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On the Shift Operator, Graph Frequency and
Optimal Filtering in Graph Signal Processing
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Abstract—Defining a sound shift operator for signals existing
on a certain graph structure, similar to the well-defined shift
operator in classical signal processing, is a crucial problem
in graph signal processing, since almost all operations, such
as filtering, transformation, prediction, are directly related to
the graph shift operator. We define a set of energy-preserving
shift operators that satisfy many properties similar to their
counterparts in classical signal processing. Our definition of the
graph shift operator negates the shift operators defined in the
literature, such as the graph adjacency matrix and Laplacian
matrix based shift operators, which modify the energy of a
graph signal. We decouple the graph structure represented by
eigengraphs and the eigenvalues of the adjacency matrix or the
Laplacian matrix. We show that the adjacency matrix of a graph
is indeed a linear shift invariant (LSI) graph filter with respect
to the defined shift operator. We introduce graph finite impulse
response (GFIR) and graph infinite impulse response (GIIR)
filters and obtain explicit forms for such filters. We further
define autocorrelation and cross-correlation functions of signals
on the graph, enabling us to obtain the solution to the optimal
filtering on graphs, i.e., the corresponding Wiener filtering on
graphs and the efficient spectra analysis and frequency domain
filtering in parallel with those in classical signal processing. This
new shift operator based GSP framework enables the signal
analysis along a correlation structure defined by a graph shift
manifold as opposed to classical signal processing operating on
the assumption of the correlation structure with a linear time
shift manifold. We further provide the solution to the optimal
linear predictor problem over general graphs. Several illustrative
simulations are presented to validate the performance of the
designed optimal LSI filters.

Index Terms—Graph signal processing, graph shift operator,
graph Fourier transform, graph correlation function, graph
spectral analysis, optimal filtering on graph

I. INTRODUCTION

Graph signal processing (GSP) is an emerging field, fo-
cusing on representing signals as evolving entities on graphs
and analyzing the signals based on the structure of the
graph [1]–[4]. The temporally evolving measured data from
variety of sources in a network, such as the measured data
from sensors in wireless sensor networks, body area sensor
networks, transportation networks and weather networks, are
compatible with signal representation on certain graphs. For
instance, a network of sensors implanted in a human body to
measure the temperatures of different tissues can be viewed
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as a graph in which the sensor nodes are the graph nodes and
the graph structure shows the connection between the sensor
nodes. Moreover, the measured temperatures by the nodes are
the signals existing on the corresponding graph. Hence, GSP
can be a powerful tool for analyzing and interpreting such
signals existing on graphs.

Classical signal processing has provided a wide range of
tools to analyze, transform and reconstruct signals regardless
of the true nature of the signals evolution. Indeed, classical
signal processing may not provide an effective way to repre-
sent and analyze the signals that exist on a graph structure.
GSP is an attempt to develop a universal tool to process signals
on graphs. More specifically, GSP benefits from algebraic and
graph theoretic concepts, such as graph spectrum and graph
connectivity, to analyze structured data [1], [5], [6].

Two major approaches have been developed for signal
processing on graphs. The first approach is to use the graph
Laplacian matrix as the underlying building block for the
definitions and tools in GSP [1]. The second approach is to
use the adjacency matrix of the underlying graph as the shift
operator on graph [2]–[4]. Both approaches define fundamental
signal processing concepts on graphs, such as filtering, trans-
formation, downsampling.

Graph wavelet transforms are discussed in [7]–[9]. The
idea of graph filter banks is developed in [10] with the
design of critically-sampled wavelet-filter banks on graphs.
Authors in [11] introduce two-channel (low-pass and high-
pass), critically-sampled, perfect-reconstruction filterbanks for
signals defined on circulant graphs. The authors in [12] extend
the framework of sampling and reconstructing signals with a
finite rate of innovation (FRI) to the graph domain. Authors
in [13] present novel families of wavelets and associated
filterbanks for the analysis and representation of functions
defined on circulant graphs and generalize to arbitrary graphs
in the form of graph approximations. In [14], the authors
present a method to decompose an arbitrary graph or filter
into a combination of circulant structures. In [15]–[17], the
authors focus on recovering the graph structure, i.e., the graph
adjacency matrix, via formulating a design problem. The
obtained graph structure can then be used to obtain the graph
Fourier basis, the new graph shift operator and graph filters.
In this paper, we assume that the graph structure is already
obtained, e.g., using any of these approaches, and we aim to
define a graph shift operator that satisfies certain properties.

When the structure of a graph is known, the common effort
in GSP is to define a shift operator on the graph and then
introduce the concepts of filtering, transformation, denoising,
prediction, compression and other operations similar to the
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conventional counterparts in classical signal processing, based
on the shift operator. It is defined in [1] as the translation
on graph via generalized convolution with a delta centered
at vertex n. In [2], the graph shift operator is the adjacency
matrix of the graph and simple justification of such a choice is
presented. However, none of these operators satisfy the energy-
preserving property similar to their counterpart in classical sig-
nal processing. More specifically, applying the shift operator in
[1], [2] to a graph signal several times will change the energy
content of the graph signal and its frequency components,
making it difficult to justify and design the filter frequency
response as in classical signal processing. An isometric shift
operator has recently been introduced in [18]–[20], which
satisfies the energy-preserving property. This shift operator
is a matrix whose eigenvalues are derived from the graph
Laplacian matrix. The limitation of this approach is that its
phase shifts are structure-dependent and do not satisfy some
other desired properties leading to computationally efficient
spectral analysis.

Motivated by the graph shift matrix defined in [2], but
fundamentally different, we introduce a unique set of graph
shift operators that satisfy the properties of the shift operator
in classical signal processing. The new shift operator preserves
the energy content of the graph signal in the frequency domain.
We essentially decompose the graph adjacency matrix (the
Laplacian matrix can be handled the same way) into two
parts. The first part is the graph structure part represented
by eigengraphs associated with frequency components of a
graph. The second part is the filtering part represented by
the eigenvalues of the adjacency matrix, which changes the
amplitude of the frequency components. The eigenvalues of
the new shift operators therefore only represent phase shift
of frequency components that can be flexibly constructed. A
special construction of these phase shift eigenvalues with nice
properties is also given.

We then elaborate on the structure of linear shift invariant
(LSI) graph filters and show that any adjacency matrix can
indeed be written as an LSI graph filter using the presented
new shift operator. Furthermore, we define the graph finite
impulse response (GFIR) and graph infinite impulse filters
(GIIR), similar to the classical signal processing counterparts,
and obtain an explicit form for such filters. Based on the
defined shift operator, we introduce autocorrelation and cross-
correlation functions on graph. We then formulate the optimal
filtering and spectrum analysis on graph, i.e., the correspond-
ing Wiener-Hopf equation and Wiener filtering on graphs, and
obtain the structure of such filters for any arbitrary graph
structure. We finally elaborate on the best linear predictor
graph filters and provide several illustrative simulation setups
to verify the performance improvements of optimal filtering
using our new graph shift operator.

The contribution of this paper can be summarized as fol-
lows:
• We define a general set of graph shift operators that

satisfy the energy-preserving property in the frequency
domain and other properties in classical signal process-
ing. These shift operators only change the phase of
frequency components. Especially, we design a specific

shift operator with the desired periodicity property as
in classical signal processing. The shift operation can
then be considered as discrete-time lossless information
flowing structure on a graph.

• For a given graph, we construct a set of eigengraphs that
represent basic correlation structures of a graph frequency
component. When applied on any graph signal, each
eigengraph is a projection operator that projects the signal
to a single graph frequency component subject to only a
phase shift. The new shift operator is a linear combination
of eigengraphs.

• We investigate the properties of the presented shift oper-
ator for linear shift invariant filtering and show that the
adjacency matrix is indeed a LSI filter based on our new
graph shift operator.

• We define autocorrelation and cross-correlation functions
of a signal on graph. We then obtain a closed-form
solution to the Wiener filtering problem and show that
it has efficient power-spectrum representation in certain
graphs similar to classical signal processing. Such a
power spectral analysis can only be obtained using our
new shift operator. This new shift operator based GSP
framework enables the signal analysis along a correlation
structure defined by a graph shift manifold as opposed to
classical signal processing operating on the assumption of
the correlation structure with a linear time shift manifold.

The paper is organized as follows. In section II, we discuss
the basics of GSP and present a new set of shift operators.
Section III introduces graph filters and Fourier transforms
based on the new shift operator. We derive the optimal LSI
graph filters in section IV. Section V presents the simulations
and section VI concludes of the paper.

Notations: Matrices and vectors are represented by upper-
case and lowercase boldface letters, respectively. Transpose
and Hermitian (conjugate transpose) operations are repre-
sented by (·)T and (·)H , respectively. The notation I stands for
the identity matrix, and ~ and ∗ are the circular and aperiodic
convolution operators, respectively.

II. A NEW SET OF SHIFT OPERATORS AND GRAPH
FREQUENCY COMPONENTS

A. Signals on Graph

Consider a dataset with N distinct elements, where some
information regarding the relations between data elements is
available. One can represent such a dataset and the corre-
sponding relational information as a graph. A graph can be
denoted by a G = {V,A}, where V = {ν0, · · · νN−1} is the
set of all vertices of the graph, representing the elements in the
dataset, and A is the weighted adjacency matrix that represents
the relation between nodes. More specifically, if there is a
relation between nodes νn and νm, then an,m = A(n,m) 6= 0,
otherwise an,m = 0. We note that the elements of the
adjacency matrix A is not restricted to a specific set of values.
In this paper, we consider a general graph with real-valued
adjacency matrix A, either directed or undirected, and assume
that data elements take complex scalar values. We define a
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Fig. 1. Graph representation of time series periodic data.

graph signal as a one-to-one mapping from the set of all
vertices to the set of complex numbers:

x : V → C, νn → xn. (1)

Without loss of generality, we represent a graph signal as a
vector whose elements are complex numbers assigned to the
nodes, x = [x1, · · · , xN ]T , where T stands for the transpose
operator.

As a special case, a directed cyclic graph is shown in Fig. 1.
Such a graph is compatible with the graph representation of a
periodic time series signal, x[n] = x[n + N ], with N signal
points, i.e., one can assign a node to each signal point and the
relation between the signal points is the time shift. One can
easily show that the graph adjacency matrix for the directed
cyclic graph is given by

A = C =


0 0 · · · 1
1 0 · · · 0
...

...
. . .

...
0 · · · 1 0

 . (2)

There are two fundamental components in GSP: the signals
represented by the values on vertices, and the signal correlation
structure represented by the connections between vertices.

B. Graph Shift Operator, Information Flow and Filtering

A graph shift operator allows us to define the notion of
information flow over a graph. Indeed, it represents one
elementary discrete step on how the information propagates
(shifts) from one node to its neighbors. In classical signal
processing, i.e., the case where the graph structure is a cyclic
graph, the information flow is unidirectional, i.e., from each
node to only its next neighbor. In a more complicated graph
structure, the information flow will neither be restricted to
unidirectional structure nor to a limited number of physical
neighbors but depend on the graph adjacency matrix. There-
fore, the notion of shift operator on graph must be clarified.

1) Graph shift: In [3], the notion of shift operator is defined
as a local operation that replaces a signal value at each node
of a graph with the linear combination of the signal values
at the neighbors of that node. Shift operator is a fundamental
element in digital signal processing. Specifically, for a shift
operator Φ and a graph signal x, the one-step shifted version
of the graph signal, which is a new graph signal, is Φx. And
the n-step shifted version of the signal is Φnx.

2) Graph signal state change: A graph shift operator is a
linear operator such that when it applies to a graph signal xn
at state (or time) n, it changes the graph signal into a new

graph signal xn+1 at step n+ 1. We use the index n to show
the state of the graph signal. Equivalently, when a graph shift
operator is applied to a graph signal, the state of the original
graph signal is shifted to a new state by one unit of shift.

Note that this is similar to time series analysis, when a
signal x(t) is shifted in time by a certain amount T , y(t) =
x(t − T ), the signal x(·) at time-state t − T will be mapped
to y(·) at time-state t. The state of the signal at a certain time
stamp is updated by the shift operator. Similarly, we defined
the (n+1)-th state of the vector of the graph signal, i.e., xn, as
the n-th shifted version of x0. For instance, when the graph
shift operator applies to a graph signal at state n, i.e., xn,
and it changes the graph signal to xn+1. More specifically,
xn+1 = Φxn.

Also note that in time series analysis, a time shift corre-
sponds to a local shift in the cyclic graph. For a general graph
shift, there is no such straightforward relationship.

3) Graph signal filtering: A linear filtering is defined by
a matrix operation on the graph signal such that the result is
also a graph signal. If we define the filter matrix as H, the
filtered graph signal can be written as Hx. We will show later
that if the filtering operation also satisfies the shift invariance
property, the filter can be written as a polynomial of the
new graph shift operator and the filter operation is indeed a
modification of the amplitudes of existing signal frequency
components, as in classical signal processing.

C. The New Graph Shift Operator

We now define a set of energy-preserving shift operators
for an arbitrary graph structure.

Definition : Given the adjacency matrix A for an arbitrary
graph, assume that it is diagonalizable and its eigen decompo-
sition is A = VΛV−1 =

∑N
i=1 λiviṽ

T
i =

∑N
i=1 λiV̂i, where

V = [v1 v2 · · · vN ] and (V−1)T = [ṽ1 ṽ2 · · · ṽN ], and vi
and ṽi are N × 1 column vectors of V and (V−1)T , respec-
tively. We define the matrix Aφ = VΛφV

−1 =
∑N
i=1 λφiV̂i

to be the shift operator with

Λφ = diag(λφ1
, λφ2

, · · · , λφN ), (3)

where λφk = ejφk , φk is an arbitrary phase in [0, 2π] where
φk 6= φl for k 6= l, |Λφ| = I, | · | is defined as the point-wise
absolute value operator. Thus,

A = VΛV−1 = VΛhΛφV
−1

= VΛhV
−1VΛφV

−1

= AhAφ = AφAh, (4)

where Λh = ΛΛ−1φ and Ah = VΛhV
−1. In essence, the shift

operator Aφ preserves all the eigenvectors of the adjacency
matrix A, but replaces all the eigenvalues of A with pure
phase shifts.

Definition: We further define a special new shift operator
as

Ae = VΛeV
−1, λekλ

∗
el

= e−j
2π(k−l)

N ,∀k, l = 1, · · · , N,
(5)
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where Λe = diag(λe1 , λe2 , · · · , λeN ). One can write

λek = ej(φconst+
−2π(k−1)

N ), (6)

where φconst can be any arbitrary constant phase shift. Without
loss of generality, we will assume φconst = 0 in the rest of this
paper. The shift operator Ae and Aφ satisfies the following
properties:

Property 1: ‖(Ak
φx)F‖2 = ‖xF‖2, where xF is frequency

representation of graph signal defined by xF = V−1x.

Proof. Note that k-th shifted version of the graph signal in
the Fourier domain is

(Ak
φx)F = V−1Ak

φx = V−1(VΛk
φV
−1)x = Λk

φxF . (7)

Thus its energy

‖(Ak
φx)F‖22 = ||Λk

φxF ||22 = (Λk
φxF )HΛk

φxF = ‖xF‖2 ,
(8)

i.e., the energy of the graph signal in the frequency domain
for any amount of shift is constant.

Note that for a unitary graph Fourier operator, V−1 = VH ,
then ‖xF‖2 = ‖x‖2. The new graph operator Aφ of an
undirected graph has such property since A is symmetric. We
will further discuss the general graph Fourier transform and
its energy-preserving in next subsection.

Property 2: AN
e x = x.

The first property is energy-preserving. The second property
specific for Ae is consistent with classic signal processing for
an important phase shift property of the shift operator.

Property 1 is of great importance in frequency domain graph
signals filtering. From (7) and (8), it can be seen that if the
modulus of the eigenvalues of the shift operator is not 1, the
frequency components with small eigenvalues will disappear
after several shifts. Indeed, only the frequency component
with the largest eigenvalue will remain after many shifts.
This is apparently undesirable. Property 1 implies that the
new energy-preserving graph shift operator will preserve the
energy of all frequency components. Moreover, as will be
discussed later in this paper, linear shift invariant graph filter
is defined by a polynomial of the graph shift operator, i.e.,
H =

∑L−1
k=0 hkAe

k, where the following properties hold true:
- Shift operator does not change the energy of the signal

in the frequency domain. It only changes the phases of its
frequency components

- Filter coefficients can modify the energy contents of the
graph signal in the frequency domain.

We will see additional important property of Ae in filtering
and spectral analysis in later sections.

We note that our definition of the graph shift operator brings
us the benefit to express the filtering operations in a more com-
pact and meaningful form, similar to their counterparts in clas-
sical signal processing. For the choice of λek = e−j

2π(k−1)
N ,

the shift operator Ae may not be sparse. Also Ae(i, j) may
not be real-valued. Therefore, a large memory may be needed
to save the corresponding operator and conduct the filtering
operation in the shift domain. We note that such large memory
may not be necessary if the filtering operation is conducted in

the Fourier domain. We will also show that an LSI filter with a
non-sparse shift operator may be represented by a polynomial
of a sparse graph operator and thus has efficient shift domain
implementation.

Remark: Most of existing shift operators in the literature
do not satisfy the energy-preserving property. For instance, in
[2], the graph shift operator is the adjacency matrix A of the
graph. When such a shift operator applies to a graph signal, the
energy content of the graph signal changes. To show this, note
that A = VΛV−1. Applying the graph shift operator n times
to the graph signal x results in xn = Anx = VΛnV−1x.
Since the magnitude of the diagonal elements of Λ in general
are not equal to 1, as n becomes larger, some of the eigen-
values of Λn grow exponentially and the other eigenvalues
approach zero. This means that the energy content of the signal
is not preserved.

We also note that there exist other definitions of the graph
shift operator in the literature such as 1

λmax(A)A as the
normalized graph shift matrix [3] where λmax(A) is the
maximum eigenvalue of A or Laplacian matrix based shift
operators [1], [21]. Not only do these shift operators not
preserve the energy, but also they actually filter the signals in
that they modify the relative strength of different eigenvectors
(frequency components). In [1], the translation on graph is
defined via generalized convolution with a delta centered at
vertex n. However, this translation operator aims to produce
a geometrically localized shift in the vertex domain and does
not preserve the energy. In [18], [20], a new isometric shift
operator has recently been introduced that satisfies the energy-
preserving property with a similar general expression. It is
indeed a special case of Aφ. Its eigenvalues are derived
from the eigenvalue of the graph Laplacian matrix. Note
that in our definition of graph shift operator, the eigenvalues
(phase shifts) are detached from the eigenvalues of the graph
adjacency matrix or Laplacian matrix and therefore are more
flexible to accommodate other properties such as property 2
above. We will further show that our new shift operators have
properties leading to computationally efficient spectral analysis
and filtering through the detailed formulations of graph Fourier
analysis in the next subsection.

D. Frequency Content of Graphs, Eigengraphs and Graph
Fourier Basis

Consider the graph adjacency matrix A and its eigenvalue
decomposition as A = VΛV−1, where Λ is a diagonal
matrix whose i-th diagonal element is the i-th eigenvalue of
A. Note that in this paper, we will always assume that A is
diagonalizable and eigenspaces have dimension equal to one
for simplicity.

In graph theory, the eigenvalues of the graph adjacency
matrix are called the spectrum of the graph [22].

1) Graph frequency content: Defining V =
[v1 v2 · · · vN ] and (V−1)T = [ṽ1 ṽ2 · · · ṽN ], where
vi and ṽi are N × 1 column vectors of V and (V−1)T ,
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respectively, one can show that

A = VΛV−1 =

N∑
i=1

λiviṽ
T
i =

N∑
i=1

λiV̂i. (9)

The rank one matrix V̂i = viṽ
T
i is called the i-th eigengraph,

and vi is the i-th frequency component, of A. Moreover, if
none of the elements of vi and ṽi are zero, the corresponding
eigengraph is a complete graph, meaning that all nodes are
connected to each other. However, the original graph that is a
linear combination of the eigengraphs, stated in (9), may not
be complete.

Remark: The eigengraphs of the graph shift operator Aφ are
the same as those of the adjacency matrix A by definition.

2) Eigengraph structure: To elaborate more on eigengraph
structures, let us define vi , [vi1 vi2 · · · viN ]T and ṽi ,
[ṽi1 ṽi2 · · · ṽiN ]T . The corresponding i-th eigengraph is given
by the rank one matrix

V̂i = viṽ
T
i =


vi1ṽi1 vi1ṽi2 · · · vi1ṽiN
vi2ṽi1 vi2ṽi2 · · · vi2ṽiN

...
...

. . .
...

viN ṽi1 viN ṽi2 · · · viN ṽiN

 , (10)

where V̂i(l,m) = vilṽim. The adjacency matrix of an eigen-
graph can be viewed as a signal/information transition matrix,
where the weight vilṽim is the transition weight from node
l to node m. For instance, the eigengraph of a three node
graph and the transition (bipartite) graph is shown in Fig. 3(a)
and Fig. 3(b). A more general N node eigengraph is shown
in Fig. 3(c). Note that for the i-th rank one eigengraph, the
outgoing weight of node l is vil and the incoming weight of
node m is ṽim, see Fig. 3(b). and Fig. 3(c). We note that in
these figures, wilm = vimṽil is the signal transition weight
from node l to node m.

Note that an eigengraph V̂i is a special graph such that
AV̂i = λiV̂i. Although an eigengraph is generally a complete
graph, a linear combination of the eigengraphs may not be
complete, as is evident for the cyclic graph.

3) Graph Fourier basis and Graph Fourier transform
(GFT): We refer to F = V−1 as the graph Fourier transform
(GFT) operator since its rows, span a basis to represent the
graph signal. The Fourier transform of a graph signal x is
xF = V−1x. Thus F−1 = V is the inverse graph Fourier
transform (IGFT) operator.

Note that the rows of F = V−1 are not orthogonal (unitary)
for a general shape graph. However, one can easily verify that
the vector space Spank{ṽk} of the columns of (V−1)T and
the vector space Spank{vk} of the columns of F−1 = V
construct a biorthogonal basis, i.e., ṽTl vm = δl−m. We further
note that the corresponding eigengraph of the i-th frequency
component is constructed by a pair of ṽi, vi meaning that
they are constructed by the Fourier basis of the graph. This
interpretation also confirms that the eigengraphs are the graph
structures of graph frequency components, in which one can
decompose a graph signal that is generated by the same graph
structure, on those Fourier bases without any loss.

For biorthogonal GFT, we further define a dual GFT: F̃ =

VH and an inverse dual GFT F̃−1 = V−H . As such, we
have the inner product preservation: 〈x,y〉 = 〈x̃F ,yF 〉, where
x̃F = F̃x = VHx.

Note that such biorthogonal transform satisfies the frame
theory [23]. More specifically, the energy of a graph signal in
the Fourier domain, i.e., ‖xF‖2 = ||V−1x||22, is bounded by

α‖x‖2 ≤ ‖xF‖2 ≤ β‖x‖2, (11)

where α = 1
||V−1||22

and β = ||V−1||22. In other words,

1

β
‖xF‖2 ≤ ‖x‖2 ≤

1

α
‖xF‖2. (12)

Furthermore, for unitary transform operator, i.e., V−1 = VH ,
α = β = 1. Therefore, such a transform preserves the
energy in both shift and transform domains. The graph shift
operator Aφ of an undirected graph has such property since
its adjacency matrix A is symmetric and the corresponding V
is unitary operator. Therefore Aφ for an undirected graph is a
unitary operator by construction.

The shift operator Aφ is a linear combination of eigen-
graphs. It may not be a local (sparse) operator, meaning that
most entries of this matrix may be non-zero. This means that
the complexity of applying Aφ to a graph signal of size N is
of order of O(N2). However, once the signal is transformed to
the Fourier domain, several other operations such as filtering
are computationally efficient, as will be discussed later in
section IV-B. Also, we will show in Theorem 3 that Aφ can
be represented as a polynomial of the adjacency matrix A in
certain condition and thus has efficient local implementation.

Remark: For a) the adjacency matrix of the undirected
graph, b) the combinatorial graph Laplacian, and c) the nor-
malized Laplacian matrix, the GFT matrix V is unitary and
the GFT becomes orthogonal.

4) Linear operator, projection operator and graph shift
operator: We note that a linear operator on a graph signal
can be defined as L such that if it applies to a graph signal
x, the result is also a graph signal y in which y = Lx. A
projection operator W satisfies

Wkx = Wx, for all k ∈ N. (13)

It can be shown that, eigengraph operator, i.e., V̂i, satisfy
this property and thus a projection operator. The eigengraph
operator V̂i represents the i-th basis for decomposition of the
graph adjacency matrix A. It means that, a graph structure,
i.e., the graph adjacency matrix, is composed of a linear
combination of n independent eigengraphs (as we assume that
all eigenvalues of A are distinct, thus eigenvectors are linearly
independent). Moreover, applying an eigengraph operator to
a graph signal will select the corresponding frequency com-
ponent of the graph signal. This operation is in accordance
with the classical signal processing interpretation of a filter
operation. More specifically, if a frequency selective filter
applies to a signal several times, it returns the same frequency
components of the signal similar to the case where the operator
applies once. By defining the V̂i as the i-th frequency compo-
nent of the graph, we interpret the λi in A =

∑N
i=1 λiV̂i as

the significance of the corresponding frequency component.
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We further note that, indeed the frequency interpretation of
time-series data comes from the linear cyclic graph structure
of the time series data.

We emphasize that, a graph shift operator should preserve
the frequency contents of a graph. Therefore, it should be
an equally weighted linear combination of the eigengraphs
with only phase shifts. In other words, Aφ =

∑N
i=1 αiV̂i,

where |αi| = 1. This left us with the choice that αi = ejφi ,
where 0 ≤ φi < 2π. We further note that, to have a graph
shift operator with independent eigengraph representation, we
assume that φi 6= φj , for all i 6= j. This result is in accordance
with the definition of graph shift operator as we defined earlier.

Example : Consider the directed cyclic graph with three
node as shown in Fig. 2. The adjacency matrix Acyclic of this
graph is given by

Acyclic =

0 0 1
1 0 0
0 1 0

=
1√
3

1 1 1

1 ej
2π1
3 ej

2π2
3

1 ej
2π2
3 ej

2π4
3


︸ ︷︷ ︸

V

·

e−j 2π0
3 0 0

0 e−j
2π1
3 0

0 0 e−j
2π2
3


︸ ︷︷ ︸

Λcyclic

· 1√
3

1 1 1

1 e−j
2π1
3 e−j

2π2
3

1 e−j
2π2
3 e−j

2π4
3


︸ ︷︷ ︸

V−1

,

(14)

where V−1 is the discrete Fourier (DFT) transform matrix.
The eigengraphs and the signal transition (bipartite) graphs
of the graph structure in Fig. 2 are shown in Fig. 3(a) and
Fig. 3(b)., where vil = e

2π(l−1)(i−1)
N , ṽim = e−

2π(m−1)(i−1)
N .

Also note that the Λcyclic is of the form of the special Λe

defined in (6) and the adjacency matrix Acyclic is exactly Ae.

b b b
1 1

1

node 1 node 3
node 2

Fig. 2. Directed cyclic graph with three nodes, vil = e
2π(l−1)(i−1)

N , ṽim =

e−
2π(m−1)(i−1)

N .

III. GRAPH FILTERS BASED ON THE NEW SHIFT
OPERATOR

In classical signal processing, filters are referred to operators
that apply on a signal as input, and produce another signal
as output. Filters can be categorized into different classes,
e.g., continues time or discrete time, linear and nonlinear,
time invariant and time-varying. The compatible category of
filter classes to graph signals is discrete time linear filters.
Linear filtering on graphs is represented by multiplying the
input signal vector x by a matrix H ∈ CN×N , called filter
matrix. The filtered output signal vector y = Hx. This filter
operates on graph signals similar to the shift operator, i.e.,
the filtered signal y at the i-th vertex is a linear combination
of the value of the original signal x. More specifically,
y(i) =

∑N
j=1 H(i, j)x(j).

A. Linear Shift Invariant Graph Filters

If we consider the shift operator on a graph to be Aφ, then
the linear shift invariant property (LSI) of filters is HAφx =
AφHx. Indeed, this property implies that, the filter and the
shift operator are commutable. It is straightforward to show
that the following theorem in [2], [3] still hold for a graph
LSI filter defined by shift operator Aφ.

Theorem 1. Every polynomial of a square matrix Aφ is a
graph LSI filter and every graph LSI filter is a polynomial of
a square matrix Aφ.

This theorem shows that every LSI graph filter is a polyno-
mial in the graph shift matrix, i.e.,

H = h(Aφ) =

L−1∑
k=0

hkAφ
k (15)

where hk is called the k-th tap of the graph filter and (L− 1)
is the order of the polynomial representation of the LSI filter.

We therefore can prove the following theorem:

Theorem 2. Any arbitrary adjacency matrix A is an LSI filter
under Aφ.

Proof. : We know from the definition of the graph shift
operator that A = AhAφ = AφAh, and hence the LSI filter
H = Ah.

Remark: Indeed, one can write A =
∑L−1
k=0 hkAφ

k. We
note that when the shift matrix is Ae, one can show that hk =∑N
l=1 e

j 2πkl
N λl, i.e., hk is the k-th coefficient of the IDFT of

the eigenvalue vector λ, where λl is the l-th eigenvalue of A.
This result allows us to compute the filter coefficients more
efficiently. Theorem 2 shows that the adjacency matrix A can
be decomposed into two parts. The first part is the energy-
preserving graph shift operator Aφ, i.e., frequency components
of a graph. The second part is the filtering part represented
by eigenvalues of the adjacency matrix, which changes the
amplitudes of the frequency components.

Theorem 3. The graph shift operator Aφ can be written as a
polynomial of the graph adjacency matrix A, if the eigenvalues
of A are all distinct.

Proof. See Appendix A.

Remark: The adjacency matrix A is often sparse (local).
We can design an LSI filter using Aφ since it has good
mathematical properties. We can then convert the LSI filter as
a polynomial of A such that it has an efficient graph domain
implementations. Note that using Aφ can have efficient in
graph frequency domain as we will discuss in section IV.

Example: Let us consider the discrete time circular con-
volution y[n] = h[n] ~ x[n] =

∑
m∈N x[m]h[n − m] in

classical signal processing for periodic time series data. Such
an operator can be cast into the matrix form y = Hx where
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i
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i-th bipartite equivalent graph for N nodes

b b b

b

b

(a) (b)

(c)

⇐ apply V̂i

vi2 vi3

ṽi2 ṽi3

vi1

ṽi1

vi2

ṽi2

vi3

ṽi3

viN

ṽiN

node 1

node 2 node 3

node 1 node 2 node 3

node N

node 1 node 2 node 3

node 1 node 2 node 3

node 1 node 2 node 3 node N

⇐ apply V̂i

Fig. 3. Eigengraph structure for a three node graph is shown in (a), where wi
lm = vimṽil is the signal transition weight from node l to node m. The

signal/information transition representation of the i-th eigengraph is shown in (b). In this figure, vil is the outgoing weight from node l and ṽim is the
incoming weight to node m. Such a weight distribution preserves the rank one property of the i-th eigengraph. Part (c) is the generalization of the signal
transition representation of the i-th eigengraph for an N node graph structure.

x and y are the input and output signal vectors, respectively.
The filter matrix H has the following Toeplitz form

H =


h[0] h[N − 1] h[N − 2] · · · h[1]
h[1] h[0] h[N − 1] · · · h[2]

...
...

...
. . .

...
h[N − 1] h[N − 2] · · · h[1] h[0]

 .

(16)
Note that, with a small abuse of notation, we will use hi in the
graph representation instead of h[i] in the classical signal pro-
cessing counterpart. Using some matrix calculation, one can
show that the filter matrix can be written as a polynomial of the
circulant adjacency matrix (2) as H = h(C) =

∑N−1
k=0 hkC

k.
Note that in the cyclic graph, the adjacency matrix is exactly
the Ae defined in (5), Ae = C. This means that the circular
convolution is equivalent to the LSI graph filtering based on
the graph representation of the periodic time series data. We
note that every Toeplitz graph filter matrix can be considered
as a linear time invariant filter for time series periodic data.

Example: Let us now consider filtering aperiodic time
series data in classical signal processing. We show that such a
filtering operation is also equivalent to the LSI graph filtering.
To show this, let us start with the traditional signal processing
filtering as y[n] = h[n] ∗ x[n] =

∑∞
m=−∞ x[m]h[n − m].

Without loss of generality, we assume that x[n] 6= 0, for
0 ≤ n ≤ N−1 and h[n] 6= 0, for 0 ≤ n ≤ L−1, and L < N .
Defining 01×L−1 , [0 0 · · · 0], x , [x[0] x[1] · · ·x[N −
1] 01×L−1]T and y , [y[0] y[1] · · · y[N + L − 1]]T ,
one can rewrite the filtering equation as y = Hx where

H(N+L−1)×(N+L−1) is defined in (17).

H(N+L−1)×(N+L−1) =
h[0] 0 0 · · · 0 · · · 0
h[1] h[0] 0 · · · 0 · · · 0
h[2] h[1] h[0] · · · 0 · · · 0

...
...

...
... · · ·

. . .
...

0 0 · · · · · · h[L− 1] · · · h[0]

 . (17)

The output of such a filtering operation, i.e., y = Hx, is
equivalent to that of the y = H̃x, where H̃ =

∑L−1
l=0 hlC

l.
Note that, in this example C is the (N+L−1)× (N+L−1)
circulant matrix defined in (2). One can easily show that H̃ can
be written as (18). This result shows that filtering aperiodic
discrete time signals by the filter operator H is equivalent to
filtering the zero-padded graph signal x by the graph filter
H̃. Note that convolution for aperiodic signals is equivalent to
circular convolution of the zero-padded periodic versions of
the input signal, and hence it is equivalent to graph filtering
where the graph filter is defined by the filter matrix H̃. More
specifically, let us consider the zero-padded periodic versions
of the aperiodic signal x[n] and filter h[n] as x̂[n] = x̂[n +
N + L] and ĥ[n] = ĥ[n+N + L] where

x̂[n]=

{
x[n] n = 0, 1, · · ·N − 1

0 n = N,N + 1, · · · , N + L− 1

ĥ[n]=

{
h[n] n = 0, 1, · · ·L− 1

0 n = L,L+ 1, · · · , N + L− 1
(19)

then, x[n] ∗ h[n] = x̂[n] ~ ĥ[n], for all n. Hence, filtering
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H̃(N+L−1)×(N+L−1)=


h[0] 0 0 · · · 0 h[L− 1] · · · h[2] h[1]
h[1] h[0] 0 · · · 0 0 h[L− 1] · · · h[2]
h[2] h[1] h[0] · · · 0 0 0 · · · h[3]

...
...

...
...

...
...

...
. . .

...
0 0 · · · · · · h[L− 1] h[L− 2] h[L− 3] · · · h[0]

 (18)

aperiodic time series data can be written as the graph LSI
filtering of the zero-padded graph signals.

Theorem 4. When LAφ
≤ L, for a LSI filter there exists an

equivalent form for the LSI filter in (15) as H = h̆(Aφ) =∑LAφ
−1

k=0 h̆kA
k
φ, where LAφ

is the degree of the minimal poly-
nomial of Aφ. Moreover, there exist a closed-form expression
for the filter taps h̆k as a function of hk.

Proof. See Appendix B for a constructive proof.

Finite/infinite impulse response (FIR/IIR) filters are certain
types of filters with great importance in classical signal
processing and have simple frequency domain interpretation.
We herein aim to bring those concepts to the graph signal
processing as GFIR and GIIR filters where G stands for graph
representation. As we have shown in Theorem 4, any LSI filter
can be written as a polynomial of the graph shift operator with
the maximum order of LAφ

− 1. We therefore can define the
GFIR and GIIR filters.

Definition : We define a GFIR filter to be H =∑L−1
k=0 hkAφ

k where L < LAφ
and a GIIR filter to be

H =
∑L−1
k=0 hkAφ

k where L = LAφ
.

B. Frequency domain interpretation of filtering

The derivation of the results presented earlier in this section
is in the time domain for time series data or the shift
domain for graph signals. One can also describe the filtering
process, equivalently, in the frequency domain obtained by the
Fourier transform operator. More specifically, if y = Hx is
the filtering operation in the time/shift domain, it can also
be represented in the frequency domain as yF = HFxF ,
where the subscript F stands for Fourier transformed versions
of the corresponding signals/filters. Note that we have used
yF = V−1y, xF = V−1x and HF = V−1HV. Note that
the filtering process Hx (matrix and vector multiplication) in
the shift domain has a simpler representation in the Fourier
domain as suggested by HFxF . To show this, we note that

HF =

L−1∑
k=0

hkΛφ
k

=


∑L−1
k=0 hk(λφ1

)k 0 · · · 0

0
∑L−1
k=0 hk(λφ2)k· · · 0

...
...

. . .
...

0 0 · · ·
∑L−1
k=0 hk(λφN )k

 (20)

Therefore, the filtering HFxF in the Fourier domain is a
simple point-wise multiplication. More specifically, y(m) =

∑N
n=1 H(m,n)x(n). However, yF (m) = HF (m,m) ×

xF (m).
Note that for Aφ,

HF (m,m) =

L−1∑
k=0

hk(λφm)k =

L−1∑
k=0

hk(ejφmk)

= HDTFT (ω|ω = φm), (21)

and for Ae, φm = − 2πm
N , and thus

HF (m,m) =

L−1∑
k=0

hk(λem)k

= HDTFT

(
ω
∣∣ω = −2πm

N

)
. (22)

Interestingly, with the new set of energy-preserving shift
operators Ae, the GFT coefficient of a LSI filter H can
be computed using L-tap discrete-time Fourier transforms
(DTFT).

We further note that, the filtering equation (20) is composed
of two components; the filter coefficients hk’s and the complex
exponentials λφi that are the eigenvalues of our defined graph
shift operator. Since the magnitude of λφi ’s are one, λkφi
does not change the magnitude of the k-th component of the
graph filter HF (i, i), i.e., hk(λφi)

k. This suggests that the
filter coefficients hk’s are the source of the change of the
k-th component of HF (i, i). In contrast, the magnitude of
the eigenvalues of arbitrary graph shift operators proposed
in the literature are not normalized to one. Thus, the role
of the filter coefficients (controlling the signal level/energy)
are diminished. It leads to a saturating filtering performance,
which is illustrated in the simulation section.

IV. CORRELATION FUNCTIONS OF GRAPH SIGNALS AND
OPTIMAL LSI GRAPH FILTERS

In this section, we assume that the structure of the graph
is known, meaning that the graph adjacency matrix A and
the related shift operator Aφ is given. Assuming that Aφ is
known, we aim to obtain the structure of the graph LSI filters
such that a certain set of constraints are satisfied. We discuss
several filter design problems in GSP in the sequel that arise
in classical signal processing.

A. Wiener Filter for Directed Cyclic Graph Data (Time Series)

We will first reformulate the time series signal Wiener filter
using GSP representation and then generalize it to arbitrary
graph signals. Consider the graph representation of the time
series data in Fig. 1. Assume that x is the graph signal and y is
a noisy measurement of the graph signal x: yi = xi+ni, where
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
yHy yHCy · · · yH(C)L−1y

yHCHy yHCHCy · · · yHCH(C)L−1y
...

...
. . .

...
yH(CL−1)Hy yH(CL−1)HCy · · · yH(CL−1)H(CL−1)y

h=


yHx

yHCHx
...

yH(CL−1)Hx

 . (27)

ni is i.i.d. zero mean white Gaussian noise. A conventional
question in denoising problems is to design an LSI filter
such that the residual error ‖Hy − x‖22 is minimum. Strictly
speaking, when x and y are given, we aim to solve the
following optimization problem

min
H
‖Hy − x‖22. (23)

Since H is shift invariant, it can be written as H =∑L−1
k=0 hlC

l, where C is defined earlier. Note that the filtered
signal can be rewritten as Hy =

∑L−1
k=0 hlC

ly = Bh where

BN×L = [y C1y · · ·CL−1y], h = [h0 h1 · · ·hL−1]T .
(24)

Rewrite (23) by replacing Hy by its equivalent Bh,

min
h
‖Bh− x‖22. (25)

Since L = LAφ
≤ N is the degree of minimal polynomial

of the graph shift matrix, we only consider the cases where
L ≤ N (Note that when N = L, the matrix B is full rank,
hence the solution to the optimization problem (25) can be
written as ho = B−1x). If L < N , the solution of least
square optimization problem (25) can be obtained by solving

BHBh = BHx, (26)

where H is the Hermitian operator. Such a solution has an
interesting interpretation for time series data as will be shown
in the sequel. We note that (26) can be written as

yH

yHCH

...
yH(CL−1)H

 [y Cy · · ·CL−1y]h =


yH

yHCH

...
yH(CL−1)H

x

or, equivalently, as (27). We note that the circulant matrix C
has the unitary property, i.e., (CH)kCk = I, ∀k. Moreover,
we claim that yH(Cl)Hy is the autocorrelation of the vector
y at lag l. To show this, we first note that Cly is the
circularly shifted version of the y by amount l. Defining the
autocorrelation function of y as

Ryy(l) ,
∑
n

yny
∗
n+l, (28)

one can easily show that

yH(Cl)HCmy = (Cl−my)Hy

=
∑
n

yny
∗
n+l−m = Ryy(l −m), (29)

where yk is the (k mod N)-th element of the vector y and ∗ is
the conjugation operator. We also define the cross-correlation

between the input and output vectors x and y, as

rxy(l) ,
∑
n∈N

xny
∗
n+l = yH(Cl)Hx. (30)

The linear equations (27) can hence be rewritten as

BHBh = Ryyh = rxy, (31)

i.e.,
Ryy(0) R∗yy(1) · · · R∗yy(L−1)
Ryy(1) Ryy(0) · · · R∗yy(L−2)

...
...

. . .
...

Ryy(L−1) Ryy(L−2) · · · Ryy(0)

h=


rxy(0)
rxy(1)

...
rxy(L−1)

 .

(32)

Eq. (32) is indeed the Wiener-Hopf equation. Note that Ryy

is a Toeplitz matrix.

Note that the LSI property of graph filters for time series
data leads to the Wiener filtering in the classic signal pro-
cessing. One can also compute the autocorrelation and cross-
correlation more efficiently as

Ryy(i, j) = Ryy(i− j)

= yHF (Λ∗)i−1Λj−1yF =

N∑
n=1

|yF (n)|2λj−in , (33)

rxy(i) = yHF (Λ∗)
i−1

xF =

N∑
n=1

y∗F (n)xF (n)(λ∗n)i−1,

(34)

which has lower computational complexity than calculating the
autocorrelation and the cross-correlation using the definition
directly. Note that yF = V−1y and xF = V−1x are the
Fourier (DFT) representations of the output and input signals,
respectively, and (ΛH)kΛk = I.

The optimal LSI filtering (27) also has power spectrum
representation, if L = N . Note that we can rewrite (33) in
matrix form as

Ryy = WλYFWH
λ , (35)

where Wλ is a Vandermonde matrix with Wλ(i, j) = (λ∗j )
i−1,

i.e.,

Wλ =


1 1 · · · 1
λ∗1 λ∗2 · · · λ∗N
...

...
...

...
(λ∗1)N−1 (λ∗2)N−1 · · · (λ∗N )N−1

 (36)

and

YF = diag(|yF (n)|2, n = 1, · · · , N). (37)
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
yHy yHAφy · · · yH(Aφ)L−1y

yHAH
φ y yHAH

φ Aφy · · · yHAH
φ (Aφ)L−1y

...
...

. . .
...

yH(AL−1
φ )Hy yH(AL−1

φ )HAφy · · · yH(AL−1
φ )H(AL−1

φ )y

h=


yHx

yHAH
φ x

...
yH(AL−1

φ )Hx

 . (43)

Given λi = e−j
2π(i−1)

N , it is easy to see that WH
λ =

√
NW,

where W is the DFT matrix. Then (31) becomes

NWHYFWh = rxy, (38)

i.e.,

Wh =
1

N
Y−1F Wrxy. (39)

Thus

hF =
1

N
Y−1F rxy,F . (40)

That is

hF (i) =
rxyF (i)

N |yF (i)|2
. (41)

Here the subscript F represents the DFT. This result is con-
sistent with the power spectrum interpretation in the classical
signal processing. Note that the property of Λe is a key for
the spectrum representation (41) to hold.

We will show that a similar structure exists for a general
LSI filter for a graph with special structures.

B. Correlation Functions and Optimal (Wiener) Filtering for
Arbitrary Graph Signals

Arbitrary graph signals may have complex structures, e.g.,
directed or undirected, weighted or un-weighted, etc. As we
defined the shift matrix to be the Aφ, we can construct a
general LSI filter as a polynomial of the shift matrix, i.e.,
H = h(Aφ) =

∑L−1
k=0 hkA

k
φ, where hk is the k-th filter tap.

We also define h , [h0 h1 · · ·hL−1]T as the vector of the
filter. Consider again the denoising problem (25) given by

min
h
‖Bnewh− x‖22, (42)

where Bnew = [y Aφy · · ·Aφ
L−1y] and the solution to such

a problem was obtained earlier. We proved that for the time
series graph, the optimal solution is the Wiener filter given by
(43). The Wiener filter structure depends on the availability of
the autocorrelation function of the output data y and the cross-
correlation of the input x and output y. For a general graph,
the autocorrelation and cross-correlation need to be defined on
a particular graph structure.

Definition : We define the autocorrelation function of the
signal y on an arbitrary graph with lags l and m, i.e., the
correlation between the shifted version with lag l, Al

φy, and
the shifted version with lag m, Am

φ y, as

RGyy(l,m) , yH(Al
φ)HAm

φ y

= yH(VΛl
φV
−1)H(VΛm

φ V−1)y

= (V−1y)H(Λ∗φ)lVHVΛm
φ V−1y. (44)

We also define the cross-correlation between the input vectors
x and the output vector y at lag l, as

rGxy(l) , yH(Al
φ)Hx

= yH(VΛl
φV
−1)Hx

= (V−1y)H(Λ∗φ)lVHx. (45)

As can be seen, the autocorrelation and the cross-correlation
on graphs are indeed the correlations between a graph signal
and a graph shifted signal, where a shift is defined by the
graph shift operator.

The linear equations (43) can hence be rewritten as

RG
yyh = rGxy, (46)

i.e.,
RG

yy(0, 0) RG
yy(0, 1) · · · RG

yy(0, L− 1)
RG

yy(1, 0) RG
yy(1, 1) · · · RG

yy(1, L− 2)
...

...
. . .

...
RG

yy(L− 1, 0) RG
yy(L− 1, 1) · · · RG

yy(L− 1, L− 1)

h

=


rGxy(0)
rGxy(1)

...
rGxy(L− 1)

 , (47)

which can be considered the Wiener-Hopf equation for graph
signals. Note that the autocorrelation matrix RG

yy is generally
not a Toeplitz matrix for a directed graph.

We note that, a typical graph can have a large number
of nodes, meaning that the size of the Aφ matrix is large.
The optimal filtering (47) needs the autocorrelation and cross-
correlation functions. Since the computational complexity of
calculating these functions are high (see the definition of
the functions and the large multiplications of matrices), it is
desirable to obtain the autocorrelation and cross-correlation
functions in (47), using similar equations as (33) and (34). To
do so, let us consider Aφ = VΛφV

−1, where

Λφ =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
. . . · · ·

...
0 0 · · · λN−1 0
0 0 0 · · · λN

 . (48)

Now if V is unitary, i.e., VH = V−1, true for all undirected
graphs with real-valued A and the cyclic graph, then Aφ is
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also unitary and we have

RG
yy(i, j) = RGyy(i− 1, j − 1)

=

N∑
n=1

y∗F (n)yF (n)(λ∗n)i−1λj−1n

=

N∑
n=1

y∗F (n)yF (n)(λ∗n)i−1λj−1n

=

N∑
n=1

|yF (n)|2λj−in , (49)

rGxy(i) = rGxy(i− 1) =

N∑
n=1

y∗F (n)xF (n)(λ∗n)
i−1

. (50)

Also note that, since λ∗nλn = 1 for Aφ,

(λ∗n)iλjn = λj−in = (λ∗n)i−j . (51)

Now the autocorrelation matrix RG
yy is now a Toeplitz

matrix and the solution to (46) becomes similar to the Wiener
filter for time series data. And we can get similar equations
as (35):

RG
yy = WλYFWH

λ , (52)

where Wλ is a Vandermonde matrix with Wλ(i, j) = (λ∗j )
i−1,

defined in (36), and YF = diag(|yF (n)|2, n = 1, · · · , N).
Now if we use the new shift operator Ae, where λi =

e−j
2π(i−1)

N , we also have WH
λ =

√
NW, where W is the

DFT matrix . Then (46) becomes

NWHYFWh = rxy. (53)

Thus

hDFT =
1

N
Y−1F rxy,DFT . (54)

That is

hDFT (i) =
rxy,DFT (i)

N |yF (i)|2
, (55)

where hDFT = Wh, xyDFT = Wxy, and yF = V−1y.
Note that the subscript DFT represents ordinary DFT and
the subscript F represents the GFT.

Remark: The simple closed-form power spectrum solution
(55) of optimal graph Wiener filter only holds under two
conditions: (i) The matrix V consisting of eigenvectors of
graph adjacency matrix is unitary. All undirected graphs satisfy
this condition. Some directed graphs such as the cyclic graph
also satisfy this condition. Note that the autocorrelation matrix
Ryy is a Toeplitz matrix with this condition. (ii) The new shift
operator Ae is applied. Any other graph shift operator does
not lead to such efficient solution for the filtering problem such
as (42). This is a major difference between our shift operator
(3) and the shift operator proposed by [18]–[20].

For general directed graphs, the optimal filtering solution
can only be obtained by solving the general graph Wiener-
Hopf equation (47).

Note that a graph can represent an intrinsic network cor-
relation structure that is a sophisticated generalization of a
linear time shift correlation structure in classical signal pro-

cessing. However, it is non-trivial to transfer all the classical
signal processing results on a linear time shift to a complex
graph correlation structure. The new definition of auto/cross-
correlation and graph Wiener filtering are our efforts to de-
velop graph signal processing tools in parallel to classical
signal processing, and are also a major contribution of this
paper.

V. SIMULATIONS

Fig. 4 shows a random deployment of 20 sensor nodes
in a two-dimensional area. The coordinates of each node is
randomly generated in a square area, where x and y limits
are in [0, 1]. To construct an undirected graph, the 6 nearest
neighbor rule is used – each node is connected to 6 of its
nearest neighbors. The graph adjacency matrix of this random
sensor network can be obtained from the connection between
the nodes. We assign the weight 1 for each connection for
simplicity. We plot the eigenvalues of the graph adjacency
matrix in Fig. 5. The eigenvalues of the graph adjacency matrix
are real-valued since the graph is undirected.

Fig. 4. Random sensor network with 20 nodes (undirected graph).
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Fig. 5. Eigenvalues of the graph adjacency matrix (undirected graph).
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We now define a K-sparse graph signal, x, whose Fourier
representation has K-nonzero values. That means x has K-
nonzero component in the Fourier domain, i.e., xF = V−1x
has K-nonzero components. To generate a K-sparse graph
signal, we randomly generate an N × 1 vector whose first
K components are generated from a Gaussian (this can be
generated from any distributional function) and the rest of its
elements are zero. For instance, we generate a graph signal in
the Fourier domain as x = [−0.296 − 1.497 − 0.905 −
0.404 − 0.726 − 0.866 − 0.423 − 0.943 1.3419 −
0.989 0 0 0 0 0 0 0 0 0 0]T . Note that the energies of the
graph signal in both shift and Fourier domains are equal to
8.32 (||x||22 = ||xF ||22) for this undirected graph.

We plot the energy of the shifted versions of this graph
signal in Fig. 6 for two alternatives of graph shift operators;
graph adjacency matrix A and normalized graph shift matrix
(defined in [3]), Anorm = A

λmax(A) , where λmax(A) is the
eigenvalue with the largest magnitude. Note that AN

normx =
VΛN

normV−1x, where N is the number of shifts. When the
graph adjacency matrix A is used as shift operator, note that
some of its eigenvalues are larger than one. After several
shifts, the energy of frequency components corresponding to
those eigenvalues larger than one become larger and larger,
and those components will dominate the energy of the shifted
graph signal. Therefore, the signal energy in the frequency
domain increases as the number of shift increases. On the
other hand, when the normalized graph shift matrix is used as
the shift operator, none of the eigenvalues are larger than one.
The energy of frequency components corresponding to those
eigenvalues smaller than one are diminishing with increasing
number of shifts. The energy of frequency components with
eigenvalue equal to one will remain. Therefore, overall the
signal energy in the frequency domain decreases as the number
of shift increases. Note that our defined shift operator Aφ does
not change the energy of the graph signal both in shift and
Fourier domain for any amounts of shifts.

Fig. 7 illustrates a random sensor network with asymmetric
graph adjacency matrix, i.e., a directed graph. To construct
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Fig. 6. Energy of a 10-sparse random signal in the Fourier domain for different
shift amounts (the graph structure is undirected). Note that the signal energy
using the new shift operator is constant in this case.

this graph, we randomly sample the graph adjacency matrix
of the undirected graph presented in the previous example. We
further plotted the magnitude of the eigenvalues of the graph
adjacency matrix in Fig. 8 (since eigenvalues are generally
complex numbers for directed graphs adjacency matrix).

Fig. 9 shows the energy of a 10-sparse random signal for
different amounts of shift when the graph structure is directed.
The signal energy in the Fourier domain is a fixed number, i.e.,
8.32. Note that we use our defined graph shift operator in this
example to illustrate the difference between the energy of the
shifted signal in shift and Fourier domains. To be consistent,
we use the same graph signal in the undirected graph example
presented earlier in this section. Fig. 9 demonstrates that the
energy of the graph signal in the Fourier domain is a fix
number while in the shift domain is oscillating. Since Fourier
operator for a general directed graph is not unitary, the energy
of the graph signal in the shift and Fourier domains are
different. We can show the oscillating behavior of energy of
the shifted graph signal xk in the shift domain as

‖xk‖22 = ‖Ak
ex‖22 = ‖VΛk

exF‖22 =

∥∥∥∥∥
N∑
l=1

λkelxF (l)vl

∥∥∥∥∥
2

2

=

∥∥∥∥∥
N∑
l=1

λkel v̂l

∥∥∥∥∥
2

2

=

N∑
l=1

N∑
m=1

(e−j
2π(m−l)k

N )v̂Hl v̂m, (56)

where v̂l = xF (l)vl. Note that, the energy of the shifted
graph signal in the shift domain is a linear combination of
constant terms v̂Hl v̂m where the weights are complex-valued
and functions of k (the number of shifts). Changing k leads
to the variability of the energy in the shift domain. We can
apply the frame theory results on frame bounds [23] to obtain
a lower and an upper bound for the energy in the shift domain,
as shown in (11). We further note that our shift operator Ae,
although it does not preserve the energy in the shift domain for
all amounts of shifts, it preserves the energy in the shift domain
for integer multiples of N since AlN

e = (AN
e )l = (I)l = I.

Fig. 7. Directed sensor network with 20 nodes.

Figs. 10 and 11 show the percentage of the reconstruction
error for the Wiener filtering problem (42), for two different
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Fig. 8. Magnitude of the eigenvalues of the graph adjacency matrix (directed
graph).
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Fig. 9. Energy of a 10-sparse random signal in shift and Fourier domain
using our defined graph shift operator (directed graph).

sets of noisy measurements namely; random i.i.d. Gaussian
noises with variances σ2

n = 1 and σ2
n = 100. The dataset

considered in this example contains the average temperatures
of 40 US states capitals. The graph signal xt is a 40×1 vector
and t ∈ {1, 2, · · · ,M} for a horizon of M = 264 consecutive
days in 2015, and we consider the noisy measurements of
those graph signals as yt = xt + nt. For the two scenarios
considered here, we define the ratio of the average power of
signals of all nodes and the noise variance as signal-to-noise-
ratio (SNR). The SNR of the first scenario (where the noise
variance σ2

n = 1) and the second scenario (where the noise
variance σ2

n = 100) are 35.66 dB and 15.66 dB, respectively.
The average percentage of the reconstruction error is defined

as 1
M

∑M
t=1

||xt−Ho
tyt||

||xt|| , where Ho
t is the optimal graph filter

obtained by the optimization problem (42). We consider three
different approaches to construct the graph, i.e., the k-nearest
neighbor method with k = 9 [3], the exponentially distance-
based weighted graph adjacency considered by [3], and the
empirical covariance-based graph construction introduced in
[24]. In all cases, the reconstruction error of Wiener filtering

using our shift operator is much lower than the traditional
adjacency-based operators.

The source of errors comes from the following facts. For
large values of L (the number of filter coefficients), the
polynomial representation of the LSI filter H =

∑L
l=0 hlA

l

dominates only the frequency components that have the largest
eigenvalues of A. More specifically, adding further coefficients
to the filter, does not improve the performance of the Wiener
filtering since the frequency components corresponding to
small eigenvalues are indistinguishable from the noise. This
effect can be explained by Fig. 12 where we plot the eigen-
values of the graph adjacency matrix of the weather graph.
We can observe that the magnitude of eigenvalues of the
graph adjacency matrix are not equal to one. Therefore,
the performance of the filtering is dominated by the largest
eigenvalue(s) of A, i.e., adding further coefficients leads to
diminishing all eigenvalues (and the corresponding Fourier
basis) less than λmax(A); thereby saturating the performance
of the optimal filtering.

We further observe that after almost adding 15 taps (10
taps) when the noise variance is σ2

n = 1, the performance
of the adjacency-based approaches is saturated. Note that this
number is specific to this example and for different simulation
setups this saturating effect may be observed at a different
location depending on the magnitudes of the eigenvalues of
the graph adjacency matrix A. However, if we use our new
graph shift operator, adding more coefficients will improve
the performance of the filtering operation as it allows us to
use more coefficients to reduce the reconstruction error while
keeping all frequency components of the graph. Moreover, the
cyclic property of our defined graph shift operator, i.e., AN

e =
I ensures that an LSI filter that uses Ae as a shift operator
needs at most N filter taps to achieve its best performance,
while there is no limit on the number of filter taps if other
shift operators are used. This signifies the importance of our
defined shift operator which offers low complexity (a need
for less filter taps to achieve a predefined performance level)
and high accuracy. Furthermore, Figs. 10 and 11 also show
that, when the noise variance is larger, the performance of
Wiener filtering will be affected and the percentage of the
reconstruction error becomes larger, as we expect. One more
important note is that for the case where the noise variance
σ2
n = 100, a noise level comparable to the level of the graph

signal, we observe that the performance of Wiener filtering for
the traditional adjacency-based operators saturates at earlier
number of filter taps than the case where the noise variance is
σ2
n = 1. This shows that the performance of Wiener filtering

is noise-level dependent for the traditional adjacency-based
operators, while the performance of the Wiener filtering using
the new shift operator is not noise level dependent.
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Fig. 10. Average reconstruction error for the Wiener filtering problem (42),
where the SNR is 35.66 dB (the noise variance σ2

n = 1).
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Fig. 11. Average reconstruction error for the Wiener filtering problem (42),
where the SNR is 15.66 dB (the noise variance σ2

n = 100).
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Fig. 12. Eigenvalues of the graph adjacency matrix of the weather network.

VI. CONCLUSIONS

In this paper, we define a new set of shift operators for
graph signals satisfying the energy-preserving properties as in

classical signal processing by resetting the eigenvalues of the
adjacency matrix or the Laplacian matrix flexibly. We show
that such shift operators preserve the energy content of the
graph signal in both shift and frequency domains. We further
investigate the properties of LSI graph filters and show that
any LSI filter can be written as a polynomial of the graph
shift operator. We then categorize the LSI filters as GFIR and
GIIR filters, similar to the classical FIR and IIR filters and
obtain explicit forms for such filters. Based on these energy-
preserving shift operators, we further define autocorrelation
and cross-correlation functions of signals on the graph. We
then obtain the structure of the optimal LSI graph filters, i.e.,
Wiener filtering, through the construction of the Wiener-Hopf
equation on graph. We show that only with the proposed graph
shift operator, we can possibly obtain the efficient spectra
analysis and frequency domain filtering in parallel with those
in classical signal processing. Several illustrative simulations
are presented to validate the performance of designed optimal
LSI filters.

Our new shift operator based GSP framework enables the
signal analysis along a correlation structure defined by a
graph shift manifold as opposed to classical signal processing
operating on the assumption of the correlation structure with
a linear time shift manifold.
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APPENDIX

A. Proof of Theorem 3

Let us assume that Aφ can be represented as a polynomial
of A, i.e.,

Aφ =

N−1∑
k=0

gkA
k. (A.1)

Since the Fourier basis of A and Aφ are the same by the defi-
nition, we can diagonalize the two operator by multiplying V
and V−1 to the two operator form right and left, respectively.
Therefore, we can write

Λφ =

N−1∑
k=0

gkΛ
k. (A.2)

This equation can also be written as a linear matrix equation
as 

1 λ1 λ21 · · · λN−11

1 λ2 λ22 · · · λN−12
...

...
...

. . .
...

1 λN λ2N · · · λN−1N


︸ ︷︷ ︸

Z


g0
g1
...

gN−1

 =


λφ1

λφ2

...
λφN

 ,

(A.3)

or more compactly, as

Zg = λφ (A.4)
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where g = [g0 g1 · · · gN−1]T and λ = [λφ1
λφ2
· · · λφN ]T .

We note that, Z is the well-known Vandermonde matrix and
has full-rank iff λi 6= λj , for i, j ∈ {1, 2, · · · , N}. Therefore,
if Z is full-rank, then the linear equation (A.4) has a unique
solution g = Z−1λ (We emphasize that, there exists efficient
recursive algorithms for obtaining the inverse of Vandermonde
matrices with low computational complexity). This completes
the proof.

B. Proof of Theorem 4

The minimal polynomial of an N × N matrix Aφ is
defined by a polynomial with minimum degree that satisfies
p(Aφ) =

∑LAφ

i=0 αiA
i
φ = 0N×N . Note that for the degenerate

case where Aφ is not full-rank, LAφ
6= N . Without loss of

generality, we assume that αLAφ
= 1. In order to obtain the

other αi’s, we first note that
∑LAφ

−1
i=0 αiA

i
φ = −A

LAφ

φ . We
then write the diagonalized version of this equation as

LAφ
−1∑

i=0

αiΛ
i
φ = −Λ

LAφ

φ . (A.5)

One can write this equation in a matrix form as
1 λφ1

λ2φ1
· · · λ

LAφ
−1

φ1

1 λφ2
λ2φ2

· · · λ
LAφ

−1
φ2

...
...

...
. . .

...

1 λφLAφ
λ2φLAφ

· · · λ
LAφ

−1
φLAφ


︸ ︷︷ ︸

Z̃


α0

α1

...
αLAφ

−1

= −


λ
LAφ

φ1

λ
LAφ

φ2

...

λ
LAφ

φLAφ
−1

 ,

(A.6)

or in a more compact form Z̃α = λ̃φ, where α =

[α0 α1 · · · αN−1]T and λ̃φ = −[λ
LAφ

φ1
λ
LAφ

φ2
· · · λ

LAφ

φLAφ

]T .

The solution to the α’s can be easily obtained as α = Z̃−1λ̃φ.
We also note that for the special Ae, we choose λek =

e−j
2π(k−1)

N , ∀k ∈ {1, · · · , N}, if A is full-rank, otherwise

we choose λek = e
−j 2π(k−1)

LAe . We therefore obtain the closed-

form solution for the α as αk = −
∑N
l=1 e

j
2π(k−1)
LAe λ

LAe
el . That

is α0 = −1 and αl = 0 for l 6= 0. This is also straightforward
since λLAe

ek = 1,∀k, i.e., i.e., A
LAe
e = I.

Once we obtain αk, we can write A
LAφ

φ =

−
∑LAφ

−1
i=0 αiA

i
φ.

Now consider an LSI filter with length L = LAφ
+ 1 as

H =
∑L
k=0 hkAφ

k. Using the results obtained earlier, we can
rewrite this LSI filter as

H =

LAφ∑
k=0

hkAφ
k =

LAφ
−1∑

k=0

hkAφ
k + hLAφ

Aφ
LAφ

=

LAφ
−1∑

k=0

hkAφ
k + hLAφ

(−
LAφ

−1∑
k=0

αkA
k
φ)

=

LAφ
−1∑

k=0

(hk − hLAφ
αk)Aφ

k =

LAφ
−1∑

k=0

h̆kA
k
φ. (A.7)

This procedure can be repeated for any arbitrary L > LAφ
+1.

Therefore, we only consider LSI graph filters with LAφ
filter

taps and we interchangeably use L instead of LAφ
.

We finally note that, for the special case A
LAφ
e = I,

meaning that if k > LAφ
, then Ak

e = Am
e where m = (k

mod LAφ
).
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