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Abstract

In this paper, the Gaussian quasi likelihood ratio test (GQLRT) for non-Bayesian binary hypothesis

testing is generalized by applying a transform to the probability distribution of the data. The proposed

generalization, called measure-transformed GQLRT (MT-GQLRT), selects a Gaussian probability model

that best empirically fits a transformed probability measure of the data. By judicious choice of the

transform we show that, unlike the GQLRT, the proposed test is resilient to outliers and involves higher-

order statistical moments leading to significant mitigation of the model mismatch effect on the decision

performance. A Bayesian extension of the proposed MT-GQLRT is also developed that is based on

selection of a Gaussian probability model that best empirically fits a transformed conditional probability

distribution of the data. The non-Bayesian and Bayesian MT-GQLRTs are applied to signal detection

and classification, in simulation examples that illustrate their advantages over the standard GQLRT and

other robust alternatives.

Index Terms

Hypothesis testing, higher-order statistics, probability measure transform, robust statistics, signal

detection, signal classification.

I. INTRODUCTION

Classical binary hypothesis testing deals with deciding between two hypotheses based on a sequence

of multivariate samples from an underlying probability distribution that is equal to one of two known

probability measures [1]. When the probability distributions under each hypothesis are correctly specified
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the likelihood ratio test (LRT), which is the most powerful test for a given size1 [2], can be implemented.

In many practical scenarios the probability distributions are only partially known, and therefore, one must

resort to suboptimal tests that utilize partial statistical information.

A popular suboptimal test of this kind is the Gaussian quasi LRT (GQLRT) [3]–[8] which assumes that

the samples obey Gaussian distributions under each hypothesis. The GQLRT operates by selecting the

Gaussian probability model that best empirically fits the data. When the observations are i.i.d. this selection

is carried out by comparing the empirical Kullback-Leibler divergences [9] between the underlying

probability distribution and the assumed normal probability measures. The GQLRT has gained popularity

due to its implementation simplicity, ease of performance analysis, and its geometrical interpretations

that arise from the convenient Gaussian model. Despite the model mismatch, introduced by the normality

assumption, the GQLRT has the appealing property of consistency when the mean vectors and covariance

matrices are correctly specified and identifiable over the considered hypotheses [6]. However, in some

circumstances, such as for certain types of non-Gaussian data, large deviation from normality can inflict

poor decision performance. This can occur when the first and second-order statistical moments are weakly

identifiable over the considered hypotheses, or in the case of heavy-tailed data when the non-robust sample

mean and covariance provide poor estimates in the presence of outliers.

To overcome these limitations, several alternatives have been proposed in the literature. One straight-

forward approach is a non-Gaussian quasi LRT (NGQLRT) that involves more complex distributional

models, e.g., elliptical, at the possible expense of increased implementation complexity, cumbersome

performance analysis, and degraded performance under nominal Gaussian data. For example, by assuming

Laplace distributed observations the NGQLRT for weak DC signal detection in additive i.i.d. noise is

the well established sign detector [10], [11]. Although the sign detector is more resilient against heavy-

tailed noise outliers as compared to the GQLRT, it has considerably poor performance when the noise

is Gaussian [10]. Another approach is based on higher-order cumulants [12], [13] that may improve

identifiability. However, unlike the first and second-order cumulants, used in the GQLRT, these quantities

involve complicated tensor analysis [14]. Additionally, their empirical estimates are highly non-robust to

outliers and have increased computational and sample complexity.

In this paper, a robust generalization of the GQLRT is proposed that operates by selecting a Gaussian

probability model that has the best empirical fit to a transformed probability distribution of the data. Under

the proposed generalization, outlier-resilient tests can be obtained that involve higher-order statistical

moments, and yet have the computational and implementation advantages of the standard GQLRT.

1In other words, the LRT attains the maximum detection probability (power) for a fixed false alarm rate (size).
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This generalization, called the measure-transformed GQLRT (MT-GQLRT), is based on the measure

transformation framework that was recently applied to canonical correlation analysis [15], [16], multiple

signal classification (MUSIC) [17], [18] and parameter estimation [19], [20].

The considered measure transform is structured by a non-negative function, called the MT-function,

and maps the probability distribution into a set of new probability measures on the observation space. By

modifying the MT-function, classes of measure transformations can be obtained that have different useful

properties that mitigate the model mismatch effect on the decision performance. Under the considered

transform we redefine the measure-transformed (MT) mean vector and covariance matrix and show their

relation to higher-order statistical moments. Furthermore, we reformulate the empirical estimates of the

MT-mean and MT-covariance and restate the conditions on the MT-function for strong consistency and

robustness to outliers. These quantities are then used to construct the proposed MT-GQLRT.

Similarly to the GQLRT, the proposed MT-GQLRT compares the empirical Kullback-Leibler diver-

gences between probability distributions. The difference is that the MT-GQLRT compares the Kullback-

Leibler divergences between the transformed probability distribution of the data and two normal prob-

ability measures that are characterized by the MT-mean vector and MT-covariance matrix under each

hypothesis. Under some mild regularity conditions we show that the MT-GQLRT is consistent and its

corresponding test statistic is asymptotically normal. Furthermore, given two training sequences from

the probability distribution under each hypothesis, a data-driven procedure for optimal selection of the

MT-function within some parametric class of functions is developed that maximizes an empirical estimate

of the asymptotic power given a fixed empirical asymptotic size.

The proposed MT-GQLRT has the following properties that motivate its use: 1) Similarly to the standard

GQLRT, the test-statistic of the proposed test has a simple closed-form expression that only involves mean

vectors and covariance matrices. 2) For any non-constant analytic MT-function, the MT-mean vectors and

MT-covariance matrices, comprising the test-statistic of the proposed MT-GQLRT, involve higher-order

statistical moments. This can significantly improve the decision performance, comparing to the standard

GQLRT, when the first and second-order statistical moments are weakly identifiable over the considered

hypotheses. 3) Under some mild regularity conditions on the MT-function, we show that the empirical MT-

mean and MT-covariance, comprising the test-statistic of the MT-GQLRT, are robust against outliers. This

property can significantly improve the decision performance in the presence of heavy-tailed noise. 4) The

performance analysis of the proposed test is tractable, which enables derivation of simple procedures for

threshold determination and optimization of the MT-function parameters.

We go on to introduce a Bayesian extension of the proposed MT-GQLRT to mitigate the sensitivity
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of the standard Bayesian GQLRT [21]–[24] to model mismatch. Similarly to the non-Bayesian case,

the Bayesian MT-GQLRT compares the empirical Kullback-Leibler divergences between a transformed

conditional probability distribution of the data and two normal probability measures that are characterized

by the MT-mean vector and MT-covariance matrix conditioned on each hypothesis. Like the non-Bayesian

MT-GQLRT, the Bayesian MT-GQLRT can gain robustness against outliers under the same conditions

on the MT-function and its corresponding test-statistic is asymptotically normal. Furthermore, given two

training sequences from the conditional probability distribution of each hypothesis, optimal selection of

a parametric MT-function and the threshold value is carried out via joint minimization of the empirical

asymptotic Bayes risk [1].

The proposed MT-GQLRT and its Bayesian extension are illustrated for signal detection and classifi-

cation, respectively, in the presence of spherically contoured noise. By specifying the MT-function within

the family of zero-centered Gaussian functions parameterized by a scale parameter, we show that the MT-

GQLRT can significantly mitigate the model mismatch effect introduced by the normality assumption.

More specifically, we show that the proposed MT-GQLRT outperforms the non-robust GQLRT and other

robust alternatives and attains decision performance that are significantly closer to those obtained by the

omniscient LRT that, unlike the proposed test, requires complete knowledge of the likelihood functions

under each hypothesis. In these application examples, we also provide suboptimal implementations of

the non-Bayesian and Bayesian MT-GQLRT that do not require training sequences for selection of

tuning parameters. We show that these training-sequence-free versions outperform the other robust tests

considered that do not require training sequences.

The paper is organized as follows. In Section II, we formulate the considered hypothesis testing problem

and review the GQLRT. Section III reviews the principles of the considered probability measure transform.

In Section IV, we use this transformation to construct the non-Bayesian MT-GQLRT. The extension for

Bayesian hypothesis testing is developed in section V. The MT-GQLRT and its Bayesian extension are

applied to signal detection and classification, respectively, in Section VI. In Section VII, the main points

of this contribution are summarized. The proofs of the propositions and theorems stated throughout the

paper are given in the Appendix.

II. PRELIMINARIES

In this section, we formulate the considered binary hypothesis testing problem. We proceed by reviewing

the GQLRT [3]–[8]. We show that the GQLRT can be interpreted as a comparison between the empirical
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Kullback-Leibler divergences between the probability distribution of the data and two normal probability

measures. This operation principle will be used in Section IV to develop the proposed MT-GQLRT.

A. Problem formulation

We define the measure space (X ,S, P ), where X ⊆ Cp is the observation space of a complex-valued

random vector X, S is a σ-algebra over X and P is a probability measure on S which belongs to a pair

set {P0, P1}. It is assumed that P is absolutely continuous w.r.t. a dominating σ-finite measure ρ on S,

such that the Radon-Nikodym derivatives [25]

f (x) , dP (x)

dρ (x)
(1)

exists. The function f (·) is called the density function of P . Let g : X → C denote an integrable scalar

function. The expectation of g (X) under P is defined as:

E [g (X) ;P ] ,
∫

X
g (x) dP (x) ,

where x ∈ X .

Given a sequence of samples Xn, n = 1, ..., N from P we consider the problem of testing between

the null and alternative hypotheses

H0 : P = P0 (2)

H1 : P = P1,

respectively, when P0 and P1 are partially known. The GQLRT, that is reviewed in the following

subsection, assumes that partial statistical information is available through the standard mean vectors

and the covariance matrices under each hypothesis. The proposed MT-GQLRT that will be developed

in Section IV exploits higher-order moment information through measure-transformed mean vectors and

covariance matrices.

B. Review of the Gaussian quasi likelihood ratio test

Let Φk, k = 0, 1 denote two proper complex Gaussian probability measures that are characterized by

the mean vectors µk , E [X;Pk], k = 0, 1, and the covariance matrices Σk , E
[
XXH ;Pk

]
− µkµHk ,

k = 0, 1. Given a sequence of samples Xn, n = 1, ..., N from the underlying probability distribution P ,
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the GQLRT applies LRT under the assumption that P0 = Φ0 and P1 = Φ0, which leads to the following

decision rule:

T , 1

N

N∑
n=1

ψ (Xn) (3)

=
(
DLD

[
Σ̂||Σ0

]
+ ‖µ̂− µ0‖2Σ−1

0

)
−
(
DLD

[
Σ̂||Σ1

]
+ ‖µ̂− µ1‖2Σ−1

1

)H1

R
H0

t,

where ψ(X) , log(φ1(X)/φ0(X)), and

φk (x) , exp
(
− (x− µk)H Σ−1

k (x− µk)
)
/det [πΣk] (4)

is the density function of Φk w.r.t. the dominating σ-finite measure ρ on S. In the second equality of (3)

DLD[A||B] , tr[AB−1] − log det[AB−1] − p is the log-determinant divergence [26] between positive

definite matrices A,B, ‖a‖C ,
√

aHCa denotes the weighted Euclidean norm of a vector a with

positive-definite weighting matrix C and µ̂ , 1
N

∑N
n=1 Xn and Σ̂ , 1

N

∑N
n=1 XnX

H
n − µ̂µ̂H denote the

standard sample mean vector (SMV) and sample covariance matrix (SCM). The parameter t ∈ R denotes

a threshold.

In the following we show that the GQLRT (3) operates by comparing the empirical Kullback-Leibler

divergences between P and Φk, k = 0, 1. The Kullback-Leibler divergence (KLD) between P and Φk,

k ∈ {0, 1} is defined as [9]:

DKL [P ||Φk] , E

[
log

f (X)

φk (X)
;P

]
, (5)

where f(·) is the density function (1) of P . Given a sequence of samples Xn, n = 1, ..., N from P , an

empirical estimate of (5) is defined as:

D̂KL [P ||Φk] ,
1

N

N∑

n=1

log
f (Xn)

φk (Xn)
.

Hence, the difference D̂KL[P ||Φ0]−D̂KL[P ||Φ1] coincides with the test statistic in (3). Finally, by (4) and

(5), one can verify that when φ0 (·) 6= φ1 (·), the difference DKL[P ||Φ0]−DKL[P ||Φ1] will be negative

if P = P0 and positive if P = P1. This information-theoretic interpretation provides justification for the

test statistic (3).

III. PROBABILITY MEASURE TRANSFORM: REVIEW

In this section, we review the principles of the probability measure transform [15]–[20]. We redefine

the measure-transformed mean vector and covariance matrix and show their relation to higher-order

statistical moments. Moreover, we reformulate their empirical estimators and restate the conditions for

strong consistency and robustness to outliers. These quantities will be used in the following section to

construct the measure-transformed GQLRT.
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A. Probability measure transform

Definition 1. Given a non-negative function u : Cp → R+ satisfying

0 < E [u (X) ;P ] <∞, (6)

a transform on P is defined via the relation:

Q(u) (A) , Tu [P ] (A) ,
∫

A
ϕu (x) dP (x) , (7)

where A ∈ S and

ϕu (x) , u (x)

E [u (X) ;P ]
. (8)

The function u (·) is called the MT-function.

By definition 1, one can verify that Q(u) is a probability measure on S that is absolutely continuous

w.r.t. P , with Radon-Nikodym derivative [25]:

dQ(u) (x)

dP (x)
= ϕu (x) . (9)

The MT-function u(·) is the generating function of the probability measure Q(u). By modifying u(·) a

wide range of probability measures on S can be obtained.

B. The MT-mean and MT-covariance

According to (9) the mean vector and covariance matrix of X under Q(u) are given by:

µ(u) , E[X;Q(u)] = E [Xϕu (X) ;P ] (10)

and

Σ(u) , cov[X;Q(u)] = E
[
XXHϕu (X) ;P

]
− µ(u)µ(u)H , (11)

respectively. Equations (10) and (11) imply that µ(u) and Σ(u) are weighted mean and covariance of X

under P , with the weighting function ϕu(·) defined in (8). Notice that when the MT-function u(·) is non-

zero and constant valued, the standard mean vector µ and covariance matrix Σ are obtained. Alternatively,

when u(·) is a non-constant analytic function, which has a convergent Taylor series expansion, the

resulting MT-mean and MT-covariance involve higher-order statistical moments of P .
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C. The empirical MT-mean and MT-covariance

Given a sequence of N i.i.d. samples from P , the empirical estimators of µ(u) and Σ(u) are defined

as:

µ̂(u) ,
N∑

n=1

Xnϕ̂u (Xn) (12)

and

Σ̂
(u) ,

N∑

n=1

XnX
H
n ϕ̂u (Xn)− µ̂(u)µ̂(u)H , (13)

respectively, where

ϕ̂u (Xn) , u (Xn)
∑N

j=1 u (Xj)
. (14)

According to Proposition 2 in [17], if E[‖X‖2u(X);P ] <∞ then µ̂(u) w.p.1−−→ µ(u) and Σ̂
(u) w.p.1−−→ Σ(u) as

N →∞, where “
w.p.1−−→” denotes convergence with probability (w.p.) 1 [27]. Note that for u (X) ≡ 1 the

estimators µ̂(u) and N
N−1Σ̂

(u)
reduce to the standard unbiased sample mean vector (SMV) and sample

covariance matrix (SCM), respectively. Finally, we note that by [28]–[30] it follows that (12) and (13)

are different than M-estimators of location and scatter that use different weight functions and generally

implemented as an iterative fixed-point algorithm.

D. Robustness to outliers

Robustness of the empirical MT-covariance (13) to outliers was studied in [17] using its influence

function [31], which describes the bias effect on the estimator introduced by an infinitesimal contamination

at some point y ∈ Cp. An estimator is said to be B-robust if its influence function is bounded [31].

Similarly to the proof of Proposition 3 in [17] it can be shown that if there exists a finite positive

constant M ∈ R, such that for all y ∈ Cp:

u(y) ≤M and u(y)‖y‖2 ≤M, (15)

then the influence functions of both (12) and (13) are bounded.

IV. THE MEASURE-TRANSFORMED GAUSSIAN QUASI LIKELIHOOD RATIO TEST

In this section, we extend the GQLRT (3) by applying the transformation (7) to the underlying

probability measure P . Here, we assume that partial statistical information is available through the MT-

mean vectors and the MT-covariance matrices under each hypothesis. Regularity conditions for asymptotic

normality of the proposed test statistic are derived. When these conditions are satisfied we show that
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the resulting test is consistent and derive its asymptotic size and power. Optimal selection of the MT-

function u (·) out of some parametric class of functions is also discussed. Finally, we describe the steps

for implementation of the proposed MT-GQLRT.

A. The MT-GQLRT

Similarly to the standard GQLRT, given a sequence of samples from P , the proposed MT-GQLRT

compares the empirical KLDs between the transformed probability distribution of the data Q(u) (which can

be either Q(u)
0 , Tu[P0] if H0 is true or Q(u)

1 , Tu[P1] if H1 is true) and two proper complex Gaussian

probability measures Φ
(u)
k , k = 0, 1 that are characterized by the MT-mean vectors µ(u)

k , E[X;Q
(u)
k ],

k = 0, 1 and the MT-covariance matrices Σ
(u)
k , cov[X;Q

(u)
k ], k = 0, 1. The KLD between Q(u) and

Φ
(u)
k , k ∈ {0, 1} is defined as [9]:

DKL

[
Q(u)||Φ(u)

k

]
, E

[
log

q(u) (X)

φ
(u)
k (X)

;Q(u)

]
, (16)

where q(u)(·) is the unknown density of Q(u) w.r.t. the dominating measure ρ on S, and

φ
(u)
k (x) , exp

(
−(x− µ(u)

k )H(Σ
(u)
k )−1(x− µ(u)

k )
)
/det

[
πΣ

(u)
k

]
(17)

is the density of Φ
(u)
k w.r.t. ρ. By (16) and (17), one can verify that when φ(u)

0 (·) 6= φ
(u)
1 (·), the difference

DKL[Q(u)||Φ(u)
0 ]−DKL[Q(u)||Φ(u)

1 ] will be negative under H0 and positive under H1. Hence, similarly

to the standard GQLRT, this justifies the use of the empirical estimate of this difference as a test statistic

for testing H0 versus H1.

According to (9), the divergence DKL[Q(u)||Φ(u)
k ], k ∈ {0, 1} can be estimated using only samples

from P . Therefore, similarly to (12) and (13), an empirical estimate of (16) given a sequence of samples

Xn, n = 1, ..., N from P , is defined as:

D̂KL

[
Q(u)||Φ(u)

k

]
,

N∑

n=1

ϕ̂u (Xn) log
q(u) (Xn)

φ
(u)
k (Xn)

,

where ϕ̂u (·) is defined in (14). Thus, the proposed test statistic, which is independent of the unknown

transformed density function q(u)(x), is defined as:

Tu , D̂KL[Q(u)||Φ(u)
0 ]− D̂KL[Q(u)||Φ(u)

1 ] =
N∑
n=1

ϕ̂u(Xn)ψu(Xn) (18)

=

(
DLD

[
Σ̂

(u)||Σ(u)
0

]
+
∥∥∥µ̂(u) − µ(u)

0

∥∥∥
2

(Σ
(u)
0 )

−1

)

−
(
DLD

[
Σ̂

(u)||Σ(u)
1

]
+
∥∥∥µ̂(u) − µ(u)

1

∥∥∥
2

(Σ
(u)
1 )

−1

)
,
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where

ψu (X) , log
(
φ

(u)
1 (X)/φ

(u)
0 (X)

)
, (19)

and the operators DLD [·||·] and ‖·‖(·) are defined below (4). The decision rule based on the test statistic

(18) is:

Tu
H1

R
H0

t, (20)

where t ∈ R denotes a threshold. By modifying the MT-function u (·) such that condition (6) is satisfied

the MT-GQLRT is modified, resulting in a family of tests generalizing the GQLRT (3). In particular, if

u (·) is any non-zero constant function over X , then Q(u) = P and the standard non-robust GQLRT is

obtained which only involves first and second-order statistical moments. Otherwise, when u (·) is a non-

constant analytic function that satisfies condition (15), the resulting test is outlier resilient and involves

higher-order statistical moments.

B. Asymptotic performance analysis

Here, we study the asymptotic decision performance of the proposed MT-GQLRT (20). For simplicity,

we assume that a sequence of i.i.d. samples Xn, n = 1, . . . , N from P is available.

Theorem 1 (Asymptotic normality). Assume that the following conditions are satisfied:

A-1) µ(u)
0 6= µ

(u)
1 or Σ

(u)
0 6= Σ

(u)
1 .

A-2) Σ
(u)
0 and Σ

(u)
1 are non-singular.

A-3) E[u2 (X) ;P ] and E[‖X‖4u2(X);P ] are finite for P = P0 and P = P1.

Then,
Tu − η(u)

k√
λ

(u)
k

D−−−−→
N→∞

N (0, 1) ,

where “ D−→” denotes convergence in distribution [27],

η
(u)
k , E [ϕu,k (X)ψu (X) ;Pk] , (21)

λ
(u)
k , 1

N
E

[
ϕ2
u,k (X)

(
ψu (X)− η(u)

k

)2
;Pk

]
. (22)

and ϕu,k(·) is defined according to (8) with P replaced by Pk. [A proof is given in Appendix B]

Corollary 1 (Asymptotic size and power). Assume that the conditions stated in Theorem 1 are satisfied.

The asymptotic size and power of the decision rule (20) are given by:

αu , Q


 t− η

(u)
0√

λ
(u)
0


 and βu , Q


 t− η

(u)
1√

λ
(u)
1


 , (23)
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respectively, where Q (·) denotes the tail probability of the standard normal distribution [32].

Corollary 2 (Consistency). Assume that the conditions in Theorem 1 are satisfied. Then, for any fixed

asymptotic size the asymptotic power of the test (20) satisfies βu → 1 as N →∞.

In the following Proposition, strongly consistent estimates of the asymptotic size and power (23) are

constructed based on two i.i.d. training sequences from P0 and P1. These will be used in the sequel for

optimal selection of the MT-function.

Proposition 1 (Empirical asymptotic size and power). Let X
(k)
n , n = 1, . . . , Nk, k = 0, 1 denote sequences

of i.i.d. samples from P0 and P1, respectively. Define the empirical asymptotic size and power:

α̂u , Q


 t− η̂

(u)
0√

λ̂
(u)
0


 and β̂u , Q


 t− η̂

(u)
1√

λ̂
(u)
1


 , (24)

respectively, where

η̂
(u)
k ,

Nk∑

n=1

ϕ̂u

(
X(k)
n

)
ψu

(
X(k)
n

)
(25)

and

λ̂
(u)
k , Nk

N

Nk∑

n=1

ϕ̂2
u

(
X(k)
n

)(
ψu

(
X(k)
n

)
− η̂(u)

k

)2
. (26)

Assume that conditions A-1−A-3 stated in Theorem 1 are satisfied. Then,

α̂u
w.p.1−−−−→

N0→∞
αu and β̂u

w.p.1−−−−→
N1→∞

βu.

[A proof is given in Appendix C]

C. Selection of the MT-function

When the observations are normally distributed the GQLRT (3) coincides with the LRT, which is the

most powerful test for a fixed size (false alarm rate). Hence, in this case, following the discussion below

Eq. (20), the optimal MT-function u(·) should be non-zero and constant valued. Unfortunately, in the non-

Gaussian case finding the optimal MT-function associated with the asymptotically most powerful test for

a fixed false alarm rate is analytically cumbersome and requires the knowledge of the likelihood functions

under each hypothesis. Therefore, we propose to specify the MT-function within some parametric family

{u (X;ω) ,ω ∈ Ω ⊆ Cr} that satisfies the conditions stated in Definition 1 and Theorem 1. For example,

in order to gain resilience against outliers, the Gaussian family of functions that satisfy condition (15) is

a natural choice. An optimal choice of the MT-function parameter ω would be the one that maximizes
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the empirical asymptotic power in (24) at a fixed empirical asymptotic size α̂u = α, i.e., we maximize

the following objective function:

β̂(α)
u (ω) = Q


 η̂

(u)
0 (ω)− η̂(u)

1 (ω) +

√
λ̂

(u)
0 (ω)Q−1 (α)

√
λ̂

(u)
1 (ω)


 . (27)

Notice that in practice, it is sufficient to minimize the argument of Q(·) as it is monotonically decreasing.

D. Implementation of the test

Given a sequence of data samples Xn, n = 1, . . . , N , two training sequences X
(k)
n , n = 1, . . . , Nk,

k = 0, 1 from P0 and P1, and a class of MT-functions {u (X;ω) ,ω ∈ Ω ⊆ Cr}, the proposed MT-

GQLRT is implemented via the following steps:

1) Fix an empirical asymptotic size α̂u = α.

2) Obtain the optimal MT-function parameter ωopt by maximizing (27) w.r.t. ω.

3) Compute the threshold using the formula t = η̂
(u)
0 (ωopt) +

√
λ̂

(u)
0 (ωopt)Q

−1(α) that follows directly

from (24).

4) Apply the decision rule (20).

The maximization in step (2) is carried out numerically. Note that for each candidate of ω only four

scalars need to be computed using (25) and (26) in order to obtain the objective function (27). Hence,

when ω is one-dimensional, a simple line search can be implemented. Otherwise, the maximization can

be performed via gradient ascend [33] or via greedy search. These techniques are more computationally

efficient than a direct multidimensional search. However, they do not guarantee convergence to a global

maximum when the objective function (27) is multimodal.

V. BAYESIAN EXTENSION

In this section, we develop a Bayesian extension of the proposed MT-GQLRT (20). In difference to

the non-Bayesian formulation (2), here, we assume that each hypothesis Hk, k ∈ {0, 1} has a known

prior probability πk and that Pk is a conditional probability distribution of X given that Hk is true.

Here, the measure transformation Tu[·] (7) is applied to the conditional distribution P ∈ {P0, P1}. In

this context, it is important to note that the measure-transformation properties stated in Section III, for

the unconditional distribution, also apply here, for the conditional distribution. Similarly to the non-

Bayesian MT-GQLRT, developed in Subsection IV-A, given a sequence of samples Xn, n = 1, . . . , N

from the conditional distribution P , the Bayesian MT-GQLRT compares the empirical KLDs between

the transformed conditional probability distribution Q(u) , Tu[P ] and two normal probability measures
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Φk, k = 0, 1 that are characterized by the MT-mean vectors µ(u)
k , E[X;Q

(u)
k ], k = 0, 1, and the MT-

covariance matrices Σ
(u)
k , cov[X;Q

(u)
k ], k = 0, 1, conditioned on Hk, k = 0, 1. Thus, one can easily

verify that the decision rule of the Bayesian MT-GQLRT is the same as the one of the non-Bayesian

MT-GQLRT (18). The difference is in the performance analysis that is quantified through the Bayes-Risk.

A. Asymptotic performance analysis

As in the non-Bayesian case, we assume that a sequence of i.i.d. samples Xn, n = 1, . . . , N from the

conditional distribution P ∈ {P0, P1} is available. Straight forward extension of Theorem 1 (asymptotic

normality of the test statistic) to the considered Bayesian case can be obtained here. Under this extension,

the asymptotic Bayes risk and its empirical estimate are stated in the following propositions.

Proposition 2 (Asymptotic Bayes risk). Assume that under the conditional distributions P0 and P1, the

assumptions in Theorem 1 are satisfied. Let Ljk, j, k ∈ {0, 1}, denote the loss for deciding Hj when Hk

is true, where L00 = L11 = 0. The asymptotic Bayes risk can be written as:

R(u) (t) , L10π0Q


 t− η

(u)
0√

λ
(u)
0


+ L01π1Q


η

(u)
1 − t√
λ

(u)
1


 , (28)

where η(u)
k and λ(u)

k are defined as in (21) and (22), respectively.

In the following Proposition, a strongly consistent estimate of the asymptotic Bayes risk (28) is

constructed based on two i.i.d. sequences from the conditional distributions P0 and P1. This quantity will

be used in the sequel for optimal selection of the MT-function.

Proposition 3 (Empirical asymptotic Bayes risk). Let X
(k)
n , n = 1, . . . , Nk, k = 0, 1 denote sequences of

i.i.d. samples from the conditional distributions P0 and P1, respectively. Define the empirical asymptotic

Bayes risk:

R̂(u) (t) , L10π0Q


 t− η̂

(u)
0√

λ̂
(u)
0


+ L01π1Q


 η̂

(u)
1 − t√
λ̂

(u)
1


 , (29)

where η̂
(u)
k and λ̂

(u)
k are defined as in (25) and (26), respectively. Assume that conditions A-1−A-3

stated in Theorem 1 are satisfied for the conditional distributions P0 and P1. Then, R̂(u) w.p.1−−→ R(u) as

N0, N1 →∞. [A proof is given in Appendix D]

In the following Proposition, a necessary and sufficient condition for existence and uniqueness of

an optimal threshold minimizing the empirical asymptotic Bayes risk (29) is derived. A closed form

expression of this threshold is also presented.
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Proposition 4 (Optimal threshold). Assume that λ̂(u)
0 6= λ̂

(u)
1

2. Define

ŝ(u) ,
(
η̂

(u)
0 − η̂(u)

1

)2
− 2

(
λ̂

(u)
0 − λ̂(u)

1

)
log

L10π0

√
λ̂

(u)
1

L01π1

√
λ̂

(u)
0

.

A global minimum of the empirical asymptotic Bayes risk (29) exists and given by

t
(u)
opt ,

λ̂
(u)
0 η̂

(u)
1 − λ̂(u)

1 η̂
(u)
0 −

√
λ̂

(u)
0 λ̂

(u)
1 ŝ(u)

λ̂
(u)
0 − λ̂(u)

1

(30)

if and only if C-1) ŝ(u) ≥ 0 and C-2) the empirical Bayes risk (29) satisfies R̂(u)(t
(u)
opt ) < min (L10π0, L01π1).

[A proof is given in Appendix E]

B. Optimal selection of the MT-function

Similarly to the non-Bayesian case, we propose to specify the MT-function within some parametric

family {u (X;ω) ,ω ∈ Ω ⊆ Cr} of functions that have strictly positive and finite expectation w.r.t. the

conditional distribution of the data and satisfy the conditions stated in Proposition 2. An optimal choice

of the MT-function parameter ω minimizes the empirical asymptotic Bayes risk (29) evaluated at the

optimal threshold (30).

C. Implementation of the test

Given the a-priori probabilities π0 and π1, the loss coefficients L01 and L10, a sequence of data samples

Xn, n = 1, . . . , N from P , two training sequences X
(k)
n , n = 1, . . . , Nk, k = 0, 1 from P0 and P1, and

a class of MT-functions {u (X;ω) ,ω ∈ Ω ⊆ Cr}, the Bayesian MT-GQLRT is implemented via the

following steps:

1) Obtain the optimal MT-function parameter ωopt by minimizing (29) evaluated at the optimal threshold

t
(u)
opt (ω) (30).

2) Compute the threshold t(u)
opt (ωopt) using (30).

3) Apply the decision rule (20).

Similarly to implementation of the non-Bayesian MT-GQLRT, the minimization in step (1) is carried out

numerically. Notice that, also here, when ω is one-dimensional a simple line search can be implemented.

Otherwise, the minimization can be performed via gradient descend or via greedy search.

2Notice that when X is a continuous random vector, this assumption satisfied almost surly [25].
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VI. EXAMPLES

In this section we illustrate the proposed MT-GQLRT and its Bayesian extension to random signal

detection and deterministic signal classification, respectively. Other applications of these tests for Bayesian

and non-Bayesian random signal classification are detailed in the conference papers [34], [35].

A. Non-Bayesian MT-GQLRT: Signal detection

We consider the following signal detection problem:

H0 : Xn = Wn, n = 1, . . . , N, (31)

H1 : Xn = Sna + Wn, n = 1, . . . , N,

where {Xn ∈ Cp}, p > 1 is an observation process, {Sn ∈ C} is an i.i.d. zero-mean random signal

process with unknown distribution, a ∈ Cp is a known unit norm deterministic vector and {Wn ∈ Cp}
is an i.i.d. noise process with centered complex spherical distribution [30], i.e.,

W
d
= VW (32)

for any unitary matrix V ∈ Cp×p, where d
= denotes equality in distribution. The processes {Sn} and

{Wn} are assumed to be independent. Notice that the probability distributions under each hypothesis

cannot be extracted from (31) (even not up to some unknown parameters). However, as we show in the

following, by specifying the MT-function in some wide class of functions partial statistical information is

available through the MT-mean and the MT-covariance that are known up to some redundant constants.

In order to derive the MT-GQLRT for the considered detection problem we specify the MT-function

in the set: {
u (x) = g

(∥∥∥P⊥a x
∥∥∥
)
, g : R+ → R+

}
, (33)

where P⊥a , Ip − aaH is the projection matrix into the null space of a, and Ip is a p × p unit matrix.

Assuming that condition (6) is satisfied, one can verify using (8), (10), (11), (31) and (33) that the

MT-mean and the MT-covariance under the transformed probability measure Q(u)
k , k ∈ {0, 1} take the

forms:

µ
(u)
k = 0, k = 0, 1 (34)

and

Σ
(u)
0 = Σ

(u)
W , Σ

(u)
1 = σ2

SaaH + Σ
(u)
W , (35)

where σ2
S , E[|Sn|2;PS ] is the signal variance, and Σ

(u)
W is the MT-covariance of the noise. By (10),

(11), (32) and (33) Σ
(u)
W = r

(u)
0 aaH + r

(u)
1 I, where r(u)

0 and r
(u)
1 are some real constants that satisfy
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r
(u)
0 +r

(u)
1 > 0. The detailed algebraic manipulations showing this structure appear in [36, Sec. A]. Hence,

by substituting (34) and (35) into (18) the resulting test statistic after subtraction of the observation-

independent constant c(u)
1 , − log (1 + σ2

S/(r
(u)
0 + r

(u)
1 )) followed by normalization by the positive

observation-independent constant c(u)
2 , σ2

S/((r
(u)
0 + r

(u)
1 )(r

(u)
0 + r

(u)
1 + σ2

S)) is given by:

T ′u , Tu − c(u)
1

c
(u)
2

= aHĈ(u)a =

N∑

n=1

ϕ̂u(Xn)|aHXn|2, (36)

where Ĉ(u) , Σ̂
(u)

+ µ̂(u)µ̂(u)H . Notice that when the vector a represents a steering vector of a sensor

array [37], the test statistic in (37) is a measure transformed version of Bartlett’s beamformer [37]. Finally,

by (20) the MT-GQLRT is given by

T ′u
H1

R
H0

t′, (37)

where t′ , (t− c(u)
1 )/c

(u)
2 .

Under the considered settings, it can be shown that the conditions stated in Theorem 1 are satisfied.

Since the noise vector W has a centered spherical distribution, then it must obey the following stochastic

representation [30]:

W
d
= σWYU, (38)

where σW ∈ R++ is a scale parameter, Y ∈ R+ is a real non-negative random variable, called modular

variate, and U ∈ Cp is a random vector, that is statistically independent of Y , with uniform distribution

on the unit complex p-sphere. Therefore, by (33)-(35) and (38) the resulting asymptotic power (23) at a

given asymptotic size αu = α takes the form:

β(α)
u = Q

(√
G1Q

−1 (α)−
√
Nσ2

S√
G2

)
, (39)

where G1 , E[g2(Ỹ
√

1−B)(|S|2−σ2
S+ Ỹ 2B−h)2;PS,Y,B], G2 , E[g2(Ỹ

√
1−B)(Ỹ 2B−h)2;PY,B],

h , E[g(Ỹ
√

1−B)Ỹ 2B;PY,B], Ỹ , σWY , and B ∼ Beta(1, p−1). Furthermore, its empirical estimate

is given by:

β̂(α)
u = Q


 η̃

(u)
0 − η̃(u)

1 +

√
λ̃

(u)
0 Q−1 (α)

√
λ̃

(u)
1


 , (40)

where

η̃
(u)
k , η̂

(u)
k − c

(u)
1

c
(u)
2

=

Nk∑

n=1

ϕ̂u(X(k)
n )

∣∣∣aHX(k)
n

∣∣∣
2
,

λ̃
(u)
k , λ̂

(u)
k

(c
(u)
2 )2

=
Nk

N

Nk∑

n=1

ϕ̂2
u(X(k)

n )
(
|aHX(k)

n |2 − η̃(u)
k

)2
,
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and c
(u)
1 and c

(u)
2 are defined above (36). We note that by (24) the threshold of the decision rule (37)

that corresponds to a constant asymptotic test-size α is given by:

t′ = η̃
(u)
0 +

√
λ̃

(u)
0 Q−1 (α) . (41)

In order to mitigate the effect of outliers and involve higher-order statistical moments, we specify the

MT-function in a subset of (33) that is comprised of zero-centred Gaussian functions parametrized by a

width parameter ω, i.e.,

uG (x;ω) = exp

(
−
∥∥∥P⊥a x

∥∥∥
2
/ω2

)
, ω ∈ R++. (42)

Notice that the Gaussian MT-function (42) does not shrink outliers in the direction of the vector a

and does not satisfy the B-robustness condition (15) when the observations are proportional to a.

However, this shrinkage does occur over a sufficiently large subset of Cp, guaranteeing robustness of

the empirical MT-mean and MT-covariance with high probability. To see this, define the set Bε ,
{y ∈ Cp :

∣∣aHy
∣∣2/‖y‖2 ≤ 1 − ε}, where ε > 0 is some fixed small positive constant. Clearly,

uG (y;ω) ≤ exp (− ε‖y‖2
ω2 ) for any y ∈ Bε and for any fixed ω. Therefore, since exp (−ε‖y‖2/ω2)

and ‖y‖2 exp (−ε‖y‖2/ω2) are bounded over Cp, the MT-function (42) must satisfy condition (15) over

Bε. Finally, since P (Bε) ≈ 1 for sufficiently small ε we conclude that the empirical MT-mean and

MT-covariance, comprising (36), are robust to outliers with high probability. Moreover, similarly to

Proposition 4 in [17], it can be shown that for any fixed width parameter ω, the influence functions of

the empirical MT-mean and MT-covariance, comprising (36), approach to zero over the set Bε as the

outlier norm approaches to infinity. Thus, we conclude that the MT-function (42) also results in rejection

of large norm outliers with high probability. Furthermore, notice that the Gaussian MT-function (42) is

parameterized by only one scalar parameter ω. This leads to a simple line search based optimization of

the empirical asymptotic power (40) w.r.t. ω.

In the following simulation examples we evaluate the detection performance of the MT-GQLRT as

compared to the omniscient LRT, the standard GQLRT (3), a robust GQLRT extension, a density-estimator

plug-in detector, the NSDD-GLRT [38], and a support vector machine (SVM) [39].

Robust GQLRT extension: Under the considered detection problem (31) one can verify using (3) that

the test-statistic of the GQLRT reduces to TGQLRT = aHĈa, where Ĉ ,
∑N

n=1 XnX
H
n is the non-robust

sample correlation matrix. Hence, a robust extension of the GQLRT can be obtained by applying GQLRT

after passing the data through a zero-memory non-linear (ZMNL) function that suppresses outliers by

clipping the amplitude of the observations. This GQLRT extension is called here ZMNL-GQLRT. We

use the same ZMNL preprocessing approach that has been applied in [40].
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Density-estimator plug-in detector: When training sequences X
(k)
n , n = 1, . . . , Nk, k = 0, 1 from P0

and P1 are available to estimate the densities f1 and f0, a density-plug-in approach is natural. One can

approximate the LRT by estimating the probability density functions under each hypothesis, and perform

the test
∑N

n=1 log(f̂1(Xn)/f̂0(Xn))RH1

H0
t, where f̂1(·) and f̂0(·) are estimates of f1(·) and f0(·). Here,

we consider parametric density estimation based on the generalized Gaussian distribution (GGD). More

specifically, we assume that under each hypothesis the observations obey a GGD [30] with zero location

parameter and a structured scatter matrix that is proportional to the covariance under (31). The shape

parameter of the GGD distribution and the parameters of the scatter matrix under each hypothesis were

estimated via straightforward iterative maximum-likelihood (ML) estimator. Exact implementation details

of the ML-estimator appear in [36, Sec. B]. The detector based on this approach is called here GGD-

QLRT. Note that the GGD-QLRT belongs to the class of non-Gaussian quasi likelihood ratio tests that

replace the true likelihoods with hypothesized parametric likelihoods.

NSDD-GLRT [38]: The NSDD-GLRT is a robust generalized likelihood ratio test (GLRT) detector,

which assumes that the signal samples in (31) are deterministic unknown and that the noise samples are

zero-mean normally distributed with unknown variances.

SVM based detector: In this example, the separation between the hypotheses is non-linear. Therefore,

a kernel SVM [39] was implemented that applies SVM to high-dimensional non-linear transformations

of the observation vectors, that map them into some reproducing kernel Hilbert spaces [41]. Exact

implementation details of the SVM based detector appear in [36, Sec. C].

In all simulation examples, the signal Sn in (31) is considered to be a BPSK signal with power σ2
S . The

vector a , 1√
p [1, e−iπ sin(ϑ), . . . , e−iπ(p−1) sin(ϑ)]T represents a steering vector of p = 8 elements uniform

linear array with half wavelength spacing corresponding to a far-field narrow band signal with azimuthal

angle of arrival (AOA) ϑ = π/3 [Rad]. We considered two types of noise distributions with zero location

parameter and isotropic dispersion σ2
WIp: 1) Gaussian and 2) ε-contaminated Gaussian noise [30] under

which W
d
= σ2

WAZ, where A is a binary random variable satisfying A = 1 w.p. 1 − ε and A = δ w.p.

ε, and Z ∼ CN (0, Ip). The parameters ε and δ that control the heaviness of the noise tails were set to

0.25 and 10, respectively. Notice that in the context of the stochastic representation (38) Y = A‖Z‖ and

U = Z/‖Z‖.
For each noise type we performed two simulations. In the first one, we compared the asymptotic power

(39) to its empirical estimate (40) as a function of ω for a fixed asymptotic test size α = 10−3 and sample

size N = 300. The empirical asymptotic power (40) was obtained using two i.i.d. training sequences

from P0 and P1 containing N0 = N1 = 3× 104 samples. The signal-to-noise-ratio (SNR), defined here
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as SNR , 10 log10 σ
2
S/σ

2
W was set to −5 [dB]. Observing Figs. 1(a) and 2(a), one sees that due to the

consistency of (40) the compared quantities are very close. This illustrates the reliability of the empirical

asymptotic power for optimal choice of the MT-function parameter, as discussed in subsection IV-C.

In the second simulation, we compared the empirical power of the proposed test to the empirical

powers obtained by the other compared tests versus SNR, samples size N , and test size (ROC curve).

For each type of comparison, we also report the optimal asymptotic power of the MT-GQLRT that is

obtained by maximizing (39) w.r.t. the width parameter ω ∈ Ω , [1, 100] of the Gaussian MT-function

(42).

The MT-GQLRT was implemented in two manners:

1) Optimal implementation requiring training sequences: Here, the proposed test (37) was imple-

mented in accordance to the steps detailed in Subsection IV-D, that involve two training sequences. More

specifically, the empirical asymptotic power (40) was computed using two training sequences of size

N0 = N1 = 3×104. The optimal Gaussian MT-function parameter ωopt was obtained by minimizing (40)

over KΩ = 100 equally spaced grid points of the interval Ω defined above. The threshold was determined

directly from (41). This optimal implementation will be called “MT-GQLRTopt”.

2) Suboptimal implementation not requiring training sequences: Here, implementation steps (2) and

(3) detailed in Subsection IV-D are modified. More specifically, suboptimal selection of the width param-

eter ω is carried out via data-driven procedure that exploits only the test sequence itself. This procedure

is described in Appendix F. Furthermore, the threshold is determined via Monte-Carlo simulations as

detailed below (and not via (41)). This suboptimal implementation will be called “MT-GQLRTsub”.

In the GGD-QLRT and the SVM we used the same training sequences of size N0 = N1 = 3 × 104

that were used by the MT-GQLRTopt. For all compared tests, except the MT-GQLRTopt, Monte-Carlo

simulations were performed in-order to determine the threshold value corresponding to a fixed test-size

α, by estimating the 1 − α percentile of the test-statistic under the null hypothesis. The Monte-Carlo

simulations were carried out using M = 105 i.i.d. training sequences of size N from P0. The empirical

power curves were obtained using 105 Monte-Carlo simulations. The detection performance versus SNR,

sample size and the test size are depicted in Figs. 1(b)−1(d) for the Gaussian noise and in Figs. 2(b)−2(d)

for the non-Gaussian noise. The power versus SNR was evaluated for a fixed test size equal to 10−3 and

N = 300 i.i.d. observations. The power versus sample size was evaluated for a fixed test size equal to

10−3, and SNR = −10 [dB] for the Gaussian noise, and SNR = −9 [dB] for the non-Gaussian noise.

The power versus test size (ROC curve) was evaluated for N = 300 i.i.d. observations and SNR = −10

[dB]. Observing Figs. 1(b)−1(d), one can notice that the MT-GQLRTopt, GQLRT and GGD-QLRT attain
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similar performance. The MT-GQLRTsub performs similarly to the NSDD-GLRT. The agreement between

the MT-GQLRTopt and the standard GQLRT is an outcome of the fact that the MT-GQLRTopt approaches

the GQLRT as the width parameter of the Gaussian MT-function (42) approaches infinity. Observing

Figs. 2(b)−2(d), one sees that for the non-Gaussian noise, the MT-GQLRTopt outperforms the non-robust

GQLRT and all other robust alternatives. It also attains detection performance that is significantly closer

to that of the LRT that, unlike the MT-GQLRTopt, requires complete knowledge of the likelihood function

under each hypothesis. Furthermore, one sees that although the MT-GQLRTsub, which does not involve

training sequences for selection of ω, is inferior as compared to the MT-GQLRTopt, it outperforms all

other robust GQLRT alternatives.

A general asymptotic computational load (ACL) analysis (for the considered detection problem) is

reported in Table I. Notice that both MT-GQLRTopt and MT-GQLRTsub have the same ACL for detection as

the standard GQLRT. Also note that the ACL of the MT-GQLRTopt due to parameter tuning (optimization

of the width parameter of the Gaussian MT-function, which is performed via simple line search) is linear

in the sample size, dimension and number of grid points taken over Ω. Furthermore, the ACL of the

MT-GQLRTsub due to parameter tuning is linear in sample size and dimension. Although the ACLs of

the MT-GQLRTopt due to parameter tuning and detection are similar to those of the GGD-QLRT, the

MT-GQLRTopt outperforms the GGD-QLRT as discussed above.

Finally, additional analysis of the compared detectors for small sample size is provided in [36, Sec.

F]. Furthermore, a modified scale-invariant version of the proposed test (37) is presented in [36, Sec. G].

B. Bayesian MT-GQLRT: Signal classification

We consider the following Bayesian signal classification problem:

H0 : Xn = a0 + Wn, n = 1, . . . , N, (43)

H1 : Xn = a1 + Wn, n = 1, . . . , N,

with known a-priori probabilities π0 and π1. Here, {Xn ∈ Cp}, p > 2 is an observation process, and

a0,a1 ∈ Cp are known deterministic vector signals. Similarly to the detection problem in the previous

subsection, we assume that {Wn ∈ Cp} is a spherically contoured i.i.d. noise process that obeys the

stochastic representation (38). Generally, this is a location parameter classification problem [42] when

multiple instances from each class are available [42], [43].

3Since in this example the MT-function width parameter ω is tuned through a simple line search, then by (40) and (41) the

threshold can be computed directly from the quantities in the tuning process.
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Fig. 1. Signal detection in Gaussian noise: (a) Asymptotic power predicted by theory (39) and its empirical estimate (40)

versus the width parameter ω of the Gaussian MT-function (42). (b) + (c) + (d) Optimal asymptotic power of the MT-GQLRT,

and the empirical powers of the MT-GQLRTopt and the MT-GQLRTsub as a function of (b) SNR, (c) sample size and (d) test

size as compared to the empirical powers of the GQLRT, ZMNL-GQLRT, NSDD-GLRT, GGD-QLRT, SVM and the omniscient

LRT.

In order to derive the MT-GQLRT for the Bayesian decision problem (43) we specify the MT-function

in the set: {
u (x) = g

(∥∥∥P⊥Ax
∥∥∥
)
, g : R+ → R+

}
, (44)

where A , [a0,a1] and P⊥A is the projection matrix into the null space of A. Similarly to the signal

detection problem in the previous subsection, assuming that condition (6) is satisfied under the conditional

probability measure P , one can verify using (8), (10), (11), (43) and (44) that the conditional MT-mean
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Fig. 2. Signal detection in non-Gaussian noise: (a) Asymptotic power predicted by theory (39) and its empirical estimate (40)

versus the width parameter ω of the Gaussian MT-function (42). (b) + (c) + (d) Optimal asymptotic power of the MT-GQLRT,

and the empirical powers of the MT-GQLRTopt and the MT-GQLRTsub as a function of (b) SNR, (c) sample size and (d) size as

compared to the empirical powers of the GQLRT, ZMNL-GQLRT, NSDD-GLRT, GGD-QLRT, SVM and the omniscient LRT.

and MT-covariance satisfy the following properties:

µ
(u)
k = ak k = 0, 1 (45)

and

Σ
(u)
k = r

(u)
0 PA + r

(u)
1 I k = 0, 1 (46)

where PA is the projection matrix onto the range space of A, and r
(u)
0 and r

(u)
1 are some constants

that satisfy r
(u)
0 + r

(u)
1 > 0. Hence, by substituting (45) and (46) into (18) the resulting test statistic
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TABLE I

Signal detection: ASYMPTOTIC COMPUTATIONAL COMPLEXITY (FLOPS). NOTATION: p IS

THE DIMENSION OF THE OBSERVATION VECTORS. N DENOTES THE SAMPLE SIZE. N0

AND N1 ARE THE SIZES OF THE TRAINING SEQUENCES FROM H0 AND H1 ,

RESPECTIVELY. KΩ DENOTES THE NUMBER OF GRID POINTS OF THE Ω-AXIS (THE

WIDTH PARAMETER SPACE OF THE GAUSSIAN MT-FUNCTION (42)). I DENOTES

NUMBER OF ITERATIONS. M DENOTES THE NUMBER OF TRIALS FOR ESTIMATING THE

1− α PERCENTILE OF THE TEST STATISTIC.

Method Parameter tuning Threshold calculation Detection

MT-GQLRTopt O((N0 +N1)pKΩ) O(1)3 O(Np)

MT-GQLRTsub O(Np) O(MNp) O(Np)

GQLRT − O(MNp) O(Np)

ZMNL-GQLRT − O(MNp) O(Np)

NSDD-GQLRT − O(MNp) O(Np)

GGD-QLRT O((N0 +N1)pI) O(MNp) O(Np)

SVM O((N0 +N1)pI) O(MNp) O(Np)

after subtraction of the observation-independent constant c(u)
1 , r

(u)
1 (‖a0‖2 − ‖a1‖2)/(r

(u)
1 (r

(u)
0 + r

(u)
1 ))

followed by normalization by the positive observation-independent factor c(u)
2 , 2/(r0 (ω) + r1 (ω)) is

given by:

T ′u , Tu − c(u)
1

c
(u)
2

= Re
{

(a1 − a0)H µ̂(u)
}H1

R
H0

t′, (47)

where t′ , (t− c(u)
1 )/c

(u)
2 .

We choose the loss coefficients L10 = L01 = 1, under which the asymptotic Bayes risk (28) reduces

to the probability of error [1]. In this case, using (28), (38), (45) and (46), it can be shown that the

asymptotic minimum probability of error w.r.t. the threshold parameter takes the form:

P (u)
e =

1∑

k=0

πkQ

(
Gu + (−1)k

1

2Gu
log

π0

π1

)
, (48)

where Gu ,
√
N‖a1−a0‖E[g(Ỹ

√
1−C);PY,C ]√

2E[Ỹ 2Cg2(Ỹ
√

1−C);PY,C ]
, Ỹ , σWY , C , 2/(2 + (p − 2)Z), Z ∼ F (2p − 4, 4), and

F (k, l) denotes an F-distribution with k and l degrees of freedom. Moreover, by (29) and (30) the

empirical estimate of (48) is given by:

P̂ (u)
e =

1∑

k=0

πkQ


 t̃

(u)
opt − η̃(u)

k√
λ̃

(u)
k


 , (49)
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where

η̃
(u)
k , η̂

(u)
k − c

(u)
1

c
(u)
2

=

N∑

n=1

ϕ̂u(X(k)
n ) Re{(a1 − a0)HX(k)

n },

λ̃
(u)
k , λ̂

(u)
k

(c
(u)
2 )2

=
Nk

N

Nk∑

n=1

ϕ̂2
u(X(k)

n )
(

Re{(a1 − a0)HX(k)
n } − η̃(u)

k

)2
,

k = 0, 1, and the optimal threshold t̃(u)
opt is obtained from (30) by replacing η̂(u)

k and λ̂(u)
k with η̃(u)

k and

λ̃
(u)
k . As discussed in Subsection V-B, the empirical error probability (49) will be used for optimal choice

of the MT-function parameters.

Similarly to the detection problem in the previous subsection, in order to mitigate the effect of outliers

and involve higher-order statistical moments, we specify the MT-function in a subset of (44) that is

comprised of zero-centred Gaussian functions parametrized by a width parameter ω, i.e.,

uG (x;ω) = exp

(
−
∥∥∥P⊥Ax

∥∥∥
2
/ω2

)
, ω ∈ R++. (50)

Similarly to the signal detection example, it can be shown that the resulting empirical MT-mean that

comprise the test-statistic is B-robust and rejects large norm outliers with high probability.

In the following simulation examples we compare the classification performance of the MT-GQLRT

(47) to the Bayesian versions of the omniscient LRT, the standard GQLRT, other robust GQLRT exten-

sions, a density-estimator plug-in classifier and SVM.

Robust GQLRT extensions: Under the classification problem (43) one can verify that the test-statistic

of the GQLRT reduces to TGQLRT = Re{(a1 − a0)H µ̂}, where µ̂ is the standard SMV. Hence, other

robust alternatives to the GQLRT can be obtained by replacing the non-robust SMV with robust location

estimates, namely, the median estimator, and Tukey’s bi-square M-estimator [29]. The robust GQLRT

extension that uses the median estimator is called here Median-GQLRT. Tukey’s bi-square M-estimator

involves a tunning parameter c that controls the shrinkage level of outliers. Here, this tuning parameter

was determined in two different manners: a) Training-sequences-free approach: Here, the tuning parameter

was set to guarantee an asymptotic relative efficiency of 95% of the location estimate, relative to the

Cramér-Rao lower bound [1] under nominal Gaussian distribution. b) Training-sequences-based approach:

This approach assumes that training sequences from P0 and P1 are available. Similarly to the MT-

GQLRT, the optimal tuning parameter is the one that minimizes an empirical estimate of the corresponding

asymptotic probability of error. These two selection procedures of the tuning parameter result in two

GQLRT extensions that are called here Tukey-GQLRTsub and Tukey-GQLRTopt, respectively. The exact

implementation details appear in [36, Sec. D].
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Density-estimator plug-in classifier: Similarly to the signal detection example in the previous subsec-

tion, given training sequences X
(k)
n , n = 1, . . . , Nk, k = 0, 1 from P0 and P1, one can approximate the

LRT by estimating the conditional probability density functions under each hypothesis. Following (43),

we consider a parametric set of distributions with known location parameters, i.e., a0 under H0 and a1

under H1, and spherical scatter matrices, with unknown scale parameter. Similarly to the signal detection

example, we chose the elliptical family of GGDs [30]. The parameters of this distribution (shape and

scale) were estimated using a straightforward iterative ML estimator. Exact implementation details of the

ML estimator appear in [36, Sec. E]. The classifier based on this approach is called here GGD-QLRT.

SVM based classifier: Similarly to the signal detection example, an SVM classifier was trained using

two training sequences (one from each hypothesis). Since in this example the separation between the

hypotheses is linear, a linear SVM was implemented. We applied the same SVM based decision rule as

in Eq. (S-8) in [36]. The difference, is that the threshold was selected (via Monte-Carlo simulations) by

minimizing the empirical probability of error.

In all examples, the vectors a0 and a1 were set to ak , sk[1, e
−iπ/p, . . . , e−iπ(p−1)/p]T , k = 0, 1,

where s0 = 5, s1 = 5.25 and p = 10. The a-priori probabilities were set to π0 = 0.6 and π1 = 0.4. We

considered two types of noise distributions with zero location parameter and isotropic dispersion σ2
WIp:

1) Gaussian and 2) t-distributed noise [30] with λ = 0.2 degrees of freedom.

Similarly to the signal detection example, for each noise type we performed two simulations. In the

first simulation example, we compared the asymptotic probability of error (48) to its empirical estimate

(49) as a function of ω for sample size of N = 300. The empirical asymptotic probability of error

(49) was obtained using two i.i.d. training sequences from P0 and P1 containing N0 = N1 = 3 × 104

samples. The SNR, defined in this example as SNR , 10 log10 (‖a0 − a1‖)2/σ2
W, was set to −18 [dB].

Observing Figs. 3(a) and 4(a), one sees that due to the consistency of (49) the compared quantities are

very close. This illustrates the reliability of the empirical asymptotic Bayes risk for optimal choice of

the MT-function parameter, as discussed in subsection V-B.

In the second simulation, we compared the empirical probability of error of the proposed test to the

empirical probability of errors obtained by the other compared tests versus SNR and samples size N .

For each type of comparison, we also report the optimal asymptotic probability of error of the MT-

GQLRT that is obtained by minimizing (48) w.r.t. the width parameter ω ∈ Ω , [1, 100] of the Gaussian

MT-function (50).

Similarly to previous application example, the Bayesian MT-GQLRT was implemented in two different

manners:
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1) Optimal implementation requiring training sequences: Here, the proposed test (47) was imple-

mented in accordance to the steps detailed in Subsection V-C that involve two training sequences.

The empirical asymptotic probability of error (49) was computed using two training sequences of size

N0 = N1 = 3 × 104. The optimal Gaussian MT-function parameter ωopt was obtained by minimizing

(49) over KΩ = 100 grid points of the interval Ω defined above. The threshold value was determined

as described below (49) and it was evaluated at ωopt. This optimal implementation is called here “MT-

GQLRTopt”.

2) Suboptimal implementation not requiring training sequences: Here, similarly to the signal detection

example, the width parameter of the Gaussian MT-function (50) was selected via data-driven procedure

that involves only the test sequence itself. This procedure is described in Appendix G. The threshold

parameter is obtained via Monte-Carlo simulations as discussed below. This suboptimal implementation

is called “MT-GQLRTsub”.

The Tukey-GQLRTopt, GGD-QLRT and SVM were implemented using the same training sequences of

size N0 = N1 = 3×104 used by the MT-GQLRTopt. For all compared tests, except the MT-GQLRTopt and

Tukey-GQLRTopt, Monte-Carlo simulations were performed in-order to determine the threshold value that

minimizes the probability of error. These Monte-Carlo simulations were carried out using M = 105 i.i.d.

training sequences of size N from each hypothesis. Similarly to the MT-GQLRTopt, the threshold for the

Tukey-GQLRTopt was determined by minimizing the empirical asymptotic probability of error w.r.t. the

threshold as described in [36, Sec. D]. The empirical probability of error curves were obtained using 105

Monte-Carlo simulations. The SNR and sample size are used to index the classification performances as

depicted in Figs. 3(b) and 3(c) for the Gaussian noise and in Figs. 4(b) and 4(c) for the t-distributed noise.

The probability of error versus SNR was evaluated for N = 300 i.i.d. observations, and the probability

of error versus sample size was evaluated for SNR = −22 [dB]. Observing Figs. 3(b) and 3(c), one can

notice that, as expected, when the noise is Gaussian, the MT-GQLRTopt achieves the LRT performance and

outperforms the Median-GQLRT, the Tukey-GQLRTsub and the SVM. Observing Figs. 4(b) and 4(c), one

sees that for the t-distributed noise, the MT-GQLRTopt outperforms the non-robust Bayesian GQLRT and

the other compared methods and attains classification performance that are much closer to those obtained

by the Bayesian LRT that, unlike the MT-GQLRTopt, requires complete knowledge of the conditional

likelihood function under each hypothesis. The MT-GQLRTsub (which do not involve training sequences

for selection of ω) outperforms any detector that do not use training sequences. Notice that, although

the Tukey-GQLRTopt performs similarly to the MT-GQLRTopt, it has a significantly higher computational

complexity as described in Table II below. Furthermore, unlike the MT-GQLRTopt, it involves an iterative
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process for estimating the location vector parameter.

A general asymptotic computational load (ACL) analysis (for the considered classification problem)

is reported in Table II. Similarly to the signal detection problem, notice that the MT-GQLRTopt and the

MT-GQLRTsub have the same ACL for classification as the standard GQLRT. Also note that the ACL

of the MT-GQLRTopt and the MT-GQLRTsub due to tunning of the width parameter of the Gaussian

MT-function (which is performed via simple line search) is linear in the sample size, dimension and the

number of grid points taken over Ω.

Finally, an analysis of the compared classifiers for small sample size is provided in [36, Sec. F].

TABLE II

Signal classification: ASYMPTOTIC COMPUTATIONAL COMPLEXITY (FLOPS). NOTATION: p

IS THE DIMENSION OF THE OBSERVATION VECTORS. N DENOTES THE SAMPLE SIZE. N0

AND N1 ARE THE SIZES OF THE TRAINING SEQUENCES FROM H0 AND H1 , RESPECTIVELY.

KΩ DENOTES THE NUMBER OF GRID POINTS OF THE Ω-AXIS. I DENOTES NUMBER OF

ITERATIONS. KC DENOTES THE NUMBER GRID POINTS OVER WHICH THE TUNING

PARAMETER c IN THE TUKEY-GQLRTOPT CLASSIFIER WAS OPTIMIZED. M DENOTES THE

NUMBER OF TRIALS OF THE MONTE-CARLO SIMULATION FOR ESTIMATING THE OPTIMAL

THRESHOLD.

Method Parameter tuning Threshold calculation Classification

MT-GQLRTopt O((N0 +N1)pKΩ) O(1) O(Np)

MT-GQLRTsub O(NpKΩ) O(MNp) O(Np)

GQLRT − O(MNp) O(Np)

Tukey-GQLRTsub − O(MNpI) O(NpI)

Tukey-GQLRTopt O(((N0 +N1)p2 + p3)KC) O(1) O(NpI)

Median-GQLRT − O(MNp) O(Np)

GGD-QLRT O((N0 +N1)pI) O(MNp) O(Np)

SVM O((N0 +N1)pI) O(MNp) O(Np)

VII. CONCLUSION

In this paper a new test, called MT-GQLRT, for non-Bayesian binary hypothesis testing was developed

that applies GQLRT after transformation of the probability distribution of the data. A Bayesian extension

of this test was also developed by applying the transformation to the conditional probability distribution

of the data. By specifying the MT-function in the Gaussian family of functions the non-Bayesian and

Bayesian MT-GQLRTs were successfully applied to robust signal detection and classification, respectively.
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Fig. 3. Signal classification in Gaussian noise: (a) Asymptotic probability of error predicted by the theory (48) and its empirical

estimate (49) versus the width parameter ω of the Gaussian MT-function (50). (b) + (c) Optimal asymptotic error probability of

the MT-GQLRT, and the empirical error probabilities of the MT-GQLRTopt and the MT-GQLRTsub as a function of (b) SNR and

(c) sample size as compared to the empirical error probabilities of the Tukey-GQLRTsub, Tukey-GQLRTopt, Median-GQLRT,

GGD-QLRT, SVM and the omniscient LRT.

APPENDIX

In this Appendix, we provide proofs for theorems, propositions and claims that are stated throughout

the paper. Furthermore, training-sequences-free procedures for selection of the parameters of the MT-

functions (42) and (50) are developed.
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Fig. 4. Signal classification in non-Gaussian noise: (a) Asymptotic probability of error predicted by the theory (48) and its

empirical estimate (49) versus the width parameter ω of the Gaussian MT-function (50). (b) + (c) Optimum asymptotic error

probability of the MT-GQLRT, and the empirical error probabilities of the MT-GQLRTopt and the MT-GQLRTsub as a function of

(b) SNR and (c) sample size as compared to the empirical error probabilities of the GQLRT, Tukey-GQLRTsub, Tukey-GQLRTopt,

Median-GQLRT, GGD-QLRT, SVM and the omniscient LRT.

A. An auxiliary Lemma:

Lemma 1. Assume that Σ
(u)
k , k = 0, 1 are non-singular, E[u2(X);Pk] and E[‖X‖4u2(X);Pk] are finite

for k = 0, 1. Then, the expectations A , E[u(X)|ψu(X)|;Pk] and B , E[u2(X)(ψu(X) − η(u)
k )2;Pk]

are finite for k = 0, 1.

Proof. By (17), (19), the non-singularity of Σ
(u)
0 and Σ

(u)
1 , inequality (1) in [44], and the triangle
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inequality:

|ψu(X)| ≤ d+

∥∥∥∥Σ
(u)
0

−1/2 (
X− µ(u)

0

)∥∥∥∥
2

+

∥∥∥∥Σ
(u)
1

−1/2 (
X− µ(u)

1

)∥∥∥∥
2

≤ d+

∥∥∥∥Σ
(u)
0

−1/2
∥∥∥∥

2

S

∥∥∥X− µ(u)
0

∥∥∥
2

+

∥∥∥∥Σ
(u)
1

−1/2
∥∥∥∥

2

S

∥∥∥X− µ(u)
1

∥∥∥
2

= d+ λ−1
min(Σ

(u)
0 )
∥∥∥X− µ(u)

0

∥∥∥
2

+ λ−1
min(Σ

(u)
1 )
∥∥∥X− µ(u)

1

∥∥∥
2

≤ d+ λ−1
min(Σ

(u)
0 )(‖X‖+ ‖µ(u)

0 ‖)
2

+ λ−1
min(Σ

(u)
1 )(‖X‖+ ‖µ(u)

1 ‖)
2

= c1‖X‖2 + 2c2 ‖X‖+ c3 , ξu (X) , (51)

where d , | log(det Σ
(u)
0 /det Σ

(u)
1 )|, ‖ · ‖S denote the spectral norm, λmin(·) denote the minimal

eigenvalue of a matrix and c1 , λ−1
min(Σ

(u)
0 ) + λ−1

min(Σ
(u)
1 ), c2 , ‖µ(u)

0 ‖λ−1
min(Σ

(u)
0 ) + ‖µ(u)

1 ‖λ−1
min(Σ

(u)
1 ),

c3 , ‖µ(u)
0 ‖

2
λ−1

min(Σ
(u)
0 ) + ‖µ(u)

1 ‖
2
λ−1

min(Σ
(u)
1 ) + d.

By Definition 1, Hölder’s inequality [27] and the assumption that E[u2(X);Pk] and E[‖X‖4u2(X);Pk]

are finite for k = 0, 1:

E[u(X);Pk] <∞ (52a)

E[u2(X)‖X‖2;Pk] ≤
√

E
[
u2 (X) ‖X‖4;Pk

]
E[u2(X);Pk] <∞ (52b)

E[u2(X)‖X‖3;Pk] ≤
√

E[u2(X)‖X‖2;Pk]E[u2(X)‖X‖4;Pk] <∞ (52c)

E[u2(X)‖X‖;Pk] ≤
√

E[u2(X);Pk]E[u2(X)‖X‖2;Pk] <∞ (52d)

for k = 0, 1. Therefore, by (51), (52) and Hölder’s inequality:

A , E [u (X) |ψu (X)| ;Pk] (53)

≤ E
[
u(X)(c1‖X‖2 + 2c2‖X‖+ c3);Pk

]

≤
√

E[u2 (X) (c1‖X‖2 + 2c2‖X‖+ c3)
2
;Pk] <∞

for k = 0, 1. According to (6), (8), (21) and (53) it follows that |η(u)
k |, k ∈ {0, 1} is finite since

|η(u)
k | ≤ A

E[u(X);Pk] <∞. Moreover, by (51)

(ψu (X)− η(u)
k )

2
≤ ψ2

u (X) + 2|ψu (X) η
(u)
k |+ (η

(u)
k )

2
(54)

≤ ξ2
u (X) + 2|η(u)

k |ξu (X) + (η
(u)
k )

2

= c̃4‖X‖4 + c̃3‖X‖3 + c̃2‖X‖2 + c̃1 ‖X‖+ c̃0
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for k = 0, 1, where c̃4 , c2
1, c̃3 , 2c1c2, c̃2 , 4c2

2 + 2|η(u)
k |c1 + 2c1c3, c̃1 , 2c2c3 + 4|η(u)

k |c2, and

c̃0 , c3
2 + (η

(u)
k )

2
+ 2|η(u)

k |c3. Finally, by (52), (54) and the fact that |η(u)
k | is finite we conclude that:

B ≤ E
[
u2 (X)

(
c̃4‖X‖4 + c̃3‖X‖3 + c̃2‖X‖2 + c̃1 ‖X‖+ c̃0

)
;Pk

]
<∞

for k = 0, 1.

B. Proof of Theorem 1:

By (14), (17), (18), (19) and assumption A-1, the test statistic is a non-degenerate random variable that

can be written as:

Tu =
1
N

∑N
n=1 u (Xn)ψu (Xn)
1
N

∑N
n=1 u (Xn)

. (55)

Since Xn, n = 1, ..., N are i.i.d. random vectors and the functions u(·) and ψu(·) are real, the products

u(Xn)ψu(Xn), n = 1, ..., N are i.i.d. and real. According to (6), (8) and (21) u(X)(ψu (X)− η(u)
k ) is a

zero-mean random variable under Pk for k = 0, 1. Furthermore, by assumptions A-2, A-3 and Lemma

1 stated in Appendix A, its variance under Pk is finite for any k = 0, 1. Therefore, by the central limit

theorem [45] we conclude that the translated and scaled version of the numerator in (55) satisfies:
√

N

λ̃
(u)
k

1

N

N∑

n=1

u (Xn)
(
ψu (Xn)− η(u)

k

)
D−−−−→

N→∞
N (0, 1) (56)

∀k ∈ {0, 1}, where

λ̃
(u)
k , E

[
u2 (X) (ψu(X)− η(u)

k )2;Pk

]
. (57)

Since by Definition 1 u (X) is non-negative and 0 < E [u (X) ;Pk] < ∞ for k = 0, 1, by Khinchine’s

strong law of large numbers [25] we have that the denominator in (55) satisfies:

1

N

N∑

n=1

u (Xn)
w.p.1−−−−→
N→∞

E [u (X) ;Pk] ∀k ∈ {0, 1}. (58)

Notice that by Eqs. (8), (22) and (57), λ(u)
k = λ̃

(u)
k /(NE2 [u (X) ;Pk]). Therefore, by (55)-(58) and

Slutsky’s theorem [27]:

Tu − η(u)
k√

λ
(u)
k

=

√
N
λ̃
(u)
k

1
N

∑N
n=1 u (Xn)

(
ψu (Xn)− η(u)

k

)

(
1
N

∑N
n=1 u (Xn)

)
/E [u (X) ;Pk]

D−−−−→
N→∞

N (0, 1)

∀k ∈ {0, 1}.
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C. Proof of proposition 1:

By (14), (19), (25), (26) and assumptions A-1, A-2, the empirical estimators η̂(u)
k and λ̂

(u)
k are non-

degenerate random variables that can be written as:

η̂
(u)
k ,

1
Nk

∑Nk

n=1 u(X
(k)
n )ψu(X

(k)
n )

1
Nk

∑Nk

n=1 u(X
(k)
n )

(59)

and

λ̂
(u)
k ,

1
Nk

Nk∑
n=1

u2(X
(k)
n )

(
ψ2
u(X

(k)
n )− 2ψu(X

(k)
n )η̂

(u)
k + (η̂

(u)
k )2

)

N
(

1
Nk

∑Nk

n=1 u(X
(k)
n )
)2 , (60)

respectively. Since {X(k)
n }Nk

n=1 are i.i.d and the functions u (·) and ψu (·) are real, the products

{u(X
(k)
n )ψu(X

(k)
n )}Nk

n=1, {u2(X
(k)
n )ψ2

u(X
(k)
n )}Nk

n=1 and {u2(X
(k)
n )ψu(X

(k)
n )}Nk

n=1 define real i.i.d. sequences.

Furthermore, by Hölder’s inequality [27], assumptions A-2, A-3 and Lemma 1 stated in Appendix

A we have that the expectations E[u(X);Pk], E[u2(X);Pk], E[u(X)|ψu(X)|;Pk], E[u2(X)ψ2
u(X);Pk]

and E[u2(X)|ψu(X)|;Pk] are finite for any k ∈ {0, 1}. Therefore, by Khinchine’s strong law of large

numbers [25]:

N−1
k

Nk∑

n=1

ui(X(k)
n )ψju(X(k)

n )
w.p.1−−−−→

Nk→∞
E[ui(X)ψju(X);Pk], (61)

for any (i, j) ∈ {(1, 0), (2, 0), (1, 1), (2, 1), (2, 2)} and any k ∈ {0, 1}. Hence, by (8), (21), (22), (59)-(61)

and Mann-Wald’s Theorem [46] we conclude that

η̂
(u)
k

w.p.1−−−−→
Nk→∞

η
(u)
k and λ̂

(u)
k

w.p.1−−−−→
Nk→∞

λ
(u)
k , k = 0, 1. (62)

Therefore, by (23), (24), (62), the continuity of the standard normal tail probability Q(·) and Mann-Wald’s

Theorem [46] we conclude that α̂u
w.p.1−−−−→

N0→∞
αu and β̂u

w.p.1−−−−→
N1→∞

βu.

D. Proof of proposition 3:

Similarly to the proof of Proposition 1 stated in Appendix C, one can verify that under conditions A-1 -

A-3, (62) holds. for any k ∈ {0, 1}. Therefore, by (28), (29), (62), the continuity of Q(·) and Mann-Wald’s

Theorem [46] we conclude that R̂(u) w.p.1−−→ R(u) as N0, N1 →∞.



33

E. Proof of proposition 4:

One can verify that if assumption C-1 is satisfied and λ̂
(u)
1 6= λ̂

(u)
0 , then the only two stationary points

[47] of R̂(u) (·) are given by

t∗1 ,
λ̂

(u)
0 η̂

(u)
1 − λ̂(u)

1 η̂
(u)
0 −

√
λ̂

(u)
0 λ̂

(u)
1 ŝ(u)

λ̂
(u)
0 − λ̂(u)

1

and

t∗2 ,
λ̂

(u)
0 η̂

(u)
1 − λ̂(u)

1 η̂
(u)
0 +

√
λ̂

(u)
0 λ̂

(u)
1 ŝ(u)

λ̂
(u)
0 − λ̂(u)

1

.

Furthermore, R̂(u) (·) is twice differentiable at t∗1 and t∗2, d2R̂(u)

dt2 (t∗1) > 0 and d2R̂(u)

dt2 (t∗2) < 0. Hence, by

the second derivative test [47], t∗1 is a local minimum of R̂(u)(·), and t∗1 is a local maximum of R̂(u)(·).

Therefore, by Fermat’s Theorem [47] and the fact that R̂(u)(·) is differentiable at any t ∈ R, we conclude

that exactly one of the following statements is satisfied:

a) t∗1 is a global minimum of R̂(u) (·).

b) L10π0 = lim
t→−∞

R̂(u)(t) ≤ R̂(u)(r) for all r ∈ R.

c) L01π1 = lim
t→∞

R̂(u)(t) ≤ R̂(u)(r) for all r ∈ R.

If in addition to assumption C-1, assumption C-2 is satisfied then statement a must hold. Now, if

assumption C-2 is not satisfied then statement b or statement c must hold, which means that R̂(u)(t) >

min (L10π0, L01π1) for all t ∈ R , i.e. t∗1 is not a global minimum. Furthermore, if assumption C-1 is

not satisfied then R̂(u)(·) has no stationary points and, again, t∗1 is not a global minimum.

F. Signal detection: Training-sequences-free procedure for selection of the Gaussian MT-function width

parameter:

In the following, a data-driven procedure for selection of the Gaussian MT-function (42) width pa-

rameter ω is developed that does not require training sequences. This procedure, which is based on a

weak-signal assumption, has the property that it prevents significant loss in the asymptotic local power

sensitivity to change in signal variance, relative to the omniscient LRT, when the observations are normally

distributed.

By (38), (39) and (42) one can verify that when Sn ∼ CN
(
0, σ2

S

)
and Wn ∼ CN

(
0, σ2

WIp
)
, the

asymptotic powers of the omniscient LRT and the proposed test (37) at a fixed test size α are given by:

βLRT = Q

(
Q−1 (α)σ2

W −
√
Nσ2

S

σ2
S + σ2

W

)
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and

βuG
(ω) = Q

(
Q−1 (α)σ2

W −
√
Nσ2

SG(ω, σ2
W)

σ2
S + σ2

W

)
,

respectively, where G(ω, σ2
W) ,

(√
1+2σ2

W/ω2

1+σ2
W/ω2

)p−1

.

The asymptotic local power sensitivity is defined as the gradient of the power w.r.t. the signal variance

at σ2
S = 0. Hence, the relative local power sensitivity is quantified by the ratio:

R(ω, σ2
W) , ∂βuG

∂σ2
S

/
∂βLRT
∂σ2

S

∣∣∣∣
σ2
S=0

=

√
NG(ω, σ2

W)√
N +Q−1 (α)

+ d, (63)

where d , Q−1(α)/(
√
N +Q−1(α)).

Thus, in order to prevent significant loss in (63), we propose to choose the width parameter ω that

solves the equation:

R(ω, σ̂2
Y) = r, (64)

where d << r < 1 is a predefined constant, σ̂2
Y ,

√
c2

p−1

∑p
k=1 σ̂

2
k is an empirical estimate of the

unknown noise variance σ2
W, and σ̂2

k = MAD2({Re([Yn]k)}Nn=1) + MAD2({Im([Yn]k)}Nn=1) is a robust

median absolute deviation (MAD) estimate of variance [29]. Here, Yn , P⊥a Xn and c , 1/erf−1 (3/4)

ensures consistency of the variance estimate for normally distributed data [29] under both hypotheses.

One can verify that the solution of (64) is given by:

ω2
0 =

(
1/
√
ζ − 1

)
σ̂2

Y, (65)

where ζ , 1− (r − (1− r)Q−1(α)/
√
N)2/(p−1).

In the considered example, the parameter r in (64) was set to 0.9. We note that a similar strategy for

selection of ω was carried out in [48] for a different test that was developed for constant-false-alarm-rate

(CFAR) radar target detection in non-spherical noise. Unlike the procedure described above, the selection

algorithm in [48] utilizes a training sequence (secondary data) from the null hypothesis.

G. Signal classification: Training-sequences-free procedure for selection of the Gaussian MT-function

width parameter:

In the following, a data-driven procedure for selection of the Gaussian MT-function (50) width param-

eter ω is developed. This training-sequences-free procedure controls the asymptotic error probability of

the proposed test (47) relative to this of the LRT when the observations are normally distributed.
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Using (48), one can verify that when W ∼ CN (0, σ2
WI), the minimum asymptotic probability of error

of the MT-GQLRT (47) w.r.t. the threshold parameter is given by:

P (uG)
e

(
ω, σ2

W

)
=

1∑

k=0

πkQ

(
GuG

(ω, σ2
W)

2
+

(−1)k log π0

π1

GuG
(ω, σ2

W)

)
, (66)

where Gu(ω, σ2
W) , GL(σ2

W)(ω
√
ω2 + σ2

W/(ω
2 + 2σ2

W))p−2 and GL(σ2
W) ,

√
N‖a0 − a1‖/

√
2σ2

W.

When the observations are normally distributed, the LRT coincides with the GQLRT. Therefore, in this

case, the LRT is obtained from the MT-GQLRT for u(x) = 1. Notice that the Gaussian MT-function (50)

satisfies uG(x;ω)→ 1 as ω →∞. Hence, we conclude that, for Gaussian observations, the corresponding

error probability of the LRT, denoted as P (LRT )
e (σ2

W), can be obtained from (66) by taking the limit of

P
(uG)
e (ω, σ2

W) as ω goes to infinity. A closed from expression is easily obtained by replacing Gu(ω, σ2
W)

in (66) with GL(σ2
W).

The asymptotic relative error probability is defined here as:

R(ω, σ2
W) , P (LRT)

e (σ2
W)/P (u)

e (ω, σ2
W). (67)

Thus, in order to prevent low values of (67), we propose to chose ω that solves the equation R(ω, σ2
W) = r

where 0 << r < 1 is some predefined constant.

In practice the noise variance σ2
W is unknown. Hence, we propose to estimate this quantity in the

following manner. Similarly to (46), one can verify using (8), (11), (43) and (50) that under the assumption

of Gaussian noise, the MT-covariances under both hypotheses are given by:

Σ
(uG)
k (ω) =

σ4
W

ω2 + σ2
W

PA +
σ2

Wω
2

ω2 + σ2
W

I, (68)

k = 0, 1. A robust estimator of σ2
W can be constructed by taking trace on both sides of (68), extracting

σ2
W, and replacing the MT-covariance Σ

(uG)
k (ω) by its empirical estimate Σ̂

(uG)
(ω), which is obtained

according to (13) using the same sequence of samples that comprises the test-statistic in (47). This results

in the following estimate of noise variance:

σ̂2
W(ω) ,

d(ω)− pω2 +

√
(d(ω)− pω2)2 + 8ω2d(ω)

4
, (69)

where d(ω) , trace{Σ̂(uG)
k (ω)}. Thus, the desired parameter ω0 is obtained by solving the equation

R(ω, σ̂2
W(ω)) = r. In the considered example, this equation was solved numerically via search over

KΩ = 100 grid points of the interval Ω = [1, 100], where the asymptotic relative error parameter was set

to r = 0.9.
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aspects. Springer Science & Business Media, 2006.

[34] K. Todros and A. O. Hero, “Measure-transformed quasi likelihood ratio test,” in Proceedings of International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pp. 4259–4263, 2016.

[35] N. Halay, K. Todros, and A. O. Hero, “Measure transformed quasi likelihood ratio test for Bayesian binary hypothesis

testing,” in Proceedings of Workshop on Statistical Signal Processing (SSP), 2016.

[36] N. Halay, K. Todros and A. O. Hero, “Binary hypothesis testing via measure transformed quasi likelihood ratio test:

Supplementary material,” IEEE Transactions on Signal Processing, 2017.

[37] H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,” IEEE Signal

Processing Magazine, vol. 13, no. 4, pp. 67–94, 1996.

[38] K. Gerlach, “Spatially distributed target detection in non-Gaussian clutter,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 35, no. 3, pp. 926–934, 1999.

[39] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other kernel-based learning methods.

Cambridge university press, 2000.

[40] A. Swami and B. M. Sadler, “On some detection and estimation problems in heavy-tailed noise,” Signal Processing, vol. 82,

no. 12, pp. 1829–1846, 2002.

[41] A. Berlinet and C. Thomas-Agnan, Reproducing kernel Hilbert spaces in probability and statistics. Springer Science &

Business Media, 2011.

[42] P. C. Allaart, “Minimax risk inequalities for the location–parameter classification problem,” Journal of multivariate analysis,

vol. 66, no. 2, pp. 255–269, 1998.

[43] X. Ning and G. Karypis, “The set classification problem and solution methods,” in 2008 IEEE International Conference

on Data Mining Workshops, pp. 720–729, IEEE, 2008.

[44] R. Patel and M. Toda, “Trace inequalities involving hermitian matrices,” Linear algebra and its applications, vol. 23,

pp. 13–20, 1979.

[45] R. J. Serfling, Approximation theorems of mathematical statistics. John Wiley & Sons, 2009.



38

[46] H. B. Mann and A. Wald, “On stochastic limit and order relationships,” The Annals of Mathematical Statistics, vol. 14,

no. 3, pp. 217–226, 1943.

[47] H. Anton, Calculus, 5th ed. John Wiley & Sons, 1995.

[48] N. Halay and K. Todros, “Plug-in measure-transformed quasi-likelihood ratio test for random signal detection,” IEEE Signal

Processing Letters, vol. 24, no. 6, pp. 838–842, 2017.



1

Binary Hypothesis Testing via Measure
Transformed Quasi Likelihood Ratio Test:

Supplementary Material
Nir Halay∗, Koby Todros∗ and Alfred O. Hero†

∗Ben-Gurion University of the Negev, †University of Michigan

In this supplementary material document, we provide al-
gebraic manipulations showing the structure of the measure-
transformed covariance of the noise component under the
detection problem (31). Furthermore, implementation details
for some of the compared methods and an additional perfor-
mance analysis for small sample size are provided. Finally, a
modified scale-invariant version of the proposed detector (37)
is presented.

A. Signal detection example: structure of the noise MT-
covariance

In this section we provide detailed algebraic manipulation
showing the structure of the measure-transformed covariance
of the noise component, as stated below Eq. (35). According
to (8), (10), (11) and (33) the MT-covariance of the spherically
symmetric noise component is given by:

Σ(u)
W , E

[
WWHg

(∥∥P⊥a W
∥∥) ;PW

]
/c, (S-1)

where PW denote the probability distribution of W and the
constant c , E[g(‖P⊥a W‖);PW]. Define the unitary matrix
U , [a,V⊥a ] (recall that a is unit-norm), where V⊥a ∈
Cp×p−1 is the orthonormal complement of a. Notice that
since W is spherically distributed, it has the same probability
distribution as UW, hence:

A , E
[
WWHg

(∥∥P⊥a W
∥∥) ;PW

]
(S-2)

= UE
[
WWHg

(∥∥P⊥a UW
∥∥) ;PW

]
UH

= UE
[
WWHg

(∥∥[0,V⊥a
]
W
∥∥) ;PW

]
UH .

The third equality in (S-2) follows directly from the property
that P⊥a = V⊥a V⊥Ha . Now, let W = [W1,W2, . . . ,Wp]

T , and
define W2 , [W2, . . . ,Wp]

T . Since V⊥Ha V⊥a = Ip−1, we
conclude that

g
(∥∥∥
[
0,V⊥a

]
W
∥∥∥
)

= g
(∥∥∥V⊥a W2

∥∥∥
)

(S-3)

= g

(√
WH

2 V⊥Ha V⊥a W2

)
=g(‖W2‖).

Hence, by (S-2) and (S-3) we obtain that

A=U

[
E
[
|W1|2g(‖W2‖);PW

]
E
[
W1W

H
2 g(‖W2‖);PW

]

E[W ∗1 W2g(‖W2‖);PW] E
[
W2W

H
2 g(‖W2‖);PW2

]
]
UH
.

(S-4)
Since W is spherically symmetric, it has the same distribution
as W̃ , [W1,−W2, ...,−Wp]

T . Therefore, we conclude that:

E
[
W1W

H
2 g (‖W2‖) ;PW

]
= 0T , (S-5)

Furthermore, since any sub-vector of a spherically
symmetric random vector is also spherically symmetric
[s1], then W2 defined above must be spherically
symmetric, and therefore, E[W2W

H
2 g(‖W2‖);PW2 ] =

QE[W2W
H
2 g(‖W2‖);PW2

]QH for any unitary matrix
Q ∈ Cp−1×p−1. Hence,

E
[
W2W

H
2 g(‖W2‖);PW2

]
=

1

p−1
E
[
‖W2‖2g(‖W2‖);PW2

]
Ip−1.

(S-6)
Finally, by the definition of U, (S-1), (S-4)-(S-6) and the fact
that P⊥a = V⊥a V⊥a

H we obtain

Σ
(u)
W = E

[
WWHg

(∥∥P⊥a W
∥∥) ;PW

]
/c (S-7)

= E
[
|W1|2 g (‖W2‖) ;PW

]
aaH/c

+E
[
‖W2‖2g (‖W2‖) ;PW

]
P⊥a / (c(p− 1))

= r
(u)
0 aaH + r

(u)
1 Ip,

where r
(u)
0 , E[(|W1|2 − ‖W2‖2

p−1 )g(‖W2‖);PW]/c and

r
(u)
1 , 1

p−1E[‖W2‖2g(‖W2‖);PW]/c.

B. Maximum likelihood estimation of GGD parameters - Sig-
nal detection example

In this section we provide exact implementation details of
the ML estimator for the GGD parameters comprising density
estimation based detector in Section VI-A. We consider the
family of generalized Gaussian distributions (GGD) [s1], with
densities:

f̃ (X;θk) =
skΓ(p)

πpΓ(p/sk)

1

|Σk|
exp

(
−
(
xHΣ−1

k x
)sk)

,

where k = 0, 1 denotes a hypothesis index, Γ(·) is the
gamma function, Σ0 , γI, Σ1 , αaaH + βI, θ0 , [γ, s0]T

and θ1 , [α, β, s1]T . By equating the gradient of the objective
functions Jk (θk) ,

∑Nk

n=1 log f̃(X
(k)
n ;θk), k = 0, 1 to zero,

one can verify that the ML estimators of the vectors θ0 and
θ1 are the solutions of the equations

γ̂ =

(
ŝ0
pN0

N0∑

n=1

‖X(0)
n ‖

2ŝ0

)1/ŝ0

,

ŝ0 = pψ0 (p/ŝ0)

(
ŝ0
N0

N0∑

n=1

‖X(0)
n ‖

2ŝ0

γ̂ŝ0
log
‖X(0)

n ‖
2

γ̂ŝ0
− 1

)−1

for k = 0, and

α̂ =
ŝ1

N1β̂ŝ1−1

N1∑

n=1

ν ŝ1n

∣∣∣aHX(1)
n

∣∣∣
2

− β̂,



2

β̂ =




ŝ1
N1∑
n=1

ν ŝ1−1
n

(∥∥∥X(1)
n

∥∥∥
2

−
[
1−

(
β̂

α̂+β̂

)2] ∣∣∣aHX
(1)
n

∣∣∣
2
)

N1

(
α̂ (p− 1) + pβ̂

)
/
(
α̂+ β̂

)




1/ŝ1

,

ŝ1 = pψ0 (p/ŝ1)

[
1

N1

N1∑

n=1

ν ŝ1n

β̂ŝ1
log

(
ν ŝ1n

β̂ŝ1

)
− 1

]−1

for k = 1, where ψ0(·) is the polygamma function of order
0 and νn , ‖X(1)

n ‖
2
− α̂|aHX

(1)
n |

2
/(α̂+ β̂). The solution of

these equations was obtained by fixed-point iteration. The
maximum number of iterations and the stopping criterion were
set to 1000 and |Jk(θ

(l)
k )− Jk(θ

(l−1)
k )|/|Jk(θ

(l−1)
k )| < 10−6,

respectively, where θ
(l)
k denotes the estimates of θk at iteration

index l. The initial conditions of ŝ0, ŝ1, α̂ and β̂ were set to
1, 1, 0 and γ̂, respectively.

C. Implementation of the SVM based detector

In this section we provide implementation details of the
SVM based detector we compared to in the signal detection
example in Subsection VI-A. First, a radial basis function
(RBF) kernel SVM was trained using MATLAB function
“fitcsvm.m”. We used the same two training sequences utilized
by the proposed MT-GQLRT. Notice that according to (31)
we are interested in testing between H0 and H1 based on
a sequence of samples (observations) X1, . . . ,XN from P .
In other words, we need to decide whether the whole set of
observations is associated with H0 or H1. Now, the SVM
method is inherently designed to classify each observation
vector separately. Therefore, after the training stage, the SVM
based detector was implemented in two steps. First, each ob-
servation vector Xn ∈ {X1, . . . ,XN} was classified into H0

or H1 using SVM. This step was performed using MATLAB
function “predict.m”. Second, the final decision was carried
out by comparing the averaged SVM output to a threshold
value. More specifically, let CSVM(X) denote the SVM output,
such that CSVM(X) = 0 when X is classified into H0 and
CSVM(X) = 1, otherwise. The final SVM based decision rule
is defined as:

TSVM(X1, . . . ,XN ) , 1

N

N∑

n=1

CSVM(Xn)
H1

R
H0

t, (S-8)

where t ∈ [0, 1] denotes a threshold. Notice that when t = 0.5,
we obtain a majority voting based rule, i.e., the alternative
hypothesis H1 is accepted if the majority (more than 50%)
of the observations are classified by the SVM into H1. The
threshold value t was determined using Monte-Carlo simula-
tions to satisfy a fixed false alarm rate.

D. Implementation of Tukey’s bi-square M-estimator of loca-
tion - Signal classification example:

This section provides exact implementation details for the
choice of the tuning parameter in Tukey’s bi-square M-
estimator of scatter. This estimator comprises the test statistic

of the robust GQLRT extension in Subsection VI-B. The con-
sidered Tukey’s bi-square M-estimator of location minimizes
the following objective function

Jρ (a) ,
N∑

n=1

ρ (‖Xn − a‖) ,

where ρ (r) , 1−
(

1−
(
r
c

)2)3
1[0,c] (|r|) is Tukey’s bi-

square loss function, c is a tuning constant, and 1A (·)
denotes the indicator function of a set A. By equating
the gradient of the objective function Jρ (a) to zero,
Tukey’s bi-square M-estimator of location is the solution
of the equation â =

∑N
n=1 Xnw(Xn, â)/

∑N
n=1 w(Xn, â),

obtained by fixed-point iteration, where the weight function
w (Xn,a) , (1− ‖Xn−a‖2

c2 )21[0,c](‖Xn − a‖). Here, the
fixed-point iteration was initialized by the robust median
estimator of location. The maximum number of iterations and
the stopping criterion in the fixed-point iteration were set to
100 and ‖âl − âl−1‖ / ‖âl−1‖ < 10−6, respectively, where l
denotes an iteration index. Notice that unlike Tukey’s location
estimator, the empirical MT-mean (12) does not involve
iterative optimization. The tuning parameter c is selected via
two different methods:

1) Method 1: We chose the parameter c to ensure fixed
asymptotic relative efficiency (ARE) [s2] of the location
estimate, relative to the CRLB under nominal Gaussian dis-
tribution. Here, we set c , c̃σ̂, where σ̂ ,

√
1
p

∑p
k=1 σ̂

2
Xk

is a robust median absolute deviation (MAD) esti-
mate of variance [s3], σ̂2

Xk
= γ2[MAD2({Re(Xk,n)}Nn=1) +

MAD2({Im(Xk,n)}Nn=1)], and γ , 1/erf−1 (3/4). The con-
stant γ ensures consistency of the scale estimate under
normally distributed data [s3]. The ARE of the considered
Tukey bi-square M-estimator, defined as the ratio between the
traces of the CRLB and the asymptotic MSE under Gaussian
distribution, is given by:

ARE (c̃) =
E2
[(

1− (R/c̃)2
) (

(2/p+ 1) (R/c̃)2 − 1
)
1[0,c̃] (R)

]

E
[(

1− (R/c̃)2
)4
R21[0,c̃] (R) /p

] ,

where
√

2R is a chi distributed random variable with 2p
degrees of freedom. Using this formula, the parameter c̃ was
set to achieve ARE of 95% in all simulation examples. For
the considered dimension p = 10 we obtained c̃ ≈ 6.2.

2) Method 2: Here, we assume that training sequences
X

(k)
n , n = 1, . . . , Nk, k = 0, 1 from P0 and P1 are available.

An optimal choice of the tuning parameter c within some
interval C would be the one that minimizes the empirical
estimate of the asymptotic probability of error.

One can verify that the test statistic TTukey ,
Re{(a1 − a0)H â} under Hk, k = 0, 1 is asymptotically
normal with mean κk , (θ1 − θ1)Tθk and variance
γk , (θ1 − θ0)

T
F−1k EkF

−1
k (θ1 − θ0) /N , where

θk , [Re{ak}T , Im{ak}T ]T ,

Ek,E
[
d4k (Y−θk)(Y−θk)T1[0,∞) (dk) ;Pk

]
,

Fk,E

[(
4dk
c2

(Y−θk)(Y−θk)T −d2kI2p
)
1[0,∞) (dk) ;Pk

]
,
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k=0,1, dk,1−‖Y−θk‖2/c2, and Y, [Re{X}T , Im{X}T ]T .
Hence, the asymptotic probability of error associated with this
method is given by

Pe , π0Q ((t− κ0)/
√
γ0) + π1Q ((κ1 − t)/

√
γ1) ,

where t denotes a threshold. An empirical estimate of the
variance γk, k = 0, 1, is defined as:

γ̂k , (θ1 − θ0)
T
F̂−1k ÊkF̂

−1
k (θ1 − θ0) /N,

where

Êk,
1

Nk

Nk∑

n=1

d4k,n

(
Y(k)
n −θk

)(
Y(k)
n −θk

)T
1[0,∞) (dk,n) ,

F̂k , 1

Nk

Nk∑

n=1

4dk,n
c2

(
Y(k)
n −θk

)(
Y(k)
n −θk

)T
1[0,∞) (dk,n)

−I2p
1

Nk

Nk∑

n=1

d2k,n1[0,∞) (dk,n) ,

Y(k)
n , [Re{X(k)

n }T , Im{X(k)
n }T ]T ,

and dk,n , 1− ‖Y(k)
n − θk‖2/c2. Thus, similarly to the opti-

mization of the MT-function parameter discussed in subsection
V-B, the optimal parameter c ∈ C minimizes

P̂e , π0Q((topt − κ0)/
√
γ̂0) + π1Q((κ1 − topt)/

√
γ̂1),

where topt is the optimal threshold, which is obtained from
(30) by replacing η̂

(u)
k and λ̂

(u)
k with κk and γ̂k, k = 0, 1,

respectively. In the simulation example the interval C was set
to [0.01, 50].

E. Maximum likelihood estimation of GGD parameters - Sig-
nal classification example:

In this section we provide exact implementation details of
the ML estimator for the GGD parameters comprising density
estimation based detector in Section VI-B. Here, similarly to
Section B, we also consider the family of generalized Gaussian
distributions (GGD) [s1], with densities:

f̃ (X;θk) =
skΓ(p) exp

(
−
(

(X− ak)HΣ−1
k (X− ak)

)sk)

πpΓ(p/sk) |Σk|
,

where k = 0, 1 denotes a hypothesis index, Γ(·) is the
gamma function, Σk , αkI, k = 0, 1, and θk , [αk, sk]T ,
k = 0, 1. Similarly to the signal detection example, by
equating the gradient of the objective functions Jk (θk) ,∑Nk

n=1 log f̃(X
(k)
n ;θk), k = 0, 1 to zero, one can verify that

the ML estimators of the vectors θk, k = 0, 1 are the solutions
of the equations

α̂k=

(
ŝk
pNk

Nk∑

n=1

‖X(k)
n −ak‖

2ŝk

)1/ŝk

,

ŝk=pψ0(p/ŝk)

(
ŝk
Nk

Nk∑

n=1

‖X(k)
n −ak‖

2ŝk

α̂
ŝk
k

log
‖X(k)

n −ak‖
2

α̂
ŝk
k

−1

)−1

,

k = 0, 1, where ψ0(·) is the polygamma function of or-
der 0. The solution of these equations was obtained by

fixed-point iteration. The maximum number of iterations and
the stopping criterion were set to 1000 and |Jk(θ

(l)
k )−

Jk(θ
(l−1)
k )|/|Jk(θ

(l−1)
k )| < 10−6, respectively, where θ

(l)
k de-

notes the estimates of θk at iteration index l. Both the initial
conditions of ŝ0 and ŝ1 were set to 1.

F. Simulations with small sample size:

In this section, we repeat the numerical examples in Subsec-
tions VI-A and VI-B for small sample size of N = 20. We note
that here, ROC curve analysis was performed for SNR = −5
[dB] for both Gaussian and non-Gaussian noise. Furthermore,
the threshold values of all compared tests were determined
via (105) Monte-Carlo simulations. Observing Figs. S1 and
S2, one sees that for both signal detection and classification
examples, the proposed MT-GQLRTopt attains the best de-
tection and classification performance, except the omniscient
LRT, which assumes complete knowledge of the likelihood
function under each hypothesis (Recall that MT-GQLRTopt and
MT-GQLRTsub are the optimal and suboptimal MT-GQLRT
implementations, respectively, discussed in Subsection VI-A
and VI-B). Moreover, one can notice that under the signal
detection example, the MT-GQLRTsub performs similarly to
the NSDD-GQLRT for Gaussian noise (Figs. 1(a) and 1(b)).
For the non-Gaussian noise (Figs. 1(c) and 1(d)), it outper-
forms all compared tests, excluding the MT-GQLRTopt and
the omniscient LRT. Under the signal classification example
(Fig. S2), the MT-GQLRTsub outperforms all robust GQLRT
alternatives that do not use training sequences (except for
threshold determination).

G. Signal detection example: A modified scale-invariant ver-
sion of the MT-GQLRT:

In this section, a modified scale invariant version of the
proposed test (37) is developed. In order to induce scale-
invariance, the test-statistic T ′u (36) is normalized by an
observation-dependent factor. This factor is identically dis-
tributed over the considered hypotheses, and therefore, it
converges almost surely to the same constant value under
H0 and H1 when the sample size approaches infinity. More
specifically, we define the following normalized test-statistic:

T ′′u , T ′u
D

=
aHĈ(u)a

D
, (S-9)

where D , trace{P⊥a Ĉ(u)}, and Ĉ(u) is defined below (36).
The decision rule based on this modified test-statistic is given
by:

T ′′u
H1

R
H0

t. (S-10)

Interestingly, the test (S-10) is a measure-transformed version
of the Gauss-Gauss detector [s4] (Eq. 14) for the special case
of spatially white interference.

In the following we show that the detector (37) and its
modified version (S-10) have the same asymptotic power at a
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Fig. S1. Signal detection with small sample size: (a) + (b) in Gaussian noise, (c) + (d) in non-Gaussian noise.
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Fig. S2. Signal classification with small sample size: (a) in Gaussian noise, (b) in non-Gaussian noise.

fixed false alarm rate. Under the parameterized Gaussian MT-
function (42), this property justifies the selection of the width
parameter ω via the selection rule (65). Using (34), (35), the
last equality in (S-7), and the consistency of the empirical MT-
mean and MT-covariance (see Proposition 2 in [s5]), one can
verify that

D
w.p.1−−−→ (p− 1) r

(u)
1 , γ as N →∞

under both H0 and H1, where r
(u)
1 is defined below (S-

7). Therefore, by (36), (S-9), Theorem 1 (which implies
asymptotic normality of T ′u), and Slutsky’s theorem [s6], we

conclude that under Hk, k ∈ {0, 1}:

T ′′u − η̄(u)k√
λ̄
(u)
k

= A1
T ′u − η̃(u)k√

λ̃
(u)
k

+A2
D−−−−→

N→∞
N (0, 1) ,

where η̄
(u)
k , η̃

(u)
k /γ, λ̄

(u)
k , λ̃

(u)
k /γ2, η̃

(u)
k , η

(u)
k −c

(u)
1

c
(u)
2

,

λ̃
(u)
k , λ

(u)
k

(c
(u)
2 )2

, the constants c
(u)
1 and c

(u)
2 are defined

above (36), and η
(u)
k and λ

(u)
k are defined in (21) and

(22), respectively. The random variables A1 , γ/D and

A2 , η̃
(u)
k (γ/D − 1)/

√
λ̄
(u)
k . Hence, the asymptotic power
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of the modified test (S-10) at a fixed asymptotic size α is
given by:

β̄(α)
u = Q


 η̄

(u)
0 − η̄(u)1 +

√
λ̄
(u)
0 Q−1 (α)

√
λ̄
(u)
1


 (S-11)

= Q


η

(u)
0 − η(u)1 +

√
λ
(u)
0 Q−1 (α)

√
λ
(u)
1


 = β(α)

u ,

which by corollary 1 and (36) is exactly the asymptotic power
of (37) under the same test size.

In the following Proposition, we show that the test-statistic
(S-9) implemented with the Gaussian MT-function uG(x;ω)
(42) is scale invariant when the width parameter ω is selected
according to the selection rule (65). This result guarantees
constant false alarm rate (CFAR) property w.r.t. the noise
power σ2

W.

Proposition 1. Let ω2
Y =

(
1/
√
ζ − 1

)
σ̂2

Y where ζ and σ̂2
Y

are defined below (65). Then, for the Gaussian MT-function
(42) and any constant s ∈ C, the modified test-statistic (S-9)
satisfies:

T ′′uG

(
{Xn}Nn=1;ω2

Y

)
= T ′′uG

(
{sXn}Nn=1;ω2

sY

)
, (S-12)

where ω2
sY =

(
1/
√
ζ − 1

)
σ̂2
sY.

Proof. Since the MAD estimator of variance is linear w.r.t.
scale, we have that ω2

sY = |s|2ω2
Y. Hence, by (12), (13) and

(42) we conclude that the empirical measure-transformed
autocorrelation, defined below (36), that comprise the test
statistic (S-9), satisfies:

Ĉ(uG)
(
{sXn}Nn=1;ω2

sY

)
= |s|2

∑N
n=1uG

(
sXn;ω2

sY

)
XnXH

n∑N
n=1uG(sXn;ω2

sY)

= |s|2
∑N
n=1uG

(
Xn;ω2

Y

)
XnXH

n∑N
n=1uG(Xn;ω2

Y)

= |s|2Ĉ(uG)
(
{Xn}Nn=1;ω2

Y

)
. (S-13)

Finally, by (S-9) and (S-13)

T ′′uG

(
{sXn}Nn=1;ω2

sY

)
=

aHĈ(u)
(
{sXn}Nn=1;ω2

sY

)
a

trace{P⊥a Ĉ(u) ({sXn}Nn=1;ω2
sY)}

=
aHĈ(u)

(
{Xn}Nn=1;ω2

Y

)
a

trace{P⊥a Ĉ(u) ({Xn}Nn=1;ω2
Y)}

= T ′′uG

(
{Xn}Nn=1;ω2

Y

)
.

The modified test (S-10) will be called here “MT-
GQLRTmod”. In the following, we examine its detection
performance. To do so, we repeated the second simulation
example in Subsection VI-A, where the MT-GQLRTmod re-
places the suboptimal MT-GQLRT implementation, called
MT-GQLRTsub, under which the same selection rule (65)
is applied. Similarly to the MT-GQLRTsub, the threshold is
determined via Monte-Carlo simulations. Here, the relative
local power sensitivity in (65) was set to to r = 0.99. All the
other settings are remained as described in subsection VI-A.
Observing Figs. S3(a)-S3(c) and S4(a)-S4(c), one sees that
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Fig. S3. Signal detection in Gaussian noise using the modified test (S-10)

the modified test (S-10) outperforms the other compared tests
that do not use training sequences for parameter tunning (other
than the threshold).

Next, to illustrate CFAR property w.r.t noise power, empir-
ical test sizes were obtained for modified values of the noise
power σ2

W when the threshold in (S-10) was determined for
σ2

W = 1. Observing Fig. S5, one sees that indeed, the proposed
detector has a CFAR property w.r.t. noise power.
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