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Prediction-Correction Algorithms for
Time-Varying Constrained Optimization

Andrea Simonetto and Emiliano Dall’Anese

Abstract—This paper develops online algorithms to track
solutions of time-varying constrained optimization problems.
Particularly, resembling workhorse Kalman filtering-based ap-
proaches for dynamical systems, the proposed methods involve
prediction-correction steps to provably track the trajectory of the
optimal solutions of time-varying convex problems. The merits
of existing prediction-correction methods have been shown for
unconstrained problems and for setups where computing the
inverse of the Hessian of the cost function is computationally
affordable. This paper addresses the limitations of existing
methods by tackling constrained problems and by designing first-
order prediction steps that rely on the Hessian of the cost function
(and do not require the computation of its inverse). In addition,
the proposed methods are shown to improve the convergence
speed of existing prediction-correction methods when applied
to unconstrained problems. Numerical simulations corroborate
the analytical results and showcase performance and benefits of
the proposed algorithms. A realistic application of the proposed
method to real-time control of energy resources is presented.

Index Terms—Time-varying optimization, non-stationary opti-
mization, parametric programming, prediction-correction meth-
ods, real-time control of energy resources.

I. INTRODUCTION

We consider constrained optimization problems that vary
continuously in time. We outline the main ideas by first
focusing on problems with a time-varying objective function.
Consider then the following optimization problem:

x˚ptq :“ argmin
xPX

fpx; tq, for t ě 0 , (1)

where X Ď Rn is a convex set; t P R` is non-negative,
continuous, and it is used to index time; and, f : RnˆR` Ñ R
is a smooth strongly convex function. The goal is to find (and
track) the solution x˚ptq of (1) for each time t – hereafter
referred to as the optimal solution trajectory.

Problem (1) is a generalization of traditional time-invariant
(i.e., static) problems, and can naturally model: a) control
problems where one seeks to generate a control action de-
pending on a (parametric) varying optimization problem [2]–
[4]; b) signal processing problems [5], where states of a
dynamical process are estimated online based on time-varying
observations – including time-varying compressive sensing
settings [6]–[11]; and, c) inferential problems on dynamic net-
works [12]. Additional application domains include robotics
[13]–[15], smart grids [16]–[18], economics [19], real-time
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magnetic resonance imaging (MRI) [20], and human migration
studies [21].

The problem (1) might be solved in a centralized setting
based on a continuous time platform [22]–[27]; however, here
we focus on a discrete time setting. The reason for this choice
is motivated by the widespread use of digital computing units,
such as control units (actuators) and digital sensors. In this
context, we envision that our optimization problem will change
in response to measurements taken at discrete time steps and
its solution could provide control actions to be implemented
on digital control units.

Therefore, we use sampling arguments to reinterpret (1)
as a sequence of time-invariant problems. In particular, upon
sampling the objective functions fpx; tq at time instants tk,
k “ 0, 1, 2, . . . , where the sampling period h :“ tk ´ tk´1

can be chosen arbitrarily small, one can solve the sequence of
time-invariant problems

x˚ptkq :“ argmin
xPX

fpx; tkq, k P N. (2)

By decreasing h, an arbitrary accuracy may be achieved
when approximating problem (1) with (2). However, solving
(2) for each sampling time tk may not be computationally
affordable in many application domains, even for moderate-
size problems1.

Focusing on unconstrained optimization problems, the
works in [29], [30] developed a prediction-correction method
to find and track the solution trajectory x˚ptq up to a
bounded asymptotical error, starting from an arbitrary guess
x0. This methodology arises from non-stationary optimiza-
tion [31], [32], parametric programming [19], [33]–[35], and
continuation methods in numerical mathematics [36]. It also
resembles evolutionary variational inequalities [21], [37] and
path-following methods in interior point solvers [38]. This
paper significantly broadens the method of [29] by offering
the following contributions.

(i) We develop prediction-correction methods to track the
solutions of the time-varying constrained problems (1);

(ii) We develop first-order algorithms that do not involve the
computation of the inverse of the Hessian of the cost
function, as required in [29]; the proposed prediction-
correction method is computationally lighter, as it re-
quires only matrix-vector multiplications. Further, we
offer a trade-off between tracking capabilities and com-
putational effort; and

(iii) We show that the proposed prediction-correction algo-
rithm improves on the method in [29] when applied

1Note that here we focus on constant sampling periods; variable ones in-
duced by self-triggering have been considered in unconstrained problems [28]
and could be considered in constrained problems in future works.
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to unconstrained optimization problems; particularly, it
exhibits enhanced local convergence properties by relying
on Newton-like prediction steps.

The design and analysis of proposed prediction-correction
methods are grounded on the theory of generalized equations
and implicit function theorems [34].

Organization. In Section II, we describe the prediction-
correction methodology for constrained time-varying opti-
mization problems. The special case of unconstrained case is
developed in Section II-D. Convergence analysis is discussed
in Section III, both for global Ophq convergence and local
Oph2q convergence. Numerical examples are displayed in
Section IV – including a realistic application in real-time
control of energy resources –, and in Section V, we draw our
conclusions. The proofs of all the propositions and theorems
are given in the appendices.

Notation. Vectors are written as x P Rn and matrices as
A P Rnˆn. We use } ¨ } to denote the Euclidean norm in the
vector space, and the respective induced norms for matrices
and tensors. The gradient of the function fpx; tq with respect
to x at the point px, tq is denoted as ∇xfpx; tq P Rn, while
the partial derivative of the same function with respect to
(w.r.t.) t at px, tq is written as ∇tfpx; tq P R. Similarly,
the notation ∇xxfpx; tq P Rnˆn denotes the Hessian of
fpx; tq w.r.t. x at px, tq, whereas ∇txfpx; tq P Rn denotes
the partial derivative of the gradient of fpx; tq w.r.t. the
time t at px, tq, i.e. the mixed first-order partial derivative
vector of the objective. The tensor ∇xxxfpx; tq P Rnˆnˆn

indicates the third derivative of fpx; tq w.r.t. x at px, tq, the
matrix ∇xtxfpx; tq “ ∇txxfpx; tq P Rnˆn indicates the
time derivative of the Hessian of fpx; tq w.r.t. the time t at
px, tq, and the vector ∇ttxfpx; tq P Rn indicates the second
derivative in time of the gradient of fpx; tq w.r.t. the time t
at px, tq. The indicator function is indicated as ιXpxq for the
convex set X Ď Rn; by definition ιXpxq “ 0 when x P X
and `8 otherwise. The subdifferential of ιX is the set-valued
map known as normal cone NX : Rn Ñ Rn (Cf. [34]).

II. PREDICTION-CORRECTION STRATEGY

In this section, we first focus on problem (1) and design a
prediction-correction algorithm to track the (unique) trajectory
of the optimal solution. As explained in the introduction,
consider sampling (1) at times tk, k P N, and constructing
a sequence of time-invariant problems (2). In lieu of solving
(2) at each time step, the goal of the prediction-correction
strategy is to determine an approximate optimizer for (1) at
tk`1 in a computationally affordable way, given the current
approximate optimizer at tk.

A. Prediction

Suppose that xk is an approximate solution of (2) at time tk.
Given xk, the prediction step seeks an approximate optimizer
for (1) at tk`1, given the only information available at time
tk. Let xk`1|k denote the output of the prediction step, which
is computed as explained next.

Notice first that solving the time-invariant problem (2)
associated with time tk is equivalent to solving the generalized

equation

∇xfpx
˚ptkq; tkq `NXpx

˚ptkqq Q 0 (3)

where NX is the normal cone operator, while x˚ptkq is the
optimizer of (2) at tk. Although many equivalent ways to
formulate the solution of (2) exist, e.g., as the fixed-point
of a properly defined operator, here we focus on generalized
equations to build on the implicit function theorems of [19],
[34].

With (3) in place, the prediction step seeks the solution of
the following perturbed generalized equation

∇xfpxk`1|k; tk`1q `NXpxk`1|kq «

∇xfpxk; tkq `∇xxfpxk; tkqpxk`1|k ´ xkq

` h∇txfpxk; tkq `NXpxk`1|kq Q 0. (4)

That is, the prediction step produces a solution that is optimal
w.r.t. a perturbed (first-order) version of the original gener-
alized equation (3). The idea of this perturbed approximate
version is motivated by the fact that one would like to solve
∇xfpxk`1|k; tk`1q`NXpxk`1|kq Q 0, but that is not possible
at time tk. Therefore, we perturb said generalized equation by
a backward Taylor expansion, in a way that is possible to solve
it at time tk.

We can now replace (4) with the following equivalent
formulation

xk`1|k“argmin
xPX

!1

2
xT∇xxfpxk; tkqx

`p∇xfpxk; tkq`h∇txfpxk; tkq´∇xxfpxk; tkqxkq
Tx

)

,

(5)

where we can notice that the normal cone operator yields the
feasible set over which the optimization is computed.

In lieu of seeking an exact solution of (5) (which is a con-
strained optimization problem with quadratic cost), consider
the less computational demanding task of finding an approx-
imate solution of (5) by computing a number of projected
gradient descent steps – the first key step towards a first-order
prediction-correction method (Note that we consciously avoid
Newton’s method here for the high computational complexity
burden of computing the Hessian inverse). Particularly, let
px0 be a dummy variable initialized as px0 “ xk; then, the
following steps are performed:

pxp`1 “ PX rpx
p ´ αp∇xxfpxk; tkqppx

p ´ xkq

` h∇txfpxk; tkq `∇xfpxk; tkqqs, (6)

for p “ 0, 1, . . . , P´1, where P is a pre-determined number of
gradient steps, α ą 0 is the stepsize, and PX is the projection
operator over the convex set X . Once P steps are performed,
x̃k`1|k is set to:

x̃k`1|k “ pxP . (7)

B. Correction

Once the cost function fp¨; tk`1q becomes available, the
correction step is performed to refine the estimate of the
optimal solution x˚ptk`1q. To this end, a first-order projected
gradient method is considered next. Particularly, let px0 “
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Algorithm 1 Constrained First-Order Prediction-Correction
(C-FOPC)
Require: Initial variable x0. Initial objective function fpx; t0q, no.

of prediction steps P and correction steps C
1: for k “ 0, 1, 2, . . . do
2: // time tk
3: Prediction: initialize px0 “ xk

4: for p “ 0 : P ´ 1 do
5: Predict the variable by the gradient step [cf (6)]

pxp`1“ PX rpxp ´ αp∇xxfpxk; tkqppxp ´ xkq`
h∇txfpxk; tkq `∇xfpxk; tkqqs

6: end for
7: Set the predicted variable x̃k`1|k “ pxP

8: // time tk`1

9: Acquire the updated function fpx; tk`1q
10: Initialize the sequence of corrected variables px0 “ x̃k`1|k
11: for c “ 0 : C ´ 1 do
12: Correct the variable by the gradient step [cf (8)]

pxc`1“ PX rpxc ´ βp∇xfppxc; tk`1qs
13: end for
14: Set the corrected variable xk`1 “ pxC

15: end for

x̃k`1|k be a dummy variable; then, consider the following
projected gradient steps

pxc`1“ PX rpx
c ´ βp∇xfppx

c; tk`1qs, (8)

for c “ 0, 1, . . . , C ´ 1, where C is a predetermined number
of gradient steps and β ą 0 the stepsize. The estimate of the
optimal solution x˚k`1 is then computed as xk`1 “ pxC .

C. Complete Algorithm

The complete algorithm Constrained - First Order Prediction
Correction (C-FOPC) is tabulated as Algorithm 1. Steps 4-
7 are utilized to compute x̃k`1|k based on the information
available at tk. Provided that the projection operator is easy
to carry out (set X is simple, e.g., it is an `2 or `8 norm),
and the Hessian is easy to evaluate, the computational com-
plexity of these steps is OpPn2q, which is quadratic (due to
matrix-vector multiplications) in the number of scalar decision
variables. This is in contrast with the algorithms presented in
[29], which involve the computation of the Hessian inverse and
whose computational complexity is therefore Opn3q. Steps 10-
14 are utilized to compute xk`1, based on the information
available at tk`1. Provided that the projection operator is
easy to perform (set X is simple) and the gradient is easy
to evaluate, the computational complexity of these steps is
OpCnq, which is linear in the number of scalar decision
variables.

Remark 1: [Time derivative approximation] The time
derivative of the gradient ∇txfpx; tq can be substituted with
an approximate version, as explained in [29].

D. Special Case: Unconstrained Problems

In this section, we focus on the special case of unconstrained
problems (i.e., X “ Rn). Although [29] has given an extensive
characterization of methods for unconstrained problems, we

will see in this section that further important improvements can
be achieved based on the prediction generalized equation (4).

For unconstrained problems, the prediction equation (4) can
be rewritten as

∇xfpxk`1|k; tk`1q « ∇xfpxk; tkq`

∇xxfpxk; tkqpxk`1|k ´ xkq ` h∇txfpxk; tkq “ 0. (9)

Since the suboptimality at time tk can be easily characterized
by the gradient, i.e., ∇xfpxk; tkq, we can also modify (9) to
tune the prediction step. A way to do that is to require xk`1|k

to reduce the suboptimality by a factor of 1´ γ P r0, 1s, and
pose the problem as

∇xfpxk`1|k; tk`1q « ∇xfpxk; tkq `∇xxfpxk; tkqˆ

pxk`1|k ´ xkq ` h∇txfpxk; tkq “ p1´ γq∇xfpxk; tkq.
(10)

When γ “ 1, (10) boils down to (9) (when one seeks an
“optimal prediction”); on the other hand, when γ “ 0, (10)
coincide with [29], where a prediction vector that maintains
the same suboptimality (i.e., the same gradient) between
successive time steps is sought. Notice that the possibility of
tuning the algorithm via γ is possible only for unconstrained
optimization problems, since we have access to a “subopti-
mality measure”.

From (10) we obtain the prediction vector via the following
update

xk`1|k “ xk ´∇xxfpxk; tkq
´1ˆ

ph∇txfpxk; tkq ` γ∇xfpxk; tkqq, (11)

which combines a Newton-like step in the direction on the
changing cost function, and a (damped) Newton’s step towards
the optimizer at time tk. When γ “ 0, (11) coincides with the
prediction step in [29]. To obtain a first-order update, it is then
easy to modify (6) as

pxp`1“ pxp ´ αp∇xxfpxk; tkqppx
p ´ xkq

` h∇txfpxk; tkq ` γ∇xfpxk; tkqq, (12)

where the notation is the same as in (6). On the other hand,
the correction update becomes in this case

pxc`1“ pxc ´ βp∇xfppx
c; tk`1q. (13)

The resultant Unconstrained - First Order Prediction Correc-
tion (U-FOPC) method is tabulated as Algorithm 2.

III. CONVERGENCE ANALYSIS

In this section, we establish analytical results to bound
the discrepancy between the optimal solution x˚ptq and the
iterates xk produced by the prediction-correction schemes
developed in Section II. Particularly, we will show that xk

tracks x˚ptq up to an error term that depends on the discrete-
time sampling period. To this end, some technical conditions
are required as stated next

Assumption 1: The function fpx; tq is twice differen-
tiable and m-strongly convex in x P X and uniformly
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Algorithm 2 Unconstrained First-Order Prediction-Correction
(U-FOPC)
Require: Initial variable x0. Initial objective function fpx; t0q, no.

of prediction steps P ` 1 and correction steps C ` 1, sub-
optimality requirement γ P r0, 1s

1: for k “ 0, 1, 2, . . . do
2: // time tk
3: Prediction: initialize px0 “ xk

4: for p “ 0 : P ´ 1 do
5: Predict the variable by the gradient step [cf (6)]

pxp`1 “ pxp ´ αp∇xxfpxk; tkqppxp ´ xkq
` h∇txfpxk; tkq ` γ∇xfpxk; tkqq

6: end for
7: Set the predicted variable x̃k`1|k “ pxP

8: // time tk`1

9: Acquire the updated function fpx; tk`1q
10: Initialize the sequence of corrected variables px0 “ x̃k`1|k
11: for c “ 0 : C ´ 1 do
12: Correct the variable by the gradient step [cf (8)]

pxc`1“ PX rpxc ´ βp∇xfppxc; tk`1qs
13: end for
14: Set the corrected variable xk`1 “ pxC

15: end for

in t; that is, the Hessian of fpx; tq with respect to x is
bounded below by m for each x P X and uniformly in t,

∇xxfpx; tq ľ mI, @x P X, t.

In addition, the function fpx; tq has bounded second and
third order derivatives with respect to x P X and t:

}∇xxfpx; tq} ď L, }∇txfpx; tq} ď C0.

Assumption 2: The function fpx; tq has bounded third
order derivatives with respect to x P X and t:

}∇xxxfpx; tq}ďC1, }∇xtxfpx; tq}ďC2, }∇ttxfpx; tq}ďC3.

Assumption 1 guarantees that problem (1) is strongly con-
vex and has a unique solution for each time instance. Unique-
ness of the solution implies that the solution trajectory is also
unique. Assumption1 also ensures that the Hessian is bounded
from above; this property is equivalent to the Lipschitz conti-
nuity of the gradient. This setting is common in the the time-
varying optimization domain; see, for instance [5], [19], [29],
[30], [32], [39]. Assumption 2 ensures that the third derivative
tensor ∇xxxfpx; tq is bounded above (typically required for
the analysis of Newton-type algorithms). Assumptions 1-2
impose boundedness of the temporal variability of gradient
and Hessian. These last properties ensure the possibility to
build a prediction scheme based on the knowledge of (or an
estimate of) how the function and its derivatives change over
time. A similar assumption was required (albeit only locally)
for the local convergence analysis in [19, Eq. (3.2)].

Assumption 1 is sufficient to show that the solution mapping
t ÞÑ x˚ptq is single-valued and locally Lipschitz continuous
in t; in particular, from [34, Theorem 2F.10] we have that

}x˚ptk`1q´x
˚ptkq} ď

1

m
}∇txfpx; tq}ptk`1´tkq ď

C0h

m
,

(14)

for sufficiently small sampling periods h. This result estab-
lished link between the sampling period h and the temporal
variability of the optimal solutions; further, (14) will be
utilized to substantiate convergence and tracking capabilities
of the proposed prediction-correction methods.

A. Constrained algorithm global Ophq convergence

We study the convergence properties of the sequence
txkukPN generated by the algorithm C-FOPC, for different
choices of the stepsize. In the following theorem, we show
that the optimality gap }xk´x

˚ptkq} converges exponentially
to a given error bound, globally, i.e., from an arbitrary x0.

Theorem 1: Consider the sequence txkukPN generated
by the C-FOPC method, and let Assumption 1 hold true.
Let x˚ptkq be the optimizer of (1) at time tk. Define the
following quantities

%P “ maxt|1´αm|, |1´αL|u, %C “ maxt|1´βm|, |1´βL|u,
(15)

and choose the stepsizes α and β as

α ă 2{L, β ă 2{L. (16)

Further, select the number of correction steps C in a way
that

τ0 :“ %CC

„

%PP ` p%
P
P ` 1q

2L

m



ă 1. (17)

Then, the sequence t}xk ´ x
˚ptkq}ukPN converges linearly

with rate τ0 to an asymptotical error bound, and

lim sup
kÑ8

}xk ´ x
˚ptkq} “ Op%CChq. (18)

Proof: See Appendix B, where we also derive all the
constants in the right-hand side of (18).

Theorem 1 says that the sequence txkukPN generated by
C-FOPC converges to a neighborhood of the optimal solution
trajectory x˚ptq. In particular, for a choice of prediction and
correction steps P and C, the sequence converge linearly to
the asymptotic bound. The bound depends linearly on the
sampling period and exponentially on the correction steps C.
When one performs the correction step exactly, i.e., C Ñ 8,
then the asymptotic bound goes to zero (in fact, in that case
each of the time-invariant problems is solved exactly). Finally,
if one looks at the condition (17), one discovers that for
global convergence one needs more that standard %CC ă 1:
in particular C has to be chosen high enough to counteract
any errors that come from the prediction step. We see next
that this condition can be weakened in the case in which the
cost function has higher order smoothness properties like the
ones required by Assumption 2.

B. Constrained algorithm local Oph2q convergence

We study now the local convergence properties of the
sequence txkukPN generated by the algorithm C-FOPC under
higher order smoothness (Assumption 2), and we show that
starting from a small enough optimality gap }xk ´ x

˚ptkq},
and for a small enough sampling period h, the error bound
can be reduced from Ophq to Oph2q.
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Theorem 2: Consider the sequence txkukPN generated by
the C-FOPC method, and let Assumptions 1-2 hold true.
Let x˚ptkq be the optimizer of (1) at time tk. Define the
following quantities

%P “ maxt|1´αm|, |1´αL|u, %C “ maxt|1´βm|, |1´βL|u,
(19)

and choose the stepsizes α and β as

α ă 2{L, β ă 2{L. (20)

Further, select τ P p0, 1q, the number of prediction steps
P , and the number of correction steps C in a way that
%PP%

C
C ă τ .

There exist an upper bound on the sampling period h̄
and a convergence region R̄, such that if the sampling pe-
riod is chosen as h ď h̄ and the initial optimality gap satisfy
}x0 ´ x

˚pt0q} ď R̄, then the sequence t}xk ´ x
˚ptkq}ukPN

converges linearly with rate τ to an asymptotical error
bound, and

lim sup
kÑ8

}xk ´ x
˚ptkq} “ Oph2 %CCq `Oph %

P
P%

C
Cq. (21)

In addition, the bounds h̄ and R̄ are given as

h̄“
τ ´ %CC%

P
P

%CCp%
P
P ` 1q

´C1C0

m2
`
C2

m

¯´1

, R̄“
2m

C1

´C1C0

m2
`
C2

m

¯

ph̄´hq.

(22)

Proof: See Appendix B, where we also derive all the
constants in the right-hand side of (21).

Theorem 2 asserts that the sequence txkukPN generated
by C-FOPC locks to a neighborhood of the optimal solution
trajectory x˚ptq. In particular, for a choice of prediction and
correction steps P and C, there exist an upper bound on
the sampling period and an attraction region, such that if
the sampling period is smaller than the bound and the initial
optimality gap is in the attraction region, then the sequence
converge (at least) linearly to an asymptotic bound. The bound
depends on the sampling period and on the selection of
prediction and correction steps P and C. When one performs
an optimal prediction (that is P Ñ8), then the bound goes as
Oph2q, which is similar to the bounds derived in [29]. When
one performs the correction step exactly, i.e., C Ñ 8, then
the asymptotic bound goes to zero (in fact, in that case each
time-invariant problem is solved exactly).

The presence of an attraction region is due to mimicking a
Newton’s step in the prediction stage (that is, the presence of
the gradient ∇xfpxk; tkq in the generalized equation (4)). To
further understand this point, consider the unconstrained case:
as expressed in Section II-D, the prediction step optimization
problem (5) has a closed-form solution as Eq. (11). The pres-
ence of the gradient ∇xfpxk; tkq translates into the presence
of the Hessian inverse in (11), which is a Newton’s step.
Our prediction strategy, even in the constrained case, mimics
such step and inherits its pros and cons, e.g., the presence
of a local convergence region. In addition, as in a Newton’s
method, when the function is quadratic, then C1 “ 0, and the
convergence is global.

By putting together the results of Theorems 1-2, one can
arrive at simple strategies for parameter selection for the de-
signer. In particular, for convergence, the designer needs only
to know the strong convexity constant m and the Lipschitz
constant L, which is a standard requirement. Then, they can
design the stepsizes α and β as in (15) (or equivalently (19))
and the number of prediction and correction steps as in (17).
With this in place, in the worst case they obtain a Op%CC hq error
bound, and in the best case – if the function satisfies Assump-
tion 2, the optimality gap enters in the attraction region, and h
is small enough – they obtain a better Oph2 %CCq`Oph %

P
P%

C
Cq

error bound. This is the case, since the conditions on C and P
are more stringent under Assumption 1 alone than with also the
use of Assumption 2. This eliminates de-facto the requirement
of knowing (or estimating) the bounds C0, C1, C2, C3, which
may be difficult to do in practice.

C. Unconstrained algorithm convergence

The results of Theorems 1-2 can be tuned to the case of
unconstrained problems as shown in the following.

Theorem 3: Consider the sequence txkukPN generated by
the U-FOPC method, and let Assumption 1 hold true. Let
x˚ptkq be the optimizer of (1) at time tk for X “ Rn.
Define the following quantities

%P “ maxt|1´αm|, |1´αL|u, %C “ maxt|1´βm|, |1´βL|u,
(23)

and choose stepsizes α and β as

α ă 2{L, β ă 2{L. (24)

Further, select the number of correction steps C in a way
that

τ0 :“ %CC

„

%PP ` p%
P
P ` 1q

´

1´ γ ` γ
2L

m

¯



ă 1. (25)

Then, the sequence t}xk ´ x
˚ptkq}ukPN converges linearly

with rate τ0 to an asymptotical error bound, and

lim sup
kÑ8

}xk ´ x
˚ptkq} “ Op%CChq. (26)

Proof: See Appendix C, where we also derive all the
constants in the right-hand side of (26). The proofs leverage
generalized equation theory and the special unconstrained
nature of the problem.

Similarly to Theorem 1, Theorem 1 is a global Ophq
convergence result. From condition (25), it would seem that
the best choice of γ would be γ “ 0; however this may not
be the case when Assumption 2 holds.

Theorem 4: Consider the sequence txkukPN generated by
the U-FOPC method. Let Assumptions 1-2 hold true. Let
x˚ptkq be the optimizer of (1) at time tk for X “ Rn.
Define,

%P “ maxt|1´αm|, |1´αL|u, %C “ maxt|1´βm|, |1´βL|u,
(27)

and set the stepsizes α and β as

α ă 2{L, β ă 2{L. (28)
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Let τ P p0, 1q, P , C be such that

p1´ γq%CCp1` %
P
P q ` %

P
P%

C
C ă τ. (29)

There exist an upper bound on the sampling period h̄
and a convergence region R̄, such that if the sampling pe-
riod is chosen as h ď h̄ and the initial optimality gap satisfy
}x0 ´ x

˚pt0q} ď R̄, then the sequence t}xk ´ x
˚ptkq}ukPN

converges linearly with rate τ to an asymptotical error
bound, and

lim sup
kÑ8

}xk ´ x
˚ptkq} “ Oph2 %CCq `Oph %

P
P%

C
Cq. (30)

In addition, the bounds h̄ and R̄ are given as

h̄ “
´ τ ´ %CC%

P
P

%CCp%
P
P ` 1q

´ 1` γ
¯´C1C0

m2
`
C2

m

¯´1

, (31)

R̄ “
2m

γC1

´C1C0

m2
`
C2

m

¯

ph̄´ hq. (32)

Proof: See Appendix C, where we also derive all the
constants in the right-hand side of (30). The proofs leverage
generalized equation theory and the special unconstrained
nature of the problem.

Theorem 4 is a local Oph2q convergence result. It can be
seen as a generalization of Theorem 1 in [29] and a special,
yet more detailed, version of Theorem 2. In particular, by
properly selecting the parameter γ, one obtains the results of
both Theorem 2 and [29]; when γ “ 1, we obtain the results
of Theorem 2 and this indicates that considering constrained
problems does not add extra errors to the asymptotical bounds.
On the other hand, if γ “ 0, we are implicitly assuming that
the prediction stage leads one to navigate into the iso-residual
manifold; since R̄ Ñ 8, we also obtain global convergence.
Furthermore, one can use γ as a tuning mechanism to enlarge
the convergence region.

Finally, for γ “ 0 and P Ñ 8, then the results of theo-
rem (30) boil down to those in [29]. In particular, from (31), it
can be seen that the sampling period must satisfy the following
relationship

%CC

”

1` h
´C1C0

m2
`
C2

m

¯ı

ă τ ă 1, (33)

which is the same requirement of [29, Theorem 1].

IV. NUMERICAL EXPERIMENTS

In this section, we report three numerical examples to
showcase the performance of the proposed algorithms. First,
we analyze the unconstrained case (Algorithm 2), then we
switch our attention to the constrained one (Algorithm 1).
Finally, we present a realistic simulation stemming from real-
time control of energy resources.

A. Unconstrained example

We use the same scalar example of [29, Section IV.A], and
in particular we consider a time-varying cost function of the
form

min
xPR

fpx; tq :“
1

2
px´ cospωtqq

2
` κ logr1` exppµxqs. (34)
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Fig. 1. Error with respect to the sampling time tk for different algorithms
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Fig. 2. Asymptotical worst case error floor with respect to the sampling time
interval h for different algorithms applied to the scalar problem (34).

The function in (34) represents, for instance, the goal of
staying close to a periodically varying trajectory plus a logistic
term that penalizes large values of x. The terms ω, κ, and µ
are arbitrary nonnegative scalar parameters. In our experiments
these parameters are set to ω “ π{2, κ “ 2, and µ “ 1.75. The
function fpx; tq satisfies all the conditions in Assumptions 1
and 2. In particular, m “ 1 and L “ 2.53.

We choose the constant stepsizes as α “ β “ 0.56 ă 2{L
in the gradient methods stated in Algorithm 2 and initialize
x0 “ 0 for all the algorithms. According to Theorem 3, for
γ “ 1, we need C ą 2 to ensure τ0 ă 1 and therefore Ophq
convergence. In the case of Theorem 4, for γ “ 0, P “ 1 and
C “ 3: we can set τ ą 0.16, the sampling period needs to
be chosen as h ď h̄ “ 4.2, and the convergence region is the
whole R, while for γ “ 1, P “ 1 and C “ 3: we can set
τ ą 0.038, h̄ “ 4.84, and R̄ “ 12.7 (notice that for greater P
or C the requirements are less stringent).

In Figure 1, we plot the error }xk ´ x˚ptkq} versus the
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discrete time tk for a sampling period of h “ 0.1, for
different schemes (we fix the correction steps at C “ 3 for
all the algorithms and we study the behavior for different
prediction steps P and γ values). Observe that the running
gradient method [32], that is U-FOPC with no prediction
and one correction step performs the worst, while U-FOPC
with exact prediction (that is P “ 8) performs the best2.
Furthermore, we can notice that increasing P , one obtains
better and better asymptotical error, with the drawback of an
increased computational burden. Lastly, we notice how γ “ 1,
that is having a Newton-like prediction step helps in achieving
a faster convergence, and yet it appears that the asymptotical
error is slightly greater than using γ “ 0 (i.e., tangential
prediction).

The differences in performance can be also appreciated by
varying h and observing the worst case error floor size which
is defined as maxkąk̄t}xk ´ x

˚ptkq}u, where k̄ “ 104 in the
simulations. Figure 2 illustrates the error as a function of h.
The performance differences between the proposed methods
that may be observed here corroborate the differences seen in
Figure 1. In particular, the U-FOPC method with P “ 0, C “
1 achieves the largest worst case error bound, while exact
prediction with γ “ 0 attains the best case error bound. Notice
also the dashed lines displaying the theoretical performance
of Ophq, Oph2q, and the fact that for any finite P there is a
trade-off between computational complexity and asymptotical
error3.

B. Constrained example

We consider here a mid-size optimization problem consist-
ing of n “ 1000 scalar variables. The cost function we study
has the form

fpx; tq “
1

2
}x`1n}

2
Q`

n
ÿ

i“1

κi sin2
pωt`ϕiq exppµpxpiq´2q2q,

(35)
where we have defined 1n as the column vector of all ones of
dimension n, while xpiq is the i-th component of x P Rn. In
addition, the matrix Q is chosen as Q “ In`µµ

T{n with µ
being a vector randomly generated by a normal distribution of
mean 0 and variance 1, κi „ Ur0,1s, ω “ 0.1π, ϕ „ N p0, πq,
and µ “ 0.25.

We study the time-varying problem

minimize
xPr0,0.4sn

fpx; tq. (36)

We notice that the cost function f verifies the Assumptions 1-2
on on r0, 0.4sn, which is our optimization set (even though it
would not satisfy them on the whole Rn). In particular, m “ 1
and L “ 6.07.

One could run a similar analysis as the unconstrained
example, however here we focus on realistic run-time con-
straints. Every time a new function is available, a number
of correction steps are performed. The number depends on

2The running gradient is a standard gradient descent with constant stepsize,
where at each iteration one performs C correction steps and the cost changes
at each sampling time.

3The simulation code is made available online to further analyze how
different parameters can affect the algorithm trade-offs.

how fast we need the corrected variable to be available and
the computational time necessary to compute the gradient and
perform the correction step. We fix at r1h, with r1 ă 1 the
time allocated for the correction steps, while tC is the time to
perform one correction step. For the above considerations, we
can afford to run

C “ tr1h{tCu, (37)

correction steps. After the corrected variable is available,
one can use it for the decision making process (which may
require extra time to be performed). For the time-varying
algorithm perspective, one can use the variable to either run P
gradient prediction, or C 1 extra correction steps (to improve
the corrected variable for having a better starting point when a
new function becomes available). Fix at r2h, with r2 ă 1 the
time allocated for the prediction (or extra correction) steps.
The affordable number of prediction steps can be determined
considering that P prediction steps require a time equal to
t̄` PtP, where t̄ is the time required to evaluate the Hessian,
gradient, and time derivative of the gradient, while tP is the
time to perform one prediction calculation. Thus,

P “ tp r2h´ t̄ q{tPu. (38)

The affordable extra correction steps C 1 can be computed as
in (37), substituting r1 with r2.

In the simulation example, we choose r1 “ r2 “ 0.5, while
by running the experiments on a 1.8 GHz Intel Core i5, we
empirically fix tC “ .76 ms, t̄ “ 10 ms, tP “ .62 ms. Note
that the time that would be needed to solve the prediction step
exactly (by solving a quadratic program) is 190 ms, which is
not affordable in the considered sampling period range.

In addition, we consider the situation in which one can use
the whole sampling period to do correction, that is r1 “ 1,
while r2 “ 0, and we call this case total correction. This
situation is particularly interesting when one has to make a
choice whether to stop the correction steps to perform predic-
tion, or to continue to do correction steps till a new function
evaluation becomes available. Note that the correction+extra
correction strategy is different from the total correction one,
since the error is computed with the corrected variable (which
is used for the decision making process), that is after r1h.

In Figure 3, we report the asymptotical worst-case error
w.r.t the sampling period for the three considered cases
(correction+extra correction, total correction, and prediction-
correction, i.e. the C-FOPC algorithm)4, while the number of
prediction steps and correction steps are optimized via the
available resources as in Eq.s (37)-(38). With the simulation
parameters, for h “ 6 ms, we can perform C “ C 1 “ 3 steps
of correction and extra correction, or C “ 7 steps of (total)
correction. For h “ 40 ms, these values are C “ C 1 “ 26 and
C “ 52, respectively. For the prediction-correction strategy,
for h “ 22 ms, then C “ 14 and P “ 1, while for h “ 40 ms,
C “ 26 and P “ 16.

For sampling times below 22 ms, prediction cannot be per-
formed due to time constraints. For sampling periods greater
or equal than 22 ms, prediction can be performed and for

4Note that both the correction+extra correction and the total correction
strategies are in fact (running) projected gradient descent algorithms.
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h “ r22, 40s ms, then h̄ “ r90, 370s ms, and R̄ “ r.13, .68s.
We see clearly that, in this simulation example, if prediction
is affordable, the prediction-correction strategy, that is our C-
FOPC algorithm is to be preferred to traditional correction-
only schemes, since it achieves a lower asymptotical worst-
case error. We notice that this error is lower by an half order
of magnitude, while the error of the correction-extra correction
and the total correction strategy are practically the same. For
completeness, we report that x0 is chosen to be zero.

The result is quite remarkable, telling that performing
Newton-like prediction steps on a fixed (Hessian, gradient,
time derivative) triple can be computationally much more
interesting that performing correction steps on a varying (i.e.,
re-updated) gradient.

In Figure 4, we report the time trajectories of a number
of variables for the three strategies to appreciate how the
constraints are in fact active.

C. An example of realistic application

As an example of realistic application, we consider the
problem of optimizing the operation of aggregations of en-
ergy resources connected to a power distribution system – a
research task that has gained significant interest from academic
and industrial sectors because of the increased deployment of
distributed energy resources (DERs). The proposed algorithm
can be implemented to enable a real-time optimization of the
DER operation, where the term “real-time” refers to a setting
where the power setpoints of the DERs are updated on a
second or subsecond time scale based on streaming measure-
ments, to maximize operational objectives while coping with
variability of ambient conditions and non-controllable energy
assets [17], [40], [41].

Consider then a distribution network consisting of one slack
bus and N nodes with controllable DERs. Let sn “ pn`jqn P
C denote the net injected complex power at node j, and let
p0 P R denote the active power flow at a point of connection
of the distribution system with the rest of the grid. For future
developments, let xn :“ r<tsnu,=tsnusT collect the active
and reactive setpoints of the DER at node n. To further
simplify the notation, define the vector x :“ rxT

1 , . . . ,x
T
N s

T.
To facilitate the development of computationally-affordable
algorithms, we postulate the following approximate linear
relationship between x and the active powers p0:

p̃0px, tq “m
Tptqrx´ x`ptqs ` nptq

:“
N
ÿ

n“1

mT
nptqrxn ´ xn,`ptqs ` ηptq (39)

where xn,`ptq denotes the non-controllable loads and the
model parameters tmnptq P R2u and ηptq P R can be obtained
as shown in, e.g., [17], [42]. These model parameters can be
either fixed or time-varying.

Consider a discrete-time operational setting where the set-
points of the DERs are updated at time instants tk “ hk,
with k P N and h ą 0 based on the specific implementation
requirements (e.g., second, sub-second, or a few seconds), and
formulate the following optimization problem per time k:

min
xPR2n

N
ÿ

n“1

Cnpxn; tkq `
γ

2

`

pset
0 ptkq ´ p̃0px, tkq

˘2
(40a)

s. t.: xn P Yn, @ n “ 1, . . . , N (40b)

where pset
0 ptkq is a setpoint for the aggregate power at the

point of connection [41], γ ą 0 is a design parameter that
influences the ability to track the reference signal pset

0 ptkq,
Cnpxn; tkq : R2 ˆ R` Ñ R is a local cost function, and Yn
specifies the operating region for DER n. For example, Yn can
be given by

Yn “ tpn, qn : p
n
ď pn ď pn, qn ď qn ď qnu (41)

with p
n

, pn, q
n

, and qn given limits. This is the case,
for example, for variable-speed drives, natural-gas generators,
electric vehicle chargers, and renewable sources of energy
operating with (fixed) headroom from the maximum available
power. Problem (40) is pertinent for settings where a number
of customers aim at maximizing given performance objectives
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related to the DERs (e.g., minimization of net electricity pay-
ment), while partaking in grid services; specifically, customers
may be incentivized by utility or aggregators to adjust the
DERs’ output powers so that the aggregate power p̃0px; tkq
can be driven to the setpoint pset

0 ptkq.
For the numerical experiments, we utilize real data be-

longing to residential loads from a neighborhood located in
the Sacramento metro area [43]. The data have a granularity
of 1 second and they are utilized to populate the IEEE 37-
node test feeder (see e.g., [17]). For simplicity, we consider a
single-phase equivalent of the feeder. The model parameters
tmnptq P R2u and ηptq P R are computed as shown in [17].
With this setting, the non-controllable portion of p̃0px; tkq
in (40), which defined as

aptkq :“ ´
N
ÿ

n“1

mT
nptkqxn,`ptkq ` ηptkq (42)

varies over time as illustrated in Figure 5. The trajectory for the
setpoint pset

0 ptkq is also provided in Fig. 5; in the considered
setting, the specified setpoints promote a smoother variability
of the aggregate load p̃0px; tq over time.

With reference to the feeder in [17], we assume that
controllable DERs are located at nodes 4, 7, 10, 13, 17, 20, 22,
26, 30, and 35, and it is assumed that the real power pn can be
controlled within the interval p

n
“ ´50 kW and pn “ 50 kW.

The cost functions Cnpxn; tkq “ p2
n and γ “ 2. This setting is

representative of the case where DERs can deviate their active
powers from a nominal operating point to provide services
to the grid, but their adjustment is limited within rp

n
, pns.

In addition, mnptkq is considered constant in time (as often
varies at slower time-scales than aptkq, typically minutes).

To track the solution trajectory x˚ptkq of (40) while k
increases, we run both a running projected gradient algorithm,
i.e., Algorithm 1 with P “ 0, and our prediction-correction
Algorithm 1. The prediction step is computed by approximat-
ing the time-derivative of the gradient as explained in [29],
which does not affect convergence or the rates.

For the simulation runs, the functional parameters are m “

1 and L “ 21, while since the cost function is a time-varying
quadratic function with constant Hessian, C1 “ 0, C2 “ 0,
the convergence attraction region is the whole space and there
is no upper bound on the sampling period (see Theorem 2).
We choose the stepsizes α and β as α “ β “ 0.0048, such
that %P “ %C ă 1, while h “ 1 s, and x0 “ 0.

We keep the computational time fixed in our comparison
of running projected gradient and prediction-correction algo-
rithm, so that we could identify better the contribution of the
prediction step. With the same notation and nomenclature of
Section IV-B, we look at a total-correction strategy for the
running projected gradient with C “ 3. Each correction step
takes 76 µs on a 1.8 GHz Intel Core i5 (and 3 steps, 228 µs).
For the prediction-correction algorithm, we fix C “ 1, while
we choose P “ 2, such that the total computational time is
206 µs, which is similar to the running strategy.

We report the error }xk ´ x
˚ptkq} of the two strategies in

time in Figure 6 (for readability purposes only for the time
frame 12:38-12:48, but in fact it is qualitatively the same
for all the other time frames), and in particular the averaged
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asymptotical error (averaged in the time frame 12:10-13:00)
of the running method (P “ 0) is 3.73 kW, while the one of
the prediction-correction algorithm is 3.14 kW. As captured
in Figure 6, the prediction-correction algorithm seems to be
more reactive to changes, responding more quickly, which is
expected. This further corroborates the usefulness of the pre-
diction step, hence of the prediction-correction methodology,
even when real noisy time-varying data is used, and the time
derivative of the gradient can only be approximated.

V. CONCLUSIONS

We have proposed first-order algorithms to find and track the
solution trajectory of strongly convex, strongly smooth con-
strained time-varying optimization problems. These algorithms
rely on a discrete-time prediction-correction strategy, by which
at each sampling time, the decision variables are corrected
through one or multiple projected gradient steps, and then used
to predict the next decision variables via successive projected
gradient steps on a suitably defined quadratic program. The
proposed algorithms exhibit better asymptotical accuracy than
state-of-the-art correction-only schemes, even when computa-
tional complexity issues are taken into account.
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APPENDIX A
PRELIMINARIES

We begin the convergence analysis by deriving an upper
bound on the norm of the approximation error ∆k P Rn

incurred by the Taylor expansion in (4). In particular, given the
optimal solution x˚ptkq at tk, compute the optimal prediction
step via the Taylor approximation (4) and indicate the optimal
prediction as x˚k`1|k. The objective is to bound the error:

∆k :“ x˚k`1|k ´ x
˚ptk`1q, (43)

which is committed when x˚ptk`1q is replaced by x˚k`1|k
(here we use the superscript ˚ to indicate that we compute the
prediction from x˚ptkq and not any xk).

Proposition 1: The error norm }∆k} is upper bounded
as follows.

Case a) Under the sole Assumption 1

}∆k} ď 2h
C0

m
p1` L{mq “: ∆1 “ Ophq. (44)

Case b) Under both Assumption 1 and 2

}∆k} ď
h2

2

„

C2
0C1

m3
`

2C0C2

m2
`
C3

m



“: ∆2 “ Oph2q.

(45)
Proof: Let us start by simplifying the notation. Define

∇xfi “ ∇xfpx
˚ptk`iq; tk`iq, Qi “ ∇xxfpx

˚ptk`iq; tk`iq

(46)
ci “ ∇txfpx

˚ptk`iq; tk`iq, xi “ x
˚ptk`iq, x “ x

˚
k`1|k.

(47)
With this notation in place, ∆k “ x ´ x1 [Cf. (43)]. In
addition, x is computed by the generalized equation (4),

∇xf0 `Q0px´ x0q ` h c0 `NXpxq Q 0, (48)

while x1 is the solution of

∇xf1 `NXpx1q Q 0. (49)

Define the supporting functions,

Gpyq “ ∇xf1 `Q1py ´ x1q `NXpyq (50)
gpyq “ ∇xf0 `Q0py ´ x0q ` h c0`

´ r∇xf1 `Q1py ´ x1qs. (51)

These two functions allows one to rewrite (48) as

pg `Gqpxq Q 0. (52)

It is also true that pg `Gqpx1q Q gpx1q, since for optimality
Gpx1q Q 0. Define F pyq “ pg ` Gqpyq, and consider the
parametric generalized equation F pyq ` p Q 0. Under the
Assumptions 1-2, as for [34, Theorem 2F.9], we have that
the solution mapping p ÞÑ yppq for the generalized equation
F pyq ` p Q 0 is every-where single valued and Lipschitz
continuous with constant m´1, that is

}yppq ´ ypp1q} ď
1

m
}p´ p1}. (53)

We can set p “ 0 and p1 “ ´gpx1q, which leads to

}x´ x1} “ }∆k} ď
1

m
}gpx1q}. (54)

We proceed now to bound }gpx1q}. We can write gpx1q as

gpx1q “ ∇xf0 `Q0px1 ´ x0q ` h c0 ´∇xf1. (55)

A. Case a)

Given the expression of gpx1q, we can bound its norm via
Assumption 1

}gpx1q} ď }∇xf0 ´∇xf1} ` }Q0}}x1 ´ x0} ` h }c0}

ď }∇xf0 ´∇xf1} ` L}x1 ´ x0} ` hC0, (56)

where we have used the upper bound on the Hessian of the
cost function. Furthermore,

}∇xf0´∇xf1} “ }∇xfpx
˚ptkq; tkq´∇xfpx

˚ptk`1q; tk`1q}

ď }∇xfpx
˚ptkq; tk`1q ´∇xfpx

˚ptk`1q; tk`1q}`

}∇xfpx
˚ptkq; tkq ´∇xfpx

˚ptkq; tk`1q} (57)

We can bound the first term in the right hand side with the
Lipschitz property of the gradient of the cost function as

}∇xfpx
˚ptkq; tk`1q´∇xfpx

˚ptk`1q; tk`1q} ď L}x1´x0},
(58)

while the second part can be bounded by the upper bound on
∇txf , as

}∇xfpx
˚ptkq; tkq´∇xfpx

˚ptkq; tk`1q}“}∇xfpx
˚ptkq; tkq

´∇xfpx
˚ptkq; tkq ´ h∇txfpx

˚ptkq; τq} ď hC0, (59)

where we have used the mean value theorem and τ P

rtk, tk`1s. By putting Eq.s (56), (57), (58), and (59) together,
one arrives at

}gpx1q} ď 2L}x1 ´ x0} ` 2hC0, (60)

and by using (54) as well as the bound on }x1´x0} in (14),
the claim (44) follows.

B. Case b)

By allowing higher order smoothness, the bound on gpx1q

can be improved as follows. Consider (55): it is nothing else
but the error of the truncated Taylor expansion of ∇xf1:

∇xf1 ´∇xf0 “ Q0px1 ´ x0q ` hc0 ` ε, (61)

where the error ε can be bounded as

}ε} ď
1

2

´

}∇xxxf}}x1 ´ x0}
2 ` h }∇txxf}}x1 ´ x0}`

h }∇xtxf}}x1 ´ x0} ` h
2}∇ttxf}

¯

, (62)

and by using the upper bounds in Assumption 2,

}gpx1q} ď
1

2
C1}x1´x0}

2`hC2}x1´x0}`
1

2
h2 C3. (63)

By using the bound (14) on the variability of the optimizers
x1 and x0, then

}gpx1q} ď h2 C1
C2

0

2m2
` h2 C2

C0

m
`

1

2
h2 C3, (64)

and by combining this bound with (54), the claim (45) follows.
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APPENDIX B
PROOF OF THEOREMS 1 AND 2

We divide the proof in different steps. Step 1: we bound
the prediction error in Propositions 2 and 3; Step 2: we bound
the correction error; Step 3: we put the previous steps together
and derive the convergence requirements and results. As done
for Proposition 1, Case a) will refer to Theorem 1, while Case
b) to Theorem 2.

Prediction error. The optimal prediction error, i.e., the dis-
tance between the optimal predicted variable xk`1|k and the
optimizer at time step tk`1, x˚ptk`1q can be bounded as the
following proposition.

Proposition 2: The following facts hold true.
Case a) Under the same assumptions and notation of

Theorem 1, we have that

}xk`1|k ´ x
˚ptk`1q} ď

2L

m
}xk ´ x

˚ptkq} `∆1. (65)

Case b) Under the same assumptions and notation of
Theorem 2, we have that

}xk`1|k ´ x
˚ptk`1q} ď

C1

2m
}xk ´ x

˚ptkq}
2`

h
´C1C0

m2
`
C2

m

¯

}xk ´ x
˚ptkq} `∆2. (66)

Proof: We proceed as in the proof of Proposition 1. We
use similar simplifications of (46), as

∇xfk “ ∇xfpxk; tkq, Qk “ ∇xxfxk; tkq (67a)
ck “ ∇txfpxk; tkq, x “ xk`1|k. (67b)

while ∇xf1 and x1 are defined just as in (46). The error
}xk`1|k ´ x

˚ptk`1q} is now x´ x1.
The vector x is computed by the generalized equation (4),

∇xfk `Qkpx´ xkq ` h ck `NXpxq Q 0, (68)

while x1 is the solution of (49).
Define the supporting functions,

Gpyq “ ∇xf1 `Q1py ´ x1q `NXpyq (69)
gpyq “ ∇xfk `Qkpy ´ xkq ` h ck`

´ r∇xf1 `Q1py ´ x1qs. (70)

These two functions allows one to rewrite (68) as

pg `Gqpxq Q 0. (71)

It is also true that pg `Gqpx1q Q gpx1q, since for optimality
Gpx1q Q 0. Define F pyq “ pg ` Gqpyq, and consider
the parametric generalized equation F pyq ` p Q 0. Due to
Assumptions 1-2, and due to [34, Theorem 2F.9], we have that
the solution mapping p ÞÑ yppq of the generalized equation
F pyq ` p Q 0 is every-where single valued and Lipschitz
continuous as

}yppq ´ ypp1q} ď
1

m
}p´ p1}. (72)

Set p “ 0 and p1 “ ´gpx1q, then,

}x´ x1} ď
1

m
}gpx1q}. (73)

We proceed now to bound }gpx1q}. We can write gpx1q as

gpx1q “ ∇xfk `Qkpx1 ´ xkq ` h ck ´∇xf1, (74)

As in Proposition 1, we have two cases:

Case a) }gpx1q} ď2L}x1 ´ xk} ` 2hC0, (75)

Case b) }gpx1q} ď
1

2
C1}x1 ´ xk}

2`

hC2}x1 ´ xk} `
1

2
h2 C3. (76)

Since }x1 ´ xk} ď }x1 ´ x
˚ptkq} ` }x

˚ptkq ´ xk}, and we
can bound the first term of the right-hand side by using (14),
then

Case a) }gpx1q} ď2L}x˚ptkq ´ xk}`2hC0p1`L{mq, (77)

Case b) }gpx1q} ďh
2 C1

C2
0

2m2
` h2 C2

C0

2m
`

1

2
h2 C3`

1

2
C1}x

˚ptkq´xk}
2`h

´C1C0

m
`C2

¯

}x˚ptkq´xk}. (78)

By combining these two last bounds with (73), the claims (65)-
(66) follow.

On the other hand, the distance between the approximate
prediction x̃k`1|k and the optimal prediction xk`1|k can be
bounded by using standard results for the projected gradient
method, for the proof see for instance [44], [45].

Proposition 3: Under Assumption 1, we have that

}x̃k`1|k ´ xk`1|k} ď %PP }xk ´ xk`1|k}, (79)

with %P “ maxt|1´ αm|, |1´ αL|u.

By putting together Propositions 2 and 3 and (14) , we
obtain for the total error after prediction as

}x̃k`1|k´x
˚ptk`1q}ď}x̃k`1|k´xk`1|k}`}xk`1|k´x

˚ptk`1q}

(80a)

ď %PP }xk´xk`1|k}`}xk`1|k´x
˚ptk`1q} (80b)

ď %PP p}xk´x
˚ptkq}`}x

˚ptkq´x
˚ptk`1q}`

}x˚ptk`1q´xk`1|k}q`}xk`1|k´x
˚ptk`1q} (80c)

ď %PP }xk ´ x
˚ptkq} `

´

%PP ` 1
¯

}xk`1|k ´ x
˚ptk`1q}`

%PP }x
˚ptk`1q ´ x

˚ptkq} (80d)

ď η0}xk ´ x
˚ptkq}

2 ` η1}xk ´ x
˚ptkq} ` η2, (80e)

where we have defined

Case a)

$

&

%

η0 “ 0,
η1 “ %PP ` p%

P
P ` 1q 2L

m ,
η2 “ p2%PP ` 1q∆1,

(81)

Case b)

$

’

’

&

’

’

%

η0 “ p%PP ` 1q C1

2m ,

η1 “ %PP ` h p%
P
P ` 1q

´

C1C0

m2 ` C2

m

¯

,

η2 “ %PP

´

h C0

m `∆2

¯

`∆2,

(82)

where ∆1 and ∆2 are defined as in Proposition 1.

Correction error. We look now at the correction step, which
by using standard results for the projected gradient method,
we have

}xk`1 ´ x
˚ptk`1q} ď %CC }x̃k`1|k ´ x

˚ptk`1q}, (83)
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with %C “ maxt|1´αm|, |1´αL|u. And by putting together
the result (80e) with (83), we obtain the recursive error bound,

}xk`1 ´ x
˚ptk`1q} ď %CC

´

η0}xk ´ x
˚ptkq}

2`

η1}xk ´ x
˚ptkq} ` η2

¯

. (84)

Global error and convergence.
We start with Case a). Call for simplicity η̄i “ %CC ηi, for

i “ 0, 1, 2. Since η0 “ 0, then convergence is achieved if

η̄1 ă 1 ðñ τ0 “ %CC

„

%PP ` p%
P
P ` 1q

2L

m



ă 1, (85)

which guarantees a monotonical decrease of the optimality gap
with linear rate and asymptotic bound of

lim sup
kÑ8

}xk`1 ´ x
˚ptk`1q} “

%CC∆1

1´ τ0
p2%PP ` 1q “ Op%CC hq,

(86)
which are the claims in Theorem 1.

We finish with Case b). Call again for simplicity η̄i “ %CC ηi,
for i “ 0, 1, 2. Then convergence is achieved if

1) Each iteration does not increase the error, so that

η̄0}xk ´ x
˚ptkq}

2 ` η̄1}xk ´ x
˚ptkq} ` η̄2 ď

τ}xk ´ x
˚ptkq} ` η̄2 (87)

for a τ ă 1;
2) One can find a τ ă 1 such that (87) holds.

By simple algebra, convergence is achieved if η̄1 ă τ ă 1,
that is if

%PP %
C
C ă τ, h ă

τ ´ %CC %
P
P

%CC p%
P
P ` 1q

´C1C0

m2
`
C2

m

¯´1

“ h̄, (88)

which sets the bounds on the number of prediction and
correction steps as well as the sampling period, and if the
initial optimality gap is chosen as

}x0 ´ x
˚pt0q} ď

τ ´ η̄1

η̄0
“ R̄. (89)

The convergence region depends on the sampling period and
on the prediction and correction steps. When hÑ 0, then

lim
hÑ0

R̄ “
2m

C1

τ ´ %PP %
C
C

%CC p%
P
P ` 1q

. (90)

As for the convergence asymptotical error, by using (84) in
combination with (87), we can show that

}xk ´ x
˚ptkq} ď τk}x0 ´ x

˚pt0q} ` η̄2
1´ τk

1´ τ
, (91)

from which, by letting k Ñ8, the result (21) follows. �

APPENDIX C
PROOF OF THEOREM 4

We proceed similarly to Appendix B. One of the main
difference is a new Proposition 2 suited for the situation at
hand.

Proposition 4: The following facts hold true.

Case a) Under the same assumptions and notation of
Theorem 3, we have that

}xk`1|k´x
˚ptk`1q}ď

´

1´ γ ` γ
2L

m

¯

}xk´x
˚ptkq}`2∆1.

(92)
Case b) Under the same assumptions and notation of

Theorem 4, we have that

}xk`1|k ´ x
˚ptk`1q} ď γ

C1

2m
}xk ´ x

˚ptkq}
2`

”

1´ γ ` h
´C1C0

m2
`
C2

m

¯ı

}xk ´ x
˚ptkq} `∆2. (93)

Proof: Start by noticing that Proposition 1 holds true
even when γ ă 1 (in the unconstrained case), since
∇xfpx

˚ptkq; tkq “ ∇xf0 “ 0. In fact, Eq. (48) should read

∇xf0 `Q0px´ x0q ` h c0 “ p1´ γq∇xf0, (94)

but this is in fact equivalent to the original (48), since ∇xf0 “

0, and therefore the whole proposition is still valid, and in
particular }x˚k`1|k ´ x

˚ptk`1q} ď ∆i, where i “ 1 for Case
a) and i “ 2 for Case b).

Call now δxk “ xk`1|k´xk, and δx˚k “ x
˚
k`1|k´x

˚ptkq.
Then,

}xk`1|k ´ x
˚ptk`1q} “

}xk ` δxk ´ px
˚ptkq ` δx

˚
kq ` px

˚
k`1|k ´ x

˚ptk`1qq},

(95)

which given Proposition 1 and by using the Triangle inequality
can be upper bounded as

}xk`1|k´x
˚ptk`1q}ďp1´γq}xk´x

˚ptkq}`}δx̌k δ́x˚k }̀ ∆i,
(96)

where we have set δx̌k “ δxk`γpxk´x
˚ptkqq. Note that this

decomposition may seem cumbersome, yet it is the cornerstone
of the proof of this proposition.

For δx̌k and δx˚k , it holds that

γ∇xfk ` γQkpx0 ´ xkq `Qkδx̌k ` h ck “ 0, (97)
γ∇xf0 `Q0δx

˚
k ` h c0 “ 0, (98)

where as in (67) we have used the simplifications

∇xfk “ ∇xfpxk; tkq, Qk “ ∇xxfpxk; tkq (99a)
ck “ ∇txfpxk; tkq, x “ xk`1|k. (99b)

while ∇xf0, Q0, c0, and x0 are defined just as in (46)-(47),
for i “ 0 (i.e., x0 “ x

˚ptkq, and so on). Define

gpδxq “ γ p∇xfk ´∇xf0 `Qkpx0 ´ xkqq`

pQk ´Q0qδx` h pck ´ c0q, (100)
Gpδxq “ γ∇xf0 `Q0δx` h c0, (101)

and notice that pg ` Gqpδx̌kq “ 0, while pg ` Gqpδx˚kq “
gpδx˚kq. With a similar argument as the one of the proof of
Proposition 2, then

}δx̌k ´ δx
˚
k} ď

1

m
}gpδx˚kq}. (102)

Let us now bound }gpδx˚kq}.
Case a) Due to Assumptions 1:

}gpδx˚kq}ď2γL}xk´x0} ` 2L}δx˚k} ` 2hC0. (103)
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Case b) Due to Assumptions 1-2,

}gpδx˚kq}ďγ
C1

2
}xḱ x0}

2`C1}xk´x0}}δx
˚
k}`hC2}xḱ x0}.

(104)
The next step of the proof is to upper bound the term

}δx˚k} “ }x
˚
k`1|k ´ x

˚ptkq}. We know that

γ∇xf0 `Q0δx
˚
k ` hc0 “ 0, (105)

and since ∇xf0 “ 0, then δx˚k “ ´hQ
´1
0 c0. Which yields

}δx˚k} ď h
C0

m
. (106)

By putting together the bounds (96), (102), (103), (104), and
(106), the claims (92) and (93) follow.

By using Proposition 4 along with the same arguments as
the one in Eq.s (79) till (84), we arrive at the error recursion

}xk`1´x
˚ptk`1q} ď η̄10}xk´x

˚ptkq}
2`η̄11}xk´x

˚ptkq}`η̄
1
2,

(107)
where,

Case a)

$

’

&

’

%

η̄10 “ 0,

η̄11 “ %CC

”

%PP ` p%
P
P ` 1q

´

1´ γ ` γ 2L
m

¯ı

,

η̄12 “ %CC
“

2p2%PP ` 1q∆1

‰

,
(108)

Case b)
$

’

’

&

’

’

%

η̄10 “ γ%CC p%
P
P ` 1q C1

2m ,

η̄11 “ %CC

”

%PP ` p%
P
P ` 1q

´

1´ γ ` h
´

C1C0

m2 ` C2

m

¯¯ı

,

η̄12 “ %CC

”

%PP

´

h C0

m `∆2

¯

`∆2

ı

.

(109)

By using now the same reasoning as in Eq.s (87) till
Eq.s (91), the claims (26)-(30) can be proven. �
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