
1

Phase Noise Compensation for OFDM Systems
Amir Leshem and Michal Yemini

Abstract—We describe a low complexity method for time
domain compensation of phase noise in OFDM systems. We
extend existing methods in several respects. First we suggest using
the Karhunen-Loève representation of the phase noise process
to estimate the phase noise. We then derive an improved data-
directed choice of basis elements for LS phase noise estimation
and present its total least square counterpart problem. The
proposed method helps overcome one of the major weaknesses of
OFDM systems. We also generalize the time domain phase noise
compensation to the multiuser MIMO context. Finally we present
simulation results using both simulated and measured phased
noise. We quantify the tracking performance in the presence of
residual carrier offset.

I. INTRODUCTION

OFDM has become a prominent technology that is utilized
in many modern communication systems including cellular
systems such as 3GPP LTE [2], wireless LAN (WLAN) [3]
and WiMax [4]. In future LTE systems (see 802.11ac) multi-
carrier modulations such as Generalized frequency division
multiplex (GFDM), Filter bank multi-carrier (FBMC), Uni-
versal filtered multi-carrier (UFMC) and Filtered OFDM (f-
OFDM) [5]–[8] may be implemented. In spite of its popularity
and robustness to multipath propagation, OFDM is known to
be extremely affected by phase noise (PN) and frequency
offset [9]–[13]. MIMO OFDM receivers are very sensitive
to the phase noise coming from the difference between the
carrier frequency and the local oscillator (LO). In the case
of very high data rates this is actually the limiting factor on
performance. High order modulations such as 256 QAM are
also severely affected by phase noise. Phase noise is typically
modeled as a multiplicative noise. When the LO is locked to
the carrier frequency, the phase noise is lower and is modeled
as a finite power random process. When the LO is not locked
the phase noise is modeled as a Wiener process with infinite
power, the effect of such phase noise is analyzed from an
information theoretic perspective in [14]. In all typical 802.11
and LTE implementations the LO is locked; hence, we will
concentrate on the first model. Phase noise can be considered
to have two components: a common phase error (CPE) that
is common to all carriers, and a time varying part that is
frequency dependent. This part is typically weaker than the
CPE and generates the undesirable and harmful ICI.

A popular approach to ICI mitigation is the use of an MMSE
equalizer in the frequency domain that balances the AWGN
and the colored ICI. This approach can be found in many
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articles including [13], [15]–[18]. The alternative approach of
PN cancellation/mitigation aims at jointly detecting the data
and cancelling the PN as described in [19], [20], or jointly
estimating the channel and PN [21]–[25] and even jointly
estimating the channel, detecting the data and compensating
for the PN as in [26]–[29]. These schemes suffer from high
complexity that is impractical to implement at high rates
and in high spectral efficiency communication systems. Yet
a third approach to reducing ICI is time domain processing.
Casas et al. [30] proposed a LS approach in the time domain
where they represented the noise using one of two fixed bases:
DFT or DCT. The dominant phase noise components are then
estimated using LS fitting of a few basis vectors (typically
the low frequency components due to phase noise properties).
When a single basis vector is used, the method reduces to that
of [15]–[17]. The main drawback of the method in [30] is that
typically phase noise cannot be compactly represented in the
fixed basis. Another LS PN compensation scheme estimates
both the channel coefficients and the PN with assumed low
complexity; however, the assumption that the number of pilot
subcarriers is larger than the number of transmitting antennas
leads to high complexity in massive MIMO communication
systems [31]–[33]. Another issue we consider is time variation
of the statistical properties of the PN process. Even when
the LO is locked, the statistical properties of the PN are
time varying due to external conditions such as temperature;
e.g., heat from the mobile device, thus making real time
basis selection very desirable for practical implementations.
Therefore, statistical knowledge of the PN covariance matrix
should be acquired.

Phase noise is present in many communication systems such
as WLAN, millimeter wave systems, full-duplex systems and
massive MIMO systems. Full-duplex systems are especially
affected by phase noise since self-interference is performed in
order to extract the received signals, see for example [34]–
[36]. The phase noise prevents transmitters from properly
subtract their self-interference, this is especially harmful in
high order modulations which demand high values of received
SNR which are translated to low values of error vector
magnitudes (EVM). OFDM millimeter wave systems are also
affected by phase noise, see for example [37], [38] ; here,
as in other systems the effect of phase noise is most severe
when using high order modulations, and is a key issue in
implementing these systems. Phase noise is also present in
optical communication systems using coherent optical OFDM
[39]. In such networks the phase is estimated digitally without
using a optical phase-locked loop, however, this estimation
is not perfect and thus phase noise is cause this imperfect
estimation. The phase compensation scheme that we present
is adaptable to the transmission of OFDM symbols in all of
these systems.
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In this paper we replace the fixed basis proposed in previous
works with an adaptive basis which is the best representation
of the noise with respect to the L2 norm for a random noise
process [1]. Since in locked systems the phase noise behavior
is quite stationary we can either pre-calibrate the phase noise
PSD and then use an eigen-decomposition of the covariance
matrix or estimate in real time the basis elements as well as the
LS coefficients of the phase noise. The latter is more robust to
environmental changes such as temperature which might affect
the statistical properties of the phase noise. We can also replace
the LS estimation of the coefficient with a total least square
estimation [40] that considers imperfection of the model.
The main contributions of this article are: 1) Utilizing the
Karhunen-Loève representation of the phase noise process co-
variance matrix as basis elements. This dramatically improves
the results of [30]. 2) The introduction of the implementation
of the total least square estimator for phase noise mitigation
schemes. 3) We efficiently track of the subspace of the
covariance matrix of the phase noise process for system with
no information regarding the covariance matrix of the phase
noise process. This is performed utilizing the PAST algorithm
[41] and behaves well even in the presence of carrier frequency
offset. 4) We extended the above contributions for multiuser
uplink beamforming OFDM systems.

This paper is organized as follows: in section II we present
the phase noise model. Section III presents our results on
phase noise compensation in SISO systems and discusses
the computational aspects of the compensation scheme. In
Section IV we discuss two enhancements to the compensation
method. Section V is dedicated to tracking the dominant
subspace of the Karhunen-Loève (KL) representation pre-
sented in Section III. In Section VI we present simulation and
measured results of the proposed phase noise compensation
method. Section VI-A covers simulated phase noise whereas
Section VI-B discusses measured phase noise. Section VI-C
analyzes simulations of the tracking algorithm proposed in
Section V for the measured phase noise. Finally, Section VII
concludes the paper.

Notations: We denote the convolution between two contin-
uous time signals x and y at time t by x ∗ y(t); for discrete
time we denote the convolution between the two discrete time
signals x and y at time k by x ∗ y(k). Vectors and matrices
appear in bold. Let a be a vector, we denote by aT the
transpose vector of a and by a∗ the conjugate transpose of a;
note that if a is of dimension 1; i.e., scalar, then a∗ is equal
to the conjugate of a. Moreover, M † is the Moore-Penrose
pseudoinverse of a matrix M . Finally, ‖ · ‖ denotes the L2

norm and ‖ · ‖F denotes the Frobenius norm.

II. PHASE NOISE MODEL

In this section we describe a mathematical model for
the phase noise process and its effects on OFDM systems.
Consider an OFDM system described by

x(t) =
1√
N

N−1∑

k=0

s(k)ejωkt, 0 ≤ t ≤ Ts (1)

where ωk = ω0 + k∆ω is the frequency of the k’th channel,
k = −N2 , . . . , N2 , ω0 is the carrier frequency and

∆ω =
2π

Ts
(2)

is the angular sampling frequency. Additionally, s(k) is the
symbol transmitted of the k’th channel and is independent of
symbols transmitted over other channels. The OFDM symbol
passes through a time invariant channel (we assume a quasi-
stationary fading process) and the received signal y(t) is given
by

y(t) = h ∗ x(t) + n(t). (3)

Phase noise is multiplicative noise resulting from the jitter
of the LO of the OFDM system. We can model the received
signal with the effect of the phase noise as

z(t) = y(t)ejφ(t), (4)

where φ(t) is a random process that can be considered to
be a filtered Gaussian process with PSD Pφ (f). The process
ψ (t) = ejφ(t) is the multiplicative noise process that can
also include the residual frequency offset (a linear phase
component) and the common phase error that is constant
across frequencies. We want to estimate this and remove
its effect, since it introduces inter-channel interference (ICI).
We assume that ψ (t) is a stationary process with a known
covariance rψ (τ) = E [ψ (t)ψ∗ (t− τ)]. This assumption is
very reasonable when the LO is locked to a stable frequency
source through a Phase-Locked Loop (PLL).

Let ψ = (ψ1, . . . , ψN)
T be a vector of N consecutive

samples of the phase noise process ψm = ψ (mTs). We define
the covariance matrix of the phase noise process by

Rψψ =




E (ψ1ψ
∗
1) . . . E (ψ1ψ

∗
N )

...
. . .

...
E (ψNψ

∗
1) . . . E (ψNψ

∗
N )


 . (5)

When trying to represent the phase noise along a single
OFDM symbol it is natural to use the basis of the eigenvectors
of Rψψ . We decompose Rψψ using an eigen-decomposition
as

Rψψ =

N−1∑

i=0

µiuiu
∗
i , (6)

where µ0, . . . , µN−1 denote the eigenvalues of Rψψ and
u0, . . . ,uN−1 denote their respective eigenvectors.
We now describe the received signal and channel. We begin
with a SISO model and then extend it to a SIMO model. Note
that we are only interested in the SIMO case since the phase
noise is identical on all spatial channels. We assume that the
OFDM symbols are synchronized and that the cyclic prefix
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has been removed, so that the channel matrix can be assumed
to be circulant, and thus be given by

H =




h0 h1 · · · · · · hN−1

hN−1 h0
. . . hN−2

...
. . .

. . .
. . .

...
...

. . .
. . .

...
h1 · · · · · · hN−1 h0



. (7)

Furthermore, we consider a single OFDM symbol. The time
domain OFDM symbol is given by

x = F ∗Ns (8)

where

s = [s0, . . . , sN−1]
T (9)

is the frequency domain OFDM symbol, and

FN =
1√
N




1 1 . . . 1
1 e−2π·1·1/N . . . e−2π·1·(N−1)/N

...
...

. . .
...

1 e−2π(N−1)·1/N . . . e−2π·(N−1)·(N−1)/N




(10)

is the DFT matrix. Let n = [n0, . . . , nN−1] be the additive
white Gaussian noise. It follows that

y = HF ∗Ns+ n = Hx+ n (11)

is the received signal when no phase noise is present.
The received OFDM symbol z = [z0, . . . , zN−1]

T is given
by

z = ejΦ(Hx+ n) (12)

where

Φ = diag (φ0, . . . , φN−1) (13)

is the phase noise vector.
Define a received data matrix Z; this matrix is given by

Z = diag(z) =



z0

. . .

zN−1


 = Y ejΦ (14)

where

Y = diag(y) =



y0

. . .

yN−1


 . (15)

Our problem is to estimate the phase noise and construct a
time domain vector that cancels out the harmful effect of the
phase noise.

III. TIME DOMAIN COMPENSATION IN SISO SYSTEMS

We now describe a time domain method for reducing the
phase noise. The idea is to use available pilot data to estimate
the coefficients of a representation of the phase noise. We first
present the phase compensation algorithm in [30]. Then we
discuss the choice of basis for the phase noise compensation.
We show that using a fixed basis such as Fourier vectors or
discrete cosine transform vectors does not yield large gains
in terms of ICI cancellation. We then propose the use of data
directed basis selection and show the improvement achieved
through this approach. This is important for ICI cancellation
since common phase noise removal involves choosing the first
basis vector to be the N dimensional all ones vectors 1N =
[1, . . . , 1]

T .
Let v0, . . . ,vN−1 be a basis for CN . Denote the phase
noise realization by ejϕ =

[
ejφ0 , . . . , ejφN−1

]T
and let γ =

[γ0, . . . , γN−1]
T satisfy

e−jϕ =

N−1∑

k=0

γkvk, (16)

or equivalently

e−jϕ = V γ, (17)

where V = [v0, . . . ,vN−1]. If we allow only d basis vectors
V (d) = [v0, . . . ,vd−1] we can pose the problem as a least
squares problem. Had we known the vector e−jϕ our objective
would have been finding γ̂ ∈ CN such that V (d)γ cancels the
phase noise optimally (in LS sense), i.e.

γ̂ = arg min
γ

∥∥∥e−jϕ − V (d)γ
∥∥∥

2

. (18)

However, since e−jϕ is the vector which we want to estimate,
we cannot use this naive approach. We discuss ways to
overcome this issue below.

A. LS compensation based on [30]

Since we do not know the phase noise e−jϕ we rely on
known OFDM pilot tones. In this case we need to modify (18)
assuming that we have known values sp = [si1 , . . . , sir ]

T ∈
Cnpilot×1. Let ŷ be an estimate of the time domain symbol with
the phase noise removed:

ŷ = ZV (d)γ̂ 'Hx+ n = HF ∗Ns+ n (19)

Since H is diagonalized by the DFT matrix FN ; i.e., H =
F ∗NΛFN , we obtain that

ŝ = Λ−1FNZV
(d)γ̂. (20)

is an estimate of the received OFDM frequency domain
symbol. Defining

W = Λ−1FNZV
(d), (21)

we obtain that our LS estimate of γ is given by

γ̂ = arg min
γ
‖s−Wγ‖2 . (22)
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Therefore, we obtain that

γ̂ = W †
psp, (23)

whereW p is obtained by choosing the rows that correspond to
pilot tones alone. The estimate of the phase noise cancellation
vector is now given by

e−jϕ = V γ̂. (24)

Figure 1 depicts this phase noise compensation scheme.
Note that the components of Z are affected by noise and

the noise is multiplied by Λ−1FN . This suggests that the
estimation of γ can be improved using total least squares
(TLS) instead of the LS described above. We discuss this in
the next section.

B. TLS compensation
As discussed above, in the training period, the training

symbols spilot are sent over the channel. Since these training
symbols are predefined and known by the receiver, our com-
pensation problem can be represented as a data least squares
(DLS) problem [42]. However, since we use the basis V (d) of
size d ≤ N we also consider discrepancies in sp.

By Eq. (20) we have that

s ≈ Λ−1FNZV
(d)γ̂. (25)

The uncertainty in the model is caused by the estimation of
the channel matrix H, the additive noise of the channel and
the reduced basis dimensions. It it therefore natural to consider
the TLS estimation of γ. Let ∆W and ∆s be such that

(W p + ∆W )γ = sp + ∆s (26)

where as before, W p is obtained by choosing the rows that
correspond to pilot tones alone.

The TLS problem is then

arg min
γ,∆W ,∆s

‖[∆W ,∆s]‖F
s.t.: (W p + ∆W )γ = sp + ∆s (27)

where as stated above (Section I) the notation‖ · ‖F denotes
the Frobenius norm. The solution in terms of γ̂ is obtained
by following Algorithm 1 in [40] which we describe next. Let
W p and sp as stated above and let

[W p, sp] = UΣQT (28)

be the singular value decomposition (SVD) of [W p, sp] ∈
Cnpilot×(d+1). Denote

Q ,

[
q11 q12

q21 q22

]
(29)

where q11 ∈ Cd×d, q12 ∈ Cd×1, q21 ∈ C1×d and q22 ∈ C. If
q22 6= 0 , note that q22 is scalar, then

γ̂TLS = −q12/q22. (30)

When q22 = 0, there is no solution and we set γ̂TLS = γ̂LS.
Note that in some practical implementations we trade off ac-
curacy for lower complexity. However, if an SVD computation
engine is available because of beamforming, for example, then
this SVD engine can be used for solving the TLS problem in
(28).

C. The basis vectors

We now turn to the question of the choice of the basis
vectors v0, . . . ,vN−1. The authors of [30] proposed using
either the columns of the DFT matrix FN or the columns
of the DCT matrix. As will be seen in the simulations, this
typically leads to minor improvement over simply cancelling
the common phase but the ICI is still significant. We suggest
a different approach and choose the basis elements using the
properties of the phase noise process. We assume that the
phase noise process has covariance

Rψψ =

N∑

k=1

µkuku
∗
k (31)

where u0, . . . ,uN−1 are the eigenvectors corresponding to
eigenvalues µ0 > . . . > µN−1, respectively. This basis is
the best choice for representing random realizations of a
random process with covariance Rψψ (this is basically a KL
representation of the process). Since the statistical properties
of the phase noise process are stationary for quite long periods
they can be calibrated in advance.

D. Computational aspects

The compensation of the phase noise involves O((N logN)×
d+npilot×d2) complex multiplications where d is the number
of the basis elements. This is due to the FFT complexity
adding d multiplications per symbol and the additional com-
plexity of the LS itself. We next explain these values in more
detail. Forming the matrix W involves computing

W = Λ−1FNZV
(d). (32)

Matrices Λ and Z are diagonal matrices and matrix F n
is symmetric. Thus, calculating of the multiplication ZV (d)

requires at most N × d complex multiplication operations.
Using the fast Fourier transform (FFT), we have that the
complexity of calculating FNZV (d) is O((N logN) × d).
The, additional multiplication by Λ−1 does not increase the
complexity.

Solving the LS problem (22) only involves matrices of size
npilot × d resulting in O(npilot × d2) operations.

It follows that the complexity depends on d and npilot and
is O((N logN)× d+ npilot × d2).

We note that the complexity of calculating the eigenvec-
tors of the covariance matrix is O(N3). This is done once
and thus the complexity over time vanishes. However, since
phase noise statistics can slowly vary due to frequency offset
variations, we also provide a tracking solution. In Section V
we demonstrate that we can track the d leading eigenvectors
with a complexity of O(Nd) operations per update. We can
conclude that the complexity of our compensation scheme is
O((N logN)× d+ npilot × d2) even if tracking the d leading
eigenvectors is performed. This is on par with the complexity
of the compensation scheme presented in [30] while providing
superior results due to the better and adaptive basis selection.



5

Rψψ

LS
(TLS)
solver

V̂ 1

. . .
V̂ d

pilot 1

...

pilot kp

null tone 1
...

null tone kn

...

Compute
SVD of
Rψψ

Select
V̂ 1, . . . , V̂ d

as
basis elements

V̂11 . . . V̂1N V̂d1 . . . V̂dN. . .

⊗
⊗

γ̂1

⊗
⊗

γ̂d

V̂ 1

V̂ d

...

∑

∑

⊗z1

⊗zN

FFT

y1
yN. . .

. . .

To FEQ

Fig. 1: Phase noise compensation process without subspace tracking.

IV. EXTENSIONS

We now describe two extensions to the proposed method.
These extensions can contribute substantially to the perfor-
mance of the proposed scheme by increasing the number of
available equations for PN mitigation.

A. Using null tones

While channel estimation can only use tones in which
energy has been transmitted, null tones can also provide
information on ISI. This depends, of course, on the amount
of adjacent channel suppression; however, when the adjacent
channel suppression is good, the ICI can be estimated based
on the null tones as well.

B. Phase estimation in MIMO system

When a MIMO system is used, typically all transceiver
chains use the same LO. Hence the phase noise can be jointly
estimated based on the pilot symbols from all the receive
antennas. This extra information substantially enhances the
applicability of the proposed method and improves the quality
of the LS fitting of the coefficients, especially in modern
802.11ac and massive MIMO systems.

Next we provide a detailed example for adapting the algo-
rithm presented in this paper to multiuser uplink beamforming
OFDM. The example assumes transmitter phase compensation
[43], [44], for this reason it focuses on compensating for
the receiver phase noise. Under the assumption of proper
phase noise compensation at the transmitters, the phase noise
at the receiver is the dominating noise compared with the

compensated phase noise at the transmitters.
Suppose that a receiver with Nr antennas serves Nu single
antenna users. Each user ku ∈ {1, . . . , Nu} sends the vector of
symbols sku = [sku,0, . . . , sku,N−1]T , by aiming to transmit
the signal

xku(t) =
1√
N

N−1∑

k=0

sku,ke
jωkt, 0 ≤ t ≤ Ts. (33)

Denote by φku(t) the residual phase noise at transmitter ku
after performing phase noise compensation at the transmitter.
The transmitted signal with the residual phase noise is given
by1

x̃ku(t) = ejφku (t)xku(t) ≈ xku(t) (34)

Denote by hku,kr (t) the channel between user ku and the
receiver antenna kr. The receiving signal at antenna kr is

ykr (t) =

Nu∑

ku=1

hku,kr ∗ x̃ku(t) + nkr (t). (35)

Assuming a common LO for all the receiving antennas (which
is the case in many communication systems), we can model
the received signal with the effect of the phase noise at the
receiver as

zkr (t) = ejφ(t)ykr (t); (36)

1Note that (34) displays our assumption that adequate phase noise com-
pensation was performed by the transmitters, thus the remaining phase noise
at the transmitters is negligible.
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an example of multiple LOs at the receiving end is discussed
for example in [45]. Since we discuss in this example systems
with transmitter phase noise compensation, we can reasonably
assume that ejφ(t) is considerably larger than ejφku (t). Also, as
before, we assume that the OFDM symbols are synchronized
and that the cyclic prefix has been removed, so that the channel
matrix can be assumed to be circulant, and thus for every
antenna the channel is given by

Hku,kr =



hku,kr,0 hku,kr,1 · · · · · · hku,kr,N−1

hku,kr,N−1 hku,kr,0
. . . hku,kr,N−2

...
. . .

. . .
. . .

...
...

. . .
. . .

...
hku,kr,1 · · · · · · hku,kr,N−1 hku,kr,0



.

(37)

Let Hkr = [H1,kr , . . . ,HNu,kr ] and x = [xT1 , . . . ,x
T
Nu

]T

where

xku = F ∗Nsku . (38)

Further, let

x̃ku = ejΦkuxku (39)

where Φku = diag (φku,0, . . . , φku,N−1) and φku,m =
φku(mTs). Let x̃ = [x̃T1 , . . . , x̃

T
Nu

]T , we have that

ykr =

Nu∑

ku=1

Hku,kr x̃ku + nkr

= Hkr x̃+ nkr . (40)

Defining Φ as in (13), we write

zkr = ejΦykr = ejΦ(Hkr x̃+ nkr ). (41)

Now, let H = [HT
1 , . . . ,H

T
Nr

]T and n = [nT1 , . . . ,n
T
Nr

]T ;
define y and z as follows

y =



y1
...
yNr


 =



H1x̃+ n1

...
HNr x̃+ nNr


 = Hx̃+ n (42)

z =



z1

...
zNr


 =



ejΦy1
...

ejΦyNr


 = (INr

⊗ ejΦ)y. (43)

Denote

Y = diag(y) (44)

it follows that

Z , diag(z) = Y (INr ⊗ ejΦ), (45)

where ⊗ is the Kronecker product2. Let V be defined to be a
basis of Rψψ (see (5)), and define γ as in (16) and (17). We
can conclude that

(INr
⊗ ejΦ)(INr

⊗ (V γ)) = IN ·Nr
(46)

2We note that in Figure 1 and Figure 2 the symbol ⊗ denotes the scalar
multiplication. However, this is a special case of the Kronecker product.

Choosing a ZF beamforming matrix B and assuming that
Nr > Nu, we have that

s ≈ (INu
⊗ FN )BZ(1Nr

⊗ (V γ)) (47)

where 1Nr is a column vector of ones of size Nr. Define

W = (INu
⊗ FN )BZ(INr

⊗ V )(1Nr
⊗ IN ). (48)

Since

(1Nr ⊗ (V γ)) = (INr ⊗ V )(1Nr ⊗ IN )γ (49)

it follows from (47) and from our assumption that adequate
phase noise compensation was performed by the transmitters

s ≈Wγ. (50)

We can obtain the linear LS estimation by solving

γ̂ = arg min
γ
‖s−Wγ‖2 . (51)

Therefore, as before, we obtain that

γ̂ = W †
psp, (52)

where W p is obtained by choosing the rows that correspond
to pilot tones alone of the different users. Alternatively, we
can solve the respective TLS problem.

V. TRACKING THE DOMINANT SUBSPACE OF THE
KARHUNEN LOÈVE REPRESENTATION

There are several methods to obtain the correlation matrix
Rψψ. The first is to pre-calibrate it and generate fixed basis
vectors that are either measured or computed from the LO
design. Hence, one can estimate Rψψ from the data and
apply an eigen-decomposition to obtain the basis vectors.
These alternatives are hard to implement since they depend on
component variability in manufacturing and therefore needs to
be performed for each chip separately. This might also lead to
performance degradation due to environmental changes such
as temperature or vendor dependent behavior. Furthermore,
residual carrier offset also affects the optimal basis. A better
choice that makes it possible to overcome the non-stationarity
of the phase noise process is to track a basis for the phase
noise subspace. To track the phase noise vectors we propose
using the PAST algorithm [41]. Since we do not require our
basis elements to be orthogonal we do not need the deflation
approach of PAST-d (see [41]). Alternatively, the subspace can
be tracked using traditional methods such that appear in [46].
The PAST algorithm is implemented as follows.

A. The PAST algorithm for subspace tracking

Let V (d)
0 be a matrix composed of the d low frequency

vectors of the DFT matrix or any other a-priori estimate of
the phase noise dominant eigenvectors (i.e., eigenvectors of
Rψψ corresponding to higher eigenvalues). Let P 0 = Id×d.
At OFDM symbol m we use V (d)

m−1 to perform the phase noise
removal in the time domain as described above. The estimated
symbols in the frequency domain ŝ(m)(k) are used to remove
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Initialize β,

ym = (V
(d)
m−1)

∗ϕ̂m,

hm = Pm−1ym,

gm = 1
β+y∗

mhm
hm,

Pm = 1
β
(Pm−1 − gmh∗

m) ,

em = xm − V
(d)
m−1ym,

V
(d)
m = V

(d)
m−1 + emg∗

m.

TABLE I: PAST algorithm for subspace tracking.

the desired signal from the received time domain signal and
estimate the phase noise process at each time by

ϕ̂m(t) = e
j]
(
zm(t)(

∑N−1
k=0 ŝ(m)(k)ĥ(m)(k)ejωkt)

−1
)
, 0 ≤ t ≤ Ts.

(53)

Rψψ is updated by

Rm
ψψ = (1− α)Rm−1

ψψ + αϕmϕ
∗
m. (54)

V (d)
m is updated using the PAST algorithm as described in

Table I (see [41]).
Note that to track the subspace we do not need to compute

Rψψ and that is optional. Figure 2 depicts this phase noise
compensation scheme with subspace tracking.

B. Residual carrier offset

In the presence of residual carrier offset there is another time
varying multiplicative noise; namely, the slowly varying resid-
ual carrier. While for small values (e.g., 1 ppm) the residual
carrier does not affect the decoding, it does have a detrimental
effect on the common phase error estimation since the phase is
no longer fixed at the pilots. Interestingly, this residual carrier
can be incorporated into the KLT representation of the phase
noise process by replacing ψ(t) with the random process ψ̃(t)

ψ̃(t) = ej2π∆ftψ(t)

= ej(φ(t)+2π∆ft) (55)

and then tracking the subspace of Rψ̃ψ̃ instead of Rψψ .
We note that ψ̃(mTs) and ψ̃ are defined similarly to the
scenario in which there is no residual carrier offset; that is,
ψ̃m = ψ̃(mTs) and ψ̃ = [ψ̃1, . . . , ψ̃N ]T . Let c(t) = ej2π∆ft

and cm = c(mTs). We can represent Rψ̃ψ̃ by the following
identity

Rψ̃ψ̃ = diag (c)Rψψdiag (c)
∗ (56)

where

c = [c1, . . . , cN ]T . (57)

Let λ be an eigenvalue of Rψψ and v its respective eigenvec-
tor. By the definition of c, diag (c)

∗
= diag (c)

−1, thus

Rψ̃ψ̃diag (c)v = diag (c)Rψψdiag (c)
∗ diag (c)v

= diag (c)Rψψdiag (c)
−1 diag (c)v

= diag (c)Rψψv

= λdiag (c)v (58)

and we conclude that diag (c)v is an eigenvector of Rψ̃ψ̃

for the eigenvalue λ. It follows that the basis elements of
Rψψ; i.e., the covariance matrix of the PN process without the
residual frequency offset, are multiplied by exponentials of the
form c(t) = ej2π∆ft. This is especially appealing when we
implement the adaptive tracking of the KLT basis elements, as
will be demonstrated in the simulations. Note that the subspace
tracking algorithm, does not require ∆f to be known, but it
is affected by it implicitly.

C. The asymptotic behavior of the PAST algorithm

The asymptotic behavior of the PAST and PASTd algo-
rithms is discussed in [47]–[49] for real valued independent
identically distributed (i.i.d.) Gaussian random vectors.
Under the reasonable assumption that the random process ψ
is M -dependent, we can sample ψ every M+1 samples. This
will slow the convergence by a linear factor of M + 1. To use
the results of [47]–[49] the problem can be represented as a
real problem, using standard transformation. Let,

V 2rep =

[
Re(V ) −Im(V )
Im(V ) Re(V )

]
(59)

it follows that [
Re(e−jϕ)
Im(e−jϕ)

]
= V 2rep

[
Re(γ)
Im(γ)

]
(60)

and we can track the subspace of the matrix V 2rep. Thus,
assuming that the vectors ψ are circularly symmetric complex
normal vector, we can utilize the results of [48], [49] and
have that under mild conditions, the subspace V (d)

m converges
to V (d) with probability 1 as m→∞.

VI. EXPERIMENTAL ANALYSIS

In this section we present the simulated and experimental
analysis of the proposed PN compensation scheme in sub-
section III-A. This section is divided into three parts: Sec-
tion VI-A covers simulation tests of the PN compensation
scheme with no tracking. Section VI-B is dedicated to the
analysis of the compensation scheme with no tracking per-
formed on the measured PN. Last, Section VI-C is dedicated
to the analysis of the tracking algorithm that was proposed in
Section V. This analysis is carried out on the measured PN of
Section VI-B. A detailed description of the measurements that
were used to produce the figure in this sections is included
in [50]. The SNR was chosen such that the phase noise is
the dominant noise, and limits the reception of 256 QAM.
Still, a noise figure of 7 dB is quite high and even with this
strong noise the phase noise is still dominant. Additionally, PN
compensation complicates the design of the receiver, therefore
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ϕ1

...

ϕN

...

PAST algorithm
Table I

V̂11 . . . V̂1N V̂d1 . . . V̂dN. . .

⊗
⊗

LS
(TLS)
solver

V̂ 1

. . .
V̂ d

pilot 1

...

pilot kp

null tone 1
...

null tone kn

γ̂1

⊗
⊗

γ̂d

. . .

V̂ 1 V̂ d

...

∑

∑

⊗z1

⊗zN

FFT

y1
yN. . .

. . .

To FEQ

Fig. 2: Phase noise compensation process utilizing the PAST algorithm.

it is the most cost effective when the PN is the dominant
noise which typically occurs when transmitting high order
constellations (i.e., high SNR) together with multi-antenna
receiver.

A. Simulation tests

We now present a simulated experiment testing the per-
formance of the algorithm on real WLAN channels. This
set of simulations assumes that the actual estimate of the
eigenvectors of Rψψ is given. An example of a measured
channel is depicted in Figure 3. The transmitted power was
10 dBm, the assumed noise figure was 7 dB, the thermal
noise was −174 dBm/Hz and the bandwidth was 20 MHz.
The phase noise process was generated using a second order
Chebychev type I and a PSD of the phase noise process is
depicted in Figure 4. The standard deviation of the phase noise
was σφ = 3◦. At each time we used two receive channels and
tone numbers 1−7, 21, 43, 58−64 at each of the two receivers
for pilot symbols np = 16. The OFDM had 64 tones; i.e.,
N = 64 and the modulation was 256 QAM.

Figure 5 depicts the dependence of the residual Error Vector
Magnitude (EVM) on the number of basis elements using KL
basis vectors and DFT basis vectors which the algorithm that
was presented in [30]. The KL eigenvectors were computed
based on 10 OFDM symbols. We averaged the EVM over
300 measured pairs of channels (1 × 2 systems, i.e., one
transmitting antenna and two receiving antennas). For each
channel we averaged the EVM over 100 OFDM symbols.
Note that for a large number of basis elements, the EVM may
be larger due to the insufficient number of equations when
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Fig. 3: Two 20 MHz receive channels.

more basis elements are used than pilot symbols. The large
gain of our compensation scheme compared to the DFT basis
presented in [30] is clearly visible. Furthermore, the maximal
tolerated EVM for 256 QAM for 5G is -32dB for a SISO
transmission. The typical values for EVM are between -40dB
and -35dB for MIMO channels. As can be seen, the method of
[30] narrowly meets the requirements while our compensation
scheme is well in the desired region.

To obtain performance under good phase noise and channel
conditions we repeated the experiment with a simulated phase
noise with standard deviation of σφ = 0.7◦ and with the
channel attenuation reduced by 5dB compared to Figure 3.



9

0 2 4 6 8 10 12 14 16 18 20
−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency [MHz]

P
ow

er
S
p
ec
tr
u
m

M
ag
n
it
u
d
e
[d
B
]

Simulated phase noise PSD

Fig. 4: Simulated phase noise process PSD. σφ = 3◦.
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Fig. 5: EVM vs. number of basis elements for DFT (which
is the compensation scheme in [30]) and KL based methods.
Phase noise 3◦. 0 - No compensation. 1 - CPE compensation.
σφ = 3◦

The results are presented in Figures 6-7. Even in this case
there was a substantial gain achieved by cancelling the phase
noise although the phase noise performance was reasonable
even with CPE compensation alone.

We also simulated the performance of our phase noise com-
pensation scheme and that of Casas et al. [30], as a function
of the of the standard deviation of the phase noise. That is, we
chose a fixed number of 8 basis elements, and simulated the
EVM as a function of the phase noise standard deviation. The
results of this simulation are depicted in Figure 8. It is clear
that our scheme outperformed the scheme presented in [30].
Specifically, using DFT basis, a phase noise with standard
deviation of 3◦ is the maximal phase noise which can be
tolerated for a constellation of 256QAM, whereas our scheme
can tolerate up to 8◦ standard deviation phase noise. As before
we used in this simulation 300 pairs of measured channels. For
each pair channel we used 100 OFDM symbols; the phase
noise process was produced for each of these channels as
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Fig. 6: Simulated phase noise PSD. σφ = 0.7◦.
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Fig. 7: EVM vs. number of basis elements for DFT (see
[30]) and KL based methods. 0 - No compensation. 1 - CPE
compensation. σφ = 0.7◦

described at the beginning of Section VI-A.
In addition, we performed a coded simulation using a

convolutional code with rate 1
2 , interleaver and soft-decision

Viterbi decoding; its results are depicted in Figure 9. As before
we used in this simulation 300 pairs of measured channels.
For each pair channel we used 100 OFDM symbols; in total
we used 7.68 × 106 uncoded bits. The phase noise process
was produced for each of these channels as described at the
beginning of Section VI-A. As can be seen from Figure 9
phase noise compensation is essential for correct decoding at
the receiver. Further, the KL compensation scheme continued
to outperform the DFT compensation scheme with bit error
rate (BER) of less than 10−6.

The last simulation of this section depicts the performance
of the phase noise compensation scheme for multi user MIMO
system (see Section IV-B) with two single antenna transmitters
and two antenna receiver (2×2 system); Figure 10 depicts an
example of the channels of a 2×2 communication system. The
transmitted power of each transmitting antenna was 10 dBm.
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Fig. 9: BER vs. phase noise standard deviation. 8 basis
elements.

For each of the transmitting antennas we generated a phase
noise process with standard deviation of 1◦ which represents
the residual phase noise process at the transmitter. The two
phase noise processes at the transmitters were generated in-
dependently, and were also independent of the receiver phase
noise process. We compared the performance of the system
with and without transmitter phase noise. The results of the
simulation are presented in Figure 11, the receiver phase noise
standard deviation was varied from 1◦ to 6◦. We can clearly
see from Figure 11 that when the receiver phase noise standard
deviation is greater than 1◦, the performance of the phase noise
compensation schemes with or without transmitter phase noise
are very close to one another. Clearly, the method presented in
this paper does not break down in the presence of independent
residual transmitter phase noise. Note that as before we used in
this simulation 300 pairs of measured channels. For each pair
channel we used 100 OFDM symbols; the receiver phase noise
process was produced for each of these channels as described
at the beginning of Section VI-A.
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Fig. 10: Four 20 MHz receive channels of 2×2 communication
system.
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Fig. 11: EVM vs. phase noise standard deviation (at the
receiver). 8 basis elements.

B. Measured phase noise analysis

In the second set of simulated experiments we used mea-
sured phase noise samples. The measured signal comprised a
sine wave at 5 MHz, sampled at 40 MHz and then filtered to
remove the original sine wave of 5 MHz, thus only the phase
noise remained. The PSD of the phase noise is depicted in
Figure 12. We repeated the experiment above with samples
of the measured phase noise. The results are depicted in
Figure 13. There was a clear gain of 5dB for 5 basis elements
and above.

C. Simulations of the tracking algorithm for measured phase
noise

In this section we analyze the tracking capability of the
PAST algorithm combined with decision direction. We used

3We note that the two spikes in the PSD of the measured phase noise
process are due to residual of the sine and its harmony of the sine wave at 5
MHz.



11

0 2 4 6 8 10 12 14 16 18 20
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency [MHz]

P
ow

er
S
p
ec
tr
u
m

M
ag
n
it
u
d
e
[d
B
]

Measured phase noise PSD

Fig. 12: PSD of measured phase noise.3
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Fig. 13: EVM vs. number of basis elements for DFT and KL
based methods. No. of basis element: 0 - No compensation. 1
- CPE compensation. Measured phase noise.

the same system as in previous sections with the measured
phased noise (scaled to 3.5◦ total phase noise) and 4 basis
elements. However, we also added a 1ppm residual carrier to
model carrier offset for a carrier frequency of 5 GHz. It is
clear (see Figure 14) that our tracking scheme yields better
phase and residual carrier compensation of 5dB, compared to
the other methods, i.e., the DFT of [30] and a simple CPE
compensation.

To test the stationarity of the basis elements after conver-
gence was achieved; we repeated the experiment when no
residual carrier was present and limited the training phase
to 300 symbols. This is important for the quality of the
initial basis, based on previous estimates. We performed two
simulations whose results appear in Figure 15 and Figure
16. Figure 15 depicts the results of the simulation for the
two receive channels that are depicted in Figure 3. Figure
16 depicts the results of the simulation averaged over 300
pairs of receive channels. It is clear that the basis vectors were
relatively stationary since the EVM was fixed for the duration
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Fig. 14: Tracking performance of PAST. σφ = 3.5◦, residual
carrier 1 ppm, 4 basis vectors.
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Fig. 15: Limited training of 300 symbols. No residual carrier,
σφ = 3.5◦ and β = 0.9, one pair of receive channels

.

of the next 2700 symbols. Further, the estimates were quite
good and the mean EVM remained constant. This suggests that
our stationarity assumption was sufficiently good. Note that
both common phase removal and DFT based compensation
were not as good and led to a 2− 4dB loss.

To depict the advantages of tracking we performed the
following simulation over the measured channels, we set the
residual carrier to be 5 ppm and simulated phase noise of
3.5◦, we averaged the results over 300 pairs of channels. We
stopped the tracking of the limited tracking after 250 OFDM
symbols and performed the tracking for the “Tracking using
PAST” line during the whole simulation. As can be seen from
Figure 17, tracking dramatically improves the behavior of the
phase noise compensation scheme presented in this paper.

VII. CONCLUSION

We presented a novel phase noise estimation technique. This
technique leads to considerable reduction in phase noise and in
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Fig. 17: Comparison of the performance of phase noise
compensation schemes with or without tracking.

particular works very well for strong phase noise. The specific
basis proposed in this paper (using the eigenvectors of the
noise correlation process) accounts primarily for its success
compared to previous work. We identified several possible
extensions of the method to multi user MIMO systems as well
as online calibration and exploitation of null tones. Finally, we
tested the possibility of decision directed tracking of the basis
vectors. The tracking results using measured phase noise and
residual carrier offset suggest that our stationarity assumption
also holds.
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