
Abstract—Techniques for hypothesis testing can be used to 
solve a broad class of nonstationarity detection problems, which is 
a key issue in a variety of applications. To achieve lower 
complexity and to deal with real-time detection in practical 
applications, we develop a new adaptive nonstationarity detector 
by exploiting a parametric model. A weighted maximum a 
posteriori (MAP) estimator is developed to estimate the 
parameters associated with the parametric model. We then derive 
a regularized Wald test from the weighted MAP estimate, which is 
adaptively implemented by a regularized recursive least squares 
(RLS) algorithm. Several important issues are discussed, 
including model order selection, forgetting factor (FF) and 
regularization parameter selection for RLS, and numerically 
stable implementation using QR decomposition (QRD), which are 
intrinsic parts of the proposed parametric adaptive detector. 
Simulation results are presented to illustrate the efficiency of the 
proposed nonstationarity detector, with adaptive estimation and 
automatic model selection, especially for “slowly varying” type of 
nonstationarity such as time-varying spectrums and speeches. 

Index Terms—Adaptive nonstationarity detection, Wald test, 
weighted maximum a posteriori, RLS, and adaptive model order 
selection. 

I. INTRODUCTION

OR many statistical signal processing methods, e.g. time- 
series analysis [1], we often need to assume that signals 

under study are wide sense stationary (WSS) Gaussian random 
sequences. In many applications, however, data record usually 
exhibits a nonstationarity and hence results in biased estimate. 
Related areas include spectrum analysis [2][3], noise reduction 
[4], speech analysis [5], and biomedical signal processing [6]. It 
would therefore be important to determine whether the data 
record is stationary and suitable for further processing. 

Much effort has been spent on developing nonstationarity 
detection methods [7]. These detection techniques can be 
mainly categorized as the batch- and sequential-based methods, 
depending on how the data is dealt with. Most of the spectrum- 
based algorithms belong to the first category [8]–[10]. Since 
they are based on the Fourier transform [11] that is only true 
asymptotically, they may not be viable for short data records 
[12]. Model-based approaches, on the other hand, are usually 
employed to extract high-resolution estimates in applications 
where only short data records are available [13]. For example, a 
time-varying (TV) autoregressive (TVAR) process [14] is often 
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used for modeling signals of TV narrow-peak (or line) spectra 
[11][15], the high frequency resolution of which is also 
possible [16]. Then, the model parameters may be tested by 
using either a Rao test or a generalized likelihood ratio test 
(GLRT) as proposed, respectively, in [12] and [5]. The Rao test 
requires the maximum likelihood estimate (MLE) under the 
null hypothesis, which is usually easier to compute; whereas 
the GLRT requires MLEs under both null and alternative 
hypotheses, which is of higher arithmetic complexity and may 
lead to ill-conditioned problems [17] due to insufficient data 
sample. Another commonly used technique to determine 
between alternatives in a binary hypothesis testing problem is 
the Wald test [18]. It is asymptotically equivalent to GLRT, but 
only requires the estimate under the alternative hypothesis. This 
test depends on the parameter estimation method used, which 
affects its performance in nonstationary environments [7]. For 
example, insufficient excitation usually increases estimation 
variance [19]. An insightful investigation about the invariance 
and coincidence characteristic of GLRT, Rao and Wald tests 
and their corresponding decision statistics is carried out in [18]. 
These testing methods are also in a batch form, which are 
computationally consuming when overlapping is significant. 
More importantly, this type of nonstationarity detection is 
retrospective, i.e. to determine whether nonstationarity occurs 
at a particular point in the sequence requires all the data record 
available, including those after the change point, and hence is 
not quite amenable for online applications [3]. 

To cope with online problems, a class of adaptive detectors 
are devised, which make decisions at presence of each new 
sample, and not use a whole batch of processed data samples 
[20]–[23]. The direct application of these algorithms is the 
radar system. The practicality of such detectors, however, are 
quite limited since they usually involve the inversion of a 
correspondingly large matrix and the possibility of 
simplification has not been fully addressed in the current 
literature. Recently, a recursive least squares (RLS) algorithm 
is applied to nonstationarity detection that solves the matrix 
inversion recursively [24]. 

While there has been considerable progress in adaptive 
detection, it is still highly desirable to develop efficient 
methods for finding online solutions to the nonstationarity 
detection problems. In this paper, we propose a parametric 
adaptive nonstationarity detector, which uses a TV linear model 
for the unknown system. The model parameters are estimated 
using the developed weighted maximum a posteriori (MAP) 
estimator. In particular, an exponentially weighted window is 
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first employed in the likelihood function (LF), namely the 
weighted LF, which is augmented with an appropriate prior 
probability of the parameter. The resulting MAP estimator can 
be implemented adaptively using the so called state-regularized 
QR decomposition (QRD)-based RLS (SR-QRRLS) algorithm, 
which is numerically more stable than conventional RLS 
algorithms due to the QRD structure [25][26]. Then, the Wald 
statistic is employed, which results in the parametric adaptive 
nonstationarity detector, namely the regularized recursive Wald 
test (RWT). In addition, as an intrinsic part of the proposed 
parametric adaptive detector, we develop an adaptive method, 
called the state-regularized recursive Bayesian information 
criterion (SR-RBIC), for model order selection, which applies 
the weighted posterior probability to the conventional Bayesian 
model selection criterion [27]. Since both RWT and SR-RBIC 
use the estimation results from the SR-QRRLS algorithm, 
which is a critical step for detection, we derive a variable 
forgetting factor (FF) and regularization parameter for a better 
estimation through the analytical mean-square error (MSE) of 
the SR-RLS algorithm. 

In summary, the advantages of the proposed detection 
method are as follows: 1) the adaptive detector can make a 
decision when each observation is received; 2) the detector has 
an arithmetic complexity of O(L2) with L is the model order; 3) 
the model order can be automatically selected during detection; 
4) the estimation and detection performance has been improved 
at a low excitation; and 5) the FF and regularization parameter 
can be automatically selected without time-consuming try-and- 
error procedure. 

The rest of the paper is organized as follows. In Section II, 
the system model and weighted posterior probability are 
presented. Section III is devoted to the derivation of the 
adaptive estimator, RWT and SR-RBIC methods. In Section IV, 
a detailed MSE analysis and implementation of the SR-QRRLS 
algorithm with variable FF and regularization parameter are 
discussed. The performance of the proposed estimation and 
detection methods is evaluated by simulations under different 
situations in Section V. Conclusions are drawn in Section VI.  

II. SYSTEM MODEL AND STATISTICS 

A. System Model and Problem Statement 
Consider an L-order linear TV finite impulse response (FIR) 

system with coefficient vector T
L nhnhn )](),...,([)( 1=h . The 

unknown system is excited by an input {x(n)}. The observed 
data is { )(nd }, which is assumed to be corrupted by a 
zero-mean additive Gaussian noise { )(nη } 

)()()()( nnnnd T η+= hx  (1) 

where TLnxnxn )]1(),...,([)( +−=x  for Ln ≥ . Note the 
Gaussian noise assumption may need to be modified in case the 
estimator fails in fitting the model. 

In the TV system, the model parameters may constantly 
change their values. We hence aim to find an online solution to 
dividing the observed data into pieces of WSS Gaussian 
sequences [12] via the parameter (hypothesis) test [7], which 
we call the parametric adaptive nonstationarity detection. Our 

framework includes 1) an adaptive algorithm for parameter 
estimation; 2) a nonstationarity detector derived from the Wald 
test statistics as well as the developed adaptive algorithm; and 3) 
a model selector that automatically selects the candidate model 
during the test procedure. Based on the framework, we could 
develop an adaptive detection method with automatic model 
order selection. 

In the following, a weighted posterior probability is 
introduced, based on which the adaptive estimation, detection 
and model selection algorithms are developed in Section III. 

B. Weighted Posterior Probability 
To estimate the system parameter in (1), we introduce the 

following Bayesian linear model, given the data set { )(nd } and 
{ )(nx } [19] 

)()()()( nnnn qwXd +=  (2) 

where TLdndndn )](),...,1(),([)( −=d is the observation vector, 
TLnnn )]( ... )1( )([)( xxxX −=  is the variable matrix, =)(nw  

T
L nwnw )](),...,([ 1  is a random vector with a prior probability 

density function (pdf) to be specified latter in (3), and )(nq  is 
the measurement noise vector of appropriate size with a normal 
distribution of zero mean and covariance matrix I2

qσ , i.e. )(nq  

),(~ 2 IqN σ0 . I  denotes the identity matrix of appropriate size. 
This model differs from the general linear model in that 

)(nw  is modeled as a random variable with a prior pdf. A 
general assumption for the estimate is the state transition model 
as in the well-known Kaman filter. To make a trade-off 
between complexity and performance, a random walk prior on 

)(nw  is used, i.e. 

)()1()( nnn εww +−=  (3) 

where the random variable )(nε  has a normal distribution of 
),( 2 Iεσ0N .  

Using Bayes’ theorem, the conditional probability reads 

))((
))(())(|)(())(|)((

np
npnnpnnp

d
wwddw = . (4) 

Since ),(~)( 2Iq qNn σ0 , we can derive ))(|)(( nnp wd  from 

(2) via the transformation )()()()( inidiq T xw−= , i.e. 










 −
−= ∑

=

n

Li q

T inidAnnp
2

2

1 2
))()()((exp))(|)((

σ
xwwd  (5) 

where 2/2
1 )2( dN

qA −= πσ  with 1+−= LnNd .  
Maximizing (5) gives rise to the conventional MLE of h(n). 

Since MLE puts equal weights on data at different time indices, 
it leads to biased estimates for TV systems. To solve this 
problem, we maximize the weighted LS (WLS) estimate 
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where )(nin−λ  is weight of the square error. )(nin−λ  decreases 
exponentially towards past data, which is calculated recursively 



by using a FF )(nλ  satisfying 1)(0 <<< nλ , i.e. =− )(ninλ  
)1()( 1 −−− nn inλλ  with 1)(0 =nλ . From (6), namely the weighted 

LF, we can recursively estimate )(nh , which leads to the 
conventional variable FF (VFF) RLS algorithm. Compared to 
MLE, the algorithm derived from (6) has a much better tracking 
capability [28]. The selection of the FF is based on the 
performance analysis, which will be discussed in Section IV. 

Next, we can get the probability ))(( np w  from (3) 

( )))1()(())1()((exp))(( 22
1

2 −−−−= − nnnnAnp T wwwww
εσ

 (7) 

where 2/2
2 )2( LA −= επσ . 

Combining (4)–(7) and substituting the weighted LF (6) for 
))(|)(( nnp wd , the weighted posterior probability finds to be 

proportional to prior times weighted LF 
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III. THE PROPOSED RWT 

A. Parameter Estimation for RWT 
To derive the proposed RLS-like algorithm that maximizes 

(8), the Fisher score vector (FSV) is obtained, which finds to be 
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By setting (9) to zero [19], we find a weighted MAP estimator 
that recursively estimates the unknown system 

)1()()()())()(( −+=+ nnnnnn XXX wpwIR κκ  (10) 

where ∑ = −= n

Li
T

inXX iinn )()()()( xxR λ  is the covariance matrix, 

∑ = −= n

Li inX iidnn )()()()( xp λ  the cross-correlation vector, and 
22 /)( εσσκ qn = the regularization parameter, which can be made 

variable in practice. Eq. (10) is identical to the normal equation 
in [26] except that the FF and regularization parameter may be 
selected from different principles. The implementation of (10) 
using a QRD structure leads to the SR-QRRLS algorithm [26]. 
The procedure is shown in Appendix A for reference. In this 
paper, we have presented a new and rigorous derivation of the 
SR-QRRLS algorithm, which was previously designed from an 
intuitive perspective in one of our papers [26]. 

When )(nw  converges and hence equals to )1( −nw  
asymptotically, the optimal solution to (10) reduces to the 
conventional RLS solution [25] 

)()()( 1 nnn XXXopt pRw −= . (11) 

It can be seen that the estimator (10) is asymptotically unbiased. 
A detailed MSE performance analysis of the SR-QRRLS 
algorithm is carried out in Section IV, from which the selection 
formulas of the user parameters are derived. 

B. The Proposed RWT 
We now formulate the nonstationarity detection problem as 

choosing between the null hypothesis H0 and the alternative 

hypothesis H1. The pdf )|)(( θd np  under H0 and H1, 
conditioned on unknown parameter θ , is the same except that 
the value of θ  is different [7]. According to the linear system 
(1), the hypothesis test becomes the following parameter test 
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:
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θθ
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H
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where θ0 is a constant parameter vector of order L; while θ1 is a 
vector of order L that is different from θ0. For the adaptive 
implementation, θ0 can be assigned to an estimate of h(n) at the 
last detected change point, say w(n0) (n0 < n), and θ1 the 
estimate at the current time index. Then, we can test the current 
estimate against w(n0). 

To determine between the alternatives in (12), the Wald test 
is employed, the statistic of which reads 

))(()( 011
1

01 θθθBθθ −−= −T
WTT  (13) 

where )( 1θB  is the Cramer-Rao bound (CRB) at 1θ  [7]. 
Based on the Wald statistic (13) and the weighted MAP, we 

can derive a testing method. Since this method employs results 
from the recursive estimate, we call it the recursive Wald test. 

First, we can use (10) to estimate the parameter under H1. 
Then, we need to determine CRB. For unbiased estimators, 
CRB equals to the inverse of Fisher information matrix (FIM). 
Using (8), the (l,m)-th entry of FIM is 

[ ]

[ ]
lm

n

Li inxq

lm
n

Li inq

ml

W
lmf

nmlr

mixlixnE

ww
nnpEn

][)()(   

  ][)()()(   

))(|)((In))((

22

22

2

I

I

dwwI

−
= −

−

−
= −

−

+−=

+−−=









∂∂

∂
−=

∑
∑

ε

ε

σλσ

σλσ  
(14) 

where )(krx is the autocorrelation of { )(nx } at lag k. 
Consequently, we have IRwI 22 )())(( −− += εσσ nn XXqf . 

In the following, we discuss how to calculate the Wald test 
(13) recursively. To this end, we rewrite FSV at )( 0nw  as 
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where )()()()( 00 inidiq T xw−= , and (10) has been used to 
simplify the expression. 

Replacing 1θ  and 0θ , respectively, with )(nw  and )( 0nw , 
and substituting (14)(15) into (13) gives the RWT formula 

))(())()(( 00 nnnT T
WT wsww −=  (16) 

where the weighted MAP estimate )(nw  is updated at each 
time index, FSV at )( 0nw  is updated recursively as follows 

))1()()(()()()())(( 00
2

0 −−−= ∑ = −
− nnniiqnn n

Li inqf wwxws κλσ , 

and the noise variance 2
qσ  can be known “a priori” or 

approximated from the residue of the algorithm using a large 
FF [29]. w(n) is then tested against the estimate at the last 
detected change point )( 0nw . We should reject the hypothesis 



of stationarity if γ>WTT , where γ is chosen to maintain a 
constant false alarm rate (CFAR) [7].  

Under suitable technical conditions, such as MLE and MAP, 
likelihood ratio statistics take on a chi-squared distribution as 
the sample size grows large. Therefore, the developed Wald 
detector (16) is asymptotically Chi-squared distributed under 
H0 with Lth degree of freedom [7]: 

)0(~ 2
LWTT χ . (17) 

Under H1, it has a noncentral Chi-squared distribution or 
)(~ 2 φχLWTT  (18) 

where the non-centrality parameter is given by [18] 

( ) ( ))()())(()()( 00 nnnnn f
T wwwIww −−≈φ . (19) 

The statistical property of the detector indicates that the 
principle behind the hypothesis test is to assess whether the 
distribution of the detector follows the known distribution [7]. 

C. The SR-RBIC Method 
One issue that has not been addressed is the question of what 

order to use in the adaptive detector. For example, if the order 
of the estimator is different (larger or smaller) from the true 
model, a stationary sequence could be detected as nonstationary 
sequence due to the increased estimation residue (variance or 
bias). To deal with this problem, a recursive order selection 
method employing Bayesian model selection criterion and the 
SR-QRRLS algorithm, namely SR-RBIC, is proposed. Using 
MAP rules in model selection was not newly proposed [30]. 
However, the work here focuses on adaptation procedures only, 
which can be extended to other state-of-the-art criteria [31] for 
the corresponding adaptive versions. 

In Bayesian framework, given data { )(nd }, the posterior 
probability ))(|( nMp i d  of a model iM  is 

))((
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np
MpMnpnMp ii

i d
dd =  (20) 

where )( iMp  is a prior probability for model iM  (i = 1, 2,…). 
The probability of data conditioned on model iM  can be 
computed by the following integral 

θθθdd dMpMpMp iii ∫= )|(),|()|(  (21) 

where we have omitted the time index for simplicity. Since a 
posterior is proportional to prior multiplied by likelihood, we 
have )|(),|(),|( iii MpMpMp θθddθ ∝  and hence get 

θdθd dMpMp ii ∫= ),|()|( . (22) 

It is assumed that the posterior has a very sharp pick at the MAP 
estimate θ̂  such that the quadratic Taylor expansion is 
sufficient. By letting ))(exp(),|( θdθ gMp i = , we get =)(θg  
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2
1 θθθIθθθ −−− −

f
Tg . Then, the expansion finds 
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Consequently, the marginal likelihood is found as 
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Substituting ))(|)(( nnpW dw  in (8) for ),|ˆ( iMp dθ  and )(nw  

for θ̂ , we get the weighted posterior probability 
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where 2/
21 )2( LAAA π= , and we define )())(1()( nnn κλξ −=  

by using the relationship xxn

n

XX n RR )(1
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→∞

=  with =xxR  

)]()([ nnE Txx  the input covariance matrix. Note, the above 
relationship is based on the fact that the FF does not change its 
value frequently [28]. To proceed further, the non-informative 
prior 1)( =iMp  is used. Hence, we choose the optimal model 
Mi by minimizing the following SR-RBIC selector 
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where xxR̂ = IR )(nxx ξ+  and C is a constant. It can be seen that 
the first two terms contribute as the adaptive version of the 
conventional BIC, where the number of sample changes with 
the window size. The third term can be viewed as the 
signal-to-noise ratio (SNR) while the last term comes from the 
regularization which would reject models with large variations. 
Compared to the conventional Akaike information criterion [32] 
and Bayesian information criterion [27], Eq. (26) considers the 
contribution of noises [30][31]. 

IV. USER PARAMETER SELECTION 
Although developing advanced RLS algorithms is not the 

focus of this paper, adaptive estimation is an important and 
necessary step for the proposed detection method. Therefore, in 
this section, we analyze MSE of the SR-QRRLS algorithm 
based on a TV linear system (1), the coefficient of which is 
modeled by a local polynomial. From this analysis, we derive 
the locally optimal FF and regularization parameter.  

Recall the normal equation (10). After some simple algebras, 
it can be written in a matrix notation for concise presentation 

)1()()()()()()(~
−+= nnnnnnn T

XX wdΛXwR κ  (27) 

where )])(),...,(,1([)( 1 nndiagn Ln−= λλΛ  is a diagonal matrix, 

+= )()(~ nn XXXX RR I)(nκ  is the regularized covariance matrix 
with )()()()( nnnn T

XX XΛXR = . 
We assume that the impulse response vector of the channel is 

continuous and it admits a first order polynomial expansion at 
time nt  as described in [28] for the classical RLS algorithm: 

)())(()()( )1(
!1

1
nmnmnnm ttttttt −+−+= rhhh  (28) 

where mt  belongs to an appropriately close neighborhood of 



nt , and )( nm tt −r  is the remainder of higher order terms. Both 
)()1(

nth  and )( nm tt −r  can be considered as random vectors of 
zero mean and the latter is of order )( nm tto − . 

Using (28) and (1), and letting sn nTt = , we have 

)()()()()()()()( )1( nnnnnnnn υηhXDhXd +++= τ  (29) 

where sT  is the sampling period, ))(()( ndiagn τD =τ  with 
TLnn )](,...,1,0[)( −−−=τ , TLnnn )](),...1(),([)( ηηη −=η  and 

TLnnn )](),...,1(),([)( υυυ −=υ  are, respectively, the noise and 
residue vectors with )()()( mmnmn T −−=− rxυ . 

Substituting (29) into (27), we can obtain the RLS solution 
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where )()()()()( nnnnn T XDΛXR ττ = = xxn
R2))(1(

1
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−  according 
to Appendix B and we used the Woodbury formula [33] to get 
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In the following, we consider the mean square deviation 
(MSD) of w(n) from h(n). First, the difference equation for the 
bias vector )()]([)( nnEn hwb −=  can be obtained from (30) as 
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where )]([)( )1()1( nEn hh = = )]1()([ −− nnE hh . The remainder 
)( nm −r  is independent of the input X(n) and the correlation 

between X(n) and )(nυ  is negligible [28][34]. From Appendix 
C, we can obtain the bias of the estimate 
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Next, the difference equation for the variance vector =)(nv  
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where )()()( )1()1()1( nnn hhh −=δ . From Appendix C, we have 
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Consequently, the mean square deviation (MSD) can be 

obtained from (32) and (34) as 
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                 )~()()( 222 −+ xxh Trnn Rσξ  
where )()()( 222 nnn hhh δσσσ += . 

We now derive the locally optimal FF. To see the influence 
of )(nλ  on )(nJ MSD , the following assumptions are made. In 

the bias term, )()~()( 22
))((

1222
2 κλ
σσξ IR TrTrn hnxxh −1

− <<  and hence 

the former can be ignored. Meanwhile, κI  is very close to the 
identity matrix for small to medium regularization. Using these 
two approximations and taking the derivative of (35) with 
respect to the FF gives 
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Letting (36) be zero, we have  
32212 ))(/()())(/()( nLnnTr hxx λσλσ −1=+1−

Σ R  
To proceed further, we let ))(/())(( nn λλµ −1+1=  so as to 
have ))(/()(2)1( 2122 nLTr hxx σσµµ −

Σ=+ R . Since 1>>µ  [28], we 

have 32 )1( µµµ ≈+  and hence 3
1

))](/()(2[ 212 nLTr hxx σσµ −
Σ= R . 

Then, the locally optimal FF can be obtained 
0)(  if  ),1/()1()( >+−= nn optopt λµµλ  (37) 

This result is identical to that in [28], where no regularization 
technique has been employed. In practice, the noise variances 
can be obtained from prior information or calculated from the 
estimation error q(n). The details can be found in [28]. 

To derive the optimal regularization parameter, we take the 
derivative of (35) with respect to ξ (the time index of which has 
been omitted to have a concise expression) and have 
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where 2
xiσ  is the ith eigenvalue of xxR  so that the ith 

eigenvalue of κI  reads )/( 22 ξσσ +xixi . To derive a formula for 
practical use, we assume that the input is white Gaussian 
distributed with variance 2

xσ  and let (38) equal to 0: 
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Since ξ << 2
xσ  and the last term is far smaller than the other 

terms, the following formula provides a good approximation 
for the selection of regularization parameter 
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The resulting RLS algorithm using (37) and (39), respectively, 
as the locally optimal variable FF (LVFF) and regularization 
parameter is called the SR-LVFF-QRRLS algorithm. 
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Fig. 1.  Learning curves of MSD for sudden-change channels with the 1st order 
AR input at (a) SNR = 10 dB (b) SNR = 20 dB. σh

2 = 0.00005, L = 5. 
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Fig. 2.  Learning curves of MSD for the SR-QRRLS algorithm with the 1st 
order AR input at SNR = 0dB and 20dB. L = 5. ξ = ξopt. λ = λS, λopt and λL. 

V. SIMULATION RESULTS 
First, we examine the performance of the estimator in system 

identification problems. The effect of FF and regularization 
parameter on estimation rate and accuracy is studied for both 
random walk and sudden change models. Next, the proposed 
RWT is applied to TVAR model for sequential detection. Then, 
SR-RBIC is tested. Finally, a sequential detection method with 
automatic order selection is evaluated. Unless specified, all 
results are averaged over 100 Monte-Carlo simulations. 

For the sequential detection methods, the testing samples are 
summations of sinusoids or real speech signals, which are 
represented by a TVAR model and exhibit a “slowly varying” 
type of nonstationarity as opposed to a sudden change for 
which many efficient tests exist [12]. Such signal is of great 
concern in practical applications. 

A. Evaluation of the Estimator 
1) Convergence performance comparison 

In this experiment, a TV linear system (1) is considered. The 
system to be identified is a random walk model of length L = 5: 

)()()1( nnn δhh +=+ , where )(nδ  is the white Gaussian 
random vector with a covariance matrix of I5105 −× . The 
initial value of the channel is set to ]1,1,1,1,1[0 −−=h , which 
changes to ]1,1,1,1,1[1 −−−=h  at the 3000th sample. The length 
of the adaptive filter is set to L = 5. SNR is set to 10 and 20 dB, 
which represent a common environment in real applications. 
The input signal is generated from a first-order AR process: 

)()(9.0)1( ngnxnx +=+ , where )(ng  is Gaussian process of a 
zero-mean, and the input power is normalized. 

The performance of the conventional RLS algorithm, the 
GVFF-RLS algorithm [29], the LVFF-QRRLS algorithm [28] 
and the proposed SR-LVFF-QRRLS algorithm are tested. The 
FF for RLS is set to 0.999. Parameters for GVFF-RLS are set to 
α = 0.3, β = 0.99, μ = 0.04, as suggested in [29], and ω* is 
chosen as 0.999 to achieve a similar MSD with the RLS 
algorithm. The simulation results are shown in Fig. 1. It can be 
seen that the LVFF-based algorithms have a much faster 
tracking speed in each case. The SR-LVFF-QRRLS algorithm 
could converge to a much lower steady-state MSD at a 
comparable or even faster speed, and the improvement is more 
significant when the noise level is higher due to the unbiased 
properties of the state regularization. 

2) Effect of FF and regularization parameter 
In this experiment, the effect of the FF and the regularization 

parameter on the performance of the estimator is examined. 
The system to be identified is identical to that in the previous 
experiment except it does not have a sudden change. The same 
inputs as in the previous experiment are used. 

First, we evaluate the performance of SR-QRRLS algorithm 
at different FFs, given the regularization parameter calculated 
from (39). Different FFs λ = Sλ , optλ  and Lλ  are used, where 

)1.0/(11 optS L−=λ , )10/(11 optL L−=λ , and )1/(1 optoptL λ−=  is 
the optimal window size. Applying these parameters to 
SR-QRRLS, the corresponding MSD curves at SNR = 0 and 20 
dB are shown in Fig. 2. It can be seen that, SR-QRRLS with 

optλ  generally converges faster to a lower steady-state MSD. 

The algorithm with Sλ  may have a slightly faster convergence 
initially, but it achieves much larger MSD due to the increased 
variance. The MSD curves at SNR = 10 dB are somewhere in 
between and the curve with optλ  also has best performance. For 
presentation use, only curves at SNR = 0 and 20 dB are shown. 
It can be seen from the results that the accuracy of the proposed 
selection formula is within one order from its true value, which 
provides a good reference for practical use. 

Secondly, we study the effect of the regularization parameter 
on the performance of SR-QRRLS. The theoretical and 
simulated steady-state MSD vs. regularization parameter 
curves are shown in Fig. 3. It can be seen that the simulated and 
theoretical results agree well with each other. It also illustrates 
that the optimal regularization parameter formulated in (39) 
gradually decreases as the SNR increases from 0 dB to 20 dB, 
which is mainly because the variance term in MSDJ  decreases as 
the noise becomes smaller so that less regularization is needed 
to combat the measurement error. It also shows that optξ  is 
slightly overestimated for lower SNR. However, it still 
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Fig. 3.  Simulated and theoretical results of the steady-state MSDs vs. the regularization parameter for the SR-QRRLS algorithm with the 1st order AR input at SNR 
= (a) 0 dB (b) 10 dB, and (c) 20 dB. L = 5. λ=λopt. ξ = 0.1ξopt, ξopt and 5ξopt. 
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Fig. 4.  Detection performance of the proposed RWT (solid line) and GLRT 
with q = 4 (dot line) and q = 2 (dot dash line). Fs = 4 kHz. (a) Time duration is 
4 ms; (b) Time duration is 2 ms. TVAR(2) is used. 

provides a good reference for selection of the regularization 
parameter in practice. Next, we examine in more detail the 
performance of (39) with mismatches, i.e. 0.1 optξ  and 5 optξ  are 
examined. The resulting steady-state MSDs are marked by ‘Δ’ 
in Fig. 3. It suggests that formula (39) is tolerant to mismatches 
if the prior information, such as noise variances, is not exactly 
known in real applications. 

B. Evaluation of the Detector 
1) Evaluation of the false alarm (FA) rate 

In this example, the signal under study is a single sinusoid. A 
TVAR model is employed to represent the process, which reads 

)()()()()()()(
1

nnnninxnanx aa
T

L

i
aaia ηη +=+−= ∑

=

xa  (40) 

where T
L nanan )](),...,([)( 1=a  is the TV parameter vector of 

order L, T
aaaa Lnxnxnxn )](),...,2(),1([)( −−−=x , and )(naη  

is a white Gaussian process for excitation. Such a model is 
simply denoted as TVAR(L) in the sequel. The developed 
algorithms can be easily extended to the TVAR model by 
replacing )(nd  and )(nx  in (3), respectively, by )(nxa  and 

)(nax . The resulting RLS-based algorithm for the prediction of 
TV parameters is closely related to the problem of linear 
prediction in a variety of applications [35]–[37], which is 
popular with good computational efficiency and nearly 
optimum estimation accuracy [15]. 

The sinusoids under study have a time duration of T and 
changes its frequency by δ Hz at T/2. The sampling frequency is 
assumed to be 4 kHz. The proposed RWT and GLRT method [5] 
are used to detect this change. For both algorithms under testing, 
the TVAR(2) model is applied since two TVAR parameters 
correspond to one frequency component. For the TV linear 
prediction algorithm in GLRT, q = 2, and 4 Legendre 
polynomials are used. The signal lengths considered are 2 ms 
and 4 ms. The signal changes its frequency by δ = 12.5Hz, 
37.5Hz, 62.5Hz and 87.5Hz. The SNR is set to 20 dB. To 
calculate the probability of detection and FA, 1000 trial 
simulations have been performed for each setting. As can be 
seen from Fig. 4, the detection performance for both methods 
improves when δ is increased while T is fixed. If the data 
records are sufficient (as shown in Fig. 4(a)), the GLRT method 
with appropriate power order (q = 4) has a comparable 
detection performance with the proposed RWT method at the 
cost of increased computational complexity. At the presence of 
insufficient data, however, the proposed detector usually 
outperforms the GLRT due to the regularization technique 
employed as shown in Fig. 4(b). 

2) The sequential nonstationarity detection method 
In this section, we give two examples showing how to detect 

nonstationarity using the proposed RWT. Different from the 
retrospective property of the batch-based methods, the method 
here can process the observations sequentially over time. So we 
call it a sequential nonstationarity detection method, which is 
summarized as follows: 

Method I: Sequential Nonstationarity Detection 
1) Initialization:  

 set γ via (17) given a certain CFAR; 
 set n = 1, n0 = 0, and w0 = 0; 



 
Fig. 5. Detection performance of the proposed RWT-base method (Method I) 
and the GLRT-based sequential detection (Algorithm 1) in [5] for synthetic 
data. Fs = 4 kHz. For GLRT, the batch sizes used are 2 ms (dotted lines) and 10 
ms (solid lines). 
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Fig. 6. Detection performance of the proposed RWT method (Method I) using 
(a) SR-LVFF-QRRLS, and (b) LVFF-QRRLS for the real speech. 
 

2) Detector calculation 
 estimate the model parameter at the current time instant 

n, w, using SR-LVFF-QRRLS; 
 calculate the corresponding TWT via (16); 

3) Detection 
 if TWT < γ (no nonstationarity is detected), go to step 4); 
 else (nonstationarity detected), mark this time instant as 

n0 = n and set w0 = w; 
4) Set n = n +1 and return to 2) for the next data sample. 

In this method, w is the parameter estimate at the current time 
instant n whereas w0 is the estimate at the last detected change 
point, say at n0, and (16) will be used to test nonstationarity 
using the current estimate. If a change is detected, n0 will be set 
to the current time instant n and we can repeat the above process, 
otherwise, it will proceed to the next time instant. The proposed 
method is compared with the conventional GLRT method [5] 

(Algorithm 1) without overlapping so that the complexity of the 
two methods is comparable. In this experiment and the rest of 
the paper, all results are not averaged. 

In the first experiment, the signal under study is shown in Fig. 
5, which contains two sinusoids, one of which changes its 
frequency at the 100th sample. A TVAR(4) model is used for 
both algorithms. Other settings are identical to those in the 
previous experiment. For the GLRT-based method (q = 4), two 
different rectangular windows are used, i.e. M = 8 (2 ms) and M 
= 40 (10 ms). The CFAR used is 1%. We observe in Fig. 5 that 
for the GLRT-based method, a shorter batch size (dotted lines 
in the first two subplots) leads to a more prompt response to 
signal changes, but may have more FAs due to insufficient data 
samples (see Fig. 4). On the other hand, a longer batch size 
(solid lines in the first two subplots) can suppress large 
variances during detection, but leads to longer detection latency. 
The proposed method can provide a detection result with much 
less detection latency as well as less FAs due to its recursive 
property and the state regularization employed. 

Next, the detection method is applied to a segment of real 
speech signal. The real data used are the waveform of a vowel [a] 
(as in “father”) followed by [ai] (as in “life”) [38]. It was 
downsampled to 1 kHz in order to focus on lower frequency 
formants [5]. According to the rule-of-thumb that “2 
coefficients per kHz”, a TVAR(2) model is applied. The TV 
center frequencies are extracted from a(n) using the roots zi of 
the equation zL – a1(n)zL-1…– aL(n) = 0. We choose the 
frequency estimate as the angles of these roots. For real-valued 
signals, only roots in the upper half of the complex plane are 
selected. Both LVFF-QRRLS and SR-LVFF-QRRLS 
algorithms are used in the detection method and the results are 
shown in Fig. 6. Since the center frequency mainly ranges from 
100 Hz to 350 Hz, a spectrum covering this range is presented. 
From the TWT curves and estimated frequencies, it can be seen 
that the regularization helps to stablize the estimation and 
detection process. 

C. Evaluation of the Model Selector 
In this section, we illustrate the performance of the proposed 

SR-RBIC and examine the effect of background noises on it. 
In the first example, the true linear regression model is 

)()(5.01)( nnxny η++= , where the input {x(n)} and additive 
noise { )(nη } are both random Gaussian sequences. The SNR 
is set to 20 dB. We fit the following models to the values of 
{y(n)} by using SR-LVFF-QRRLS: (1) the constant model 

01 )( β=ny ; (2) the straight line model )()( 102 nxny ββ += ; and 
(3) the second order model )1()()( 2103 −++= nxnxny βββ . 

The 1002th–1016th samples fitted by the three models are 
shown in Fig. 7(a). It seems that the straight line model y2 and 
the second order model y3 are almost overlapping and they are 
quite close to the true values, while the constant model y1 has 
significant deviation. These 15 samples are randomly chosen. 
The results for other samples show similar performance. Then, 
using the SR-RBIC selector (26), we proceed with the model 
selection from the three candidates. From Fig. 7(b), it can be 
seen that y2 should be selected as the best model since its TM 
curve is stable and lower than others. The second best model is 
y1, which may also be correct since regularization could help to 
suppress the variance caused by modeling error (longer filter 
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Fig. 7. Comparison of (a) fitting between three different models and (b) the 
corresponding values of TM for SR-RBIC. 

500 1000 1500 2000 2500 3000 3500 4000

T
M

 fo
r R

BI
C

0

500

1000

L=4 L=6 L=8 L=10

Samples

500 1000 1500 2000 2500 3000 3500 4000

T
M

 fo
r S

R
-R

BI
C

0

500

1000

 
    (a) 

500 1000 1500 2000 2500 3000 3500 4000

T
M

 fo
r R

BI
C

0

500

1000

L=4 L=6 L=8 L=10

Samples

500 1000 1500 2000 2500 3000 3500 4000

T
M

 fo
r S

R
-R

BI
C

0

500

1000

 
    (b) 

Fig. 8. Performance comparison of the conventional RBIC and the proposed 
SR-RBIC at: (a) SNR = 100 dB and (b) SNR = 20 dB. 
 
length). The constant model should be rejected due to the 
significant fluctuation of the corresponding TM curve.  

Next, we evaluate the effect of noises on the performance of 
model selection criteria in a TV system. TM curves of the 
conventional RBIC (the first two terms in (26)) and SR-RBIC 
(26) are computed for the candidate models. We suppose the 
input signal {x(n)} is a summation of sinusoids containing three 
frequency components (500 Hz, 760 Hz, and 1600 Hz) from the 
1st to the 2000th sample and an extra sinusoid of 1250 Hz 
appears after that. We now apply TVAR(4), TVAR(6), 
TVAR(8) and TVAR(10), respectively, to {x(n)} and calculate 
TM values at each sample of both RBIC and SR-RBIC. The 
results have been shown in Fig. 8. It can be seen that when SNR 
= 100 dB, both criteria select the same and also the true order 
(i.e. L = 6 for the first 2000 samples and L = 8 for the rest) after 
the initial iterations. However, when SNR decreases to 20 dB as 

shown in Fig. 8(b), only the proposed SR-RBIC selects the best 
model while RBIC selects L = 8 for all samples.  

It should be mentioned that although there are many newly 
proposed model order selectors, the adaptive versions are still 
not available in the current literature and we therefore do not 
provide comparisons with other model order selectors. 

D. The Sequential Nonstationarity Detection Method with 
Automatic Model Order Selection 

In this section, we introduce a sequential detection method 
with automatic model order selection. The method has been 
summarized as follows: 

Method II: Sequential Nonstationarity Detection with 
Automatic Model Order Selection 
1) Initialization: 

 set γ via (17) given a certain CFAR; 
 set the model order L by an initial guess; 
 set n = 1, n0 = 0, and w0 = 0; 

2) Detector calculation 
 estimate the model parameter at the current time instant 

n, w, using SR-VFF-QRRLS; 
 calculate the corresponding TWT via (16) (if the length of 

w0 and w is different, the shorter will be added zeros to 
the end so that they have the same length); 

 calculate the corresponding TM via (26) for model order 
Mi = max(1, L – 1), L, L + 1; 

3) Detection 
 if TWT < γ (no nonstationarity is detected), go to step 5); 
 else (nonstationarity detected), mark this time instant as 

n0 = n and set w0 = w; 
4) Model order selection iff TWT ≥ γ 

 select the model order from [max(1, L–1), L, L+1] based 
on TM at time instant n; 

 set the selected model order;  
5) Set n = n +1 and return to 2) for the next data sample. 

 
Fig. 9. Results of the Sequential Nonstationarity Detection with Automatic 
Model Order Selection method (Method II) using the speech signal (the word 
“jazz”). The selected model orders have been denoted by arrows. 
 

According to Method II, the sequential detection is first 
executed using an initial guess for the model. The model 
selection will then be carried out once a change is detected since 
it is where model order is most likely to change. It should be 
noted that we assume the model order varies slowly and select 



TABLE I   THE SR-QRRLS ALGORITHM 
Initialization: 

 IR δ=)0( , δ  is a small positive constant; 
0=)0(u , 0=)0(w  are null vectors. 

Recursion: 

 Given )1( −nR , )1( −nu , )1( −nw , )(nx  and )(nd , compute at 
time n: 
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The second update: 
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where Q(1)(n) and Q(n) are calculated by Givens rotation to obtain 
the left hand side of each equation above, μ(n)=ξ(n)L, and dl is the 
l-th row of the identity matrix. 

 (ii). )()()( 1 nnn uRw −=  (back-substitution). 

 

from (L–1, L, L+1), where L is the previously selected model 
order. In this way, much computational complexity can be saved. 
The above method is applied to a segment of the real speech 
“jazz” [38]. The sampling frequency is 1 kHz. 

The results are shown in Fig. 9. It can be seen that the 
segmentation around 0.15 sec is comparatively short and the 
order “7” (marked in red circle) is overestimated, although it is 
also correct (i.e., the parameter corresponding to the redundant 
order can be made 0). This may be caused by the variance of the 
significant changes of the frequency components. Generally, the 
sequential detection and order selection system provides 
satisfactory performance. As a byproduct, the center frequencies 
are well estimated as shown in the spectrum. 

VI. CONCLUSION 
In this paper, we derive a parametric adaptive nonstationarity 

detector with model order selection from a weighted LF and the 
Bayesian framework. A sequential technique could be obtained 
that separates the data record into stationary segments, which 
allows users to determine nonstationarity of data for statistical 
analysis before a biased estimation occurs, and is very important 
in online applications such as speech and economics. The 
byproduct is the adaptive estimator using the SR-LVFF-QRRLS 
algorithm and the adaptive model order selector. This paper has 
provided a framework for employing adaptation procedures and 
developing sequential methods in detection and model selection. 
It can be extended to other advanced detection and information 
criteria in order to derive more efficient methods. A problem 
that is very common in practice and has not been addressed is 
the high level of noises. In this case, techniques for noise 
reduction can be used as pretreatment of data such that the 
proposed detection methods can provide satisfactory results. It 
is a comparatively separate problem, we hence have omitted any 
discussion and will explore it in more detail in the future. 

Appendix A: Table I 

Appendix B 
In this Appendix, we derive the term )(nτR  as →n ∞ . 

Since )(nτR  is symmetric, it can be written as 
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where the time index at ∞  has been omitted. 
By using some simple algebras, sk can be written as 
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where )(krxx  is the correlation between )(nx  and )( knx − . 

Appendix C 
To evaluate the mean square behavior of )(nb , we determine 

a difference equation for the weight error covariance matrix 
)]()([)( nnEn T

b bbΞ = . From (31) and assuming the bias vector 

)(nb  is uncorrelated with )]([)( )1()1( nEn hh = , we have 
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T

XX
−− RhhRRI τκκ . )(3 nB  is quite 

small compared to )(2 nB  and hence can be ignored. Then, 

using the eigenvalue decomposition XXXX
T n DURU =

~)(~~  and 
expressing )(nbΞ  in the transformed coordinate: )(nBΞ = 

UΞU ~)(~ nb
T , the ith diagonal element of )(nBΞ  converges to 
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where iλ  is the ith diagonal element of XXD . Since 
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, the bias can be obtained as 
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where the covariance matrix IhhR 2)1()1( )]()[( h
T

h nn σ== . 
The mean square behavior of )(nv  can be evaluated from its 

covariance matrix )]()([)( nnEn T
v vvΞ = . From (33), we have 
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we can obtain  
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where we have used the following relationship [28]: )(~ 1 nXX
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0, the result for estimation variance coincides with that in [28]. 
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