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A New Parametric Adaptive Nonstationarity
Detector and Application

Y. J. Chuand C. M. Mak”

Abstract—Techniques for hypothesis testing can be used to
solve a broad class of nonstationarity detection problems, which is
a key issue in a variety of applications. To achieve lower
complexity and to deal with real-time detection in practical
applications, we develop a new adaptive nonstationarity detector
by exploiting a parametric model. A weighted maximum a
posteriori (MAP) estimator is developed to estimate the
parameters associated with the parametric model. We then derive
a regularized Wald test from the weighted MAP estimate, which is
adaptively implemented by a regularized recursive least squares
(RLS) algorithm. Several important issues are discussed,
including model order selection, forgetting factor (FF) and
regularization parameter selection for RLS, and numerically
stable implementation using QR decomposition (QRD), which are
intrinsic parts of the proposed parametric adaptive detector.
Simulation results are presented to illustrate the efficiency of the
proposed nonstationarity detector, with adaptive estimation and
automatic model selection, especially for “slowly varying” type of
nonstationarity such as time-varying spectrums and speeches.

Index Terms—Adaptive nonstationarity detection, Wald test,
weighted maximum a posteriori, RLS, and adaptive model order
selection.

I. INTRODUCTION

F OR many statistical signal processing methods, e.g. time-
series analysis [1], we often need to assume that signals
under study are wide sense stationary (WSS) Gaussian random
sequences. In many applications, however, data record usually
exhibits a nonstationarity and hence results in biased estimate.
Related areas include spectrum analysis [2][3], noise reduction
[4], speech analysis [5], and biomedical signal processing [6]. It
would therefore be important to determine whether the data
record is stationary and suitable for further processing.

Much effort has been spent on developing nonstationarity
detection methods [7]. These detection techniques can be
mainly categorized as the batch- and sequential-based methods,
depending on how the data is dealt with. Most of the spectrum-
based algorithms belong to the first category [8]-[10]. Since
they are based on the Fourier transform [11] that is only true
asymptotically, they may not be viable for short data records
[12]. Model-based approaches, on the other hand, are usually
employed to extract high-resolution estimates in applications
where only short data records are available [13]. For example, a
time-varying (TV) autoregressive (TVAR) process [14] is often
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used for modeling signals of TV narrow-peak (or line) spectra
[11][15], the high frequency resolution of which is also
possible [16]. Then, the model parameters may be tested by
using either a Rao test or a generalized likelihood ratio test
(GLRT) as proposed, respectively, in [12] and [5]. The Rao test
requires the maximum likelihood estimate (MLE) under the
null hypothesis, which is usually easier to compute; whereas
the GLRT requires MLEs under both null and alternative
hypotheses, which is of higher arithmetic complexity and may
lead to ill-conditioned problems [17] due to insufficient data
sample. Another commonly used technique to determine
between alternatives in a binary hypothesis testing problem is
the Wald test [18]. It is asymptotically equivalent to GLRT, but
only requires the estimate under the alternative hypothesis. This
test depends on the parameter estimation method used, which
affects its performance in nonstationary environments [7]. For
example, insufficient excitation usually increases estimation
variance [19]. An insightful investigation about the invariance
and coincidence characteristic of GLRT, Rao and Wald tests
and their corresponding decision statistics is carried out in [18].
These testing methods are also in a batch form, which are
computationally consuming when overlapping is significant.
More importantly, this type of nonstationarity detection is
retrospective, i.e. to determine whether nonstationarity occurs
at a particular point in the sequence requires all the data record
available, including those after the change point, and hence is
not quite amenable for online applications [3].

To cope with online problems, a class of adaptive detectors
are devised, which make decisions at presence of each new
sample, and not use a whole batch of processed data samples
[20]-[23]. The direct application of these algorithms is the
radar system. The practicality of such detectors, however, are
quite limited since they usually involve the inversion of a
correspondingly large matrix and the possibility of
simplification has not been fully addressed in the current
literature. Recently, a recursive least squares (RLS) algorithm
is applied to nonstationarity detection that solves the matrix
inversion recursively [24].

While there has been considerable progress in adaptive
detection, it is still highly desirable to develop efficient
methods for finding online solutions to the nonstationarity
detection problems. In this paper, we propose a parametric
adaptive nonstationarity detector, which uses a TV linear model
for the unknown system. The model parameters are estimated
using the developed weighted maximum a posteriori (MAP)
estimator. In particular, an exponentially weighted window is
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first employed in the likelihood function (LF), namely the
weighted LF, which is augmented with an appropriate prior
probability of the parameter. The resulting MAP estimator can
be implemented adaptively using the so called state-regularized
QR decomposition (QRD)-based RLS (SR-QRRLS) algorithm,
which is numerically more stable than conventional RLS
algorithms due to the QRD structure [25][26]. Then, the Wald
statistic is employed, which results in the parametric adaptive
nonstationarity detector, namely the regularized recursive Wald
test (RWT). In addition, as an intrinsic part of the proposed
parametric adaptive detector, we develop an adaptive method,
called the state-regularized recursive Bayesian information
criterion (SR-RBIC), for model order selection, which applies
the weighted posterior probability to the conventional Bayesian
model selection criterion [27]. Since both RWT and SR-RBIC
use the estimation results from the SR-QRRLS algorithm,
which is a critical step for detection, we derive a variable
forgetting factor (FF) and regularization parameter for a better
estimation through the analytical mean-square error (MSE) of
the SR-RLS algorithm.

In summary, the advantages of the proposed detection
method are as follows: 1) the adaptive detector can make a
decision when each observation is received; 2) the detector has
an arithmetic complexity of O(L?) with L is the model order; 3)
the model order can be automatically selected during detection;
4) the estimation and detection performance has been improved
at a low excitation; and 5) the FF and regularization parameter
can be automatically selected without time-consuming try-and-
error procedure.

The rest of the paper is organized as follows. In Section II,
the system model and weighted posterior probability are
presented. Section Ill is devoted to the derivation of the
adaptive estimator, RWT and SR-RBIC methods. In Section IV,
a detailed MSE analysis and implementation of the SR-QRRLS
algorithm with variable FF and regularization parameter are
discussed. The performance of the proposed estimation and
detection methods is evaluated by simulations under different
situations in Section V. Conclusions are drawn in Section VI.

Il. SYSTEM MODEL AND STATISTICS

A. System Model and Problem Statement

Consider an L-order linear TV finite impulse response (FIR)
system with coefficient vector h(n)=[h,(n),....h (n)]" . The
unknown system is excited by an input {x(n)}. The observed
data is { d(n) }, which is assumed to be corrupted by a

zero-mean additive Gaussian noise { 77(n) }

d(n) = x" (n)h(n) +7(n) 1)
where  x(n) =[x(n),...,x(n—L+1)]" for n>L . Note the

Gaussian noise assumption may need to be modified in case the
estimator fails in fitting the model.

In the TV system, the model parameters may constantly
change their values. We hence aim to find an online solution to
dividing the observed data into pieces of WSS Gaussian
sequences [12] via the parameter (hypothesis) test [7], which
we call the parametric adaptive nonstationarity detection. Our

framework includes 1) an adaptive algorithm for parameter

estimation; 2) a nonstationarity detector derived from the Wald

test statistics as well as the developed adaptive algorithm; and 3)
a model selector that automatically selects the candidate model

during the test procedure. Based on the framework, we could

develop an adaptive detection method with automatic model

order selection.

In the following, a weighted posterior probability is
introduced, based on which the adaptive estimation, detection
and model selection algorithms are developed in Section Ill.

B. Weighted Posterior Probability

To estimate the system parameter in (1), we introduce the
following Bayesian linear model, given the data set { d(n) } and

{x(n)} [19]

d(n) = X(n)w(n)+q(n) 2
where d(n) =[d(n),d(n-1),...,d(L)]" is the observation vector,
X (n) =[x(n) x(n—=1)...x(L)]" is the variable matrix, w(n) =
[w,(n),...,w,(n)]" is a random vector with a prior probability
density function (pdf) to be specified latter in (3), and q(n) is
the measurement noise vector of appropriate size with a normal
distribution of zero mean and covariance matrix o1, i.e. g(n)
~N(0,0;1). I denotes the identity matrix of appropriate size.

This model differs from the general linear model in that
w(n) is modeled as a random variable with a prior pdf. A

general assumption for the estimate is the state transition model
as in the well-known Kaman filter. To make a trade-off
between complexity and performance, a random walk prior on
w(n) is used, i.e.
w(n) =w(n-1)+&(n) 3
where the random variable ¢(n) has a normal distribution of
N(,c’l).
Using Bayes’ theorem, the conditional probability reads
d(n)|w(n))p(w(n
o) | d () = 2EO W) p()
p(d(n))

Since q(n) ~ N(0,0;1), we can derive p(d(n)|w(n)) from

(4)

(2) via the transformation q(i) =d (i) —w" (n)x(i), i.e.

_iw(i)—w%n)x(i»ZJ -

i=L 265

pd(n)[w(n)=A exp[

where A =(270?)™" with N, =n—-L+1.

Maximizing (5) gives rise to the conventional MLE of h(n).
Since MLE puts equal weights on data at different time indices,
it leads to biased estimates for TV systems. To solve this
problem, we maximize the weighted LS (WLS) estimate

(d(@)—w’ (n)x(i»ZJ ©

2
20,

B (A () | w(n)) = Aexp[— zﬂ (n)

where 4_,(n) is weight of the square error. A _,(n) decreases
exponentially towards past data, which is calculated recursively



by using a FF A(n) satisfying 0 << A(n) <1, ie. 4, (n)=
A(MA,_,(n=1) with A,(n) =1. From (6), namely the weighted

LF, we can recursively estimate h(n) , which leads to the

conventional variable FF (VFF) RLS algorithm. Compared to

MLE, the algorithm derived from (6) has a much better tracking

capability [28]. The selection of the FF is based on the

performance analysis, which will be discussed in Section 1V.
Next, we can get the probability p(w(n)) from (3)

pW(n) = A, expl = (w(n) —w(n D) (w(n) ~w(n-D)) (7)

where A =(2zc?)*.
Combining (4)—(7) and substituting the weighted LF (6) for
p(d(n)|w(n)), the weighted posterior probability finds to be

proportional to prior times weighted LF

Py (W(n) [d(n)) = AA, exp(— o A (d (@) - w () x())* -
— 2 (w(n) ~w(n D)’ (w(n) - w(n-1))

I1l. THE PROPOSED RWT

A. Parameter Estimation for RWT

To derive the proposed RLS-like algorithm that maximizes
(8), the Fisher score vector (FSV) is obtained, which finds to be

_0lnp, (w(n)[d(n))
s, (w(n)) = () o
=027 A, (Ma@)x(i) - o> (w(n) - w(n-1)).

By setting (9) to zero [19], we find a weighted MAP estimator
that recursively estimates the unknown system

(Ryc (M) +x(n) w(n) = p, (n) + x(n)w(n-1)

where R (n) =" A, (n)x(i)x" (i) is the covariance matrix,

(10)

p, (N)=>" 4, ,(n)d(i)x(i) the cross-correlation vector, and
x(n) = o’ /o the regularization parameter, which can be made

variable in practice. Eq. (10) is identical to the normal equation
in [26] except that the FF and regularization parameter may be
selected from different principles. The implementation of (10)
using a QRD structure leads to the SR-QRRLS algorithm [26].
The procedure is shown in Appendix A for reference. In this
paper, we have presented a new and rigorous derivation of the
SR-QRRLS algorithm, which was previously designed from an
intuitive perspective in one of our papers [26].

When w(n) converges and hence equals to w(n-1)

asymptotically, the optimal solution to (10) reduces to the
conventional RLS solution [25]
Woy (M) = Ryg () Py () - (11)

It can be seen that the estimator (10) is asymptotically unbiased.
A detailed MSE performance analysis of the SR-QRRLS
algorithm is carried out in Section IV, from which the selection
formulas of the user parameters are derived.

B. The Proposed RWT

We now formulate the nonstationarity detection problem as
choosing between the null hypothesis Ho and the alternative

hypothesis Hi. The pdf p(d(n)|#) under Ho and Hy,

conditioned on unknown parameter @, is the same except that
the value of @ is different [7]. According to the linear system
(1), the hypothesis test becomes the following parameter test

H,:0=0,

H,:0=0 %0, (12)

where 6y is a constant parameter vector of order L; while ; is a
vector of order L that is different from 6. For the adaptive
implementation, @y can be assigned to an estimate of h(n) at the
last detected change point, say w(no) (no < n), and 6: the
estimate at the current time index. Then, we can test the current
estimate against w(no).

To determine between the alternatives in (12), the Wald test
is employed, the statistic of which reads

TWT = (01 - 00)T 871(01)(01 - 00)
where B(6,) is the Cramer-Rao bound (CRB) at 0, [7].

Based on the Wald statistic (13) and the weighted MAP, we
can derive a testing method. Since this method employs results
from the recursive estimate, we call it the recursive Wald test.

First, we can use (10) to estimate the parameter under Hj.
Then, we need to determine CRB. For unbiased estimators,
CRB equals to the inverse of Fisher information matrix (FIM).
Using (8), the (I,m)-th entry of FIM is

o” In p, (w(n)|d(n))
ow,ow,,

—Eler Y A mXG-DxG-m)+ o1,
=o,'r,(-m>7 2. +ol],
where r (k) is the autocorrelation of { x(n) } at lag k.

(13)

1, ()] =-E
(14)

Consequently, we have I, (w(n)) =c 'R, (n)+c’I .

In the following, we discuss how to calculate the Wald test
(13) recursively. To this end, we rewrite FSV at w(n,) as

s, (W(ny)) =220 A, (MG, (D)% (1) = % (w(n,) - w(n —1))
=0, " [P, (N +x(Mw(n-1) = (R, (n) + x(n) 1w(n,)]
=0," (R () + & (n) )(w(n) —w(n,))
=1 (w(n)(w(n)—w(n,))

where q,(i)=d(i)—w'(n,)x(i) , and (10) has been used to

simplify the expression.

Replacing @, and @,, respectively, with w(n) and w(n,),
and substituting (14)(15) into (13) gives the RWT formula

Tur = (W(n) —w(n,))" s(w(n,)) (16)

where the weighted MAP estimate w(n) is updated at each

time index, FSV at w(n,) is updated recursively as follows

s, (W(n,)) = 0,237 A, (M), () x () - x(M)(w(n,) ~w(n-1)

and the noise variance o can be known “a priori” or

approximated from the residue of the algorithm using a large
FF [29]. w(n) is then tested against the estimate at the last
detected change point w(n,) . We should reject the hypothesis

(15)



of stationarity if T,, >y, where y is chosen to maintain a

constant false alarm rate (CFAR) [7].

Under suitable technical conditions, such as MLE and MAP,
likelihood ratio statistics take on a chi-squared distribution as
the sample size grows large. Therefore, the developed Wald
detector (16) is asymptotically Chi-squared distributed under
Ho with Lth degree of freedom [7]:

Tor ~ 2(0). 17)
Under Hy, it has a noncentral Chi-squared distribution or
Tor ~ 2(9) (18)
where the non-centrality parameter is given by [18]
¢~ (wn)—w(n)) I, wm)wm-win)).  (19)

The statistical property of the detector indicates that the
principle behind the hypothesis test is to assess whether the
distribution of the detector follows the known distribution [7].

C. The SR-RBIC Method

One issue that has not been addressed is the question of what
order to use in the adaptive detector. For example, if the order
of the estimator is different (larger or smaller) from the true
model, a stationary sequence could be detected as nonstationary
sequence due to the increased estimation residue (variance or
bias). To deal with this problem, a recursive order selection
method employing Bayesian model selection criterion and the
SR-QRRLS algorithm, namely SR-RBIC, is proposed. Using
MAP rules in model selection was not newly proposed [30].
However, the work here focuses on adaptation procedures only,
which can be extended to other state-of-the-art criteria [31] for
the corresponding adaptive versions.

In Bayesian framework, given data {d(n) }, the posterior

probability p(M, |d(n)) of amodel M, is

p(m|M;)p(M,)
p(d(n))
where p(M,) is a prior probability for model M, (i=1,2,...).
The probability of data conditioned on model M, can be
computed by the following integral
p(d|M,)=[p(d[6,M)p(@|M,)do (21)
where we have omitted the time index for simplicity. Since a
posterior is proportional to prior multiplied by likelihood, we
have p(@|d,M;)«< p(d|8,M,)p(@|M,) and hence get
p(d M) =[p@d,M,)de. (22)
It is assumed that the posterior has a very sharp pick at the MAP
estimate 6 such that the quadratic Taylor expansion is
sufficient. By letting p(6|d,M,) =exp(g(@)), we get g(@) =

g(@)-1(0-0)"1 ;1(5)(0 — ) . Then, the expansion finds

p(M; [d(n) =

(20)

p(O1d,M,) = p(@]d,M,)exp(- 2 (0-6) 1:(0)©0-5)). (23)
Consequently, the marginal likelihood is found as
p(d M) = p(@]d,M,)[expl-2(0-6) 1@ O-)ho (24)

- p(@1d,M)E)" 1O

Substituting p,, (w(n)|d(n)) in (8) for p(é|d,Mi) and w(n)

for 0, we get the weighted posterior probability
P, (d1M,) = Aexpl- 3, 22 q7(i)
— - [w(n) ~w(n—DT w(n) ~w(n-D])

S(1=A()*"”

(25)
o2 (R, (M +EM)
where A= AA,(27)"?, and we define &(n)=(1-A(n))x(n)

by using the relationship R, (n)n:Tl(n) R, with R, =
E[x(n)x"(n)] the input covariance matrix. Note, the above
relationship is based on the fact that the FF does not change its

value frequently [28]. To proceed further, the non-informative
prior p(M;) =1 is used. Hence, we choose the optimal model

Mi by minimizing the following SR-RBIC selector
T, =-2In(p, (d | M)))

Y A M) - Lini- () +Inlo?
+x(n)o,*(w(n) —w(n-1))" (w(n) -w(n-1)) +C
where Iixx =R, +£&(n)l and C is a constant. It can be seen that

the first two terms contribute as the adaptive version of the
conventional BIC, where the number of sample changes with
the window size. The third term can be viewed as the
signal-to-noise ratio (SNR) while the last term comes from the
regularization which would reject models with large variations.
Compared to the conventional Akaike information criterion [32]
and Bayesian information criterion [27], Eq. (26) considers the
contribution of noises [30][31].

R[) (@)

XX

IV. USER PARAMETER SELECTION

Although developing advanced RLS algorithms is not the
focus of this paper, adaptive estimation is an important and
necessary step for the proposed detection method. Therefore, in
this section, we analyze MSE of the SR-QRRLS algorithm
based on a TV linear system (1), the coefficient of which is
modeled by a local polynomial. From this analysis, we derive
the locally optimal FF and regularization parameter.

Recall the normal equation (10). After some simple algebras,
it can be written in a matrix notation for concise presentation

ﬁxx (Mw(n) = X" (n)A(n)d(n) + x(n)w(n-1) 27)

where A(n) = diag([1, 4,(n),...,4,_ (n)]) is a diagonal matrix,

Iixx (n) =R, (n)+ x(n)l is the regularized covariance matrix
with R, (n)=X"(n)A(n)X(n).

We assume that the impulse response vector of the channel is

continuous and it admits a first order polynomial expansion at
time t, as described in [28] for the classical RLS algorithm:

h(t,) = h(t,) + £h® ), -t,) +r(t, -t,) (28)

where t . belongs to an appropriately close neighborhood of



t,,and r(t,
h®(t.) and r(t, —t,) can be considered as random vectors of
zero mean and the latter is of order o(t,, —t,) .

Using (28) and (1), and letting t, = nT_, we have

d(n) = X(n)h(n) + D, (n) X (n)h®(n) + y(n) +v(n)  (29)
where T_ is the sampling period, D.(n)=diag(z(n)) with
(M) =[0-1..—~(n=L)I", #(n)=[n(n),n(n-1),.7(L)]" and
o(n) =[v(n),u(n-1),...,0(L)]" are, respectively, the noise and
residue vectors with v(n—m) = x"(n—m)r(-m) .

Substituting (29) into (27), we can obtain the RLS solution
w(n) = h(n) + R (MR (N)h® (n)
+ Ry (WX (M) AM)((n) + o(n))

—t,) is the remainder of higher order terms. Both

= . (30)
— k(MR (M[h(n) - w(n-1)+ R (MR, (Mh® (n)
Ry (MX (M) AM)(r(m) + v(n))]
where R_(n)= X"(n)A(n)D,(n)X(n) = -——R,_ according

T f( )?

to Appendix B and we used the Woodbury formula [33] to get
(R (M) +&(M)1) 7= R (1)~ Ry (Mt 1+ Rys () Ry (n)
In the following, we consider the mean square deviation

(MSD) of w(n) from h(n). First, the difference equation for the
bias vector b(n) = E[w(n)]—h(n) can be obtained from (30) as

b(n) = (MR (Mb(1 -1~ (MR (WA (1)

“ (31)
+(1 - k(MR (MR (MR (Mh® (n)

where W(n) = E[h®(n)] = E[h(n)—h(n-1)]. The remainder
r(m—n) is independent of the input X(n) and the correlation
between X(n) and o(n) is negligible [28][34]. From Appendix
C, we can obtain the bias of the estimate

3, =Tr(E,()) ~ 2O Tr(17) + & (n)3,

(1-2(n))?

(n)Tr(R ) (32)

where Z,(n) = E[b(n)b" ()], the matrix R =h® (n)[n® ()
Z(n)l,and 1_=1 —K(n)RXX (n)=1 —cf(n)RXX1
with RXX =R, +&(n)I.

Next, the difference equation for the variance vector v(n) =
w(n) — E[w(n)] can be obtained from (30) as

can reduce to o,

v(n) = x(MR5; (Nv(n-1)
+ (1 =x(MR (MR (MR, (n)sh® (n)
+ (1 =x(MR (MR (M X (M AM)((n) +v(n))
where sh®(n) =h®(n) -

(33)

h“’(n) . From Appendix C, we have

3, =Tr(E, (=) ~ 20 o2Tr(17R )+ 20 Tr(1?)

(1-A(n))?

(34)

where =, (n)=E[v(n)v'(n)], o; =0, +0., o, = E[n*(n)],
ol =E[v*(n)], and R, (n) = NP (N[ (M = oa (Ml .

Consequently, the mean square deviation (MSD) can be
obtained from (32) and (34) as

JMSD(n) = Jb + ‘]v
o)
(1= A(n))*

+ &2 ()3 ()Tr(RY)
where o(n) =o;(n)+ao5(n).

We now derive the locally optimal FF. To see the influence
of A(n) on J,,(n), the following assumptions are made. In
the bias term, éz(n)EfTr(ﬁx’j)« =)
the former can be ignored. Meanwhile, 1 _ is very close to the

identity matrix for small to medium regularization. Using these
two approximations and taking the derivative of (35) with
respect to the FF gives

Tr(If)+1_/1() olTr(1°R7) (35)

1+ A(n) o

—L_5/Tr(1?) and hence

aJ MSD(n) » ZGhZL B 20-5 .
oA(n) - (1= A(N))°  (1+A(n)° Tr(R,). (36)

Letting (36) be zero, we have

olTr(R))/(1+ A(n))* = o (n)L/(1- A(n))°
To proceed further, we let g =(1+A(n))/(1-A(n)) so as to
have u*(u+1)=20Tr(R)/(Lo?(n)). Since u>>1 [28], we

have z*(u+1)~p° and hence u=[252Tr(R)/(La?(n)] .
Then, the locally optimal FF can be obtained

A (M) = (=D I(u+D), if 4, (n) >0 @37

This result is identical to that in [28], where no regularization
technique has been employed. In practice, the noise variances
can be obtained from prior information or calculated from the
estimation error g(n). The details can be found in [28].

To derive the optimal regularization parameter, we take the
derivative of (35) with respect to ¢ (the time index of which has
been omitted to have a concise expression) and have

My (M)t — 20, 4L G - 20,
o& (1=A(n))? &=di=L (O_;+§)3 1+2(n) ¥ i (O-fi+§)3
2 22 (38)
+ ah (n)2| =1 2 3:|
( ><| + 5) (O-xi + 5)
where o is the ith eigenvalue of R so that the ith

eigenvalue of 1_reads o7 /(o + &) . To derive a formula for
practical use, we assume that the input is white Gaussian
distributed with variance o2 and let (38) equal to O:

_ 2(n ‘ 1-A(n))o? o a (n
52 (n)E = o, (n) __% L (=Am)oy %, Lso, ()
(1-A(n))° o, +¢& 1+ 4(n) ax+§ ol+&
Since £<<o? and the last term is far smaller than the other

terms, the following formula provides a good approximation
for the selection of regularization parameter

£ (-2 [(1—z(n» o ,_oun) J
G 1+ of " (1-A)

The resulting RLS algorithm using (37) and (39), respectively,
as the locally optimal variable FF (LVFF) and regularization
parameter is called the SR-LVFF-QRRLS algorithm.

(39)



V. SIMULATION RESULTS

First, we examine the performance of the estimator in system
identification problems. The effect of FF and regularization
parameter on estimation rate and accuracy is studied for both
random walk and sudden change models. Next, the proposed
RWT is applied to TVAR model for sequential detection. Then,
SR-RBIC is tested. Finally, a sequential detection method with
automatic order selection is evaluated. Unless specified, all
results are averaged over 100 Monte-Carlo simulations.

For the sequential detection methods, the testing samples are
summations of sinusoids or real speech signals, which are
represented by a TVAR model and exhibit a “slowly varying”
type of nonstationarity as opposed to a sudden change for
which many efficient tests exist [12]. Such signal is of great
concern in practical applications.

A. Evaluation of the Estimator

1) Convergence performance comparison

In this experiment, a TV linear system (1) is considered. The
system to be identified is a random walk model of length L = 5:
h(n+1) =h(n)+d(n) , where &(n) is the white Gaussian

random vector with a covariance matrix of 5x10°1 . The
initial value of the channel is set to h, =[-1111-1], which

changes to h, =[-1,-111,-1] at the 3000th sample. The length

of the adaptive filter is setto L = 5. SNR is set to 10 and 20 dB,
which represent a common environment in real applications.
The input signal is generated from a first-order AR process:
x(n+1) =0.9x(n) + g(n) , where g(n) is Gaussian process of a

zero-mean, and the input power is normalized.

The performance of the conventional RLS algorithm, the
GVFF-RLS algorithm [29], the LVFF-QRRLS algorithm [28]
and the proposed SR-LVFF-QRRLS algorithm are tested. The
FF for RLS is set to 0.999. Parameters for GVFF-RLS are set to
a =0.3, =099, u = 0.04, as suggested in [29], and " is
chosen as 0.999 to achieve a similar MSD with the RLS
algorithm. The simulation results are shown in Fig. 1. It can be
seen that the LVFF-based algorithms have a much faster
tracking speed in each case. The SR-LVFF-QRRLS algorithm
could converge to a much lower steady-state MSD at a
comparable or even faster speed, and the improvement is more
significant when the noise level is higher due to the unbiased
properties of the state regularization.

2) Effect of FF and regularization parameter

In this experiment, the effect of the FF and the regularization
parameter on the performance of the estimator is examined.
The system to be identified is identical to that in the previous
experiment except it does not have a sudden change. The same
inputs as in the previous experiment are used.

First, we evaluate the performance of SR-QRRLS algorithm
at different FFs, given the regularization parameter calculated
from (39). Different FFs A=A, 4., and 4 _ are used, where

A =1-1/0.1L,), A =1-1/Q0L,), and L, =1/ 2,) is

opt
the optimal window size. Applying these parameters to
SR-QRRLS, the corresponding MSD curves at SNR = 0 and 20
dB are shown in Fig. 2. It can be seen that, SR-QRRLS with
A generally converges faster to a lower steady-state MSD.

opt
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Fig. 1. Learning curves of MSD for sudden-change channels with the 1st order
AR input at (a) SNR = 10 dB (b) SNR = 20 dB. o2 = 0.00005, L = 5.
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Fig. 2. Learning curves of MSD for the SR-QRRLS algorithm with the 1st
order AR input at SNR = 0dB and 20dB. L = 5. & = &yt 4 = s, Agpr and Ac.

The algorithm with A, may have a slightly faster convergence

initially, but it achieves much larger MSD due to the increased
variance. The MSD curves at SNR = 10 dB are somewhere in
between and the curve with 4, also has best performance. For

presentation use, only curves at SNR = 0 and 20 dB are shown.
It can be seen from the results that the accuracy of the proposed
selection formula is within one order from its true value, which
provides a good reference for practical use.

Secondly, we study the effect of the regularization parameter
on the performance of SR-QRRLS. The theoretical and
simulated steady-state MSD vs. regularization parameter
curves are shown in Fig. 3. It can be seen that the simulated and
theoretical results agree well with each other. It also illustrates
that the optimal regularization parameter formulated in (39)
gradually decreases as the SNR increases from 0 dB to 20 dB,
which is mainly because the variance termin J,,, decreases as

the noise becomes smaller so that less regularization is needed
to combat the measurement error. It also shows that & is

slightly overestimated for lower SNR. However, it still
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provides a good reference for selection of the regularization
parameter in practice. Next, we examine in more detail the
performance of (39) with mismatches, i.e. 0.1&  and5& , are

opt
examined. The resulting steady-state MSDs are marked by ‘A’
in Fig. 3. It suggests that formula (39) is tolerant to mismatches
if the prior information, such as noise variances, is not exactly
known in real applications.

B. Evaluation of the Detector

1) Evaluation of the false alarm (FA) rate
In this example, the signal under study is a single sinusoid. A
TVAR model is employed to represent the process, which reads

X.(n) = iz:,ai (Mx,(n=i)+7,(n)=a’(n)x,(nN)+nr,(n)  (40)
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Fig. 4. Detection performance of the proposed RWT (solid line) and GLRT
with g = 4 (dot line) and g = 2 (dot dash line). Fs = 4 kHz. (a) Time duration is
4 ms; (b) Time duration is 2 ms. TVAR(2) is used.

where a(n) =[a,(n),...,a_(n)]" is the TV parameter vector of
order L, x_(n)=[x,(n-1),x,(n-2),...,x,(n=L)]", and 7,(n)
is a white Gaussian process for excitation. Such a model is
simply denoted as TVAR(L) in the sequel. The developed
algorithms can be easily extended to the TVAR model by
replacing d(n) and x(n) in (3), respectively, by x (n) and
X_(n) . The resulting RLS-based algorithm for the prediction of

TV parameters is closely related to the problem of linear
prediction in a variety of applications [35]-[37], which is
popular with good computational efficiency and nearly
optimum estimation accuracy [15].

The sinusoids under study have a time duration of T and
changes its frequency by ¢ Hz at T/2. The sampling frequency is
assumed to be 4 kHz. The proposed RWT and GLRT method [5]
are used to detect this change. For both algorithms under testing,
the TVAR(2) model is applied since two TVAR parameters
correspond to one frequency component. For the TV linear
prediction algorithm in GLRT, q = 2, and 4 Legendre
polynomials are used. The signal lengths considered are 2 ms
and 4 ms. The signal changes its frequency by ¢ = 12.5Hz,
37.5Hz, 62.5Hz and 87.5Hz. The SNR is set to 20 dB. To
calculate the probability of detection and FA, 1000 trial
simulations have been performed for each setting. As can be
seen from Fig. 4, the detection performance for both methods
improves when ¢ is increased while T is fixed. If the data
records are sufficient (as shown in Fig. 4(a)), the GLRT method
with appropriate power order (q = 4) has a comparable
detection performance with the proposed RWT method at the
cost of increased computational complexity. At the presence of
insufficient data, however, the proposed detector usually
outperforms the GLRT due to the regularization technique
employed as shown in Fig. 4(b).

2) The sequential nonstationarity detection method

In this section, we give two examples showing how to detect
nonstationarity using the proposed RWT. Different from the
retrospective property of the batch-based methods, the method
here can process the observations sequentially over time. So we
call it a sequential nonstationarity detection method, which is
summarized as follows:

Methaod I: Sequential Nonstationarity Detection

1) Initialization:
« setyvia (17) given a certain CFAR;
e setn=1nu=0,and wo=0;




2) Detector calculation
« estimate the model parameter at the current time instant
n, w, using SR-LVFF-QRRLS;
« calculate the corresponding Twr via (16);
3) Detection
« if Twr <y (no nonstationarity is detected), go to step 4);
« else (nonstationarity detected), mark this time instant as
no=n and set wo=w;
4) Set n = n +1 and return to 2) for the next data sample.

In this method, w is the parameter estimate at the current time
instant n whereas wp is the estimate at the last detected change
point, say at no, and (16) will be used to test nonstationarity
using the current estimate. If a change is detected, no will be set
to the current time instant n and we can repeat the above process,
otherwise, it will proceed to the next time instant. The proposed

method is compared with the conventional GLRT method [5]
GLRT
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Fig. 5. Detection performance of the proposed RWT-base method (Method I)

and the GLRT-based sequential detection (Algorithm 1) in [5] for synthetic

data. Fs = 4 kHz. For GLRT, the batch sizes used are 2 ms (dotted lines) and 10

ms (solid lines).

350
T 300
3 250
3
$ 200
SN
£ 150
100

60

40 L

0 0.2 0.4 0.6 0.8 1 12 14 16

Time (sec)

0 0.2 0.4 0.6 U.‘S 1 l.‘2 1‘4 1‘6
Time (sec)
(b)
Fig. 6. Detection performance of the proposed RWT method (Method I) using
(a) SR-LVFF-QRRLS, and (b) LVFF-QRRLS for the real speech.

(Algorithm 1) without overlapping so that the complexity of the
two methods is comparable. In this experiment and the rest of
the paper, all results are not averaged.

In the first experiment, the signal under study is shown in Fig.
5, which contains two sinusoids, one of which changes its
frequency at the 100th sample. A TVAR(4) model is used for
both algorithms. Other settings are identical to those in the
previous experiment. For the GLRT-based method (q = 4), two
different rectangular windows are used, i.e. M =8 (2 ms) and M
=40 (10 ms). The CFAR used is 1%. We observe in Fig. 5 that
for the GLRT-based method, a shorter batch size (dotted lines
in the first two subplots) leads to a more prompt response to
signal changes, but may have more FAs due to insufficient data
samples (see Fig. 4). On the other hand, a longer batch size
(solid lines in the first two subplots) can suppress large
variances during detection, but leads to longer detection latency.
The proposed method can provide a detection result with much
less detection latency as well as less FAs due to its recursive
property and the state regularization employed.

Next, the detection method is applied to a segment of real
speech signal. The real data used are the waveform of a vowel [a]
(as in “father”) followed by [ai] (as in “life”) [38]. It was
downsampled to 1 kHz in order to focus on lower frequency
formants [5]. According to the rule-of-thumb that “2
coefficients per kHz”, a TVAR(2) model is applied. The TV
center frequencies are extracted from a(n) using the roots z; of
the equation z- — az(n)z~*...— a/(n) = 0. We choose the
frequency estimate as the angles of these roots. For real-valued
signals, only roots in the upper half of the complex plane are
selected. Both LVFF-QRRLS and SR-LVFF-QRRLS
algorithms are used in the detection method and the results are
shown in Fig. 6. Since the center frequency mainly ranges from
100 Hz to 350 Hz, a spectrum covering this range is presented.
From the Twr curves and estimated frequencies, it can be seen
that the regularization helps to stablize the estimation and
detection process.

C. Evaluation of the Model Selector

In this section, we illustrate the performance of the proposed
SR-RBIC and examine the effect of background noises on it.

In the first example, the true linear regression model is
y(n) =1+0.5x(n) +7(n) , where the input {x(n)} and additive

noise {77(n) } are both random Gaussian sequences. The SNR

is set to 20 dB. We fit the following models to the values of
{y(n)} by using SR-LVFF-QRRLS: (1) the constant model
y,(n) = B,; (2) the straight line model y,(n) = g, + B,x(n) ; and
(3) the second order model y.(n) =g, + Sx(n) + B,x(n-1) .
The 1002th-1016th samples fitted by the three models are
shown in Fig. 7(a). It seems that the straight line model y, and
the second order model ys; are almost overlapping and they are
quite close to the true values, while the constant model y; has
significant deviation. These 15 samples are randomly chosen.
The results for other samples show similar performance. Then,
using the SR-RBIC selector (26), we proceed with the model
selection from the three candidates. From Fig. 7(b), it can be
seen that y» should be selected as the best model since its Tu
curve is stable and lower than others. The second best model is
y1, which may also be correct since regularization could help to
suppress the variance caused by modeling error (longer filter
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Fig. 8. Performance comparison of the conventional RBIC and the proposed
SR-RBIC at: (a) SNR =100 dB and (b) SNR = 20 dB.

length). The constant model should be rejected due to the
significant fluctuation of the corresponding Tw curve.

Next, we evaluate the effect of noises on the performance of
model selection criteria in a TV system. Twm curves of the
conventional RBIC (the first two terms in (26)) and SR-RBIC
(26) are computed for the candidate models. We suppose the
input signal {x(n)} is a summation of sinusoids containing three
frequency components (500 Hz, 760 Hz, and 1600 Hz) from the
1st to the 2000th sample and an extra sinusoid of 1250 Hz
appears after that. We now apply TVAR(4), TVAR(6),
TVAR(8) and TVAR(10), respectively, to {x(n)} and calculate
Twm values at each sample of both RBIC and SR-RBIC. The
results have been shown in Fig. 8. It can be seen that when SNR
= 100 dB, both criteria select the same and also the true order
(i.e. L = 6 for the first 2000 samples and L = 8 for the rest) after
the initial iterations. However, when SNR decreases to 20 dB as

shown in Fig. 8(b), only the proposed SR-RBIC selects the best
model while RBIC selects L = 8 for all samples.

It should be mentioned that although there are many newly
proposed model order selectors, the adaptive versions are still
not available in the current literature and we therefore do not
provide comparisons with other model order selectors.

D. The Sequential Nonstationarity Detection Method with
Automatic Model Order Selection

In this section, we introduce a sequential detection method
with automatic model order selection. The method has been
summarized as follows:

Method Il: Sequential Nonstationarity Detection with
Automatic Model Order Selection

1) Initialization:

« setyvia (17) given a certain CFAR,;

« set the model order L by an initial guess;

e setn=1,ny=0,and wy=0;

2) Detector calculation

« estimate the model parameter at the current time instant
n, w, using SR-VFF-QRRLS;

« calculate the corresponding Twr via (16) (if the length of
wo and w is different, the shorter will be added zeros to
the end so that they have the same length);

« calculate the corresponding Twm via (26) for model order
Mi=max(1,L-1),L,L+1;

3) Detection

« if Twr <y (no nonstationarity is detected), go to step 5);

« else (nonstationarity detected), mark this time instant as
no=n and set wo=w;

4) Model order selection iff Twr>y

« select the model order from [max(1, L-1), L, L+1] based
on Ty at time instant n;

« set the selected model order;

5) Set n = n +1 and return to 2) for the next data sample.
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Fig. 9. Results of the Sequential Nonstationarity Detection with Automatic
Model Order Selection method (Method 1) using the speech signal (the word
“jazz”). The selected model orders have been denoted by arrows.
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According to Method Il, the sequential detection is first
executed using an initial guess for the model. The model
selection will then be carried out once a change is detected since
it is where model order is most likely to change. It should be
noted that we assume the model order varies slowly and select



from (L-1, L, L+1), where L is the previously selected model

order. In this way, much computational complexity can be saved.

The above method is applied to a segment of the real speech
“jazz” [38]. The sampling frequency is 1 kHz.

The results are shown in Fig. 9. It can be seen that the
segmentation around 0.15 sec is comparatively short and the
order “7” (marked in red circle) is overestimated, although it is
also correct (i.e., the parameter corresponding to the redundant
order can be made 0). This may be caused by the variance of the
significant changes of the frequency components. Generally, the
sequential detection and order selection system provides
satisfactory performance. As a byproduct, the center frequencies
are well estimated as shown in the spectrum.

VI. CONCLUSION

In this paper, we derive a parametric adaptive nonstationarity
detector with model order selection from a weighted LF and the
Bayesian framework. A sequential technique could be obtained
that separates the data record into stationary segments, which
allows users to determine nonstationarity of data for statistical
analysis before a biased estimation occurs, and is very important
in online applications such as speech and economics. The
byproduct is the adaptive estimator using the SR-LVFF-QRRLS
algorithm and the adaptive model order selector. This paper has
provided a framework for employing adaptation procedures and
developing sequential methods in detection and model selection.
It can be extended to other advanced detection and information
criteria in order to derive more efficient methods. A problem
that is very common in practice and has not been addressed is
the high level of noises. In this case, techniques for noise
reduction can be used as pretreatment of data such that the
proposed detection methods can provide satisfactory results. It
is a comparatively separate problem, we hence have omitted any
discussion and will explore it in more detail in the future.

Appendix A: Table |
Appendix B

In this Appendix, we derive the term R (n) as n— «.
Since R_(n) is symmetric, it can be written as

S S Sl
R = S S
S S

L-1
where the time index at c has been omitted.
By using some simple algebras, sx can be written as

=S X —i)x(n—i—k)

n—w  n-L+l

~ - Ziﬂ.i (o0)r, (k)

(=L e) ) ©
1- A(e0) "

Al
1_ ﬂn—Lﬂ ((X))

- "[ (L— A(0))?
"~ [ A(0))]r.. (K)

TABLE | THE SR-QRRLS ALGORITHM

Initialization:

R(O):\/EI , 0 isasmall positive constant;

u(0)=0, w(0)=0 are null vectors.
Recursion:

Given R(n-1), u(n-1), w(n-1), x(n) and d(n) , compute at

time n:

(i). The first update:

l:Ru)(n) u® (n)} 0% (n ){WR(n 1) Wu(n 1)}
0" @ (n) x'(n) d(n)

The second update:

R(n) u(n) RY(n) u®(n)

{ o c(n)} n )[ u(md, Jumw, (n- 1)}
where Q®(n) and Q(n) are calculated by Givens rotation to obtain
the left hand side of each equation above, x(n)=&(n)L, and d; is the
I-th row of the identity matrix.
(ii). w(n)=R™(n)u(n) (back-substitution).

where r (k) is the correlation between x(n) and x(n—Kk).

Appendix C

To evaluate the mean square behavior of b(n), we determine

a difference equation for the weight error covariance matrix
Z,(n) = E[b(n)b"(n)] . From (31) and assuming the bias vector

b(n) is uncorrelated with h® (n) = E[h® (n)], we have

Z,(n) = x* (MR (ME,(N-)R. +B,(n)

+B,(n)— (B,(n) + B () Az
where  B,(n) = &* (MR (Mh® ([P (MI RE(n) | B,(n) =
LR (MR (MO (M M R (MR M1, with 1, =1 -
K(MREM=1-¢nR' and R, =R_+&(n)l , and B,(n)

= k(MR (MR Mh®M[MOM] R (n) . B,(n) is quite
small compared to B,(n) and hence can be ignored. Then,
using the eigenvalue decomposition JTIiXX (n)lj:DXX and
expressing Z,(n) in the transformed coordinate: =,(n) =

b(n)U the ith diagonal element of =, (n) converges to

() =257 ([UB,()U], +[U"B, ()U]) A3
where A is the ith diagonal element of D,, . Since
W ~1, the bias can be obtained as

- hzTr(I,f) 2 —2 o2
= —+ n)o Tr(R>?).
IZl: B|( ) (1—1([‘]))2 5 ( )O-h ( xx) A4

=hO(M)[h° M) =571
The mean square behavior of v(n) can be evaluated from its

where the covariance matrix R,

covariance matrix =, (n) = E[v(n)v' (n)]. From (33), we have

Z,0n) =’ MRLME,(-DRE +V,()+V,(n) A5

Rxx (n) =

2 2 2
o.=0.+0,
n v

where V,(n) = azIkRXX(n)R (MR (N1, with

XT(n)AZ(n)X(n) ~ (1—/12(n))’1 R, [28],



o; =E[7’(n)] and o7 =E[*(n)] , and V,(n) = IR (n)-
R(MR, (MR (MR (M1, with R, (n)=sh®(n[sh®(m]' =
o.l . Expressing =, (n) in the transformed coordinate:

Z,(n)=U"E, (n)U and summarizing the diagonal elements

£, (®) === ([UV,(o)U] +[0V,(=)U]), A6
we can obtain
L n—w )
1, =28, = ERlT R+ e Tr(1]) AT

where we have used the following relationship [28]: ﬁ;; (n)

X (A-AM)R(n) and R, (n) = (L-AM)R,, (). If x(n) =
0, the result for estimation variance coincides with that in [28].
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