) (L) . (15)

• The cardinality distribution and intensity function of a
GLMB are respectively given by

Pr (|X|=n) =
∑
c∈C

∑
L⊆L

δn [|L|]w(c) (L) , (16)

v (x, `) =
∑
c∈C

p(c) (x, `)
∑
L⊆L

1L (`)w(c) (L) . (17)

• The GLMB is flexible enough to approximate any labeled
RFS density, by matching the intensity function and
cardinality distribution. Furthermore, there is a simple
closed form that mimimizes the Kullback-Leibler diver-
gence between the labelled RFS density and its GLMB
approximation [42].

As shown above, the GLMB family possesses some useful
analytical properties. There is also an elegant characterisation
of the GLMB using the probability generating functional
(p.g.fl.) by Mahler [19]. In the following subsection, we derive
two additional properties of the GLMB, which have some
potentially useful applications.

C. Void Probability Functional

Proposition 1. For a GLMB with belief density π of the form
(12), the void probability functional is given by

Qπ (S) =
∑
L⊆L

∑
c∈C

w(c) (L)
∏
`∈L

〈
1− 1S , p

(c) (·, `)
〉
. (18)

Proof: Using (2) and (3), the void probability functional
can be expressed as

Qπ (S) =

ˆ
X−S

π (X) δX (19)

=

ˆ
X−S

∆(X)
∑
c∈C

w(c)(L (X))
[
p(c) (·)

]X
δX.

(20)

Applying Lemma 3 from [35], yields the result

Qπ (S) =
∑
L⊆L

∑
c∈C

w(c) (L)

[ˆ
X−S

p(c) (x, ·) dx
]L

(21)

=
∑
L⊆L

∑
c∈C

w(c) (L)
∏
`∈L

〈
1− 1S , p

(c) (·, `)
〉
. (22)

In simple cases, the inner product
〈
1− 1S , p

(c) (·, `)
〉

may
be computable in closed form, in which case the void probabil-
ity has an exact analytical solution. However, in more general
cases, a closed form may not exist, and it must therefore be
computed using numerical methods such as cubature or Monte
Carlo integration. This yields an approximation to the true void
probability for the GLMB.

In general, the computational complexity is O (N +M),
where N is the number of pairs (c, L) ∈ C × F (L) such
that w(c) (L) 6= 0, and M is the number of unique single-
object densities p(c) (·, `). In many applications, the GLMB
may contain a large number of single-object densities which
are common across many elements of the sum, in which case
the inner product only needs to be computed once for each
unique single-object density.

The analytic expression for the GLMB void probability
functional is of theoretical interest in itself, since it provides
an alternative means of completely specifying a GLMB point
process. However, it also holds significant practical interest,
since it can be used to compute statistics that can conceivably
be applied in a wide range of real-world problems.

In multi-object estimation and control, the GLMB void
probability functional could supply useful information that
can be applied in tasks such as trajectory planning (e.g.
for collision avoidance), sensor management (e.g. focussing
sensor resources on regions where targets are likely to be
present), or the provision of situational awareness (e.g. ad-
vance warning of possible collisions between objects). The
GLMB is a flexible model which has been used to develop
algorithms for target tracking [35], [36], [43] and simultaneous
localization and mapping [33]. Indeed, the GLMB has been
applied in autonomous vehicle systems [43], where trajectory
planning and situational awareness for collision avoidance
are paramount. It has also been applied to the tracking of
orbital space debris [44], [45], for which the scheduling and
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management of observation equipment is a significant issue,
as well as the planning of satellite trajectories to minimize the
probability of collision with tracked debris.

D. Cauchy-Schwarz Divergence

Using the definition in equation (6), we show that the
Cauchy-Schwarz divergence between two GLMBs can be
expressed in closed form.

Proposition 2. For two GLMBs with belief densities

φ (X) = ∆ (X)
∑
c∈C

w
(c)
φ (L (X))

[
p

(c)
φ (·)

]X
, (23)

ψ (X) = ∆ (X)
∑
d∈D

w
(d)
ψ (L (X))

[
p

(d)
ψ (·)

]X
, (24)

where both p
(c)
φ and p

(d)
ψ are measured in units of K−1, the

Cauchy-Schwarz divergence between φ and ψ is given by

DCS (φ,ψ) = − ln

(
〈φ,ψ〉K√

〈φ,φ〉K 〈ψ,ψ〉K

)
, (25)

where

〈φ,ψ〉K =
∑
L⊆L

∑
c∈C
d∈D

w
(c)
φ (L)w

(d)
ψ (L)

∏
`∈L

K
〈
p

(c)
φ (·, `) , p(d)

ψ (·, `)
〉

〈φ,φ〉K =
∑
L⊆L

∑
c∈C
d∈C

w
(c)
φ (L)w

(d)
φ (L)

∏
`∈L

K
〈
p

(c)
φ (·, `) , p(d)

φ (·, `)
〉

〈ψ,ψ〉K =
∑
L⊆L

∑
c∈D
d∈D

w
(c)
ψ (L)w

(d)
ψ (L)

∏
`∈L

K
〈
p

(c)
ψ (·, `) , p(d)

ψ (·, `)
〉

(26)

Proof: If φ (X) and ψ (X) are two GLMBs defined by
(23) and (24), the inner product is given by

〈φ,ψ〉K =

ˆ
K |X|φ (X)ψ (X) δX

=

ˆ
K |X|∆ (X)

∑
c∈C

w
(c)
φ (L (X))

[
p

(c)
φ (·)

]X
×
∑
d∈D

w
(d)
ψ (L (X))

[
p

(d)
ψ (·)

]X
δX

=

ˆ
∆ (X)

∑
c∈C

∑
d∈D

w
(c)
φ (L (X))w

(d)
ψ (L (X))

×
[
Kp

(c)
φ (·) p(d)

ψ (·)
]X

δX.

Making use of Lemma 3 in [35], this becomes

〈φ,ψ〉K =
∑
L⊆L

∑
c∈C
d∈D

w
(c)
φ (L)w

(d)
ψ (L)

[
K

ˆ
p

(c)
φ (x, ·) p(d)

ψ (x, ·) dx
]L

=
∑
L⊆L

∑
c∈C
d∈D

w
(c)
φ (L)w

(d)
ψ (L)

∏
`∈L

K
〈
p

(c)
φ (·, `) , p(d)

ψ (·, `)
〉

and similarly for 〈φ,φ〉K and 〈ψ,ψ〉K . Substituting these into
(6), yields the result (25)-(26).

In cases where the inner product between two single-object
densities p(c)

φ and p
(d)
ψ of the GLMBs has an analytical so-

lution, then the Cauchy-Schwarz divergence between the two
GLMBs can also be evaluated analytically. However, where
this is not possible, numerical approximations can be used to
evaluate the inner products. The common case in which the
single-object densities are Gaussian mixtures, does admit an
analytical solution, as established in the following proposition.

Proposition 3. Let φ and ψ be two GLMBs of the form (23)
and (24) in which the single-object densities are Gaussian
mixtures, i.e.

p
(c)
φ (x, `) =

N
(c)
φ∑
i=1

ω
(c)
φ,i (`)N

(
x;m

(c)
φ,i (`) , P

(c)
φ,i (`)

)
, (27)

p
(d)
ψ (x, `) =

N
(d)
ψ∑
i=1

ω
(d)
ψ,i (`)N

(
x;m

(d)
ψ,i (`) , P

(d)
ψ,i (`)

)
, (28)

where both p
(c)
φ and p

(d)
ψ are measured in units of K−1.

The Cauchy-Schwarz divergence between φ and ψ can be
expressed in analytical form, since 〈φ,ψ〉K in (26) reduces
to

〈φ,ψ〉K =
∑
L⊆L

∑
c∈C

∑
d∈D

w
(c)
φ (L)w

(d)
ψ (L) [γφ,ψ]

L (29)

where

γφ,ψ (`) =

N
(c)
φ∑
i=1

N
(d)
ψ∑
j=1

ω
(c)
φ,i (`)ω

(d)
ψ,j (`) (30)

×N
(
m

(c)
φ,i (`) ;m

(d)
ψ,j (`) , P

(c)
φ,i (`)+P

(d)
ψ,j (`)

)
,

and similarly for 〈φ,φ〉K and 〈ψ,ψ〉K .

Proof: Substituting (27) and (28) into the inner product
in (26), gives〈
p

(c)
φ (·, `) , p(d)

ψ (·, `)
〉

=

N
(c)
φ∑
i=1

N
(d)
ψ∑
j=1

ω
(c)
φ,i (`)ω

(d)
ψ,j (`)

×
ˆ
N
(
x;m

(c)
φ,i(`) , P

(c)
φ,i(`)

)
N
(
x;m

(d)
ψ,j(`) , P

(d)
ψ,j(`)

)
dx,

which is measured in units of K−1. Applying the identity for
a product of two Gaussians [47, pp. 200], and multiplying by
K, we are left with the unitless quantity

K
〈
p

(c)
φ (·, `) , p(d)

ψ (·, `)
〉

= γφ,ψ (`) , (31)

where γφ,ψ (`) is given by (30). Substituting (31) into (26),
yields the result (29).

Remark: A GLMB φ is completely paramterized by the set{(
w

(c)
φ (L) , p

(c)
φ

)
: (c, L) ∈ C×F (L)

}
and we refer to each element

(
w

(c)
φ (L) , p

(c)
φ

)
of this set as

a component of a GLMB. Due to the nested summations in
(26) or (29), a naive implementation will have a computational
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complexity of O
(
MN +M2 +N2

)
, where M and N are the

number of components of φ and ψ with non-zero weights.
This leads to the summations being taken only over pairs of
components with matching label sets. It is therefore possible
to reduce computation using associative data structures to
facilitate finding these matching pairs. Although this does
not reduce the worst case complexity, the average will be
significantly better.

Note that if w
(c)
φ (L) = 0 or w

(d)
ψ (L) = 0 for all

triples(L, c, d) ∈ F (L)× C× D, then 〈φ,ψ〉K will evaluate
to zero, (i.e. φ and ψ are orthogonal) leading to a Cauchy-
Schwarz divergence of infinity. This is an intuitive result as
two such GLMBs have no non-zero components with matching
labels.

IV. APPLICATION TO SENSOR MANAGEMENT

In this section, we apply the proposed closed form solutions
for the Cauchy-Schwarz divergence and void probabilities to a
multi-target sensor management problem. In most target track-
ing scenarios, the sensor may perform various actions that can
have a significant impact on the quality of the observed data,
and can therefore influence the estimation performance of the
tracking system. Typically, such actions might include changes
in the position, orientation or motion of sensor platforms [48]–
[51], changes to sensor deployment and utilization [52], [53],
or altering the sensor operating parameters such as the beam
pattern [54], [55], or transmit waveform [56], [57]. The control
actions affect the information content of the received data,
which in turn affects the system’s ability to detect, track, and
identify the targets.

Often, the control decisions are driven by manual interven-
tion, which provides no guarantee of optimality. The goal
of automatic sensor management is to determine the best
control actions, based on some optimality criteria. This has the
potential to improve tracking performance, by making control
decisions in a systematic and optimal manner that accounts
for the prevailing conditions.

A. Problem Statement

In this application, the aim is to perform sensor control in
the context of a multi-target tracking system that is based upon
the standard models of multi-object dynamics and multi-object
observations. In the standard multi-object dynamic model, at
time k − 1, each target xk−1 of a multi-object state Xk−1

generates a set Sk|k−1(xk−1) at time k, which is a singleton
if the target survives, or an empty set if the target dies. New
targets appearing at time k are represented by a set Bk. Thus,
the multi-object state Xk generated by Xk−1 is given by the
multi-object state transition equation

Xk =
⋃

xk−1∈Xk−1

Sk|k−1(xk−1) ∪Bk. (32)

This transition equation captures the underlying models of
object motion, births and deaths, more details of which can
be found in [35, Section IV-D].

In the standard multi-object observation model, each target
xk ∈ Xk generates a set Dk(xk) which is a singleton if the

target is detected, or empty if the target is misdetected. The
observation Zk generated by Xk is given by the multi-object
observation equation

Zk =
⋃

xk∈Xk

Dk(xk) ∪ Fk, (33)

where Fk is a set of false detections. Note that in general, the
observation will depend on the chosen control action, which
we omit for compactness of notation. In the standard obser-
vation model, the multi-object observation equation captures
underlying models of target detections, measurement noise,
and false alarms, and the reader is referred to [35, Section IV-
C] for more details. Note that the measurements do not contain
any specific information to associate them with a particular
object, thus the origin of any particular observation is not
certain.

The quality of the observations (i.e. the detection probability
and measurement noise) is dependent on the state of the
objects and the sensor itself, for example, objects that are
further away from the sensor generally have lower probability
of detection and higher measurement noise. For this reason,
the control of the sensor can have a significant influence on
the tracking performance.

Here we address the problem of controlling the motion
of a single sensor platform, with the aim of optimizing
the tracking performance under the aforementioned dynamic
and observation models. Since the control actions affect the
observation quality, the goal is to design a scheme which
can automatically select control actions that yield the most
‘informative’ observations. This is a difficult problem due to
the unknown and time-varying number of targets, and the
uncertainty in the multi-object state due to the measurement
noise, object detection/misdetection, and unknown measure-
ment origin.

B. Control Strategy

We now proceed to formulate the control problem as a
partially observable Markov decision processes (POMDP)
[58]–[61]. In general terms, the elements of a POMDP are
as follows.

1) The system dynamics is a Markov process.
2) The observations follow a known distribution, condi-

tioned on the state and the sensor control action.
3) The true state of the system is unknown, but we have

access to the posterior probability density function (pdf)
of the state conditioned on past observations.

4) The benefit of performing a given action can be ex-
pressed by a reward function, which characterises the
objectives of the control system.

In this case, the dynamics is modelled by (32) and the
observations are modelled by (33). The posterior pdf of the
system state is modelled as a GLMB of the form (12), since it
enables tractable estimation of object trajectories to inform the
control strategy. In general, there are two broad categories of
reward function that can be used in a POMDP, namely, ‘task-
based’ and ‘information-based’ reward. Task-based reward
functions (see for example [39]) are useful in situations where
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the control problem can be formulated in terms of a single
well-defined objective. However, in situations where this does
not exist, the information-based approach is more appropriate,
as it strives to capture the information gain in an overall sense
(for example [27]). In this example, the reward function is
formulated in terms of an information divergence between
prior and posterior multi-object densities, which bears a strong
relationship to the improvement in estimation accuracy, since
higher information divergence indicates greater information
gain, which leads to more accure track estimates.

It is also possible to place constraints on the control
problem, which is useful in cases where it is foreseeable that
certain actions might result in undesireable side-effects. For
example, to guarantee the safety or covertness of the sensor
platform, we might want to ensure that no targets enter a
predefined exclusion region around the sensor. This can be
achieved using a constrained POMDP [62], [63], in which the
goal is to find the control action that maximises the reward
function, subject to one or more constraints.

Within the POMDP framework, the most computationally
tractable strategy is to use myopic open-loop feedback control
[58], with a discrete action space. The term ‘myopic’ means
that the algorithm only decides one control action at a time,
rather than planning multiple actions into the future.

At the time that a control action is performed, we have
no knowledge of the posterior density that would arise from
taking that action. Since this precludes calculation of the
true information divergence, its expectation with respect to
all possible future measurements is taken [27], [64]. More
precicely, let us begin by defining the following notation
• πk (·|Z1:k) is the posterior density at time k,
• Ak is a discrete space of control actions at time k,
• H is the length of the control horizon,
• πk+H (·|Z1:k) is the predicted density at time k+H given

measurements up to time k,
• Zk+1:k+H (α) is the collection of measurement sets that

would be observed from times k + 1 up to k + H , if
control action α ∈ Ak was executed at time k,

• Vk (α) is the exclusion region around the sensor at time
k under control action α,

• Qπ (S) is the void probability functional corresponding
to the multi-object density π over region S,

• Pvmin is the minimum void probability threshold.
The optimal control action is given by maximising the ex-
pected value of a reward function Rk+H (·) over the space of
allowable actions [27],

αopt = arg max
α∈Ak

E [Rk+H (α)] , (34)

subject to the constraint

min
i∈{1,...,H}

[
Qπk+i(X|Z1:k) (Vi (α))

]
> Pvmin. (35)

where the expectation is taken with respect to the future
measurement sets Zk+1:k+H (α).

In general, Monte Carlo integration is used to compute the
expected reward in (34) because analytic solutions are not
available. For each control action α, this involves drawing
samples Z(i)

k+1:k+H (α) for i = 1, . . . , N , then computing the

reward R(i)
k+H (α) conditioned on each sample. The samples

Z
(i)
k+1:k+H (α) are obtained by first sampling from πk (·|Z1:k),

then propagating each sample through the transition model
up to the horizon time, and finally simulating a set of mea-
surements from time k + 1 to time k + H according to the
measurement model. An estimate of the expected reward is
given by the mean of the reward over all the samples,

E [Rk+H (α)] ≈ 1

N

N∑
i=1

R(i)
k+H (α) . (36)

Since we are sampling directly from the current distribution of
Zk+1:k+H , using the true transition and measurement models,
this method converges to the true expectation of the reward as
the number of samples is increased.

In (36), R(i)
k+H (α) is usually computed by Monte Carlo

integration, for example [27]. Hence, the variance of the Monte
Carlo estimate of the expected reward will depend on the
number of samples used to calculate each R(i)

k+H (α), as well
as the number of measurement samples N . On the other
hand, a closed form expression for R(i)

k+H (α) would lead to
a smaller variance in the estimate of the expected reward, by
the principle of Rao-Blackwellization [65].

The constraint (35) is the minimum value of the void
probability up to the control horizon, where the value at time
k + i is computed based on the predicted density at that time
given measurements up to time k. The constraint is satisfied
if this minimum value is greater than the threshold Pvmin.

C. Generalised Labelled Multi-Bernoulli Tracking Filter

This section contains a brief outline of the GLMB Bayes
recursion, which is an essential estimation component in our
POMDP-based control scheme.

Each target is labeled with an ordered pair of integers ` =
(k, i), where k is the time of birth, and i is a unique index to
distinguish targets born at the same time. The label space for
targets born at time k is denoted as Lk and the label space
for all targets at time k (including those born prior to k) is
denoted as L0:k. Note that L0:k = L0:k−1 ∪ Lk.

An existing target at time k has state (x, `) consisting of the
kinematic/feature x ∈ X and label ` ∈ L0:k, i.e. single-target
state space X is the Cartesian product X×L0:k. An association
map at time k is a function θ : L0:k → {0, 1, ..., |Z|} such
that θ (`) = θ (`′) > 0 implies ` = `′. Such a function can
be regarded as an assignment of labels to measurements, with
undetected labels assigned to 0. The set of all such association
maps is denoted as Θk, the subset of association maps with
domain L is denoted by Θk (L), and Θ0:k , Θ0 × ...×Θk.

In the GLMB filter, the multi-target filtering density at time
k − 1 is a GLMB denoted by

πk−1(X|Zk−1) = ∆(X)
∑

c∈Θ0:k−1

w
(c)
k−1(L (X))

[
p

(c)
k−1

]X
(37)

The set of targets Bk born at time k is modelled by a GLMB
with one term: fB,k (X) = ∆ (X)wB,k (L (X)) pXB,k (a full
GLMB birth can also be easily accommodated) [35]. The
probability that a target with state xk−1 survives from time
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k − 1 to time k is PS,k|k−1 (xk−1). If a target survives, it
transitions to a new state Sk (xk−1) = {(xk, `k)} at time k
according to the transition kernel

fk|k−1 (xk, `k|xk−1, `k−1) (38)
= fk|k−1 (xk|xk−1, `k−1) δ`k−1

[`k] ,

otherwise the target dies and Sk (xk−1) = ∅.
Under the standard multi-object dynamic model, if the

multi-object filtering density πk−1 at the previous time is
a GLMB of the form (37), then the multi-object prediction
density πk|k−1 is a GLMB given by [35]

πk|k−1(X|Zk−1) = ∆(X)
∑

c∈Θ0:k−1

w
(c)
k|k−1(L (X))

[
p

(c)
k|k−1

]X
,

(39)
where

w
(c)
k|k−1 (L) = w

(c)
S,k|k−1 (L ∩ L0:k−1)wB,k (L ∩ Lk) ,

p
(c)
k|k−1 (x, `) = 1L0:k−1

(`) p
(c)
S,k|k−1(x, `)+1Lk

(`) pB,k(x, `) ,

w
(c)
S,k|k−1 (L) =

[
P̄

(c)
S,k|k−1

]L∑
I⊇L

[
1−P̄ (c)

S,k|k−1

]I−L
w

(c)
k−1(I) ,

P̄
(c)
S,k|k−1 (`) =

〈
PS,k|k−1 (·, `) , p(c)

k−1 (·, `)
〉
,

p
(c)
S,k|k−1 (x, `) =

〈
PS,k|k−1(·, `) fk|k−1(x, `|·, `) , p(c)

k−1(·, `)
〉

P̄
(c)
S,k|k−1 (`)

,

Each target is detected with probability PD,k (xk), and if
detected generates a singleton measurement Dk (xk) = {zk}
with probability density gk (zk|xk), otherwise it generates the
empty set Dk = ∅. The RFS of false alarms Fk is Poisson
with intensity function κ (·). Under the standard multi-object
observation model, if the predicted multi-object density is a
GLMB of the form (39), the posterior multi-object density
πk (·|Zk) is a GLMB given by

πk (X|Zk) = (40)

∆(X)
∑

c∈Θ0:k−1

∑
θ∈Θk

w
(c,θ)
k (L (X) |Zk)

[
p(c,θ) (·|Zk)

]X
,

where

w
(c,θ)
k (L|Z) ∝ 1Θk(L) (θ)

[
Ψ̄

(c,θ)
Z,k

]L
w

(c)
k|k−1 (L) ,

Ψ̄
(c,θ)
Z,k (`) =

〈
Ψ

(θ)
Z,k (·, `) , p(c)

k|k−1 (·, `)
〉
,

Ψ
(θ)
Z,k (x, `) = [1− PD,k (x, `)]

δ[θ(`)]

×

[
PD,k (x, `) gk

(
zθ(`)|x, `

)
κ
(
zθ(`)

) ]1−δ[θ(`)]

p
(c,θ)
k (x, `|Z) =

Ψ
(θ)
Z,k (x, `) p

(c)
k|k−1 (x, `)

Ψ̄
(c,θ)
Z,k (`)

.

Note that in this application, these functions will all depend on
the control action α, which has been omitted for compactness
of notation.

The GLMB density is thus a conjugate prior with respect to
the standard multi-object likelihood function and is also closed

under the multi-object prediction. Consequently, starting with
an initial prior density in GLMB form, under the standard
data and dynamic model, the posterior density at any time
is also a GLMB. The recursion above is the first exact
closed form solution to the Bayes multi-target filter. In [36]
an implementation of the GLMB filter based on discarding
‘insignificant’ components was detailed, and it was shown
that such truncation minimizes the L1 error in the multi-target
density. This algorithm has a worst case complexity that is
cubic in the number of observations.

D. Reward Function

For the reason discussed in Section IV-B, the existence
of a closed form reward function is desirable in POMDPs.
This would be particularly beneficial in this application, since
the difference between the expected rewards of the various
control actions can be quite small, and may become obscured
by the variance induced by the Monte Carlo estimation (36).
Any reduction in this variance will clearly help in correctly
identifying the optimal control action.

For the case of the GLMB, common information divergence
measures such as the Kullback-Liebler or Rényi divergences
cannot be expressed in analytical form. Thus, their use in this
problem would require Monte Carlo integration, resulting in a
higher variance in the expected reward, as well as increased
computational load. To alleviate this, we use the Cauchy-
Schwarz divergence between prior and posterior GLMB den-
sities as the reward function, i.e.

R(i)
k+H (α) = DCS

(
πk+H (X|Z1:k) , (41)

πk+H

(
X|Z1:k, Z

(i)
k+1:k+H (α)

))
.

E. Constraint

To enforce the constraint, we compute the void probability
over an exclusion region around the sensor, for the predicted
GLMB density at each time step up to the horizon. We use
a circular exclusion region, centered at the sensor location,
with radius rV . Evaluation of the void probability requires
integrating each single-object density in the GLMB over the
exclusion region. For a 2-dimensional Gaussian pdf and a cir-
cular region, this does not have an analytical solution. Hence,
we use adaptive cubature to approximate these integrals, before
using them to compute the void probability.

The goal is to ensure that the separation between sensor
and targets always exceeds rV , i.e. the control action α is
feasible if the constraint (35) is satisfied. That is, for each
action we find the minimum void probability up to the horizon,
and enforce the constraint that this minimum must exceed the
threshold Pvmin, otherwise the action cannot be selected.

F. Simulation Results

In this section, the control strategy is applied to the problem
of observer trajectory optimization for multi-target tracking.
This application involves a single sensor that provides bearing
and range measurements, where the noise on the measured
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bearings is constant for all targets, but the range noise is state-
dependent, increasing as the true range between the sensor
and target increases. The detection probability is also range-
dependent, reducing as the range increases. Targets closer to
the sensor are therefore detected with both higher probability
and accuracy, and vice versa for targets that are further away.

For this problem, the state-dependency of the measurement
noise and detection probability will be the main effect driving
the control, and one would expect the algorithm to move the
sensor towards the targets, in order to minimise noise and
maximise the detection probability. However, in the presence
of multiple targets, this can easily lead to conflicting control
influences. The goal of the control algorithm is to resolve these
conflicts, by attempting to provide a decision that optimizes
the multi-target estimation performance in an overall sense.

The target kinematics are modelled using 2D Cartesian po-
sition and velocity vectors xk =

[
tx,k ṫx,k ty,k ṫy,k

]T
,

and they are assumed to move according to the following
discrete white noise acceleration model,

xk = Fxk−1 + Γvk−1, (42)

F =

[
1 T
0 1

]
⊗ I2, Γ =

[
T 2/2
T

]
⊗ I2

where T is the sampling period, vk−1 ∼ N (0, Q) is a 2× 1
independent and identically distributed Gaussian process noise
vector with Q = σ2

vI2, where σv is the standard deviation of
the target acceleration. The sensor measures the target bearing
and range, where the measurement corresponding to a target
state xk and sensor position uk =

[
sx,k sy,k

]
at time k is

given by

zk = h (xk, uk) + wk (xk, uk) (43)

where wk (xk, uk) ∼ N
(
0, diag

([
σ2
θ σ2

r (xk, uk)
]))

is a
2×1 Gaussian measurement noise vector, and the measurement
function h is given by

h (xk, uk) =

 arctan
(
ty,k−sy,k

tx,k−sx,k

)√
(tx,k−sx,k)

2
+(ty,k−sy,k)

2

 . (44)

The variance of the bearing measurement noise σ2
θ is a fixed

constant for all targets, but the variance of the range noise σ2
r

is a function of the target and sensor states. In this example,
we model the range noise in a piecewise manner as follows,
in which D (xk, uk) denotes the true distance between a target
with state xk and the sensor with state uk,

σ2
r (xk, uk)=


(ηR1)

2
, D (xk, uk) ≤ R1

(ηD (xk, uk))
2
, R1<D (xk, uk)<R2

(ηR2)
2
, D (xk, uk) ≥ R2

, (45)

i.e. the noise standard deviation is the true range mutiplied
by the factor η, but the minimum is capped at ηR1, and
the maximum is capped at ηR2. The detection probability is
modeled using the following function of the true range,

pD (xk, uk) =
N
(
D (xk, uk) ; 0, σ2

D

)
N (0; 0, σ2

D)
, (46)

where σD controls the rate at which the detection probability
drops off as the range increases.

To illustrate the performance of the control, we apply it to
two different simulated scenarios. The first has a time-varying
number of targets, and demonstrates how the algorithm adapts
to the changing conditions over time. The second scenario
consists of targets which are scattered in several different
locations and moving in different directions. In scenario 1,
the expected control behaviour is fairly clear from looking
at the target-observer geometry. However, in scenario 2, the
expected behaviour is not so obvious.

For both scenarios, the sensor sampling interval is T = 10s,
the clutter rate is 100 per scan, the detection probability spread
parameter is σD = 20km, the process noise on the target
trajectories is σv = 0.01m/s2, the bearing measurement noise
is σθ = 2◦, and the parameters of the range measurement noise
are R1 = 1km, R2 = 10km and η = 0.1. The space of possible
control actions is discretized at 20◦ intervals, i.e. the alllowed
course changes are {−180◦,−160◦, . . . , 0◦, . . . , 160◦, 180◦}.
For the control calculations, the number of samples is N = 50,
the sensor sampling interval is T = 80s, and the horizon
length is H = 5 (i.e. the effective control lookahead is 400s).
The exclusion radius for the void probability calculation is
rv = 1km, and the void probability threshold is Pvmin = 0.95.

1) Scenario 1: The first scenario runs for 4000 seconds
and consists of seven targets, six of which enter the scene
during the first 250s, with one more appearing at time 1700s.
Three of the targets terminate between times 1300s and 1600s.
The sensor platform is stationary for the first 400s, then
starts moving with constant speed of 7m/s, undergoing course
changes every 400s in order to improve the target estimates.
The true target trajectories are depicted in Figure 1.

True Target
Trajectories

Void Region

Sensor Start Position

Y
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ti
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−2
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4

6

X Position [km]
2.5 5 7.5 10 12.5 15 17.5

Fig. 1. True targets trajectories in scenario 1. Note that the targets appear
and disappear at different times, which is not represented on the plot.

To evaluate the control performance, we compare the esti-
mation accuracy under the proposed control scheme, against
the case of a stationary sensor, and the case where the
sensor performs randomly chosen course changes. For each
of the three cases, we have performed 100 Monte Carlo runs,
and used a multi-target miss distance known as the optimal
sub-pattern assignment (OSPA) metric [66], to quantify the
positional error between the filter estimates and the ground
truth. Figure 2 shows the average of the OSPA distance versus
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time where the OSPA cutoff parameter is c = 200m and the
order parameter is p = 2. These results show that the proposed
control strategy provides the best estimation performance. In
the cases where the sensor is stationary or undergoing ran-
domly chosen actions, the performance is significantly worse,
since they have no mechanism for positioning the sensor in
the most favourable location. This demonstrates that the use of
Cauchy-Schwarz divergence as the reward function has been
effective at reducing the estimation error of the system.
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CSD-based Control

O
SP

A
 D

is
ta

n
ce

 [k
m

]

0.06

0.08

0.1

0.12

0.14

0.16

Time [s]
0 1000 2000 3000 4000

Fig. 2. Comparison of OSPA versus time for the cases of fixed sensor
location, randomised control actions, and control based on the Cauchy-
Schwarz divergence / void probability.

Figure 3 shows a heatmap summarizing the paths taken by
the sensor over the 100 Monte Carlo runs. From this diagram,
the general trend of the controlled sensor’s trajectory can be
observed. Intuition would suggest that the sensor should move
closer to the areas with the higher concentration of targets,
which agrees with the trend shown in Figure 3.

Fig. 3. This heatmap shows the sensor location over 100 Monte Carlo runs.
Brighter colors represent locations that were more frequently visited. The
sensor usually starts by moving towards the four targets at the bottom. After
some of those targets become terminated, the sensor moves towards the three
targets at the top. A few exceptions to this behaviour can be seen, but the
general trend is clearly visible.

To demonstrate the operation of the control scheme, we now
show a single run which exhibits the typical control behaviour.
We have shown the scenario geometry and expected Cauchy-
Schwarz divergence for each potential action at five different
time instants; at 400s when the first decision is made (Figure
(4)), the third decision at time 1200s (Figure 5), the sixth

decision at time 2400s (Figure 6), the eigth decision at time
3200s (Figure 7), and finally, at the end of the scenario at time
4000s (Figure 8).
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Fig. 4. Scenario geometry and reward curve at the time of the first decision
(400s). The sensor platform is stationary for the first 400s, and pointing
towards the right. The first decision made by the control algorithm is to turn
80◦ to the right, which takes the sensor towards the group of four targets.
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Fig. 5. Scenario geometry, reward curve and void probability curve at the
time of the third decision (1200s). Four of the manoeuvres do not satisfy the
constraint, because they would result in high probability of targets getting too
close to the sensor. Excluding these, the best remaining decision is to turn
160◦ to the right.
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Fig. 6. Scenario geometry and reward curve at the time of the sixth decision
(2400s). Three of the targets at the bottom have terminated since time 1200s
(as indicated by the faint tracks), and one additional target has appeared at
the top. As a result, the algorithm decides to turn 60◦ left, taking it closer to
the three targets at the top.
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Fig. 7. Scenario geometry and reward curve at the time of the eigth decision
(3200s). The algorithm decides on a slight turn to the left, which takes it
closer to the group of three targets.
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Fig. 8. Scenario at time 4000s. The sensor is now following the group of
three targets at the top.

2) Scenario 2: This scenario consists of 8 targets at various
locations and moving in different directions, and unlike the
previous scenario, the best path for the sensor to take is
not immediately obvious. The scenario geometry is shown
in Figure 9, which also depicts one of the typical sensor
trajectories obtained during the 100 Monte Carlo runs. The
starting location for the sensor is fixed near the top right-hand
corner for all runs, and in the particular case shown in Figure
9, it moves around the surveillance area, appearing to visit
each pair of targets in sequence.
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Fig. 9. Scenario 2 - Typical sensor trajectory under the proposed control
scheme, along with the true and estimated target trajectories.

Figure 10 shows a comparison of the OSPA distance ob-
tained for the cases of fixed sensor location, random actions,
and with the proposed control strategy. The sensor with fixed
position performs worst, because it has difficulty tracking
the targets near the bottom of the surveillance region due
to their large distance from the sensor. Moving with ran-
domised actions improves the performance, because despite
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the randomness of the chosen trajectories, the sensor still
has the opportunity to move closer to the far-away targets.
The proposed control strategy outperforms both the fixed and
randomly moving sensors, as indicated by the lower OSPA
distance. Due to the stochastic nature of the problem, the exact
behaviour observed in Figure 10 is not necessarily replicated
on every run. However the sensor generally moves around the
centre of the surveillance region and attempts to visit each
target in sequence. This can be observed in Figure 11, which
shows that the sensor spends most of the time moving around
between the targets.
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Fig. 10. Scenario 2 - Comparison of tracking performance for fixed sensor
location, randomly chosen actions, and actions chosen using the Cauchy-
Schwarz divergence (CSD) based control scheme.

Fig. 11. Scenario 2 - Heatmap showing the control behaviour over 100
Monte Carlo runs.

V. CONCLUSION

In this paper we have proposed two useful properties of
generalized labeled multi-Bernoulli models; an analytical form
for the Cauchy-Schwarz divergence between two GLMBs, and
an analytical form for the void probability functional of a
GLMB. These properties have applications in areas including
GLMB mixture reduction, situational awareness, and sensor

management. Here we demonstrated their use in a sensor
management application, in which the goal was to plan a
sensor trajectory that optimizes the error performance in a
multi-target tracking scenario. The problem was formulated
as a constrained POMDP, with a reward function based on the
expected Cauchy-Schwarz divergence, and a constraint based
on the void probability, to ensure adequate separation between
the sensor and targets. The results showed that this method was
highly effective at reducing the multi-target estimation error,
compared to cases where the sensor was stationary or undergo-
ing random actions. This demonstrates that both the proposed
Cauchy-Schwarz divergence and void probability functional
are versatile tools in multi-object information theory.
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