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The Extended “Sequentially Drilled” Joint
Congruence Transformation and its Application in

Gaussian Independent Vector Analysis
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Abstract—Independent Vector Analysis (IVA) has emerged in
recent years as an extension of Independent Component Analysis
(ICA) into multiple sets of mixtures, where the source signals in
each set are independent, but may depend on source signals in the
other sets. In a semi-blind IVA (or ICA) framework, information
regarding the probability distributions of the sources may be
available, giving rise to Maximum Likelihood (ML) separation. In
recent work we have shown that under the multivariate Gaussian
model, with arbitrary temporal covariance matrices (stationary
or non-stationary) of the source signals, ML separation requires
the solution of a “Sequentially Drilled” Joint Congruence (SeD-
JoCo) transformation of a set of matrices, which is reminiscent of
(but different from) classical joint diagonalization. In this paper
we extend our results to the IVA problem, showing how the
ML solution for the Gaussian model (with arbitrary covariance
and cross-covariance matrices) takes the form of an extended
SeDJoCo problem. We formulate the extended problem, derive a
condition for the existence of a solution, and propose two iterative
solution algorithms. In addition, we derive the induced Cramér-
Rao Lower Bound (iCRLB) on the resulting Interference-to-
Source Ratios (ISR) matrices, and demonstrate by simulation
how the ML separation obtained by solving the extended SeD-
JoCo problem indeed attains the iCRLB (asymptotically), as
opposed to other separation approaches, which cannot exploit
prior knowledge regarding the sources distributions.

Index Terms—Joint blind source separation, independent vec-
tor analysis, maximum likelihood, SeDJoCo.

I. INTRODUCTION

Joint matrix transformations and tensor decompositions are
important fundamental algebraic tools in a broad range of sig-
nal processing fields, such as Blind Source Separation (BSS,
[1]–[4]), Independent Vector Analysis (IVA, [5]–[7]), data
mining ([8]–[11]) and Multi-User Multiple-Input Multiple-
Output (MU-MIMO) systems in wireless communications
([12]–[15]). In many data analysis problems, special internal
structures can be revealed by applying some transformations or
decompositions to sets of matrices (or to tensors) constructed
from the available data.

One common example is the use of Approximate Joint
Diagonalization (AJD), which is instrumental in the context
of BSS and independent component analysis (ICA). In many
separation algorithms (e.g., JADE [16], SOBI [17], ACMA
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[18]), the demixing-matrix is estimated as the matrix which
best “jointly diagonalizes”, by some chosen criterion, a set of
N “target-matrices” Q1, . . . ,QN , constructed (in some way)
from the observed mixtures (e.g., a set of sample correlation
matrices at different lags). The procedure of AJD of such a set
of N matrices, each of dimensions K×K, can be viewed as a
symmetric canonical decomposition (e.g., [19]), representing
(or approximating) the respective three-way K×K×N tensor
as the sum of K rank-1 tensors.

A. From SeDJoCo to Extended SeDJoCo

A particular case of this paradigm is the “Sequentially
Drilled” Joint Congruence (SeDJoCo) transformation, also
termed “Hybrid Exact-Approximate joint Diagonalization
(HEAD)” in ([20], [21]). SeDJoCo essentially prescribes the
likelihood equations for Maximum Likelihood (ML) estima-
tion in the semi-blind separation scenario under a multivariate
Gaussian model. More specifically, consider the classic linear,
static, memoryless mixture model

X = AS, (1)

where A ∈ RK×K is the unknown, deterministic (invert-
ible) mixing-matrix, S = [s1 · · · sK ]

T ∈ RK×T is the
sources matrix of K statistically independent source signals
(s1, . . . , sK ∈ RT ) each of length T (where (·)T denotes the
transpose), and X ∈ RK×T is the observation matrix which
contains the observed mixture signals. It has been shown
(e.g., [21], [22] and [23] (chapter 7)), that when the source
signals are zero-mean Gaussian, each with a known temporal
covariance matrix Ck , E

[
sks

T
k

]
∈ RT×T (all distinct from

each other), the ML estimate “B of B , A−1 can be obtained
(up to an inevitable sign ambiguity) as follows:

I. Construct N = K1 symmetric target-matrices as

Qk ,
1

T
XC−1

k X
T ∈ RK×K , ∀k ∈ {1, . . . ,K}. (2)

II. Find a matrix “B ∈ RK×K that satisfies the following set
of K2 equations (K vector equations, K elements each)“BQk

“BT
ek = ek, ∀k ∈ {1, . . . ,K}, (3)

where the pinning vector ek denotes the k-th column of
the K ×K identity matrix.

1Note that unlike the general (and heuristic) AJD approach, in SeDJoCo
the number of target-matrices equals the number of sources
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Fig. 1: Illustration of SeDJoCo as a tensor decomposition or, equivalently,
as a joint matrix transformation. Here, ×n denotes the n-mode product of a
tensor with a matrix.

Condition (3) is equivalent to requiring that the matrices
Dk , “BQk

“BT
each satisfy Dkek = ek (for k = 1, . . . ,K),

meaning that the vector ek is an eigenvector of the matrix
Dk with eigenvalue 1. We term this structure a “drilled”
structure, hence the name of this transformation. Notice that
eT
kDk = eT

k also holds, by the symmetry of all Dk. This
special “drilled” structure of SeDJoCo, and its interpretation
as a tensor decomposition, are illustrated in Fig. 1 for the
case of K = 3. Here D1, D2, and D3 are treated as the first,
second, and third frontal slices of the tensor D, respectively.
The target matrices Q1, Q2, and Q3 are associated with Q
in the same manner.

Another context in which the SeDJoCo solution is useful is
the MU-MIMO broadcast channel Coordinated Beamforming
(CBF) [13], [24], when a transmitter with K antennas trans-
mits data to N ≤ K users, each with K antennas. In order to
find the beamformer which perfectly eliminates all inter-users
interference, a very similar (complex-valued) formulation of
the SeDJoCo equations is obtained. In this case the target-
matrices are defined as

Qk = HH
kHk ∈ CK×K , ∀k ∈ {1, . . . ,K}, (4)

where (·)H denotes the conjugate transpose, the matrices
Hk ∈ CK×K denote the (flat fading) channel coefficients
from each of the K transmit antennas to each of the K receive
antennas of the k-th user (k ∈ {1, . . . ,K}). The solution
matrix “B in this context contains the desired transmission
beamforming coefficients, such that its k-th row contains the
coefficients for transmission to the k-th user (see [24] for a
detailed derivation in this context).

In recent years there has been a growing interest in the
generalization of a single dataset BSS problem to multiple
datasets BSS problem, termed Joint Blind Source Separation
(JBSS, [25], [26] and references therein). Examples of appli-
cations that motivate the interest in JBSS are the analysis of
multi-subject datasets of electroencephalography (EEG) data
([5], [27]) and functional magnetic resonance imaging (fMRI,
[28]). A particular case of JBSS is the extension of the ICA
model, termed IVA, which is formulated as follows. Consider
M datasets of mixtures

X(m) = A(m)S(m), ∀m ∈ {1, . . . ,M}, (5)

where S(m) = [s
(m)
1 · · · s(m)

K ]T ∈ RK×T denotes a matrix
of K source signals of length T (for all m ∈ {1, . . . ,M}),
belonging to the m-th dataset out of M such sets. In each
dataset the sources are mixed with an unknown (deterministic)
respective mixing-matrix A(m) ∈ RK×K , and the observed
mixture signals are given by X(m) ∈ RK×T . Based on
the observed mixtures datasets

¶
X(m)

©M
m=1

, it is desired to
estimate all M mixing-matrices and thereby recover the source
signals. In the same manner as in the standard ICA model,
in IVA, too, the sources within each dataset are assumed to
be mutually statistically independent. Clearly, IVA amounts
to M independent standard ICA problems when no statistical
dependence between source signals across different datasets
exists. However, in IVA statistical dependence between re-
spective sources from different datasets is considered, i.e.,
the vector s(m1)

k may depend on the vector s(m2)
k (for all

m1,m2 ∈ {1, . . . ,M} and all k ∈ {1, . . . ,K}), but any
two vectors s(m1)

k1
and s

(m2)
k2

are statistically independent
when k1 6= k2 for any m1,m2 ∈ {1, . . . ,M}. One example
which is suitable for this model is group fMRI data analysis,
where coherence between estimates of the source signals
across different subjects (i.e., datasets) is exploited for post-
analysis of the data, e.g., for group level inference and for
the study of inter-subject variability [29]. Another example is
the separation of mixtures of color images [7]. Suppose that
we are given a set of K = 2 linear mixtures of two color
images, where each image consists of three color layers (Red,
Green and Blue), and the respective layers from each image
are mixed separately so as to form the respective layers of
the mixed images. So there are M = 3 mixtures sets, one for
each color layer. The two mixed images are independent, but
the color layers in each image are usually strongly correlated,
giving rise to dependence between sets while maintaining
independence within sets.

As we shall show immediately, it turns out that in the
zero-mean Gaussian model the resulting likelihood equa-
tions for obtaining the ML estimates of the matrices¶
B(m) , A(m)−1

©M
m=1

in the IVA problem require a solution
of what can be regarded as an extension to the SeDJoCo
problem, which we term an “extended” SeDJoCo problem.

B. Extended SeDJoCo as the Likelihood Equations
In order to simplify the exposition, we introduce an equiv-

alent formulation for the IVA model (5). Define the block
diagonal matrix A , Bdiag

Ä
A(1), . . . ,A(M)

ä
∈ RKM×KM ,

where the Bdiag(·) operator creates a block-diagonal matrix
from its square matrix arguments. Additionally, define the
matrices S ,

î
S(1)T · · · S(M)T

óT
∈ RKM×T and X ,î

X(1)T · · · X(M)T
óT
∈ RKM×T . Model (5) can now be more

compactly expressed as

X = AS. (6)

Left-multiplying by B , A−1 and applying the vec(·)
operator (which concatenates the columns of an M×N matrix
into an MN × 1 vector) we get

vec(S) = (IT ⊗B)vec(X) ∈ RKMT×1, (7)
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where IT is the identity matrix of dimension T and ⊗ denotes
the Kronecker product.

At this point we recall that the term “blind” usually implies
that no information is available regarding the sources, except
for their mutual independence within each dataset (hence,
the term IVA). In a “semi-blind” scenario, more a-priori
structural or statistical information about the sources might
be available. This paper addresses the semi-blind scenario
with a-priori knowledge regarding the joint distribution of
the sources. In particular, we assume that the source signals
are zero-mean Gaussian with (known) temporal covariance
matrices C(m1,m2)

k , E
î
s

(m1)
k s

(m2)T
k

ó
∈ RT×T , namely

C
(m1,m2)
k is the temporal covariance matrix between the k-

th source at the m1-th set and the k-th source at the m2-
th set. Admittedly, such a scenario may seem too far-fetched
in practice. We provide some possible justifications thereto
(including a description of a practical example where such
prior knowledge may be available) in the next subsection.
However, to proceed with the exposition, assume for now that
such prior knowledge is indeed available.

Once the distribution of the sources is known (denoted by
pS(S)), the parameterized probability density of the observed
mixtures can be expressed as

pX(X;B) =
∣∣det(IT ⊗B)

∣∣ pS

(
(IT ⊗B)vec(X)

)
=
∣∣detB

∣∣T pS

(
(IT ⊗B)vec(X)

)
.

(8)

For the explicit expression of the likelihood function of B
we must obtain an explicit form of pS(S). Fortunately, things
can be simplified by exploiting the statistical independence
between all Source Component Vectors (SCVs), defined as

s̄k , vec(ST
k), ∀k ∈ {1, . . . ,K}, (9)

where Sk is the k-th source component matrix, defined as

Sk ,
î
s

(1)
k · · · s(M)

k

óT
∈ RM×T . (10)

The covariance matrix of each SCV is given by

Ck , E
[
s̄ks̄

T
k

]
=

C
(1,1)
k · · · C

(1,M)
k

...
. . .

...
C

(M,1)
k · · · C

(M,M)
k

 ∈ RMT×MT ,

(11)
and we denote the respective block-partition of its inverse as

C−1
k ,

P
(1,1)
k · · · P

(1,M)
k

...
. . .

...
P

(M,1)
k · · · P

(M,M)
k

, P k, (12)

where P
(m1,m2)
k ∈ RT×T , to be used below. Using the

Gaussian distribution of the sources we have

pS(S) =
K∏
k=1

ps̄k
(s̄k)

=
K∏
k=1

(2π)−
MT
2

∣∣detCk

∣∣− 1
2 exp

Å
−1

2
s̄T
kC
−1
k s̄k

ã
,

(13)

and using

B(m)X(m) = S(m) ⇔ eT
kB

(m)X(m) = s
(m)T
k ,

∀k ∈ {1, . . . ,K},∀m ∈ {1, . . . ,M}, (14)

we obtain the normalized log-likelihood of B, given by

L(B) = L(B(1), . . . ,B(M)) ,
1

T
log pX(X;B)

= γ + log
∣∣detB

∣∣
− 1

2T

K∑
k=1

M∑
m1=1
m2=1

eT
kB

(m1)X(m1)P
(m1,m2)
k X(m2)TB(m2)Tek

= γ +
M∑
`=1

log
∣∣∣detB(`)

∣∣∣
− 1

2

K∑
k=1

M∑
m1=1
m2=1

eT
kB

(m1)Q
(m1,m2)
k B(m2)Tek,

(15)
where the matrices Q(m1,m2)

k (to be later referred to as the
target-matrices), are defined as

Q
(m1,m2)
k ,

1

T
X(m1)P

(m1,m2)
k X(m2)T,

∀k ∈ {1, . . . ,K}, ∀m1,m2 ∈ {1, . . . ,M}, (16)

and where γ is a constant independent of B. Since the ML
estimate “B(1)

ML, . . . ,
“B(M)

ML of B(1), . . . ,B(M) are the global
maximizers of the likelihood function, we seek the solution of

∂L(B)

∂B(m)
=! O, ∀m ∈ {1, . . . ,M}, (17)

(where =! denotes a demand for equality) which corresponds
to the global maximum, where O ∈ RK×K is the all-zeros
matrix. Indeed, differentiating L(B) w.r.t. B(m) and equating
to zero yields (see Appendix A for details)

∂L(B)

∂B(m)

∣∣∣∣∣“BML

=
∂

∂B(m)

(
M∑
`=1

log
∣∣∣detB(`)

∣∣∣
−1

2

K∑
k=1

M∑
m1=1
m2=1

eT
kB

(m1)Q
(m1,m2)
k B(m2)Tek + γ

è∣∣∣∣∣∣∣∣“BML

= “A(m)T
ML −

K∑
k=1

M∑
`=1

Ekk
“B(`)

MLQ
(`,m)
k =! O, ∀m ∈ {1, . . . ,M},

(18)

where
ß“A(m)

ML , “B(m)−1

ML

™M
m=1

and Eij , eieT
j . So

K∑
k=1

M∑
`=1

Ekk
“B(`)

MLQ
(`,m)
k = “A(m)T

ML , ∀m ∈ {1, . . . ,M}.

(19)
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Transposing and left-multiplying by “B(m)

ML we get

K∑
k=1

M∑
`=1

“B(m)

ML Q
(m,`)
k

“B(`)T
ML Ekk = IK , ∀m ∈ {1, . . . ,M}

⇔
M∑
`=1

“B(m)

ML Q
(m,`)
k

“B(`)T
ML ek ,D

(m)
k ek = ek,

∀m ∈ {1, . . . ,M},∀k ∈ {1, . . . ,K},
(20)

where we have used Q(m1,m2)
k = Q

(m2,m1)T
k . The set of equa-

tions (20) (and, equivalently, (19)) constitutes the extended
SeDJoCo problem. It is easy to see that for the particular case
where M = 1, the problem boils down to the standard (single
dataset) SeDJoCo problem [24]. We emphasize that like in
standard SeDJoCo, this means that the k-th column of the
matrix D(m)

k should be “drilled” (namely be all-zeros except
for its k-th element equaling 1), but unlike standard SeDJoCo,
here the matrix D(m)

k is not necessarily symmetric, in general,
so the extended SeDJoCo transformation is not symmetric in
the sense that the rows of D(m)

k are generally not “drilled”. In
other words, ek is a right-eigenvector of D(m)

k (corresponding
to the eigenvalue 1), whereas eT

k is not necessarily a left-
eigenvector of D(m)

k .
When the source signals in different datasets are statistically

independent, the matrices Ck, as well as their inverses,
become block-diagonal, so that all P (m1,m2)

k (and therefore
also all Q(m1,m2)

k ) vanish for all m1 6= m2. As a result,
the problem reduces to a set of M “standard” (decoupled)
SeDJoCo problems, since only one element (corresponding to
` = m) is left in each sum in (20). However, in a “true” IVA
setup sources from different datasets are correlated, giving rise
to a non-degenerate extended SeDJoCo problem.

C. Justification of the Semi-Blindness Assumption

As already mentioned, our semi-blind scenario, which as-
sumes prior knowledge of the full SCV covariance matrices
(in addition to the Gaussianity assumption), may seem ques-
tionable. There are, however, several possible arguments in
support of considering such a scenario - including a specific
practical example.
• From a theoretical point of view: ML estimation always

assumes prior knowledge of the full statistical model
of the observations, up to the unknown parameters (to
be estimated). Such knowledge is not always realistic
in practice, but still ML estimation enjoys tremendous
popularity as a baseline theoretical approach. Thus, one
of our objectives is to derive the ML estimation in the
IVA context with a general Gaussian model, and to show
how prior knowledge of the SCVs’ covariances (which
is sufficient in the Gaussian case) can be exploited in an
optimal manner if and when it is available.

• Assuming a “training” period: In some applications the
user might have access to the unmixed source signals
during some “training” period, before actually observing
the mixtures in the “operational” period. Assuming that

the statistical properties of the sources during the training
period remain valid during the operational period, these
properties may be estimated during the training period,
to be used in turn during the operational period.

• A possible iterative scheme: When the covariance ma-
trices are not known a-priori, but can be succinctly
parameterized (e.g., in the case of stationary parametric
auto-regressive / moving average sources), an iterative
separation strategy may be used as follows: The sources
are first estimated by some initial (non-ML) separation (if
possible), which may not be optimal, but would still be
reasonable enough to allow subsequent estimation of the
required parameters for the covariance matrices from the
separated signals. Then a semi-blind framework would be
applied using the estimated covariance matrices, possibly
with successive refinements by repeating the process -
thereby approaching asymptotic optimality. In fact, it is
also conceivable to operate such a process in an adaptive
(rather than a batch) scheme, in which the estimation of
the covariance matrices is interlaced with the estimation
of the unmixing matrices as new measurements keep
flowing in. However, this is a topic for further research,
beyond the scope of the current paper.

• A “real world” practical example: Consider K differ-
ent sources (e.g., transmitters), remotely positioned at
known locations, transmitting different, independent sig-
nals, which all have the same (known) spectrum and can
be assumed Gaussian. This is a very common assumption,
e.g., when the transmitters transmit different communi-
cation signals with the same standard modulation, which
has a known spectrum (implying a known autocorrelation
function). For example, Orthogonal Frequency Division
Multiplexing (OFDM) digital communication signals are
commonly modeled as Gaussian, see, e.g., [30]. Assume
first that these signals are received at a single site by
K different sensors (antennas) with different (unknown,
or uncalibrated) radiation patterns, directed at different
directions (not necessarily in the form of a calibrated
phased array). The signal received at each antenna is then
a different (unknown) linear mixture of all K sources.
Note that the mixture is non-separable (without further
information on the signals) since it consists of Gaussian
sources with identical spectra.
Now assume a second, distant reception site with K
similar antennas. The source signals received at this site
are differently-delayed versions of those from the other
site, due to propagation delays. Knowing the positions
of the sources and of the sensor sites, these delays
can be calculated, and can be readily used to obtain
the cross-correlations between respective sources at both
sites, which is simply their autocorrelations, shifted by
the respective (positive or negative) delay differences.
Thus, the 2K signals at the two sites give rise to an IVA
problem with M = 2 sets (easily extended to any M by
adding more sites), in a semi-blind Gaussian scenario: all
necessary covariance (and cross-covariance) matrices are
known. Moreover, the signals at each site alone are non-
separable - yet, using our semi-blind IVA scheme we can
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obtain optimal separation of the sources.
The fine details of this scenario introduce some minor
complications (e.g., in the context of communication
signals, a complex-valued extension of our results should
be used), so we shall not pursue this problem in here
any further - however we did get good separation results
with this scenario (even in the presence of additive noise),
so this is at least one practical example where prior
knowledge of the required covariance matrices is quite
realistic.

Interestingly, we may also add that a very similar formu-
lation to the extended SeDJoCo can again be linked to a
CBF problem, but in an extended multi-cast framework, where
M inter-connected transmitters, each with K antennas and
K associated users are required to attain perfect interference
cancellation transmission. This scenario is described in [31]
in detail along with the mathematical derivation which leads
to the following set of equations

M∑
`=1

B(`)Q
(`,m)
k B(m)Hek , ‹D(m)

k ek = αek,

∀k ∈ {1, . . . ,K} ∀m ∈ {1, . . . ,M}, (21)

where in this case the target-matrices are defined as

Q
(m1,m2)
k ,H(m2,m1)H

k H
(m2,m2)
k ∈ CK×K ,

∀k ∈ {1, . . . ,K} ∀m1,m2 ∈ {1, . . . ,M}, (22)

where each matrix H
(m1,m2)
k ∈ CK×K contains the flat

fading channel coefficients from the K antennas of the m2-
th transmitter to the K antennas of the k-th associated user
of the m1-th transmitter. Evidently, these equations resemble
the extended SeDJoCo equations (20) (with a change of the
summation index; with a conjugate transpose replacing the
transpose; and with the allowed scaling factor α). The solution
of the resulting extended SeDJoCo problem would enable
interference free delivery of the intended data streams to all
users. Note that the only main difference of (21) from (20)
is captured by the (different) definitions of the transformed
matrices ‹D(m)

k and D(m)
k .

These arguments serve as the basis for our motivation to
delve deeper into this problem and to provide further results
and insights regarding these equations.

The rest of this paper is structured as follows. In Section II
we consider theoretical aspects of the problem like an alter-
native formulation, conditions for the existence of a solution
and discussion of its non-uniqueness. In Section III we derive
the induced Cramér-Rao lower bound (iCRLB, [21]) on the
interference-to-signal ratio (ISR) for the underlying Gaussian
IVA problem. In Section IV we propose two iterative solution
algorithms for extended SeDJoCo. Comparative simulation
results are presented in Section V, and Section VI is devoted
to conclusions.

II. THEORETICAL ASPECTS OF EXTENDED SEDJOCO

A. Problem Formulations, Existence, Non-Uniqueness
We start with (re)formulating the (context-free) extended

SeDJoCo problem. Recall that in this problem we con-

sider M sets, giving rise to KM2 target-matrices, each
of dimension K × K, with a solution in the form of M
K × K matrices. Hence, the extended SeDJoCo is stated
as follows: Given KM2 target-matrices

¶
Q

(m1,m2)
k

©
∀k ∈

{1, . . . ,K},∀m1,m2 ∈ {1, . . . ,M},
P1: find a set of M K ×K matrices

¶
B(m)

©M
m=1

, such that

[
M∑
`=1

B(m)Q
(m,`)
k B(`)T

]
ek ,D

(m)
k ek = ek,

∀k ∈ {1, . . . ,K},∀m ∈ {1, . . . ,M}. (23)

The meaning of this statement is that the transformed matrices
D

(m)
k should all be exactly “drilled” in their k-th column.
Equivalently, this problem can be stated as:

P2: find a set of KM vectors
¶
b

(m)
k ∈ RK×1

©
, k ∈

{1, . . . ,K},m ∈ {1, . . . ,M}, such that

M∑
`=1

b
(m)T
k1

Q
(m,`)
k2

b
(`)
k2

= δk1k2 ,

∀k1, k2 ∈ {1, . . . ,K},∀m ∈ {1, . . . ,M}, (24)

where δk1k2 denotes Kronecker’s delta function (which is 1 if
k1 = k2 and 0 otherwise).

This formulation suggests that each solution vector b(m)
k

(which is simply the k-th row of B(m)) is orthogonal to all
(transformed) vectors ψ(m)

k2
,
∑M
`=1Q

(m,`)
k2

b
(`)
k2

where k1 6=
k2 (for any m ∈ {1, . . . ,M}). With these notations, we have
that B(m)T =

î
b

(m)
1 · · · b(m)

K

ó
for all m ∈ {1, . . . ,M}.

As seen from both formulations above, the extended SeD-
JoCo requires the solution of MK2 equations in MK2

unknowns, the elements of the matrices
¶
B(m)

©M
m=1

. Nev-
ertheless, since these equations are nonlinear (in particular,
they contain only 2nd order monomials of the unknowns),
conclusions regarding the existence and/or uniqueness of the
solution are non-trivial. The following is a sufficient condition
for the existence of a (generally non-unique) solution. In the
sequel we shall characterize a set of solutions which may exist
when at least one solution exists.

Theorem 1 (a sufficient condition for existence of a so-
lution): For a given set of target-matrices

¶
Q

(m1,m2)
k

©
∈

RK×K ∀k ∈ {1, . . . ,K},∀m1,m2 ∈ {1, . . . ,M}, a solution
for the associated extended SeDJoCo problem exists if all K
matrices {Ωk}Kk=1, defined as

Ωk ,

Q
(1,1)
k · · · Q

(1,M)
k

...
. . .

...
Q

(M,1)
k · · · Q

(M,M)
k

 ∈ RKM×KM , (25)

are Positive Definite (PD).
Proof 1: Let Ω1, . . . ,ΩK denote a set of (symmetric, real-

valued) PD matrices, constructed from the target-matrices as
defined in (25), and let λk > 0 denote the smallest eigenvalue
of Ωk, k = 1, . . . ,K. Define‹B , îB(1) · · · B(M)

ó
∈ RK×KM , (26)
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and denote its rows as b̃
T

k , k = 1, . . . ,K. Now consider the
function

C
Ä‹Bä , M∑

m=1

log
∣∣∣detB(m)

∣∣∣− 1

2

K∑
k=1

b̃
T
kΩkb̃k. (27)

For all nonsingular B(1), . . . ,B(M), C
Ä‹Bä is obviously a

continuous and differentiable function of all elements of all
the matrices. In addition, C

Ä‹Bä is bounded from above:

C(‹B) =
M∑
m=1

log
∣∣∣detB(m)

∣∣∣− 1

2

K∑
k=1

b̃
T
kΩkb̃k

≤
M∑
m=1

log
K∏
k=1

‖b(m)
k ‖ − 1

2

K∑
k=1

λkb̃
T
kb̃k

=
1

2

M∑
m=1

K∑
k=1

¶
log ‖b(m)

k ‖2 − λk‖b(m)
k ‖2

©
≤ 1

2

M∑
m=1

K∑
k=1

{− log λk − 1}

=
M

2

K∑
k=1

{log λk − 1} ,

(28)

where || · || denotes the `2-norm, and where we have used the
properties

1) |detB(m)| ≤
∏K
k=1 ‖b

(m)
k ‖ (Hadamard’s inequality);

2) b̃
T
kΩkb̃k ≥ λk‖b̃k‖2;

3) ‖b̃k‖2 =
∑M
m=1 ‖b

(m)
k ‖2; and

4) log x− λx ≤ − log λ− 1 for all x > 0.

Note also that C
Ä‹Bä tends to −∞ when at least one of

the matrices
¶
B(m)

©M
m=1

approaches any singular matrix, and

that, in addition, C
Ä‹Bä has the property

C
Ä
α · ‹Bä α→∞−−−−→ −∞, ∀‹B ∈ RK×KM . (29)

Consequently, C
Ä‹Bä must attain a maximum for (at least)

some set of nonsingular matrices
¶
B(m)

©M
m=1

. Being a

smooth function thereof derivative w.r.t. each
¶
B(m)

©M
m=1

at
the maximum point must vanish.

Indeed, differentiating C
Ä‹Bä w.r.t. B(m) we get

∂C
Ä‹Bä

∂B(m)
= A(m)T − 1

2

∂

∂B(m)

[
K∑
k=1

eT
k
‹BΩk

‹BT
ek

]

= A(m)T − 1

2

∂

∂B(m)

[
K∑
k=1

M∑
`=1

M∑
p=1

eT
kB

(`)Q
(`,p)
k B(p)Tek

]

= A(m)T − 1

2

K∑
k=1

M∑
`=1

2EkkB
(`)Q

(`,m)
k

= A(m)T −
K∑
k=1

M∑
`=1

EkkB
(`)Q

(`,m)
k , ∀m ∈ {1, . . . ,M},

(30)

where A(m) , B(m)−1, and we have used the properties
stated in Appendix A. And so, equating to zero, transposing
and left-multiplying by B(m), we get

K∑
k=1

M∑
`=1

B(m)Q
(m,`)
k B(`)TEkk = IK , ∀m ∈ {1, . . . ,M}

(31)
which implies (23). This means that a solution of extended
SeDJoCo must exist as the maximizer of C

Ä‹Bä, as long as
{Ωk}Kk=1 are all PD. �
Note that this general result holds for any extended SeDJoCo
problem, and is not limited to the context of IVA. For an IVA
problem, when the Q(m1,m2)

k matrices are given by (16), it is
easy to show that if all the SCVs covariance matrices Ck are
PD and finite, so are all Ωk, with probability 1 (w.p.1). To
observe this, note that in this case each Ωk can be expressed
as Ωk = XP kX T, where X , Bdiag

Ä
X(1), . . . ,X(M)

ä
∈

RKM×MT . If Ck is PD and finite, so is P k, and since X
is full rank w.p.1, Ωk is also PD (w.p.1). It is important
to realize, however, that existence of an extended SeDJoCo
solution in a given IVA problem does not necessarily imply
separability, because an infinite number of solutions may exist
over a manifold in the parameters space. In fact, this is what
happens when the identifiability conditions stated in [6] are
not satisfied, e.g., when two Gaussian SCVs have the same
covariance matrices in which case the iCRLB is infinite for
the associated ISRs. When the identifiability conditions in
[6] are satisfied, then although the SeDJoCo solution is still
not unique (see below), the multiple solutions are all isolated
(w.p.1), and only one corresponds to the global maximum of
the likelihood function.

Having addressed the issue of existence of a solution, we
proceed to discuss the issue of uniqueness. Note first, that
since, as mentioned above, extended SeDJoCo is a system of
MK2 equations in MK2 unknowns (elements of ‹B), where
each equation is a second degree multinomial in the unknowns,
Bézout’s theorem (e.g., [32]) asserts that there are at most
2MK2

distinct real-valued solutions. Indeed, according to our
experience, when a solution exists, it is not unique, in gen-
eral. Moreover, we can generally characterize K! essentially
different solutions whenever a single solution exists.

To this end, assume an extended SeDJoCo problem asso-
ciated with a set of target-matrices

¶
Q

(m1,m2)
k

©
that satisfy

the existence condition (all implied Ωk matrices are PD).
Denote by

¶
B(m)

©M
m=1

a solution to this problem. Now

define a new set of target-matrices
{
Q

(m1,m2)

k

}
, such that

(∀m1,m2 ∈ {1, . . . ,M})

Q
(m1,m2)

1 = Q
(m1,m2)
2 , Q

(m1,m2)

2 = Q
(m1,m2)
1 , (32)

and
Q

(m1,m2)

k = Q
(m1,m2)
k ∀k ∈ {3, . . . ,K}, (33)

thereby defining a modified (permuted) extended SeDJoCo
problem. Obviously, the modified problem also has at least
one solution (the existence condition is still satisfied), but a
solution of the original problem generally does not solve this
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modified problem. However, an iterative algorithm starting at
the solution

¶
B(m)

©M
m=1

of the original problem is likely to
reach an essentially different solution of the modified problem,
in which all elements of the resulting solution matrices are
generally different from all elements of the solution matrices
of the original problem, because different coefficients now
multiply different products of the unknowns in the system of

equations. Thus, let us denote by
ß
B

(m)
™M
m=1

the resulting

solution of the modified problem.
Now let Π1,2 ∈ RK×K denote the (symmetric) permutation

matrix that swaps the first and second elements of a vector,
namely Π1,2e1 = e2, Π1,2e2 = e1 and Π1,2ek = ek
for all other k ∈ {3, . . . ,K}. Consider the set of matricesß
B

′(m) , Π1,2B
(m)
™

for all m ∈ {1, . . . ,M}. We assert

that this set of matrices solves the extended SeDJoCo problem
induced by the original set

¶
Q

(m1,m2)
k

©
, since[

M∑
m=1

B′(`)Q
(`,m)
1 B′(m)T

]
e1

= Π1,2

[
M∑
m=1

B
(`)
Q

(`,m)

2 B
(m)T

]
Π1,2

Te1

= Π1,2

[
M∑
m=1

B
(`)
Q

(`,m)

2 B
(m)T

]
e2

= Π1,2e2 = e1, ∀` ∈ {1, . . . ,M},

(34)

and, similarly,
î∑M

m=1B
′(`)Q

(`,m)
2 B′(m)T

ó
e2 = e2, and, of

course,
î∑M

m=1B
′(`)Q

(`,m)
k B′(m)T

ó
ek = ek for all other

k ∈ {3, . . . ,K} (for all ` ∈ {1, . . . ,M}). This means that in
addition to

¶
B(m)

©M
m=1

there exists an additional solution¶
B′(m)

©M
m=1

to the original extended SeDJoCo problem,
which is a permutation of an “essentially differernt” solutionß
B

(m)
™M
m=1

to a permuted extended SeDJoCo problem.

Since any permutation matrix can be expressed as the product
of two-elements-permutation matrices, we may generalize the
above result, i.e., there may exist, in general, K! (the number
of possible permutations) such different solutions for a K-
dimensional extended SeDJoCo problem.

Note that, strictly speaking, we did not prove that the
permuted extended SeDJoCo problem yields an essentially
different solution, since theoretically the resulting solution of
the permuted problem may just be a permuted version of the
solution to the original problem. However, based on our em-
pirical experience, we conjecture that with randomly generated
target matrices (such as in IVA), an iterative algorithm starting
at a solution of the original problem would “almost surely”
reach an essentially different (not just permuted) solution of
the permuted problem. In the context of our IVA problem,
all these K! different solutions would be local maxima of
the Likelihood function, but (w.p.1) only one of them would
correspond to the global maximum, and may be found using
strategies such as those advocated (in the context of ICA) in
[33], [34].

III. ICRLB ON THE ISR FOR JBSS

The ISR is a common measure in BSS which quantifies the
“quality” of separation. More specifically, by definition

ISR(m)
k`
, E


∣∣∣∣∣
Å“B(m)

A(m)

ã
k`

∣∣∣∣∣
2

∣∣∣∣∣
Å“B(m)

A(m)

ã
kk

∣∣∣∣∣
2

 ·
E
[
s(m)T

`
s(m)

`

]
E
î
s

(m)T
k s

(m)
k

ó ,
∀k, ` ∈ {1, . . . ,K}, k 6= `,∀m ∈ {1, . . . ,M}, (35)

measures the expected relative residual energy of the `-th
source in the reconstruction of the k-th source in the m-th
dataset.

By deriving the CRLB on the estimation of the mixing
matrix and using the equivariance property, it is possible to
obtain the iCRLB on the ISR (e.g., [6], [21], [23], [35]). In
[6] general expressions for the iCRLB are provided in the
context of a general IVA problem. It is shown that

ISR(m)
k` ≥

1

T
· eT
m

[
Kk` −K−1

`k

]−1
em ·

Tr
Ä
C

(m,m)
`

ä
Tr
Ä
C

(m,m)
k

ä , (36)

where Tr(·) denotes the trace operator, and where the elements
of the matrices Kk` ∈ RM×M are defined as

Kk`[m,n] ,
1

T
Tr
Ä
Γ

(n,m)
k C

(m,n)
`

ä
, (37)

in which the matrices Γ
(m,n)
k ∈ RT×T are defined as

Γ
(m,n)
k , E

î
φ

(m)T
k φ

(n)
k

ó
. (38)

Here φ
(m)
k ∈ R1×T denotes the score vector of the m-

th component of the k-th source, namely the derivative of
the (negative) log of the probability distribution of the k-
th SCV s̄k w.r.t. its m-th component s(m)

k . Different IVA
models naturally have different score vectors, giving rise to
different Γ

(m,n)
k matrices and, thereby, to different iCRLBs.

In order to obtain an explicit expression for the iCRLB in a
given IVA model, the respective Γ

(m,n)
k matrices need to be

explicitly calculated. In [6] the authors derive explicit results
for the simple case of temporally independent, identically
distributed (i.i.d.) Gaussian sources. To obtain Γ

(m,n)
k for our

more general temporal models, recall that

− log ps̄k
(s̄k) = 1

2 log det|2πCk|+ 1
2 s̄

T
kC
−1
k s̄k

= 1
2 log det|2πCk|+ 1

2 s̄
T
kP ks̄k, (39)

so that its derivative w.r.t. the entire SCV s̄k is given by
s̄T
kP k ∈ R1×MT . Its m-th component is therefore given by

φ
(m)
k =

M∑
p=1

s
(p)T
k P

(p,m)
k . (40)
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Substituting in (38) we get

Γ
(m,n)
k = E

î
φ

(m)T
k φ

(n)
k

ó
= E

[
M∑

p,q=1

P
(m,p)
k s

(p)
k s

(q)T
k P

(q,n)
k

]

=
M∑

p,q=1

P
(m,p)
k C

(p,q)
k P

(q,n)
k =

M∑
q=1

I
(m,q)
MT P

(q,n)
k = P

(m,n)
k ,

(41)

where IMT denotes the MT×MT identity matrix and I(m,q)
MT

denotes its (m, q)-th T × T block (which is IT for q = m
and all zeros otherwise). To conclude, we can now substitute
this result into (37), obtaining

Kk`[m,n] =
1

T
Tr
Ä
P

(n,m)
k C

(m,n)
`

ä
, (42)

which can in turn be substituted into (36) to yield the iCRLB.

IV. SOLVING EXTENDED SEDJOCO

To the best of our knowledge, the extended SeDJoCo
problem, and in particular its solution, have not yet been
addressed in the literature (excluding our recent conference
papers [31], [36], in which the extended SeDJoCo was first
formulated, and a partial solution, which ignores some of the
target matrices, was proposed). In what follows we propose
two comprehensive, general solution approaches, both based
on extensions of existing iterative solutions of standard SeD-
JoCo. The first is an extension of the Iterative Relaxation (IR)
proposed by Dégerine and Zaı̈di [37]. The second is based on
Newton’s method.

Note that both algorithms rely on some initial guess. A plau-
sible option for obtaining an initial guess would be to initialize
each B(m) to the solution of the respective standard SeDJoCo
problem associated with the m-th set (thereby ignoring the
information in the inter-set dependence).

A. Solution by Iterative Relaxations

Recall the second formulation of the extended SeDJoCo
problem (24), and notice that it can be written as
M∑
`=1

b
(m)T
k1

Q
(m,`)
k2

b
(`)
k2

= b
(m)T
k1

M∑
`=1

Q
(m,`)
k2

b
(`)
k2

= b
(m)T
k1

ψ
(m)
k2

= δk1k2 ,

∀k1, k2 ∈ {1, . . . ,K},∀m ∈ {1, . . . ,M}.
(43)

This means that the vector b(m)
k is orthogonal to all vec-

tors
¶
ψ

(m)
k′

©
k′ 6=k

and its inner product with ψ
(m)
k equals

1. Therefore, if we assume that all vectors
¶
b

(m)
k′

©
k′ 6=k

are

fixed, we can update the vector b(m)
k by a somewhat-similar

Gram-Schmidt procedure of subtracting its projection on the
K − 1 subspace spanned by these vectors, followed by a
“normalization” of the remaining residual. More precisely, the
updating rule is as follows:

b
(m)′

k ← b
(m)
k −Ψ(k)

(m)T
Ä
Ψ(k)

(m)Ψ(k)
(m)T
ä−1

Ψ(k)
(m)b

(m)
k

b
(m)
k ← b

(m)′

k /

√
|b(m)′T
k ψ

(m)
k |,

(44)

where the rows of the matrix Ψ(k)
(m) ∈ RK−1×K are the K−

1 vectors
¶
ψ

(m)
k′

©
k′ 6=k

. The update rule is repeated iteratively
until convergence, running through all m ∈ {1, . . . ,M} and
k ∈ {1, . . . ,K}.

B. Solution by Newton’s Method

Let us define the gradient matrix of L(B) as G, such that

∂L(B)

∂‹B , G =

ñ
∂L(B)

∂B(1)
· · · ∂L(B)

∂B(M)

ô
,
î
G(1) · · ·G(M)

ó
∈ RK×KM ,

(45)

such that G(`) ∈ RK×K ,∀` ∈ {1, . . . ,M}. Differentiating
further w.r.t. B(n), we get the block-matrices of the Hessian

H(n,`) ,
∂L(B)

∂B(n)∂B(`)
∈ RK

2×K2

, ∀n, ` ∈ {1, . . . ,M},
(46)

where

H ,

H
(1,1) · · · H(1,M)

...
. . .

...
H(M,1) · · · H(M,M)

 ∈ RK
2M×K2M . (47)

More explicitly, we have

H(n,`) =
∂

∂B(n)
G(`)

=
∂

∂B(n)

(
A(`)T −

K∑
k=1

M∑
m=1

EkkB
(m)Q

(m,`)
k

)

= −
Ä
IK ⊗A(`)T

ä ∂B(`)T

∂B(n)

Ä
IK ⊗A(`)T

ä
−

K∑
k=1

M∑
m=1

(IK ⊗Ekk)
∂B(m)

∂B(n)

Ä
IK ⊗Q(m,`)

k

ä
= −
Ä
IK ⊗A(`)T

ä(
δn`‹EK

) Ä
IK ⊗A(`)T

ä
−

K∑
k=1

M∑
m=1

(IK ⊗Ekk)
Ä
δnmE

K
ä Ä
IK ⊗Q(m,`)

k

ä
= −δn`

Ä
IK ⊗A(`)T

ä ‹EK Ä
IK ⊗A(`)T

ä
−

K∑
k=1

(IK ⊗Ekk)EK
Ä
IK ⊗Q(n,`)

k

ä
,

(48)
where we have used the property ∂A = −A∂BA [38], and
the notations

∂B(`)

∂B(n)
= δn`

E11 · · · E1M

...
. . .

...
EM1 · · · EMM

 , δn`EK ∈ RK
2×K2

,

(49)
and

∂B(m)T

∂B(n)
= δnm

E11 · · · EM1

...
. . .

...
E1M · · · EMM

 , δnm‹EK
∈ RK

2×K2

.

(50)
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If we denote the columns of the matrix ‹B by β̃j for 1 ≤ j ≤
KM and define the indexing function j[k,m] = (m− 1)·K+k
for 1 ≤ k ≤ K and 1 ≤ m ≤M , we have that

β̃j[k,m]
= β̃

(m)

k , (51)

where β̃
(m)

k denotes the k-th column of the matrix B(m).
Consequently, we conclude that the vectorized gradient of
vec
Ä‹Bä is vec (G), for which G is defined exactly as in (45).

However, the Hessian matrix of the vector vec
Ä‹Bä is given

by H̃ , which is a permuted version of H . More particularly,
the elements of H̃ are given by

H̃(ind[p,q,i],ind[m,n,j]) = H(ind[p,m,i],ind[q,n,j])

=
∂L(B)

∂B
(i)
(p,q)∂B

(j)
(m,n)

,
(52)

and the subscript (p,q) denotes the (p, q)-th element of a matrix.
Finally, the elements of the matrices B(1), · · · ,B(M) are
computed iteratively according to Newton’s update rule

vec
Ä‹Bä[n+1]

= vec
Ä‹Bä[n]

+ ∆[n], (53)

where
∆[n] = −H̃

−1
· vec (G) ∈ RK

2M (54)

evaluated at vec
Ä‹Bä[n]

, and the superscript [n] indicates the
n-th iteration.

V. SIMULATION RESULTS

We present simulation results of 3 different experiments.
First, we demonstrate the proposed algorithms’ convergence
behavior for a generic extended SeDJoCo problem with ran-
dom target-matrices. We then proceed to demonstrate the
performance of the extended SeDJoCo solution as the ML
estimate in the context of Gaussian JBSS (IVA) in terms of
common separation measures.

A. Convergence Behavior

In our first experiment we assess the convergence behavior
of the two solutions proposed in Section IV for a generic
extended SeDJoCo problem. In this experiment the target-
matrices are generated as follows: First, we generate a set
of K PD matrices by

Ωk = UkU
T
k ∈ RKM×KM , ∀k ∈ {1, . . . ,K}, (55)

where the elements of {Uk}Kk=1 are drawn independently from
the standard Gaussian distribution. Then we take the K ×K
KM2 blocks of all matrices {Ωk}Kk=1, as defined in (25), to
be the set of target-matrices. This way a solution is guaranteed
to exist (according to Theorem 1). We initialize the solution
to be the set of identity matrices, i.e., {B(m) = IK}Mm=1. Our
measure of convergence is (cf. (31)) the logarithm of

E ,
∥∥∥∥∥ M∑
m=1

K∑
k=1

M∑
`=1

B(m)Q
(m,`)
k B(`)TEkk − IK

∥∥∥∥∥
F

, (56)

which is the Frobenius norm of the residual-error matrix.

(a) (b)

(c) (d)

Fig. 2: Convergence patterns of the proposed algorithm - logarithm of the
residual root-mean-squares error vs. the number of iterations for different
values of M with a fixed value of K. (a) Newton’s method, K = 2 (b) IR,
K = 2 (c) Newton’s method, K = 5 (d) IR, K = 5.

Fig. 2 shows the convergence patterns of the proposed
algorithms for different values of M with K fixed. The
results in Figs. 2a-2b and 2c-2d were obtained by averaging
100 independent identical trials for K = 2 and K = 5,
respectively. It is evident that both algorithms converge to
the solution; the Newton’s algorithm converges much faster,
typically within tens of iteration, whereas the IR algorithm
converges significantly more slowly as K or M or both
increase. For this example, with K = 5, M = 4, and
when convergence is defined at E = 10−10, the average
run time for convergence was 0.5457 seconds with Newton’s
method, and 1.7762 seconds with the IR algorithm, so that
the solution by Newton’s method was computationally more
efficient in this case. Note, however, that the fast (quadratic)
convergence of Newton’s algorithm comes at the cost of a
computational complexity increase per iteration; if we define a
full update iteration as an update of all the elements of ‹B, the
iterative relaxations algorithm requires O(MK4) operations
for a full update iteration (due to MK vector updates of
O(K3)), whereas Newton’s algorithm requires O(M3K6)
(due to inversion of the Hessian). In addition, and as expected,
it can be seen that as K or M (or both) increase, the number
of iterations increases as well (for both algorithms).

B. JBSS (IVA) of Gaussian Sources

In this part we focus on the application of the extended
SeDJoCo as the ML solution for semi-blind Gaussian JBSS
(where the sources’ covariance matrices are assumed to be
known in advance). Results are based on averaging 1000
independent trials, where the mixing matrices elements are
redrawn from a standard Gaussian distribution in each trial.
We solve the extended SeDJoCo problem with the solution
by Newton’s method due to its (empirical) faster convergence
and better resilience to initialization in convergence to the ML
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(a)

(b)

Fig. 3: (a) Empirical ISR vs. α (b) Empirical ISRnorm vs. α. It can be seen that
the extended SeDJoCo solution is superior to both other solution. Furthermore,
it attains the iCRLB. The legend in (b) is valid for (a) as well.

Parameter \ (k,m) (1, 1) (1, 2) (2, 1) (2, 2)

φ
(k,m)
0 π 5π

3
π
3

π
Nk,m 50 350 200 500

σ
(m)
k

2 3 1
3

2 2
3

4

TABLE I: Fixed parameter values for experiment 2.

solution. First, we consider the simple case of two datasets
(M = 2), each with two Gaussian sources (K = 2). The k-th
source of the m-th dataset, s(m)

k [n], is generated as

s
(m)
k [n] =

Ä
σ

(m)
k + α · cos (φk,m[n])

ä
wk[n] + v

(m)
k [n],

∀k,m ∈ {1, 2}, (57)

where
φk,m[n] =

2π

Nk,m
· n+ φ

(k,m)
0 , (58)

α is a real parameter,
¶
φ

(k,m)
0 , Nk,m, σ

(m)
k

©2

k,m=1
are fixed

(see Table I), and
¶
wk[n], v

(m)
k [n]

©2

k,m=1
are all mutually

independent white standard Gaussian processes. Clearly, the k-
th sources are correlated between sets, and when α is non-zero
the sources are non-stationary. In the limit case where α = 0,
each source is a white Gaussian process, therefore separation
cannot be attained by ICA alone (i.e., when ignoring the

(a)

(b)

Fig. 4: (a) Empirical ISR vs. T for the second dataset (b) Empirical ISRnorm
vs. T . The empirical results validate both the ML solution’s optimality and
our analytical expression of the iCRLB.

inter-datasets correlations). We compare the performance of
three different solutions: the extended SeDJoCo solution (by
the proposed algorithm) which yields the ML estimates w.r.t.
the IVA problem altogether, the SeDJoCo solution of each
dataset separately, which yields the ML estimates w.r.t. the two
ICA problems separately, and Anderson et al.’s [26] Newton
updates for Gaussian IVA (IVA-G-N), which is intended for
separation of independent identically distributed (i.i.d.) Gaus-
sian sources. In this experiment we assume that the covariance
matrices of the sources are known, i.e., a semi-blind scenario,
and we demonstrate how the ML solution can exploit this
information in contrast to other solutions, e.g., the IVA-G-N,
which cannot. The observation length was set to T = 1000.
Fig. 3 shows all the empirical ISR elements, as well as the
empirical total normalized ISR,

ISRnorm ,
1

MK(K − 1)

M∑
m=1

K∑
i,j=1
i 6=j

ISR(m)
ij , (59)

vs. α ∈ [0, 1], comparing also to the iCRLB derived in
Section III. A good fit between the theoretical prediction and
the empirical results is evident; when α = 0 the SeDJoCo
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solutions (semi-blind ICA ML approach) collapse whereas
the IVA approaches give good separation in terms of the
ISR. The IVA-G-N performs properly since the sources are
indeed i.i.d., and the extended SeDJoCo solution (semi-blind
IVA ML approach) achieves the iCRLB. As α increases, the
sources become “more” non-stationary. Accordingly, IVA-G-
N’s performance becomes slightly worse (due to the model
mis-match) while SeDJoCo keeps improving (to the point
where the cross-correlations between datasets are significantly
less informative - compared to the temporal correlation of
each source within each dataset). Extended SeDJoCo keeps
attaining the iCRLB for all α. We stress that in this semi-
blind scenario the ML solutions have an “unfair” advantage
over IVA-G-N, which, unlike the ML solutions, cannot exploit
the prior knowledge of the sources’ covariance matrices.
Nevertheless, it is our purpose in this work to show how
available prior information such as this can be exploited in
an optimal manner.

Our last experiment deals with zero-lag-uncorrelated sta-
tionary sources. We consider the case where M = K = 3.
The k-th source of the m-th dataset is generated as

s
(m)
k [n] = v

(m)
k [n− L · (m− 1)], ∀k,m ∈ {1, 2, 3}, (60)

where

v
(m)
k [n] =

M∑
`=1

w
(`)
k [n] ∗ h(m,`)

k [n], (61)¶
w

(m)
k [n]

©3

k,m=1
are all mutually independent white, standard

Gaussian noise processes,
¶
h

(m1,m2)
k [n]

©3

k,m1,m2=1
are Finite

Impulse Response (FIR) filters of length L for which
L−1∑
n=0

∣∣∣h(m1,m2)
k [n]

∣∣∣2 =

®
1, m1 = m2

η, m1 6= m2

,∀k,m1,m2 ∈ {1, 2, 3},

(62)
so that η is a parameter which controls the “relative energy”
contained in the cross-spectra between corresponding sources
from different datasets, and ∗ denotes the convolution operator.
As can be seen from (61), h(m1,m2)

k [n] is the FIR filter applied
to the m2-th white driving-noise in order to generate a compo-
nent of the k-th source in the m1-th dataset. Clearly, the cross-
spectrum between any pair

¶
s

(m1)
k [n], s

(m2)
k [n] : m1 6= m2

©
is

non-zero when η > 0. However, note that although all such
pairs are correlated, their zero-lag correlations are obviously
zero (due to the L · (m− 1) delays).

The FIR filters were drawn from a standard Gaussian dis-
tribution with L = 5 and η = 1. We compare the performance
of the extended SeDJoCo solution and the SeDJoCo solutions
only, since the IVA-G-N algorithm requires instantaneous
(zero-lag) correlation between sets and therefore performs very
poorly in this scenario2 (because, in addition to being zero-lag
uncorrelated between sets, all sources have the same variance
within sets, so they cannot even be ICA-separated using IVA-
G-N, due to its inherent temporal i.i.d. model assumption). As
can be seen from Fig. 4a, which shows the ISR elements of
the second dataset vs. the observation length T , the SeDJoCo

2This was validated in simulations.

solution yields quite good separation results using only the
spectral diversity. However, the extended SeDJoCo solution
“enjoys” not only the spectral diversity within each dataset,
but also the cross-spectral diversity between the corresponding
sources from different datasets. In this example, the average
gain in ISR is about 15[dB] compared with the SeDJoCo
solution. Similar results were obtained for the first and third
datasets as well. This is reflected in Fig. 4b which shows the
total normalized ISR.

VI. CONCLUSION

We presented the “extended SeDJoCo” problem, which is
instrumental in finding the ML estimate of the separation
matrices in the context of semi-blind IVA in a Gaussian
model. This problem is also closely related to CBF in a
multicast setting, and possibly to other applications. Thus,
after deriving different formulations of this general problem,
we outlined some of its generic properties, such as a condition
for the existence of a solution and multiplicity of the solutions.
We also derived two iterative solution algorithms, offering a
trade-off between the required number of iterations and the
computational complexity per iteration.

In the particular context of semi-blind IVA, we also derived
the iCRLB on the elements of the ISR matrices for the case
of Gaussian sources with arbitrary (but known) temporal auto-
covariance matrices and cross-covariance matrices (between
sources in different sets). We then demonstrated how this
broader paradigm enables (via a solution of the extended
SeDJoCo equations) the asymptotically optimal ML separation
(attaining the iCRLB) of general stationary or non-stationary
sources. This ability provides a significant advantage over
existing IVA methods, which so far only considered the model
of temporally-i.i.d. source-vector components, and moreover,
could not exploit prior knowledge in a semi-blind scenario.

VII. ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support
by the German-Israeli Foundation (GIF), grant number I-1282-
406.10/2014. The first author also wishes to thank the Yitzhak
and Chaya Weinstein Research Institute for Signal Processing
for a fellowship. In addition, the authors wish to thank Tülay
Adalı for providing a helpful MATLAB code of the IVA-G-N
algorithm.

APPENDIX A
DIFFERENTIATION OF THE LIKELIHOOD FUNCTION

Using the following properties:

(a)
∂ log |detX|

∂X
=
(
X−1

)T
, (b)

∂aTXb

∂X
= abT,

(c)
∂aTXTb

∂X
= baT, (d) Q(m1,m2)

k = Q
(m2,m1)T
k ,

(e)
∂bTXTDXc

∂X
= DTXbcT +DXcbT, (f) Eij , eie

T
j ,
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we have that

∂L(B)

∂B(m)
=

∂

∂B(m)

(
M∑
`=1

log |detB(`)|

−1

2

K∑
k=1

M∑
m1=1
m2=1

eT
kB

(m1)Q
(m1,m2)
k B(m2)Tek + γ

è
=

M∑
`=1

∂ log |detB(`)|
∂B(m)

− 1

2

K∑
k=1

M∑
m1=1
m2=1

∂eT
kB

(m1)Q
(m1,m2)
k B(m2)Tek

∂B(m)

=
(a)
A(m)T − 1

2

K∑
k=1

M∑
m1=1

M∑
m2=1
m2 6=m1

∂eT
kB

(m1)Q
(m1,m2)
k B(m2)Tek

∂B(m)

− 1

2

K∑
k=1

M∑
m1=1

∂

∂B(m)

Ä
eT
kB

(m1)Q
(m1,m1)
k B(m1)Tek

ä
=

(b),(c),(d),(e)
A(m)T − 1

2

K∑
k=1

2
M∑

m1=1

eke
T
kB

(m1)Q
(m1,m)
k

=
(f)
A(m)T −

K∑
k=1

M∑
m1=1

EkkB
(m1)Q

(m1,m)
k .

(63)
REFERENCES

[1] A. Yeredor, “Non-orthogonal joint diagonalization in the least-squares
sense with application in blind source separation,” IEEE Trans. on Signal
Processing, vol. 50, no. 7, pp. 1545–1553, 2002.

[2] A. Yeredor, “On using exact joint diagonalization for noniterative
approximate joint diagonalization,” IEEE Signal Processing Letters,
vol. 12, no. 9, pp. 645–648, 2005.

[3] J.-F. Cardoso, “Eigen-structure of the fourth-order cumulant tensor with
application to the blind source separation problem,” in Proc. of ICASSP,
1990, pp. 2655–2658.

[4] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative
matrix and tensor factorizations: applications to exploratory multi-way
data analysis and blind source separation. John Wiley & Sons, 2009.

[5] X.-L. Li, T. Adalı, and M. Anderson, “Joint blind source separation
by generalized joint diagonalization of cumulant matrices,” Signal
Processing, vol. 91, no. 10, pp. 2314–2322, 2011.

[6] M. Anderson, G.-S. Fu, R. Phlypo, and T. Adali, “Independent vec-
tor analysis: Identification conditions and performance bounds,” IEEE
Trans. on Signal Processing, vol. 62, no. 17, pp. 4399–4410, 2014.

[7] J. Via, M. Anderson, X.-L. Li, and T. Adali, “A maximum likelihood
approach for independent vector analysis of Gaussian data sets,” in Proc.
of MLSP, 2011, pp. 1–6.

[8] J. Sun, S. Papadimitriou, and S. Y. Philip, “Window-based tensor
analysis on high-dimensional and multi-aspect streams.” in Proc. of
ICDM, vol. 6, 2006, pp. 1076–1080.

[9] E. Acar, S. A. Camtepe, and B. Yener, “Collective sampling and analysis
of high order tensors for chatroom communications,” in Intelligence and
security informatics. Springer, 2006, pp. 213–224.

[10] T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect
data mining,” in Proc. of ICDM, 2008, pp. 363–372.

[11] M. Mørup, “Applications of tensor (multiway array) factorizations and
decompositions in data mining,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 1, no. 1, pp. 24–40, 2011.

[12] V. Stankovic and M. Haardt, “Generalized design of multi-user MIMO
precoding matrices,” IEEE Trans. on Wireless Communications, vol. 7,
no. 3, pp. 953–961, 2008.

[13] B. Song, F. Roemer, and M. Haardt, “Using a new structured joint con-
gruence (STJOCO) transformation of Hermitian matrices for precoding
in multi-user MIMO systems.” in Proc. of ICASSP, 2010, pp. 3414–
3417.

[14] A. L. De Almeida, G. Favier, C. C. Cavalcante, and J. Mota, “Tensor-
based space-time multiplexing codes for MIMO-OFDM systems with
blind detection,” in Proc. of IEEE 17th International Symposium on
Personal, Indoor and Mobile Radio Communications, 2006, pp. 1–5.

[15] G. Favier, M. N. Da Costa, A. L. De Almeida, and J. M. T. Romano,
“Tensor space–time (TST) coding for MIMO wireless communication
systems,” Signal Processing, vol. 92, no. 4, pp. 1079–1092, 2012.

[16] J.-F. Cardoso, “Source separation using higher order moments,” in Proc.
of ICASSP, 1989, pp. 2109–2112.

[17] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A
blind source separation technique using second-order statistics,” IEEE
Trans. on Signal Processing, vol. 45, no. 2, pp. 434–444, 1997.

[18] A.-J. Van der Veen and A. Paulraj, “An analytical constant modulus
algorithm,” IEEE Trans. on Signal Processing, vol. 44, no. 5, pp. 1136–
1155, 1996.

[19] L. De Lathauwer, “A link between the canonical decomposition in
multilinear algebra and simultaneous matrix diagonalization,” SIAM
Journal on Matrix Analysis and Applications, vol. 28, no. 3, pp. 642–
666, 2006.

[20] A. Yeredor, “On hybrid exact-approximate joint diagonalization,” in
Proc. of CAMSAP, 2009, pp. 312–315.

[21] A. Yeredor, “Blind separation of Gaussian sources with general covari-
ance structures: Bounds and optimal estimation,” IEEE Trans. on Signal
Processing, vol. 58, no. 10, pp. 5057–5068, 2010.

[22] D.-T. Pham, “Blind separation of instantaneous mixture of sources via
the Gaussian mutual information criterion,” Signal Processing, vol. 81,
no. 4, pp. 855–870, 2001.

[23] P. Comon and C. Jutten, Handbook of Blind Source Separation: Inde-
pendent component analysis and applications. Academic press, 2010.

[24] A. Yeredor, B. Song, F. Roemer, and M. Haardt, “A ”sequentially drilled”
joint congruence (SeDJoCo) transformation with applications in blind
source separation and multiuser MIMO systems,” IEEE Trans. on Signal
Processing, vol. 60, no. 6, pp. 2744–2757, 2012.

[25] Y.-O. Li, T. Adali, W. Wang, and V. D. Calhoun, “Joint blind source
separation by multiset canonical correlation analysis,” IEEE Trans. on
Signal Processing, vol. 57, no. 10, pp. 3918–3929, 2009.

[26] M. Anderson, T. Adali, and X.-L. Li, “Joint blind source separation with
multivariate Gaussian model: Algorithms and performance analysis,”
IEEE Trans. on Signal Processing, vol. 60, no. 4, pp. 1672–1683, 2012.

[27] J. Chatel-Goldman, M. Congedo, and R. Phlypo, “Joint BSS as a natural
analysis framework for EEG-hyperscanning,” in Proc. of ICASSP, 2013,
pp. 1212–1216.

[28] J.-H. Lee, T.-W. Lee, F. A. Jolesz, and S.-S. Yoo, “Independent vector
analysis (IVA): multivariate approach for fMRI group study,” Neuroim-
age, vol. 40, no. 1, pp. 86–109, 2008.

[29] V. Calhoun, T. Adali, G. Pearlson, and J. Pekar, “A method for
making group inferences from functional MRI data using independent
component analysis,” Human brain mapping, vol. 14, no. 3, pp. 140–
151, 2001.

[30] P. Banelli and S. Cacopardi, “Theoretical analysis and performance
of OFDM signals in nonlinear AWGN channels,” IEEE Trans. on
Communication, vol. 48, no. 3, pp. 430–441, 2000.

[31] Y. Cheng, A. Yeredor, A. Weiss, and M. Haardt, “Extension of the “se-
quentially drilled” joint congruence transformation (SeDJoCo) problem,”
in Proc. of CAMSAP, 2015, pp. 185–188.

[32] C. G. Gibson, Elementary Geometry of Algebraic Curves: An Under-
graduate Introduction. Cambridge University Press, 2001.

[33] A. Yeredor, Y. Cheng, and M. Haardt, “On multiple solutions of
the “sequentially drilled” joint congruence transformation (SeDJoCo)
problem for semi-blind source separation,” in Proc. of ICASSP, 2016.

[34] A. Weiss, A. Yeredor, S. A. Cheema, and M. Haardt, “Maximum
likelihood “identification-correction” scheme of sub-optimal “SeDJoCo
solutions for Gaussian blind source separation,” in Proc. of ICASSP,
2017.

[35] E. Doron, A. Yeredor, and P. Tichavsky, “Cramér–Rao-induced bound
for blind separation of stationary parametric Gaussian sources,” IEEE
Signal Processing Letters, vol. 14, no. 6, pp. 417–420, 2007.

[36] Y. Cheng, A. Yeredor, and M. Haardt, “Extension of SeDJoCo and its
use in a combination of multicast and coordinated multi-point systems,”
in Proc. of ICASSP, 2016, pp. 3276–3280.
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