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Abstract—For frequency division duplex channels, a simple
pilot loop-back procedure has been proposed that allows the
estimation of the UL & DL channels at an antenna array
without relying on any digital signal processing at the terminal
side. For this scheme, we derive the maximum likelihood (ML)
estimators for the UL & DL channel subspaces, formulate the
corresponding Cramér-Rao bounds and show the asymptotic
efficiency of both (SVD-based) estimators by means of Monte
Carlo simulations. In addition, we illustrate how to compute
the underlying (rank-1) SVD with quadratic time complexity by
employing the power iteration method. To enable power control
for the data transmission, knowledge of the channel gains is
needed. Assuming that the UL & DL channels have on average
the same gain, we formulate the ML estimator for the channel
norm, and illustrate its robustness against strong noise by means
of simulations.

Index Terms—Analog feedback, subspace estimation, fronthaul
channel, frequency-division duplex, analog repeater, channel state
information (CSI), multiple-input single-output (MISO)

I. INTRODUCTION

CHANNEL-state information (CSI) plays a key role in a
multi-user MIMO system. With CSI, the antenna array

can send multiple messages, simultaneously and selectively, to
autonomous terminals. Time-division duplex (TDD) systems
offer a straightforward way for the antenna array to acquire
the CSI. Since the downlink (DL) and uplink (UL) channels in
a TDD system share the same frequency, reciprocity implies
that the antenna array can learn the DL channel from known
pilot signals on the UL. For frequency-division duplex (FDD)
systems, an additional DL CSI estimation and feedback step is
needed, which requires digital signal processing at the terminal
side. The terminals first estimate the DL channel from pilot
signals transmitted by the antenna array, and then they feed
back the CSI to the array on the known UL channel.

In [1], an analog feedback based channel training scheme
has been proposed for FDD systems, which requires no digital
processing capabilities at the terminals. The key idea is to
employ analog repeaters for the channel estimation, which
simply retransmit (i.e., amplify, mix and forward) the received
DL pilot signal on the UL channel. Given the received UL
signal, the antenna array has to estimate both the UL & DL
channels. In order to separate the CSI feedback from multiple
repeaters, the channel training for the individual repeaters is
performed in time multiplex; that is, each repeater is trained in
a dedicated time slot. The envisaged use case for this training
scheme is outlined in Section I-A. The present paper focuses
on the analysis of the underlying estimation problem.

As described in Section II, the received signal on a particular
subband contains the (outer) product of the unknown UL & DL

channel vectors, so that each channel vector can be estimated
only up to an unknown scalar scaling factor. Consequently,
the only observable invariants of the propagation channels
are their subspaces. Therefore, we formulate in Section III
the maximum likelihood (ML) estimators for the UL & DL
subspaces. Subject to some familiar simplifying assumptions
[independent identically distributed (i.i.d.) channel coefficients
and noise components] that serve as a viable approximation
for non-line-of-sight channels below 6 GHz, we obtain closed-
form solutions for the ML estimators. Moreover, based on
the intrinsic Cramér-Rao bounds (CRB) derived in [2], we
are able to formulate bounds on the achievable subspace
estimation accuracy. In Section III-C, we discuss methods
that allow a significant reduction of the subspace estimator’s
computational complexity, and evaluate these by means of
Monte Carlo simulations in Section V. Moreover, assuming
knowledge about the repeater’s average transmit power and
the variance of the UL perturbations at the antenna array, we
formulate in Section IV the ML estimator for UL channel
vector norm, which is needed for the power control of the
data streams. Finally, we summarize our findings and conclude
with a discussion of open problems in Section VI.

To encourage reproducibility and extensions to this paper,
all the simulation results can be generated by the R code
[3] that is available at https://github.com/stefanwesemann/
Channel-Training-Analog-FDD-Repeater.

A. Use Case: Wireless Fronthauling for Cloud-RAN Systems

In the Cloud Radio Access Network (C-RAN) architecture
[4], the baseband processing is centralized and shared among
sites in a virtualized baseband unit (BBU) pool. This allows
a more efficient resource utilization (e.g., by sharing between
different network operators), lower delays for network coor-
dination and joint processing schemes (e.g., enhanced ICIC
and CoMP in LTE-Advanced), improved scalability and ease
of network maintenance. The BBUs are connected to remote
radio heads (RRHs) through low latency, high bandwidth
fronthaul links such as fiber (e.g., CPRI, OBSAI), free space
optics or point-to-point millimeter wave (mmWave). However,
such static fronthaul links rely on the availability of fiber
or have to cope with propagation challenges and incurred
resilience issues.

A promising alternative is massive MIMO [5] based wire-
less fronthauling. At carrier frequencies below 6 GHz, mas-
sive MIMO enables adaptive and cost-efficient point-to-multi-
point connections even under non-line-of-sight conditions.
As illustrated in Figure 1, the BBU-pool is connected to a
massive MIMO fronthaul hub (FH), which multiplexes the
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Fig. 1. The envisaged use case: A C-RAN architecture with a wireless fronthaul, established by a massive MIMO fronthaul hub and a set of analog repeaters.
The latter replace the regular remote radio heads (RRHs), and can be fully energy-autonomous (e.g., driven by a battery that is charged by a small size solar
panel). The fronthaul and access channels (dashed and dotted lines, respectively) use dedicated frequency bands, each hosting paired UL & DL carriers for FDD
operation. The wireless fronthaul (i.e., the cascading of fronthaul hub, channel and repeater) replaces a regular wired fronthaul network (e.g., CPRI-fibers),
and is completely transparent to the baseband units (BBUs) and user equipment (UE). As illustrated, each repeater (RRH) represents a single-antenna small
cell, which serves its associated users in time or frequency division multiple access.

IQ-data streams for the individual RRHs1 over the same
time/frequency resources, thereby realizing multiple “wireless
CPRI”-links. Assuming dedicated frequency bands for the
fronthaul and access channels, the RRH architecture degener-
ates to a simple repeater2 structure which translates the signals
between the fronthaul and access bands (i.e., no full-duplex
operation [7] is needed). By focusing on FDD systems (i.e.,
fronthaul and access band are each split into an UL & DL
subband, separated by a frequency offset), such a repeater
can be realized with pure analog components because the
UL & DL channels are separated by bandpass filters (i.e., no
transmit-receive switching is required). The resulting repeater
architecture is illustrated in Figure 2, and is supposed to have
a total power consumption of less than 15 Watts3. This enables
the deployment of energy-autonomous repeaters that are driven
by a battery, which is charged by e.g., a small size solar panel.

1In 4G LTE, a typical RRH has at least two antenna ports, each driven by
a dedicated IQ-data stream. In the described fronthaul architecture, each RRH
antenna port can be represented by a dedicate repeater unit.

2A repeater is a physical layer (i.e., layer 1 in the OSI model) relay
equipment that amplifies e.g., DL signals from a base station for transmission
to a terminal. It is an Amplifier and Forward (AF) type of relay [6], in contrast
to a layer 2 relay which is a Decode and Forward (DF) type of relay. The
demodulation and decoding processing performed at the layer 2 relay over-
comes the drawback in layer 1 relays of deteriorated received SINR caused by
amplification of inter-cell interference and noise. At the same time, however,
the layer 2 relay causes a delay associated with modulation/demodulation and
encoding/decoding processing, and requires advanced radio functions such as
mobility control and retransmission control by automatic repeat request.

3In the following, we provide a conservative power budget for the analog
repeater architecture as shown in Figure 2. Assuming a minimum average
receive signal power of -100 dBm, an average transmit power of 23 dBm
and 2 dB loss per band-pass filter (yielding 8 dB total loss per signal path),
the low-noise and power amplifier combination has to realize a gain of 131
dB. This can be implemented by using e.g., discrete components such as
one ANADIGICS AWB7221 power amplifier (31dB gain, 3 Watts power
consumption), and five cascaded NXP BGU8052 low-noise amplifiers (each
with 20dB gain, 0.3 Watts power consumption). By assuming 0.53 Watts
per voltage controlled oscillator (e.g., Analog Devices ADF4351), the total
power consumption of the analog repeater will be 10.6 Watts. The overall
power consumption can be further reduced by using integrated transceiver
chains such as used in terminal chip-sets.

In order to multiplex several high data-rate4 fronthaul links
over the same time/frequency resource, the FH requires accu-
rate CSI for both, the UL & DL fronthaul channels. Employing
the described analog repeater architecture, classical channel
training methods for FDD MIMO systems such as [8], [9],
[10], [11], [12] are not applicable because they rely on digital
signal processing capabilities at the repeater side. Therefore,
the analog feedback-based training method was proposed in
[1]. As described in the previous section, the FH transmits
pilots in the DL fronthaul, which are directly fed back by a
single repeater on the UL fronthaul. The increased training
overhead, which scales with the number of FH antennas and
the number of repeaters (due to their sequential training),
is compensated by the large coherence block size of fixed
wireless channels. Channel measurements (see e.g., [13, Table
I]) have shown channel coherence times in the order of 50 ms
to 100 ms. Assuming a 3GPP Urban Micro channel with a
root mean square delay spread of 0.25 µs, a suitable subband
size for channel training is 180 kHz. By adopting the LTE
numerology, this corresponds to a coherence block size of at
least 50 ms × 12 symbols/subband × 14 symbols/ms = 8400
symbols. In comparison to this large coherence block size, the
channel training for a FH with e.g., 64 antennas and 8 repeaters
requires 64 symbols × 8 = 512 symbols, which make up less
than 10 % overhead.

One should note that the transmission of the UL & DL
IQ-data streams in the fronthaul must be suspended during
the channel training. LTE offers a simple mean for creating
such transmission gaps in its DL stream, namely by insert-
ing almost empty subframes known as MBSFN (Multimedia
Broadcast Single Frequency Network) subframes [14]. For
creating empty slots in the LTE UL, however, special scheduler
tweaks are required. Given that mode of operation, the entire
wireless fronthaul (including the fronthaul channel training)
will be fully transparent to the BBUs and terminals. In the
access channel, the analog repeaters will be indistinguishable

4For the fronthauling of LTE signals, a link SINR of 25 dB with an outage
probability of 10 % should be guaranteed.
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Fig. 2. Block diagram of an analog repeater architecture, which filters and amplifies the received signal from the DL fronthaul frequency (resp. UL access
frequency), and converts this signal to the DL access frequency (resp. UL fronthaul frequency). The two multiplexers (mux) switch simultaneously between
two modes: (1) fronthaul channel training where the received pilot signal from the DL fronthaul is retransmitted on the UL fronthaul, (2) signal forwarding
from fronthaul to access and vice versa. The multiplexers can be triggered by using e.g. a dedicated chirp signal.

from regular RRHs. On the fronthaul channel, the FH mimics
a set of regular RRHs to the BBUs. The feasibility of such
a system is currently investigated within Bell Labs’ F-Cell
project. The project target is to support at least 8 repeaters
with 64 antennas at the FH.

B. Related Work
The utility of analog CSI transfer is suggested by the

known optimality of uncoded analog linear modulation when a
white Gaussian random message process is transmitted over an
additive Gaussian white noise channel, subject to a minimum
mean-square error criterion [15], [16]. The concept of analog
linear modulation has been adopted for MIMO systems in e.g.,
[8], [9], [10]. In [8], the relative effort in TDD and FDD
systems that is needed for the antenna array to acquire the
same-quality UL & DL CSI has been investigated. The authors
assume perfect DL CSI at the terminals, and the use of analog
linear modulation for the DL CSI feedback on the UL channel.
They show that the multi-antenna effect apparently benefits
CSI transfer in the UL channel. As the number of antennas
increases, the FDD CSI feedback burden decreases despite
the fact that the users have to transfer increasing amounts of
CSI. Thus, adding redundancy to the feedback signal such as
illustrated in [17] is only necessary for a very small number of
array antennas. The practical feasibility of the analog feedback
scheme has been investigated in [18] for a small 2× 2 multi-
user MIMO system.

The formulation of the maximum likelihood (ML) subspace
estimator for an UL channel has been described in e.g.,
[2]. For the DL subspace estimation, however, this result is
not directly applicable because of the presence of complex
double Gaussian terms in our system model. By a step-wise
formulation of the ML estimators along a Markov chain,
we are able derive a closed-form solution for the DL ML
estimator. Of course, for more complicated settings one has
to resort to e.g., Newton or conjugate gradient algorithms,
whose formulation on the Grassmann and Stiefel manifolds is
provided in [19]. The UL subspace estimation in a Bayesian
setting has been described in [20], [21]. In [21], the authors
formulate the optimal subspace estimator which minimizes the
mean square (subspace) distance. By adopting the Bingham

distribution as a prior, a closed-form estimator is obtained.
We briefly outline this approach in Section VI-2. For the
derivation of the Cramér-Rao bounds (CRBs) for our UL &
DL subspace estimators, we again build upon the results from
[2], which provides intrinsic CRBs for estimation problems
on arbitrary manifolds. A brief description of the herein used
Grassmann manifold is given in Section I-C. The application
of subspace estimation techniques to TDD MIMO channels
has been proposed in [22], [23], [24], [25]. In [22], an
iterative estimation scheme for a TDD single-user MIMO
system is described. Assuming that channel reciprocity holds,
the antenna array and terminal perform power iterations over-
the-air; that is, they send their singular vector estimates back
and forth until convergence. However, the convergence of this
algorithm is shown numerically only, and there exists no lower
bound on the achievable estimation error. The extension of this
training method to hybrid transceiver architectures (employing
analog & digital beamforming) for millimeter wave systems is
described in [24]. An eigenvalue decomposition (EVD) based
UL channel estimator for a multi-user massive MIMO system
has been described in [23]. By exploiting the fact that the chan-
nel vectors of different terminals are asymptotic orthogonal if
the number of array antennas goes to infinity, the subspaces of
the channel vectors can be derived from the eigenvectors of the
received signal’s sample covariance matrix (SCM). However,
the proper correspondence between eigenvectors and terminals
depends on the a priori knowledge of the distinct long-term
path gains. In order to resolve amplitude and phase ambiguities
that exists between the estimated subspaces and the channel
vectors, the transmission of short UL training sequences is
needed. An improved EVD-based estimation (using a widely-
linear algorithm) as well as closed-form expressions for the
mean-square channel estimation error are provided in [25].

The application of massive MIMO for fronthauling is a
viable option for 5G communication systems, see e.g., [26],
[27, Section 12.4]. Current research primarily focuses on its
application in the mmWave range. The use of phased an-
tenna arrays with electronic beam-steering reduces installation
cost, provides beam-tracking and interference management.
Such wireless fronthaul links typically rely on line-of-sight-
dominant channels and are limited to distances less than 1
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km. These limitations can be resolved when using frequency
bands below 6 GHz, but at the cost of complex hardware
architectures (i.e., a larger number of digital transceiver chains)
and advanced CSI acquisition methods. For FDD systems,
however, DL training and feedback overhead scales with the
number of array antennas and can be quite overwhelming.
Overhead reduction methods have been proposed in e.g., [11],
[12], and typically assume either some form of channel spar-
sity that can be utilized, or some a priori channel knowledge
such as long-term channel statistics. In [11], the spatial and
temporal channel correlations are exploited for the careful
design of training pilots with a reduced length. The (hidden)
joint sparsity structure in the user channel matrices is utilized
in [12] by means of a distributed, compressive sensing (CS)
technique. One should note that the analog DL CSI feedback
concept can be adopted for both training methods, but at
expense of an additional UL channel training step. Methods
that focus on the reduction of the DL CSI feedback (i.e.,
feedback compression) can be found in e.g., [28] (projection
based), [29] (CS based), [30] (pattern based). The application
of these techniques to analog feedback schemes is proposed
in [31] for feedback reduction, and in [32], [33] to improve
the CSI estimation using CS techniques. The application of
these overhead reduction methods to the described wireless
fronthaul use case is subject to future work.

C. Notation and Preliminaries

Vectors and matrices are given in lowercase and upper-
case boldface letters, respectively. The m-th component of
the vector y is denoted by y[m], the n-th column of the
matrix Y is denoted by Y[:,n]. (·)H denotes the Hermitian
transpose. We use the symbol E for the expectation operator.
1M denotes the all-ones M × 1 vector, IM denotes the
M ×M identity matrix. The function exp{·} stands for the
exponential, etr{·} stands for the exponential of the trace of
the matrix between the braces, and δ(·) represents the Dirac
delta function. By the dominant eigenvector vmax(Y ) of a
matrix Y , we denote the eigenvector that corresponds to the
largest (i.e., dominant) eigenvalue λmax(Y ) of Y . Finally,
Γ(x) =

∫∞
0
λx−1exp {−λ} dλ is the gamma function.

Two (non-zero) vectors x,y ∈ CM are called equivalent
x ∼ y in terms of subspaces if and only if there exists a (non-
zero) scalar a ∈ C such that x = a · y. This relation groups
the vectors in CM into equivalence classes. The equivalence
class of a vector x ∈ CM is denoted by [x], and is defined as
the set [x] =

{
y ∈ CM |y ∼ x

}
. The set of all equivalence

classes forms the Grassmannian G1(CM ); that is, the set
of one-dimensional subspaces in CM . More generally, we
denote the set of p-dimensional subspaces in CM by Gp(CM ).
A closely related manifold is the Stiefel manifold Vp(CM ),
which represents the set of M × p (complex) matrices with
orthonormal columns. While each point in the Stiefel manifold
Vp(CM ) is uniquely represented by a M × p matrix, the
Grassmannian Gp(CM ) consists of subspaces which may be
specified by an arbitrary orthogonal basis stored as an M × p
matrix. One should note that V1(CM ) is equivalent to the
M − 1 dimensional complex hypersphere SM−1 ⊂ CM .

II. PROBLEM FORMULATION

A. System Model and Pilot Transmission

As discussed in Section I, we consider a time-invariant,
frequency-flat FDD system, which consists of a antenna array
(AA) with M antennas and a single-antenna repeater. The UL
& DL propagation channels, denoted by g and h, respectively,
are both modeled as M × 1 complex vectors whose elements
are i.i.d. CN (0, β).

In the DL, the AA antennas transmit orthogonal pilot signals
of length5 τ ≥ M , which are defined by the columns of
the τ ×M unitary matrix Φ, where ΦHΦ = IM . Assuming
an average transmit power per antenna of P/M , the repeater
receives the weighted superposition of all pilot signals,

xH =
√
τ/MPhHΦH +wH , (1)

perturbed by the τ ×1 vector w which represents the receiver
noise and DL interference. We model the elements of w as
i.i.d. complex Gaussian noise, and take the noise variance to
be 1 to minimize notation. The DL signal-to-interference-plus-
noise ratio (SINR) ρD, which is defined as the ratio of the
average receive power to the additive noise plus interference
variance at the repeater, assuming that all AA transmit power
is fed into a single antenna6, is given by

ρD = βP/1 = βP. (2)

The repeater uses analog linear modulation [8] in order to
feed back the received pilot signal to the AA. In this process,
the repeater translates the DL carrier frequency to the UL
carrier frequency, and scales the average power of the feedback
signal by factor α. The resulting average transmit power of
the repeater is given by Q = α(βP + 1) where the “1”
represents the normalized DL noise variance. In the UL, the
AA receives M replicas of the DL feedback signal, which are
individually scaled by the components of the channel vector
g, and perturbed by the receiver noise and UL interference N ,
whose elements are i.i.d. complex Gaussian with unit variance.
The M × τ receive signal is

Y =
√
αgxH +N . (3)

The UL SINR ρU, which we define as the ratio of the average
receive power to the additive perturbation variance at an
arbitrary antenna of the array, is given by

ρU = βQ/1 = αβ(βP + 1). (4)

B. Pilot Reverse Modulation and Observable Invariants

Based on the received signal Y , the AA has to estimate
the UL & DL channels. The first processing step is the pilot

5For scenarios with limited transmit power and very low signal-to-
interference-plus-noise ratios, it is beneficial to choose τ > M . The
subsequent pilot reverse modulation step in Section II-B provides a noise
plus interference suppression. Of course, in a massive MIMO setting choosing
τ > M might be to costly in terms of required training overhead.

6By using this single-antenna equivalent transmit power, we obtain a SINR
definition that is independent from any beamformer applied by the AA, see
e.g., [34, Section 2.2.1].
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reverse modulation, which consists of the right-multiplication
of (3) by Φ. The resulting M ×M observation matrix is

Ỹ = Y Φ

=
√
αgxHΦ +NΦ

=
√
ατ/MPghH +

√
αgw̃H + Ñ . (5)

The elements of the transformed M × 1 DL perturbation w̃
and the M × M UL perturbation Ñ remain i.i.d. complex
Gaussian with unit variance. The pilot reverse modulation can
be interpreted as a matched filtering of the received signal
with the transmitted one. For the case τ > M , this operation
yields a noise plus interference suppression, as reflected by
the post-processing UL & DL SINRs,

ρ̃D = τ/MβP, (6)
ρ̃U = αβ(τ/MβP + 1). (7)

One should note that these SINRs apply only for the channel
training period.

An inspection of (5) reveals that the UL & DL channel
vectors cannot be estimated explicitly because each vector
is only observable as the outer product with an unknown
vector. The only identifiable invariants of both, the UL & DL
channels, are the subspaces [g] and [h], respectively, which
are uniquely represented as elements of the Grassmannian.
In addition, given the knowledge of average repeater power
Q and the variance of the UL perturbations, one can estimate
the (squared) norm of the UL channel vector. Note that this
squared norm serves also as a reasonable estimate for DL
channel vector norm because on average the DL frequency
response should have approximately the same power as the
UL frequency response. Thus, the only residual uncertainty
in the acquired CSI is a complex phase rotation. However,
it will not affect the fronthaul operations, as the internal
pilots carried by the e.g., LTE signals will automatically
compensate for any phase offsets.

III. MAXIMUM LIKELIHOOD SUBSPACE ESTIMATION

A. Uplink Subspace Estimation and CRB

In the following, we associate elements in the Grassman-
nian G1(CM ) with points on the hypersphere SM−1, which
provides a simple problem parametrization based on Cartesian
coordinates. One should note that the map between these two
manifolds is not a bijection as two antipodal points on the
hypersphere correspond to the same subspace. However, this
ambiguity is absorbed by the likelihood function that we want
to maximize in the following.

Without loss of generality, we can split the UL channel
vector g into two independent random variables,

g =
√
ζφ, (8)

where ζ = ‖g‖2 is 1/2 times a chi-square random variable
with 2M degrees of freedom and mean value βM , and
φ = 1/ ‖g‖ g is an isotropically distributed (i.d.) random unit

vector. Their probability distribution functions (pdfs) are given
by

p(ζ) =
1

βΓ(M)
(ζ/β)

M
exp {−ζ/β} (9)

and

p(φ) =
Γ(M)

πM
δ(φHφ− 1). (10)

Based on the observation matrix Ỹ , the ML estimate for the
UL subspace (i.e., represented by a point on SM−1) is obtained
as

ĝML ∼ arg max
φ∈SM−1

p(Ỹ |φ), (11)

where the conditional pdf p(Ỹ |φ) can be written as a marginal
pdf,

p(Ỹ |φ) =

∫
p(Ỹ |φ, ζ)p(ζ)dζ. (12)

As shown at the end of this section (Eq. (20)), the ML solution
of (11) is independent of ζ. Consequently, we can set

p(Ỹ |φ) ∝ p(Ỹ |φ, ζ0), (13)

for some arbitrary but fixed ζ0.
Since Ỹ given φ, ζ0 is the sum of two zero-mean random

Gaussian matrices, its conditional pdf is

p(Ỹ |φ, ζ0) =
(
πMdetRỸ |φ,ζ0

)−M
×

etr
{
−R−1

Ỹ |φ,ζ0
Ỹ Ỹ H

}
, (14)

where RỸ |φ,ζ0 denotes the conditional covariance matrix for
the individual columns of Ỹ ; that is,

RỸ |φ,ζ0 = E
[
Ỹ[:,n]Ỹ

H
[:,n]|φ, ζ0

]
(15)

= ατ/MPζ0φE
[
h∗[n]h[n]

]
φH+

αζ0φE
[
w̃∗[n]w̃[n]

]
φH + E

[
Ñ[:,n]Ñ

H
[:,n]

]
= νφφH + IM , (16)

with ν = αζ0(τ/MβP+1) for some arbitrary n, 1 ≤ n ≤M .
The computation of its inverse and its determinant yields

R−1
Ỹ |φ,ζ0

= IM −
ν

ν + 1
φφH , (17)

detRỸ |φ,ζ0 = 1 + ν. (18)

Since Ỹ , ζ0 and thus ν are fixed, we have the following
proportionality

p(Ỹ |φ, ζ0) ∝ etr
{
−R−1

Ỹ |φ,ζ0
Ỹ Ỹ H

}
∝ etr

{
ν

ν + 1
φH Ỹ Ỹ Hφ

}
etr
{
Ỹ Ỹ H

}−1
∝ exp

{
φH Ỹ Ỹ Hφ

}
. (19)

One should note that this proportionality is independent from
ζ0, which proves step (13). Moreover, it turns out that the
likelihood function in (11) is proportional to the complex
Bingham distribution [35] on SM−1, with the parameter matrix
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Ỹ Ỹ H . For positive semi-definite parameter matrices, (19) has
two antipodal maxima, which are achieved by the dominant
eigenvector of Ỹ Ỹ H (denoted by vmax(Ỹ Ỹ H)), yielding the
ML subspace estimate

ĝML ∼ vmax(Ỹ Ỹ H). (20)

A lower bound on subspace estimation accuracy is estab-
lished by the Cramér-Rao bound (CRB), which states that the
variance of any unbiased estimator is at least as high as the
inverse of the Fisher information metric (FIM). Under certain
regularity conditions, the FIM can be expressed using the
second derivatives of the log-likelihood function log p(Ỹ |[g])
with respect to the subspace [g]. For a discussion of the
difficulties that arise when computing the FIM on arbitrary
manifolds in which no set of intrinsic coordinates exists,
we refer the interested reader to [2]. In the following, we
simply introduce the definitions that are needed for a proper
interpretation of the subsequently stated CRBs.

The intrinsic version of the CRB for any unbiased estimator
on the Grassmannian Gp(CM ) as formulated in [2], relies
on the natural Riemannian metric of Gp(CM ). Subspace
distances corresponding to this metric are given by the 2-
norm of the vector of principal angles between two subspaces.
By representing one-dimensional subspaces as points on the
hypersphere, the distance between φ, φ̂ ∈ SM−1 is given by

dss(φ, φ̂) = arccos
(
|φHφ̂|

)
. (21)

Based on this distance measure, the mean-square error (MSE)
between a fixed φ and its estimate φ̂ is defined as

ε2
φ̂

= E
[
dss(φ, φ̂)2

]
, (22)

where the expectation is with respect to the sampling distri-
bution of φ̂. For system models with the form of (3) (i.e.,
one-dimensional subspaces), [2] provides the inverse FIM

I−1(M,T, γ) =
(M − 1)(1 + γ)

Tγ2
, (23)

which is parametrized by
M : Number of array antennas,
T : Number of i.i.d. observation vectors (here: number

of columns of Ỹ ; i.e., T = M ),
γ : Effective SINR γ = ζ/βρ̃U, assuming a unit norm

channel vector.
This inverse FIM provides the CRB on the natural subspace
distance between the true subspace and any unbiased estimate
of it. For a fixed realization g, we have the uplink CRB

ε2ĝ ≥ I−1(M,M, ζ/βρ̃U) (rad2). (24)

In order to obtain an average CRB for random g, we have
to take the expectation with respect to ζ. By the Jensen’s
inequality and the convexity of I−1(M,T, γ) with respect to
γ, we obtain the inequality

ε̄2ĝ = E
[
ε2ĝ
]
≥ E

[
I−1(M,M, ζ/βρ̃U)

]
≥ I−1(M,M,E[ζ]/βρ̃U)

= I−1(M,M,Mρ̃U) (rad2). (25)

Remark 1. One should note that the CRB (24) relies on
a truncated Taylor expansion. For the differentiation of the
first derivatives on the Grassmannian, an additional structure
(i.e., affine connection) has been introduced, which allows to
connect tangent spaces at different points of the manifold. In
[2], the sectional and Riemannian curvature terms that appear
in the CRB because of the affine connection have been omitted
for the sake of closed-form expressions. As we will illustrate
in Section V, the resulting CRB is legitimate only at a large
enough SINR so that typical errors are small compared to the
scale at which curvature becomes a dominant feature.

B. Downlink Subspace Estimation and CRB

For the estimation of the DL subspace, we consider the
conjugate transposed of the system model in (5),

Ỹ H =
√
α
[√

τP/Mh+ w̃
]

︸ ︷︷ ︸
x̃

gH + ÑH , (26)

where h is fixed but unknown, g is a complex Gaussian
random vector, and x̃ denotes an auxiliary variable which
represents the pilot reverse modulated received signal at the re-
peater. Analog to the previous section, we associate subspaces
with points on the hypersphere, and exploit the independence
of ML estimator for [h] with respect to the norm of h.
Consequently, the ML estimate for the DL subspace, given
the observation Ỹ , is obtained by

ĥML ∼ arg max
h∈SM−1

p(Ỹ |h), (27)

where p(Ỹ |h) denotes the conditional pdf of Ỹ given h. Due
to the existence of the term w̃gH in (26), which follows a
(degenerate) complex double Gaussian distribution [36], no
closed-form expression for p(Ỹ |h) is available. However, by
introducing the auxiliary variable x̃, (26) forms the Markov
chain

h
p(x̃|h)−→ x̃

p(Ỹ |x̃)−→ Ỹ , (28)

whose joint pdf is

p(h, x̃, Ỹ ) = p(h)p(x̃|h)p(Ỹ |x̃). (29)

Consequently, the conditional pdf p(Ỹ |h) for a fixed Ỹ can
be written as the marginal distribution

p(Ỹ |h) =

∫
p(Ỹ , x̃|h) dx̃

∝
∫
p(h, x̃, Ỹ ) dx̃

∝
∫
p(x̃|h)p(Ỹ |x̃) dx̃, (30)

where we exploited the fact that h and x̃ are isotropically
distributed, and the irrelevance of the fixed probability p(Ỹ )
with respect to our inference problem.

The ML estimate for the subspace of h is thus obtained by

ĥML ∼ arg max
h∈SM−1

∫
p(x̃|h)p(Ỹ |x̃) dx̃, (31)
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where the likelihood function p(x̃|h) is

p(x̃|h) =
(
πMdetRx̃|h

)−1
exp

{
−x̃HR−1x̃|hx̃

}
, (32)

with

Rx̃|h = E
[
x̃x̃H |h

]
= τ/MPhhH + IM . (33)

Because of h ∈ SM−1, the likelihood function p(x̃|h) is
again (cf. Section III-A) proportional to the complex Bingham
distribution with the parameter matrix x̃x̃H , whose maximum
is attained by choosing h ∼ x̃. Consequently, the function
p(x̃|h) can be replaced by δ(h − x̃) without changing the
maximizing argument in (31); that is,

ĥML ∼ arg max
h∈SM−1

∫
δ(h− x̃)p(Ỹ |x̃)dx̃

∼ arg max
x̃∈SM−1

p(Ỹ |x̃), (34)

where the last step exploits x̃ ∼ h. Finally, we need to
find the subspace that maximizes the likelihood function
p(Ỹ |x̃). Analog to Section III-A, Ỹ given x̃ is zero-mean
and Gaussian, and its conditional pdf is given by

p(Ỹ |x̃) =
(
πMdetRỸ |x̃

)−M
etr
{
−R−1

Ỹ |x̃Ỹ
H Ỹ

}
, (35)

where RỸ |x̃ denotes the conditional covariance matrix for an
arbitrary row of Ỹ ,

RỸ |x̃ = αβx̃x̃H + IM . (36)

Since we can again assume x̃ ∈ SM−1, the computation of
the determinant and the inverse of RỸ |x̃ shows that p(Ỹ |x̃)
is proportional to the Bingham distribution with the parameter
matrix Ỹ H Ỹ ; that is,

p(Ỹ |x̃) ∝ exp
{
x̃H Ỹ H Ỹ x̃

}
. (37)

The maximizing argument x̃ ∼ ĥML is given by the dominant
eigenvector vmax(Ỹ H Ỹ ) of Ỹ H Ỹ ; that is,

ĥML ∼ vmax(Ỹ H Ỹ ). (38)

The CRB for the DL subspace estimator consists of two
components. First note that the (transformed) DL perturbations
w̃ constitute a residual impairment because the ML subspace
estimate [ĥML] equals [x̃]. The MSE caused by this residual
perturbation is lower bound by the CRB ε̄2h,D of the estimator
for [h] given the single (DL) observation x̃. Again, we can
apply the inverse FIM (23) with T = 1, and the (average)
effective SINR γ̄h,D = E

[
‖h‖2

]
/βρ̃D = Mρ̃D, yielding the

first CRB component

ε̄2h,D ≥ I−1(M, 1,Mρ̃D) (rad2). (39)

The second subspace error component is due to the UL pertur-
bation, which limits the estimation accuracy when estimating
h ∼ x̃ from the UL observation Ỹ . Employing the inverse
FIM (23) with T = M , and the (average) effective SINR Mρ̃U
(cf. Section III-A), we have the second CRB component

ε̄2h,U ≥ I−1(M,M,Mρ̃U) (rad2). (40)

Due to the independence of the UL & DL perturbations, the
resulting total CRB is given by the sum of the individual error
variances; that is,

ε̄2h ≥ I−1(M, 1,Mρ̃D) + I−1(M,M,Mρ̃U). (41)

Remark 2. A comparison of (25) with (41) shows that the DL
CRB is the sum of the CRB for estimating h from x̃, and the
CRB for estimating x̃ from Ỹ , which is identical to the CRB
(25) of the UL subspace estimator. The DL subspace estimator
suffers from the DL and UL perturbations, and is for finite ρ̃D
always inferior to the UL estimator, whose performance is
only degraded by the UL perturbations.

C. Reduction of the Computational Complexity

For the joint estimation of the UL & DL subspaces, we
need to compute the dominant eigenvectors vmax(Ỹ Ỹ H) and
vmax(Ỹ H Ỹ ). Both can be simultaneously obtained from the
singular value decomposition (SVD)

Ỹ := UΣV H . (42)

The columns of U = [u1, . . . ,uM ] and V = [v1, . . . ,vM ]
denote the left- and right-singular vectors of Ỹ , and Σ is
the diagonal matrix (sorted in descending order) of singular
values {σm}Mm=1. The ML estimates for UL & DL subspaces
are given by left- and right-singular vectors that correspond to
the largest singular value σ1; that is,

ĝML ∼ u1, (43)

ĥML ∼ v1. (44)

1) SVD via Power Iterations: The computational (time)
complexity of the SVD algorithm for a square M ×M matrix
Ỹ is generally O(M3); that is, it is not well-suited for high-
dimensional matrices. However, the dominant left- and right-
singular vectors of Ỹ that correspond to the largest singular
value, can be easily approximated by using the power iteration
method [37, Section 7.3.1]. For example, the UL subspace
estimate ĝML is iteratively approximated by the recurrence
relation

ĝi = Ỹ Ỹ H ĝi−1/‖Ỹ Ỹ H ĝi−1‖. (45)

If we assume that the matrix Ỹ Ỹ H has an eigenvalue that is
strictly greater in magnitude than its other eigenvalues, and the
starting vector ĝ0 has a nonzero dot product with the dominant
eigenvector of Ỹ Ỹ H , then a subsequence (ĝi) converges to
the true dominant eigenvector. As a simple stopping criterion,
we propose using the distance dss(ĝi, ĝi−1) between two
consecutively computed subspaces, which is required to be
smaller than a predefined threshold δ. For a given ĝi, the
corresponding left-singular vector ĥi and the singular value
σ̂1 are calculated by

ĥi = Ỹ H ĝi/‖Ỹ H ĝi‖, (46)

σ̂1 = |ĝHi Ỹ ĥi|. (47)

If the number of required power iterations is smaller than
M2

M+1 + 1, then the joint complexity (in terms of dot products)
of the computations (45), (46) can be reduced by splitting the
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Algorithm 1 Rank-1 SVD based on Power Iterations

1: procedure POWERITERATION(Ỹ , δ)
2: m∗ ← arg max

m∈[1,M ]
‖ỹm‖2

3: ĝ0 ← ỹm∗/‖ỹm∗‖
4: ĥ0 ←M−

1
2 1M

5: i← 0
6: repeat
7: i← i+ 1
8: ĥi ← Ỹ H ĝi−1/‖Ỹ H ĝi−1‖
9: ĝi ← Ỹ ĥi/‖Ỹ ĥi‖

10: until (max{dss(ĝi−1, ĝi), dss(ĥi−1, ĥi)} ≤ δ)
11: σ̂1 ← |ĝHi Ỹ ĥi|
12: return ĥi, ĝi, σ̂1
13: end procedure

matrix-vector product in (45) (which requires a non-recurring
matrix-matrix multiplication) into two successive steps,

ĥi = Ỹ H ĝi−1/‖Ỹ H ĝi−1‖, (48)

ĝi = Ỹ ĥi/‖Ỹ ĥi‖. (49)

One should note that the number of required iterations strongly
depends on the initial value ĝ0. Therefore, we propose to use
the column of Ỹ = [ỹ1, . . . , ỹM ] with the largest Euclidean
norm because it has the smallest (relative) noise perturbation
with a high probability. The overall procedure is summarized
in Algorithm 1, where we extended the stopping criterion by
the DL subspace increment.

2) Shifting/Omitting the Pilot Reverse Modulation Step:
For the UL subspace estimation with τ/M = 1, the pilot
reverse modulation step in (5) can be omitted because the
individual left-singular vectors U = [u1, . . . ,uM ] of Ỹ :=
UΣV H and Y := UΣṼ H = UΣV HΦH span the same
subspaces.

Similarly for the DL subspace estimation with τ/M = 1,
the order of the pilot reverse modulation step and the SVD-
based DL subspace estimation can be swapped; that is,

ĥ ∼ ΦH ṽ1. (50)

where ṽ1 denotes the right-singular vector of Y :=
UΣ [ṽ1, . . . , ṽM ]

H , with Y given in (3). Note that we have
ṽ1 = Φv1 with v1 given in (42). Consequently, the matrix-
matrix multiplication in (5) can be reduced to a matrix-vector
multiplication, which incurs no performance loss for the case
τ/M = 1.

IV. UPLINK CHANNEL GAIN ESTIMATION

For the power control of data streams, knowledge of the
UL & DL channel gains is required. Ideally, these gains
are estimated separately, but an inspection of the feedback
signal in (5) reveals that without any knowledge of the DL
perturbation variance, the AA cannot derive an estimate for
the DL channel vector norm. Since we assume fully analog
repeaters, there exists no simple way to estimate and feedback
DL perturbation variance to the AA. Consequently, we focus
on the estimation of the UL channel vector norm, and exploit

the fact that on average the DL frequency response has
approximately the same power as the UL frequency response,
so that it is reasonable to assume them to be equal.

A. Maximum Likelihood Estimation

Again, we split the UL channel vector into two independent
random variables (cf. (8)). The reverse-modulated UL signal
(5) becomes

Ỹ =
√
αζφx̃H + Ñ , (51)

where x̃ = ΦHx. In the following, we are interested in the
ML estimate for ζ, in presence of the unknown

• isotropically distributed complex unit vector φ ∈ SM−1,
• complex Gaussian signal

√
αx̃ ∈ CM with i.i.d. entries

of variance Q̃ = α(τ/MβP + 1),
• complex Gaussian perturbation Ñ ∈ CM×M with i.i.d.

entries of unit variance.

We assume that the AA knows the (effective) transmit power
Q̃ of the repeater, and the variance of the UL perturbations.
The ML estimate for ζ is defined as

ζ̂ML = arg max
ζ∈R+

p(Ỹ |ζ). (52)

The likelihood function p(Ỹ |ζ) can be written as the marginal
pdf,

p(Ỹ |ζ) =

∫
p(Ỹ |φ, ζ)p(φ)dφ, (53)

where p(Ỹ |φ, ζ) and p(φ) are given by (14) and (10), rep-
sectively. With q(ζ) = ζQ̃/(1 + ζQ̃), the pdf in (53) becomes

p(Ỹ |ζ) ∝ 1

(1 + ζQ̃)M

∫
etr
{
q(ζ)φH Ỹ Ỹ Hφ

}
p(φ)dφ

=
1

(1 + ζQ̃)M

∫
etr
{
q(ζ)φHUΣ2UHφ

}
p(φ)dφ

=
1

(1 + ζQ̃)M

∫
etr

{
q(ζ)

M∑
m=1

|φm|2 σ2
m

}
p(φ)dφ

(54)

where we use the eigendecomposition Ỹ Ỹ H = UΣ2UH (cf.
(42)), and

{
σ2
m

}M
m=1

denote the diagonal elements of Σ2. In
the above, we change the integration variable from φ to UHφ,
and use the fact that UHφ has the same probability density
as φ. Since we have almost surely σ2

1 > σ2
2 > . . . > σ2

M > 0,
a closed-form expression [38, Section B.1] for (54) is given
by

p(Ỹ |ζ) ∝ 1

(1 + ζQ̃)M

M∑
m=1

eq(ζ)σ
2
m − eq(ζ)σ2

1∏
n6=m q(ζ)(σ2

m − σ2
n)
. (55)

Apparently, there is no closed-form expression for the argu-
ment ζ̂ML that maximizes (55). By the problem structure,
however, (55) has a unique maximum, which can be found
e.g., by the Golden section method [39, Appendix C.3].
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Fig. 3. Comparison between the {SVD, Power Iteration}-based subspace estimator’s RMSE and the CRB for M = {4, 16, 64}, τ =M ; a) in the left figure
as a function of the UL SINR ρU, b) in the right figure as a function of the DL SINR ρD with fixed ρU = 10dB. Observe that the accuracy of the SVD-based
estimator asymptotically approaches the CRB as M(= τ) → ∞; that is, the estimator is unbiased and asymptotically efficient. Moreover, one should note
that the CRB fails for low SINRs (i.e., ρU < 0dB, ρD < 10lg(M)dB) because it relies on truncated Taylor expansions.

B. SCM-based Estimation

The structure of the covariance matrix RỸ |g in (16) reveals
an alternative approach for the UL channel norm estimation.
Its eigenvalues are given by

{
ζQ̃+ 1, 1, . . . , 1

}
. So, by com-

puting the sample covariance matrix (SCM)

R̂Ỹ |g = M−1Ỹ Ỹ H , (56)

an estimate for ζ can be derived from its largest eigenvalue
λmax(R̂Ỹ |g); that is,

ζ̂ =
λmax(R̂Ỹ |g)− 1

Q̃
=
σ2
1 −M
Q̃M

, (57)

where σ1 denotes the largest singular value in (42). The
accuracy of this estimate strongly depends on the accuracy
of the SCM, which is only asymptotically efficient (i.e., for
large values of M ). For low sample support, the SCM is biased
and not efficient with respect to the natural covariance metric
[2, Section III.C].
Remark 3. The same estimator is obtained by

ζ̂ = arg max
ζ∈R+

p(Ỹ |φ = ĝML, ζ) (58)

= arg max
ζ∈R+

1

(1 + ζQ̃)M
eq(ζ)σ

2
1 (59)

=
σ2
1 −M
Q̃M

,

where p(Ỹ |φ, ζ) is given in (14), and ĝML is the ML estimate
for the UL subspace given in (20).

V. NUMERICAL ILLUSTRATION

Our analytical results in Section III are corroborated by
Monte Carlo simulations, which compare the subspace es-
timation accuracies of SVD-based estimator and the power
iteration method against the CRBs. In our simulations, we set

ρU = − 10dB ρU = 0dB ρU = 10dB
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Fig. 4. Number of power iterations as a function of the number of array
antennas M , for different UL SINRs ρU and accuracy bounds δ. The solid
line depicts the average number of iterations. The shade area illustrates the
5th- and 95th-percentiles of the iteration number’s CDF. For low UL SINRs,
the number required iterations grows because the distance between largest and
second largest eigenvalues decreases.

τ = M and assume genie power control at the repeater side.
Therefore, the repeater exploits perfect knowledge of the UL
perturbation variance βU in order to adjust its scaling factor

α =
ρU

β(βP + 1)
, (60)

such that a predefined UL SINR ρU is achieved.
Given a parameter set {M,ρD, ρU}, the CRBs are computed

according to (25) and (41), and 1000 Monte Carlo trials
are performed. For each trial, the unitary pilot matrix Φ is
chosen randomly from the uniform distribution on the Stiefel
manifold VM (Cτ ), whereas the UL & DL channel vectors and
perturbations are generated according to Section II.
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Fig. 5. Relative bias (left figure) and relative error variance (right figure) of the ML and SCM-based UL channel gain estimators, as a function of the channel
gain β for Q = 1. The left figure shows that the ML estimator (solid lines) is unbiased for a sufficiently high number of antennas/observations M ≥ 8. The
SCM-based estimator (dashed lines) is biased for low β = ρU because the SCM is biased itself for low sample support. In terms of relative error variance,
both estimators exhibit similar performance, which improves for an increasing number of antennas/observations M .

The left side of Figure 3 shows the achieved UL root mean-
square error (RMSE), which is independent of ρD because
of τ = M , and right side shows the DL RMSEs (for a
fixed ρU = 10dB) as a function of the UL and DL SINRs,
respectively. In both figures, one can observe a decreasing
subspace estimation error as the number of array antennas M
grows. The UL estimation performance improves because the
estimator benefits from an increased number of observations
(i.e., feedback symbols), which grows with M . In the right
figure, the DL estimation accuracy improves because it was
offset by the limited SINR in the UL, which improves with
a larger number of receive antennas M , each providing an
independent observation of the same feedback signal. The
benefit of this multi-antenna effect has already been noted in
[8]. In addition, one can observe that the SVD-based estimator
(green curve) is unbiased and asymptotically efficient; that is,
its accuracy approaches asymptotically the CRB (red curve)
as the number of observations M(= τ) becomes large (cmp.
[2]). On the other hand, the CRB fails as a lower bound for
low SINRs because it does not incorporate the sectional and
Riemannian curvature terms as argued in [40, Section IV].
Neglecting these terms can be legitimized for small errors only.
For our system model, the CRB’s range of validity is lower
bounded by ρU > 0dB and ρD > 10lg(M)dB. In addition, the
blue curves in Figure 3 display the subspace RMSE for the
power iteration based estimator, using the stopping criterion
δ = 10−1. Over typical ranges of the SINR parameters, the
performance difference with respect to the SVD-based method
is negligible.

In order to assess the computational complexity of the
power iteration method, Figure 4 shows the average number
of power iterations as a function of M , for various parameter
combinations of ρU and δ. In each subplot, we depict the shape
the iteration number’s cumulative distribution function (CDF)
by a shaded area, which is lower and upper bounded by the
5th- and 95th-percentile of the CDF, respectively. The solid

blue curve depicts the average number of iterations. We see
that the number of required iterations decreases for increasing
M and ρU; that is, the number of iterations can be upper
bounded for all values of M and ρU, which yields a quadratic
time complexity with respect to M . One should note that for
low SINRs, the distance between the largest and second-largest
eigenvalue of Ỹ Ỹ H decreases, which results in a slower con-
vergence. For large M , we can observe a faster convergence
of the power iterations. The UL estimation accuracy increases
with growing M because more UL observations are available
(cmp. Figure 3). A faster convergence of the left-singular
vector in Algorithm 1 will also result in a faster convergence
of right-singular vector.

Finally, we analyze the relative bias and error variance
for the UL channel gain estimators described in Section IV,
assuming Q = 1 which yields β = ρU. Due to the exponential
terms in (55), the ML estimator is numerically intractable
for large M and β. Therefore, we omit all data points that
exhibit numerical overflows. The left side of Figure 5 shows
the relative bias of the estimators. For a sufficient number
(i.e., M ≥ 8) of UL observations, the ML estimator (52) is
unbiased for all simulated values of β = ρU. This is quite
remarkable because for ρU = −10dB the signal component
in the observation is 10 times weaker than the perturbations.
In contrast, the SCM-based estimator exhibits a significant
bias for small ρU, which decreases as the number of available
observations M grows. Regarding the relative error variance as
shown on the right side of Figure 5, both estimators exhibit a
similar performance, which improves with growing M because
of the number of UL observations increases.

VI. SUMMARY AND DISCUSSION

For the UL subspace estimation, we have shown that the
subspace which maximizes the likelihood function is given
by the dominant eigenvector of the sample covariance matrix
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(SCM) for the antenna array’s observations. For the DL sub-
space, no closed-form expression for the likelihood function
exists due to the presence of a degenerate double Gaussian
term. However, by exploiting the Markovian property of the
signal model, we could show that the problem of finding the
maximum likelihood estimate reduces to the maximization of
the likelihood function for the received signal at the repeater.
The solution is given by the dominant eigenvector of the
sample covariance matrix for the conjugate transposed of
the antenna arrays’s observation matrix. Consequently, both
estimates can be obtained simultaneously by computing the
SVD of the pilot-reverse modulated receive signal. This result
is all the more intuitive because we assumed spatially and
temporally white perturbations, and also because the SVD is
the optimal estimator for the noise-free case.

Based on the inverse Fisher information metric (FIM) from
[2], we have formulated the CRBs for the unbiased UL and
DL subspace estimators, and demonstrated the asymptotic
efficiency of the SVD-based estimators by means of Monte
Carlo simulations. Since the inverse FIM relies on truncated
Taylor expansions, the formulated CRBs hold only for small
perturbations; that is, their range of validity is lower bounded
by ρU > 0dB and ρD > 10lg(M)dB.

In addition, we have discussed several possibilities for the
reduction of the processing complexity. For the case τ/M = 1,
the order of the pilot reverse modulation and the SVD-
based DL subspace estimator can be swapped without any
performance penalties, which turns a matrix-matrix multipli-
cation into a matrix-vector multiplication. For the UL subspace
estimation with τ/M = 1, the pilot reverse modulation can be
completely omitted. Moreover, the SVD computation, which
has generally a cubic time complexity, can be replaced by
the power iteration method. As shown by our simulations,
the number of iterations can be kept constant with respect
to the number of antennas M , which implies a quadratic time
complexity.

Finally, we formulated the ML estimator for the UL channel
gain, which relies on the knowledge of the repeater’s average
transmit power and the UL perturbation variance. The resulting
likelihood function, however, does not admit a closed-form
solution for its maximum, so that we have to resort to a
numerical line search method. As shown by the numerical
experiments, this ML estimator is robust against strong UL
perturbations (i.e., it is unbiased for a sufficiently large number
of antennas/observations), but is numerically unstable for large
M and ρU. Therefore, we propose a simple SCM-based
estimator, which is naturally biased for a small sample support
(i.e., small values of M ), but exhibits a similar relative error
variance as the ML estimator.

In the following, we briefly discuss some open research
questions.

1) ML Estimation for Nonwhite Perturbations: In [2], the
case of correlated noise with a known covariance matrix
is discussed. In our UL model (5), this corresponds to a
perturbation matrix Ñ = [ñ1, . . . , ñτ ] with i.i.d. columns,
each following CN (0M ,Rñ), where Rñ = E[ñtñ

H
t ],∀t

denotes the M × M covariance matrix of the transformed
perturbations. Note that this covariance model admits only

sensible interpretations for τ/M = 1, because then we have
Rñ = E[ntΦΦHnHt ] = E[ntn

H
t ],∀t; that is, we observe

temporally independent (w.r.t. the index t) but spatially cor-
related perturbations N = [n1, . . . ,nτ ] in (3). For nonwhite
noise, the simple SVD-based estimator in (43) is biased by
the principal invariant subspace of Rñ. Therefore, a whitened
SVD-based approach is proposed

R
−1/2
ñ Ỹ := UΣV H , (61)

where the ML estimate for g is given by gML ∼ R
1/2
ñ u1.

One should note that this spatial covariance model for the
UL perturbations implies “temporally” correlated UL pertur-
bations (i.e., ÑH in (26) with correlated columns) for the
DL subspace estimator, which violates our model assumption
even for the asymptotic case of ρD → ∞. The joint pdf of
the observation matrix Ỹ H cannot be written as the product
of the columns’ pdfs. The derivation of the corresponding ML
estimator as well as its CRB is subject to future work.

2) Bayesian Subspace Estimation: A Bayesian subspace
estimation approach is described in [21], which is applicable
to our UL subspace estimation for the case τ/M = 1 (i.e., the
elements of x in (3) must be i.i.d.). The resulting estimator
is called minimum mean square distance (MMSD) subspace
estimator because the MSE in (22) is adopted as the cost
function. A closed-form solution is derived for the Bingham
distribution [35] as the pior for g, given by

π(g) ∝ etr{κgHΠΠHg}, (62)

where Π ∈ Gp(CM ) reflects the prior knowledge about the
p-dimensional subspace where g evolves, and κ is a concen-
tration parameter: the larger κ the more concentrated around
Π is the subspace of g. The MMSD estimate gMMSD is given
by the dominant eigenvector of the matrix (κΠΠH +Y Y H).
Obviously, the MMSD estimator collapses to the ML estimator
for the case of an uniform prior distribution (i.e., when g is
isotropically distributed). Unfortunately, a MMSD estimator
for the DL subspace cannot be deduced from the results
provided in [21], and is subject to future work.
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