
ar
X

iv
:1

70
1.

04
58

3v
1 

 [s
ta

t.O
T

]  
17

 J
an

 2
01

7
1

PUMA criterion = MODE criterion
Dave Zachariah, Petre Stoica and Magnus Jansson

Abstract—We show that the recently proposed (enhanced)
PUMA estimator for array processing minimizes the same crite-
rion function as the well-established MODE estimator. (PUMA =
principal-singular-vector utilization for modal analysi s, MODE
= method of direction estimation.)

I. PROBLEM FORMULATION

The standard signal model in array processing is

y(t) = A(φ)s(t) + n(t) ∈ C
m (1)

whereφ = [φ1 · · · φr]
⊤ parameterizes the unknown directions

of arrival from r < m far-field sources,s(t) is a vector of
unknown source signals,n(t) is a noise term, andA(·) is
a known function describing the array response [1], [2]. The
covariance matrix of the received signals is

R = APA∗ + σ2Im, (2)

where P and σ2Im are the signal and noise covariances,
respectively. The data is assumed to be circular Gaussian.

Given T independent snapshots{y(t)}Tt=1, the maximum
likelihood (ML) estimate ofφ is given by

φ̂ = argmin
φ

tr
{
Π⊥

A
R̂
}
, (3)

where

R̂ =
1

T

T∑

t=1

y(t)y∗(t)

denotes the sample covariance matrix andΠ⊥

A
is the orthog-

onal projector ontoR(A)⊥ and is a nonlinear function of
φ. The nonconvex problem in (3) can be viewed as fitting
the signal subspace spanned byA to the data, and it can be
tackled using numerical search techniques.

When considering uniform linear arrays, the columns ofA

have a Vandermonde structure:

A =




1 1 · · · 1
ejφ1 ejφ2 · · · ejφr

...
...

...
ej(m−1)φ1 ej(m−1)φ2 · · · ej(m−1)φr


 .

In this case we have the following orthogonal relation

TA = 0 (4)

where

T =



c0 c1 · · · cr

0
. . .

. . .
. . . 0

c0 c1 · · · cr


 ∈ C

(m−r)×m
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is a Toeplitz matrix with coefficientsc = [c0 c1 · · · cr]
⊤.

These coefficients also define a polynomial with roots that lie
on the unit circle,

c0 + c1z + · · ·+ crz
r = c0

r∏

k=1

(1− e−jφkz), c0 6= 0.

Therefore there is a direct correspondence betweenφ and c

[1], [2]. As a consequence of (4) the orthogonal projector can
be written as

Π⊥

A
= ΠT = T∗(TT∗)−1T

which yields an equivalent problem to (3) in terms ofc:

ĉ = argmin
c

VML (c), (5)

where

VML (c) = tr
{
ΠTR̂

}
= tr

{
(TT∗)−1TR̂T∗

}
. (6)

Using this alternative parameterization, tractable minimization
algorithms can be formulated. Next, we consider two alterna-
tive estimation criteria and prove that they are equivalent.

II. PUMA CRITERION EQUALSMODE CRITERION

Using the eigendecomposition, the covariance matrix can be
written as

R = UsΛU∗

s + σ2UnU
∗

n

whereR(Us) = R(A) andΛ = diag(λ1, . . . , λr) ≻ 0 is the
matrix of eigenvalues that are larger thanσ2. Instead of fitting
the subspace to the sample covarianceR̂, as in (6), consider
fitting to a weighted estimate of the signal subspace [3], [4]:

ÛsΓ̂Û
∗

s,

where

Γ̂ , diag

(
(λ̂1 − σ̂2)2

λ̂1

, . . . ,
(λ̂r − σ̂2)2

λ̂r

)

and where{λ̂i} andσ̂2 are obtained from the eigendecompo-
sition of R̂. Then the cost function in (5) is replaced by

VMODE(c) = tr
{
(TT∗)−1TÛsΓ̂Û

∗

sT
∗

}
.

This leads to the asymptotically efficient ‘methodof direction
estimation’ (MODE) [3] [2, ch. 8.5]. A simple two-step algo-
rithm was proposed in [3] to approximate the minimum of the
above estimation criterion.

Another approach for array processing, called ‘principal-
singular-vectorutilization for modal analysis’ (PUMA ), has
been recently proposed in [5] (see also references therein for
predecessors of that approach). It is motivated by properties of
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a related linear prediction problem and based on the following
fitting criterion

VPUMA(c) = e∗Ŵe,

where

Ŵ , (Γ̂ ⊗ (TT∗)−1)

is a weighting matrix ande is a function of c and the
eigenvectors inÛs. As shown in [5],e can be written as
e = vec(TÛs). It follows immediately that

VPUMA(c) = e∗Ŵe

= vec(TÛs)
∗

(
Γ̂⊗ (TT∗)−1

)
vec(TÛs)

= vec(TÛs)
∗ vec((TT∗)−1TÛsΓ̂)

= tr
{
Û∗

sT
∗(TT∗)−1TÛsΓ̂

}

= tr
{
(TT∗)−1TÛsΓ̂Û

∗

sT
∗

}

= VMODE(c),

where we made use of the following results

vec(XYZ) = (Z⊤ ⊗X) vec(Y)

tr{X∗Y} = vec(X)∗ vec(Y).

Therefore the PUMA criterion is exactly equivalent to the
MODE criterion. The algorithm proposed in [5] is thus an
alternative technique for minimizingVMODE(c).

III. OTHER VARIANTS

A fitting criterion on a similar form asVPUMA(c) was
proposed in [6] and shown to reduce toVMODE(c) in a special
case. Alternative minimization techniques are also discussed
therein, see also [2, ch. 8]. See e.g. [7], [8] for additional
variations ofVMODE(c).

In scenarios with low signal-to-noise ratio or small sample
size T , subspace-fitting methods such as MODE may suffer
from a threshold breakdown effect due to ‘subspace swaps’
[9], [10]. To reduce the risk that the signal subspace is
fitted to noise in these cases, a modification was proposed
in [11] consisting of usingp < m− r extra coefficients inc.
Then after computing the corresponding directions of arrival,
all possible subsets ofr directions are compared using the
maximum likelihood criterion and the best subset is chosen
as the estimate. This method is called the MODEX in [11]
and its principle is exactly what is used in [5] to propose the
Enhanced-PUMA .

Interestingly, while both papers [3] and [11] are referenced
in [5], the equivalence (as shown above) of the PUMA esti-
mation criterion proposed there to MODE [3] and MODEX
estimation criteria [11] was missed in [5].
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