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Abstract—Singular Spectrum Analysis (SSA) is a signal de-
composition technique that aims at expanding signals into inter-
pretable and physically meaningful components (e.g. sinusoids,
noise, etc.). This article presents new theoretical and practical
results about the separability of the SSA and introduces a
new method called sliding SSA. First, the SSA is combined
with an unsupervised classification algorithm to provide a fully
automatic data-driven component extraction method for which
we investigate the limitations for components separation in a
theoretical study. Second, the detailed automatic SSA method is
used to design an approach based on a sliding analysis window
which provides better results than the classical SSA method when
analyzing non-stationary signals with a time-varying number
of components. Finally, the proposed sliding SSA method is
compared to the Empirical Mode Decomposition (EMD) and
to the synchrosqueezed Short-Time Fourier Transform (STFT),
applied on both synthetic and real-world signals.

Index Terms—Singular Spectrum Analysis, Empirical Mode
Decomposition, Synchrosqueezing, non-stationary signals

I. INTRODUCTION

S INGULAR Spectrum Analysis (SSA) [1], [2] is a data-
adaptive and non parametric method for time series de-

composition and identification. It was introduced in the context
of extracting, from noisy sampled observations, experimental
data information about an underlying dynamical system [1],
[3]. SSA recently received a lot of attention for its ability to
provide meaningful results in many application fields, without
making any assumption on the processed data. Thus, the main
motivation to use SSA is that no stationarity, linearity or nor-
mality assumption about the data must be satisfied to provide
efficient results. For example, SSA was successfully applied
to extract trends from acoustic signals [4] and to expand
biological signals into a sum of interpretable components [5]–
[7]. Furthermore, SSA has shown its efficiency for processing
stationary and non-stationary signals (using the wide sense
stationarity definition [8]) without restriction on the length
of the analyzed signal. Simultaneous extraction of trends and
amplitude-modulated sinusoids, detection, modeling and struc-
tural changes forecasting, are also among the basic capabilities
of SSA [9]–[11]. From a SSA perspective, a time series is con-
sidered as a sum of deterministic components possibly merged
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with structureless noise. The relevance and the physical mean-
ingfullness of the extracted components is commonly related
to the concept of separability [9]. This aims at determining
how the components provided by SSA are intercorrelated
and can be independently interpreted. Theoretically, one can
distinguish weak and strong separability [12], whereas from a
practical point-of-view, it is more reasonable to make use of
an approximate or asymptotic separability [9]. Several criteria
have been proposed to determine the separation/decomposition
quality [9], [13], [14]. They are often dedicated to assess
the correlation/orthogonality between components, in either
time or frequency domain. The result depends on the choice
of the SSA parameter called the embedding dimension. For
instance, a well-known result is that two sinusoids with very
different frequencies and different amplitudes are strongly
separable [9]. Sinusoids with close frequencies and different
amplitudes are asymptotically separable [9]. This means that
they are strongly separable when the embedding dimension
and the time series length go to infinity. However, one could
be interested in knowing how much two frequencies should
be distant for a given value of the embedding dimension. This
paper makes a contribution towards answering to this question.
In many applications, the components extracted by SSA can be
identified as trends, periodic (possibly amplitude-modulated)
components or noise. Thus, it shares the same goal as some
recently proposed approaches referred to as Empirical Mode
Decomposition (EMD) [15], [16]. Intuitively, the question of
the limit distance above which two close frequencies are sepa-
rable applies to the case when the components are modulated.
In this article, several separation cases are investigated to
concretely justify the SSA behavior when processing some
particular non-stationary signals. Furthermore, the question
of the robustness of the SSA method to outliers and strong
noise, which is full of interest for real-world signals, is also
addressed and presented as a particular case study, involving
the separation of a periodic component with an impulse signal.

Despite efforts to make spectral methods more robust to
outliers [17], [18], in the case of strongly modulated non-
stationarity signals, the classical SSA method fails to correctly
reconstruct the components. A grouping approach based on
the analysis of the singular spectrum is no longer valid
because each singular vector can only capture a part of each
component. To overcome this limitation, a new algorithm
called sliding SSA is introduced and proposes a frame-based
SSA (as for the Short-Time Fourier Transform (STFT)), for
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which extracted deterministic components are tracked between
adjacent frames. This new method is compared to the classical
SSA and provides significantly better results for both station-
ary and non-stationary signals. The present paper is organized
as follows. The next section briefly recalls the basic SSA
algorithm and proposes an unsupervised component grouping
method based on hierarchical clustering. Section III studies
the separability capabilities of the SSA by considering sev-
eral theoretical and practical cases that are validated through
simulations. Section IV introduces a new algorithm called
sliding SSA that oversteps the limitations of the classical SSA
algorithm when it processes non-stationary multi-components
signals. Section V makes a contribution towards a performance
comparison between four mode decomposition techniques:
SSA, EMD, synchrosqueezing and the new proposed sliding
SSA, which are applied on both synthetic and real-world
signals. Finally, this article is concluded in Section VI by
future research perspectives.

II. THE BASIC SINGULAR SPECTRUM ANALYSIS METHOD

A. Algorithm principle

SSA considers a finite length record of a time series (e.g. a
sampled signal) s = {sn, n = 1 . . . N} and aims at decompos-
ing s as a sum of physically interpretable components. This
task is generally completed through two successive steps.

1) Decomposition:
a) Embedding: This step consists in mapping the one-

dimensional N -samples time series into a sequence of K =
N−L+1 lagged column vectors of length L, where L is called
the embedding dimension. As a result, we obtain a trajectory
matrix expressed as:

X =


s1 s2 . . . sK
s2 s3 . . . sK+1

...
...

...
...

sL sL+1 . . . sN

 (1)

where each column is obtained by applying a sliding window
of length L to the time series. Thus, the trajectory matrix X
is a Hankel matrix, meaning that it has equal elements on
the diagonals (i.e. i+ j is constant, when i and j are row and
column indices). The only parameter in this step is the window
length L, an integer ranging in the interval [2, N−1]. L should
be carefully selected because it directly affects the decompo-
sition. The optimal choice depends on the particularity of the
time series and on the problem statement [19]. This means
that information about the time series structure may help to
find an appropriate choice of L. However, in most situations
this information is not available.

b) Singular value decomposition: The Singular Value
Decomposition (SVD) [20] of X (being a real L×K matrix
with rank R ≤ min(L,K)), expands this matrix into a sum of
weighted orthogonal matrices that are not necessarily Hankel,
expressed as [21]:

X = UΣV T =

R∑
i=1

Xi with Xi = σiuivi
T (2)

where Σ = diag(σ1, · · · , σR), σi are the singular values
sorted in the descending order, ui and vi are respectively the

associated left and right singular vectors corresponding to the
columns of the orthogonal matrices U and V . The SVD ex-
pansion of X can be obtained through the eigendecomposition
of the lag-covariance matrix C = XXT . This matrix can be
factorized as C = U ΛUT where Λ is the diagonal matrix
of eigenvalues. The i-th eigenvalue is equal to σ2

i . The right
singular vectors V = (v1, ..., vR) can be deduced from X
and U as vi = XT ui/σi.

The energy contribution of the i-th eigentriple1 to the
trajectory matrix, given by the ratio σ2

i /
∑R
j=1 σ

2
j , is called

the singular spectrum of the time series.
2) Reconstruction:

a) Grouping: This step consists in splitting the set of
elementary matrices Xi (i = 1, ..., R) into r disjoint groups
and summing the matrices within each group. The result of
this process is the expansion of the trajectory matrix X as
X =

∑r
k=1XIk , where XIk =

∑
i∈IkXi is the resulting

matrix of group Ik (k = 1, ..., r). The groups Ik can be
formed based on the information contained into the singular
vectors and into the singular spectrum [12], [22]. The singular
vectors have a temporal structure and can be considered as
time series. For both stationary or non-stationary components,
the singular vectors of the same group are assumed to share
some features with a signal component. Thus, the grouping
is usually made by checking for their correlation degree and
by a coherence inspection of the singular spectrum [23].
However, this approach is less valid in the case of strongly
non-stationarity signals, because each singular vector is then
likely to capture a unique part of the behavior of a component,
and the singular vectors within the same group are intended
to represent together the whole behavior of one component.

b) Diagonal averaging: If the signal components are
separable, the resulting matrices after the grouping step are
ideally Hankel [12], [14]. Thus, they correspond to the trajec-
tory matrices of some time series. For real-world signals, this
seldom happens, thus the resulting matrices XIk are almost
Hankel and the components are approximately separable. The
averaging along cross-diagonals of the matrix XIk aims at
solving the problem of finding the time series x(k) for which
the trajectory matrix of dimension (L × K) is the closest to
XIk , in the least-squares sense. In other words, the diagonal
averaging of XIk = (xi,j) provides the elements of the time
series {x(k)

n , n = 1 . . . N} as:

x(k)
n =



1
n

n∑
m=1

xm,n−m+1 for 1 ≤ n<L

1
L

L∑
m=1

xm,n−m+1 for L ≤ n≤K

1
N−n+1

L∑
m=n−K+1

xm,n−m+1 for K + 1 ≤n≤N.

(3)

This cross-diagonal averaging (also called Hankelization pro-
cess) can also be applied to eachXi matrix. The resulting time
series will hereafter be referred to as elementary components.

This process finally provides an exact expansion of the time
series s into r components that satisfies sn =

∑r
k=1 x

(k)
n .

1The i-th eigentriple is defined by the collection (σi,ui,vi).
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B. Automatic grouping of components

Since numerous specific component grouping methods were
separately proposed for SSA to reconstruct sinusoids [23],
[24], trends [25] or noise [6], [9], all of them suffer of a
lack of flexibility and require to be manually adapted to the
analyzed signal to provide meaningful results. More recently,
efforts aim at making the SSA fully automatic [26]–[28] and
adaptive for any component type.

Thus, we propose to use agglomerative hierarchical clus-
tering [29] to extract the physically interpretable components
of a time series, regardless of the component types [30].
This approach pioneered in [31]–[33], contrarily to classical
methods, first reconstructs each elementary component by the
Hankelization process and then apply the grouping. The algo-
rithm is initialized by assigning each reconstructed elementary
component (associated to a eigentriple) to a distinct class
[29]. Then, the algorithm looks for the two nearest classes
and merges them to build a new class. This operation is
iterated until the desired number of classes or the maximum
dissimilarity between two classes is reached. To compare
two classes Ci and Cj containing several time series, the
dissimilarity is defined as the minimal distance between two
distinct time series of each class

D(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) (4)

where the chosen distance function d : RN × RN → [0, 1] is
defined as

d(x, y) = 1− |<x, y>|
||x|| ||y||

, (5)

with <x, y> = xT y and ||x||=
√
<x, x> (6)

but can also be replaced by the weighted correlation (w-
correlation) as defined in [33].
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Fig. 1. Decomposition of a signal of N = 300 samples made of a sinusoid
with normalized frequency λ0 = 0.03 and a linearly frequency-modulated
sinusoid with amplitude H = 0.8 and frequency varying from 0.06 to 0.15
merged with a white Gaussian noise with a SNR equal to 20 dB. This result
is obtained with the proposed algorithm with L = 40 and for a maximum
number of classes set to r=2 (a distinct color per class).

This algorithm provides a binary tree that can be called a
dendrogram, which shows at each iteration the result of the
merging process. An example is presented in Fig. 1 (b) where
the X-axis shows the components indices and the Y-axis shows
the maximal distance between two elementary components of
the same class. The reconstructed components associated to
each class are displayed in Figs. 1 (c) and (d). The Quality
of Reconstruction Factor (QRF) of an estimated component x̂
relative to reference x is given by

QRF(x̂, x) = 20 log10

(
||x||
||x− x̂||

)
. (7)

As shown in Fig. 1, the proposed algorithm allows to
recover the elementary components despite the presence of
noise (component QRF is higher or equal to the input SNR).

Our numerical experiments show that hierarchical clustering
often obtains better results than with the k-means algorithm
[34] as proposed in [31]. Furthermore, the results provided by
the correlation function defined by Eq. (5) obtains as good
results as when using the w-correlation in practice. Thus, the
entire proposed automatic SSA method which combines basic
SSA and automatic grouping can be formalized by Algorithm
1 for which a MATLAB implementation is proposed in [35].

Algorithm 1: Pseudo-code of the proposed automatic SSA
method.

Data: s ∈ RN : the input signal, r: the number of components
to extract, L: the embedding dimension

Function autoSSA(s, r, L)
X ← BuildTrajectoryMatrix(s, L); /* cf. §II-A1 */

R← rank(X);
(σ,u,v)← SVD(X);
/* A threshold can be applied here to σ to remove noise components */

for i← 1 to R do
Xi ← σiuiv

T
i ;

x(i) ← DiagAveraging(Xi); /* cf. Eq. (3) */

end
/* apply hierarchical on elementary components to obtain r clusters */

Ik ← HCA({x(1), ..., x(R)}, r);
for k ← 1 to r do

y(k) ←
∑
i∈Ik x

(i)

end
return {y(1), ..., y(r)};

end

III. THEORETICAL AND PRACTICAL RESULTS FOR
COMPONENTS SEPARATION

Several separability degrees from both theoretical and prac-
tical viewpoints can be defined [12]:
• weak separability: two distinct time series x(i) and x(j),

with trajectory matrices Xi and Xj , are said to be
weakly L-separable if all pairwise inner product of the
rows and columns of Xi and Xj are equal to zero. This
means that any subseries of length L of x(i) is orthogonal
by any subseries of the same length of x(j).

• strong separability: x(i) and x(j) are said to be strongly
L-separable if, in addition to the weak separability condi-
tion, the SVD of Xi and Xj have distinct singular values.
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Fig. 2. Average correlation between the sinusoids in signal model of Eq. (9) for close frequencies. (a) details the correlation with log10(H) ∈ {0.1, 0.3, 1.5}
and (b) with L = 40 and N varying such as K ∈ {800, 400, 200, 100}. (c) details the correlation for close amplitudes with λ1 ∈ {0.10, 0.11, 0.14}.

As the strong separability is never verified for real-world
series, two practical degrees of separability are defined as
follows [12]:
• approximate separability: two time series x(i) and x(j)

are said to be approximately L-separable if all pairwise
inner products of the rows and columns of Xi and Xj

are close to zero.
• asymptotic separability: two components x(i) and x(j)

are said to be asymptotically L-separable if they are
approximately L-separable when N →∞ and L→∞.

A. Separation of two sinusoids

Two sinusoids with different amplitudes and different (even
very close) frequencies are known to be asymptotically sepa-
rable [12]. The question here is: for given L and N , what
is the minimum gap required between two frequencies in
order to separate them? It has been shown theoretically and
validated experimentally [36] that each singular value of
the trajectory matrix can be approximated by averaging a
suitable portion of the periodogram of the analyzed time series.
More precisely, let s = {sn, n = 1 . . . N} be a stationary
zero mean, time series and its L × K trajectory Hankel
matrix X defined as in Eq. (1). We define the vectors ~s =
(s1, s2, . . . , sK)T and ~̂s = (ŝ1, ŝ2, ..., ŝK)T as being a sub-
series of s of length K and its unitary Fourier transform can
be computed as ŝk = 1√

K

∑K
n=1 sn e−2jπ

(n−1)k
K . Thus, the

periodogram of s is defined as (|ŝ0|2, |ŝ1|2, ..., |ŝK−1|2) and
verifies |ŝk|2 = |ŝK−k+1|2, if ~s ∈ RK . Under the condition
L � K, each eigenvalue σ2

i of the normalized covariance
matrix C = 1

KXX
T can be approximated by the mean value

of a portion of the power spectrum ~̂s, whose length can roughly
be defined as l = bKL c, (bxc being the integer part of a real
number x) [36]:

σ̄2
i =

1

l

il−1∑
j=(i−1)l

|ŝj |2, i = 1, ..., L. (8)

Now, one can deduce that each eigentriple requires about
K/L values of ŝ which has a resolution of 1/K cycles per
sample. Hence, one can conclude that the minimal distance
between two frequencies is ∆λmin = K

L ×
1
K = 1/L. This

statement can be validated by numerical simulations using the
following signal model

sn = cos(2πλ0n)︸ ︷︷ ︸
x
(1)
n

+H cos(2πλ1n+ φ)︸ ︷︷ ︸
x
(2)
n

, n = 1 · · ·N. (9)

SSA is applied to this time series, while λ0 = 0.1, λ1

belongs to [0.01, 0.2] with L = 40. For this experiment, we use
the proposed automatic grouping approach. The reconstruction
quality, presented in Fig. 2, is computed by the average
correlation between the resulting components and the original
ones as 1

2

(
|<x(1),y(1)>|
||x(1)|| ||y(1)|| + |<x(2),y(2)>|

||x(2)|| ||y(2)||

)
where y(1) (resp.

y(2)) is the reconstructed component associated to x(1) (resp.
x(2)). Results show that SSA manages to separate the two
sinusoids except in two cases:

1) they have equal amplitudes (log10(H) ≈ 0). The singu-
lar values of both signals are then almost identical and
cannot be distinguished in the singular spectrum,

2) their frequencies are too close (λ1 ≈ 0.1) then the min-
imal distance condition for separability is not verified.

B. Separation of a sinusoid and a chirp

In order to extend the analysis to non-stationary signals,
let’s consider the following signal model

sn = cos(2πλ0n)+Hcos(ϕ(n)), n = 1, ..., N(10)
with ϕ(n) = 2π

(
λ1 n+ (δλ/2N)n2

)
. (11)

where H ∈ [0.01, 100] and δλ varies in the interval [0, 0.2].
According to whether a spectral overlapping between the sinu-
soid and the chirp exists or not, three situations are possible:
(1) λ0 < λ1, (2) λ1 ≤ λ0 ≤ λ1+δλ and (3) λ1+δλ < λ0. In
order to characterize the separability, λ1 is set to a specific
value in each of the three cases so that the reconstruction can
be evaluated with respect to δλ and H as displayed in Fig.
3, obtained with L = 40 and N = 500. The separability is
measured as in the stationary case (cf. Section III-A), using
the average correlation between the two original components
and the reconstructed ones. For components reconstruction, the
proposed automatic method (cf. Section II-B) is compared with
a supervised approach (cf. Fig.3) which consists in grouping
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Fig. 3. Average correlation between the signal components and their recon-
structions using a supervised grouping method (a) and the proposed automatic
grouping method (b). In case 1, λ0 = 0.1 and λ1 = 0.11, case 2, λ1 = 0.11
and λ0 = λ1 + δλ/2, case 3, λ0 = 0.31 and λ1 = 0.1.

the elementary components which have the minimal square
relative error with the reference components (assumed known).

Hence, the relative error between an elementary component
y and a reference component x is computed as

∑
n |xn −

yn|2/
∑
n x

2
n. In the three cases, we observe a transition from

an area where the reconstruction succeeds everywhere (white
area where correlation is close to one) to an area where it
fails (case 1) or can fail (cases 2 and 3). The red curve
shows the border between the two areas. Note that in the
situation where there is a spectral overlap between the signal
components (case 2), the shaded zone is clearly enlarged
exceeding the plotted curve. The shown border corresponds
to the situation where the singular values associated to the
chirp reach in magnitude those associated to the sinusoid.
Indeed, it follows from the spectral interpretation given by Eq.
(8), that a real chirp having a flat spectrum with bandwidth
δλ evenly spreads its spectrum across bLδλc eigenvalues. So,
the chirp is associated to a set of eigenvalues, whose level is
approximately (H2/2)/(Lδλ) [30]. Similarly, the amplitude

of the pair of eigenvalues associated to the sinusoid is 1/2.
The equality between both quantities leads to δλ = H2/L,
which corresponds to the red curve shown in Fig. 3.

This figure shows that the proposed automatic grouping
achieves optimal performance, comparable to the supervised
approach, while respecting the theoretical boundary. A major
difference however exists with the supervised approach in
the case of spectral overlap (case 2): the ambiguity area is
transformed into an area where the separation fails everywhere.

C. Separation of a sinusoid and an impulse

SSA is commonly defined for real-valued time series. This
does not preclude the application of SSA to a complex-valued
trajectory matrix [37]. The complex SSA algorithm is the same
as the basic SSA, with real-valued singular values, complex-
valued eigenvectors and where the transpose operator turns
into the Hermitian transpose operator.

The effect of an impulse on the reconstruction of a periodic
component will be studied in this section. Let’s consider the
complex-valued signal model defined as

sn = ej(nθ+φ) +H δ(n− n0), n = 1, ..., N (13)

where j2 = −1, θ = 2πλ is the normalized angular frequency
and Hδ(n) is the Dirac delta function with amplitude H . We
assume that n0 > L, where n0 is the time localization of the
impulse appearance. Let X be the trajectory matrix of the
series xn = ej(nθ+φ),

X = ejφ


ejθ e2jθ . . . eKjθ

e2jθ e3jθ . . . e(K+1)jθ

...
...

...
...

eLjθ e(L+1)jθ . . . eNjθ

 (14)

and let Y be the trajectory matrix of yn = H δ(n−n0) when
n0 > L and L < K

Y = H·
0 . . . . . . 0 0 . . . . . . 1 0 . . . . . . 0
...

. . .
...

...
...

...
...

. . .
...

...
. . .

...
...

...
...

...
. . .

...
0 . . . . . . 0 1 . . . . . . 0 0 . . . . . . 0

 .

(15)

Now, it can be shown that rank(X) = 1 (since each
line vector of X is equal to the line above multiplied
by ejθ) and rank(Y ) = L. Then, we can define u1 =
[1 ejθ e2jθ . . . ej(L−1)θ]T as a non-unitary singular
vector spanning the column space of X associated to the
singular value σ1 = ej(θ+φ) such that X = σ1u1v1

†, with
v1 = [1 e−jθ e−2jθ . . . e−j(K−1)θ]T (X† being the
transpose conjugate of X). We also have, Y Y † = H2IL
where IL is the (L×L) identity matrix. Hence, one can write

(X + Y )(X + Y )† =XX† +XY † + Y X† + Y Y †

=Ku1u1
† +H ej(n0θ+φ)u1u1

†

+H e−j(n0θ+φ)u1u1
† +H2IL

=UΣU † (16)
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u1[Y †u1]† = H



0 . . . 0 e−j(L−1)θ e−j(L−2)θ . . . e−2jθ e−jθ 1 0 . . . 0
0 . . . 0 e−j(L−2)θ e−j(L−3)θ . . . e−jθ 1 ejθ 0 . . . 0
0 . . . 0 e−j(L−3)θ e−j(L−4)θ . . . 1 ejθ e2jθ 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 . . . 0 e−jθ 1 . . . ej(L−4)θ ej(L−3)θ ej(L−2)θ 0 . . . 0
0 . . . 0 1 ejθ . . . ej(L−3)θ ej(L−2)θ ej(L−1)θ 0 . . . 0


. (12)

where U = (u1, u2, . . . , uL) is a non-unitary eigen-
vectors matrix and Σ = diag(K + 2H cos(n0θ + φ) +
H2, H2, H2, . . . ,H2). It follows that the impulse does not
affect the singular vector u1 associated to the sinusoidal
component xn but adds to the singular spectrum (L−1) non-
zero singular values.

Now, it is interesting to investigate the impulse com-
ponent effect on the sinusoidal component reconstruction
process. This is obtained by averaging along the cross-
diagonals (Hankelization process) of the matrix u1[X†u1 +
Y †u1 ]†. The averaging along the cross-diagonals of
u1[X†u1]† gives the sinusoidal part. Now let’s calcu-
late the impulse part u1[Y †u1]†. We obtain Y †u1 =
H[0 . . . 0 ej(L−1)θ ej(L−2)θ . . . ejθ 1 0 . . . 0]. The first
non-zero element ej(L−1)θ is at position n0 − L+ 1 and the
last one is at position n0. Thus u1[Y †u1]† can be expressed
by Eq. (12).

Thus, the cross-diagonals averaging of Eq. (12) provides the
following N -length column vector

q = H[0 . . . 0 α1 e−j(L−1)θα2 e−j(L−2)θ . . . αL . . .

α2 ej(L−2)θα1 ej(L−1)θ 0 . . . 0]T (17)

where the αi are obtained by applying Eq. (3) on the identity
matrix IL. Assuming that L < n0, if L < (n0 − L + 1)
and (n0 + L − 1) < K, then αi = i/L,∀i ∈ [1, L], since i
cross-diagonal non-zero elements are summed.

This vector has non-zero elements at positions that lie in
the interval [n0 − L + 1, n0 + L − 1], and the maximal
amplitude is reached at n0. The real part of q is oscillating at
angular frequency θ and is symmetric with respect to n0. As a
consequence, the reconstruction through SSA of the real-part
of the series sn provides the component

zn = cos(nθ + φ) +
2

L
Re(qn), n = 1, ..., N, (18)

where qn denotes the n-th sample of the time series given
by Eq. (17). The ratio 1/L is due to the normalization of
the singular vector u1. The factor 2 accounts for the pair of
singular vectors associated to the sinusoidal component in the
time domain. Re(z) denotes the real part of z.

Fig. 4 illustrates this result by displaying the average corre-
lation between the reconstructed components and the reference
signals using SSA with the proposed grouping method on a
real signal made of a sinusoid and an impulse expressed as
sn = cos(2πλ0n)+Hδ(n−n0) with λ0 = 0.025, n0 ∈ [L,K],
N = 500 and L = 40. This result shows that the quality of

reconstruction of both components depends on the following
inequality

1 +
2H

K
cos (n0θ + φ) > 0 (19)

which can be deduced from the theoretical singular spectrum
of a sinusoid merged with an impulse given by Eq. (16).
Hence, if H > K/2, then the inequality (19) is not verified
for the values of n0 where the cosine function takes negative
values. The result is a black area which corresponds to an
average correlation of the reconstructed components with the
reference signals, close to zero.

N=500, L=40, K=461

H=K/2  →

log
10

(H)

n
0

−2 −1 0 1 2 3 4

100

200

300

400

Fig. 4. Average correlation between the signal reconstructed components of a
signal made of a sinusoid and of an impulse using the proposed unsupervised
SSA method.

IV. THE SLIDING SSA METHOD: AN EMD-LIKE TOOL

Basically, SSA’s theory has a close connection with Fourier
analysis and it finds a solid mathematical background on
stationary time series analysis. However, this does not exclude
the applications of SSA to the analysis of non stationary series
since SSA has always been very appealing as an exploratory
data-adaptive multicomponent analysis technique. Although
methods like EMD and Synchrosqueezing share with SSA
the goal of multicomponent signal analysis, SSA has been
rarely associated with these methods but rather with subspace
methods and multivariate statistics [21]. This is perhaps due
to the use of the SVD which is the main element of SSA’s
algorithm. Now, we illustrate how classical SSA decomposes
a multi-components signal and we introduce a new algorithm,
called sliding SSA which makes it more adaptive to process
non stationary series.

Let consider a N = 1000 samples multicomponent signal
displayed in Fig. 5(a) and expressed as

sn = x(1)
n + x(2)

n + x(3)
n , (20)

where x(1)
n = a1 sin(2πλ1n)

x(2)
n = a2 sin(2πλ2n+ 30 sin(2πλcn))

x(3)
n = a3 sin(2πλ3n+ 52.5 sin(2πλcn)),
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Fig. 5. Spectrogram of a multicomponent signal sn made of two sinusoidally frequency modulated chirps and a pure sinusoid (a) and its reconstructed
components provided by automatic SSA applied to obtain r = 3 components denoted y(1), y(2) and y(3).

with a1 = 1, a2 = 0.8, a3 = 0.63, λ1 = 0.025, λ2 = 0.01,
λ3 = 0.1625 and λc = 1

600 . The proposed automatic SSA
method (cf. Algorithm 1) is applied on sn to obtain three
components. The resulting components with their respective
spectrogram are displayed in Fig. 5, for L = 40. Our
experiments show that the classical SSA fails to recover each
elementary component for any value of L. It can only recover
the pure sinusoid and a relatively narrow-band component,
while the two chirps remain merged into the third resulting
component.

Obtaining the desired components through an unsupervised
grouping of the elementary components is not trivial since
each elementary component reflects the signal behavior into
a narrow band of nearly K/L cycles per sample [36]. Hence,
the correlation between the elementary components of a non-
stationary signal component is quite weak. The singular spec-
trum and its estimation computed using Eq. (8) are shown
in Fig. 6. However, it might be possible to make the proper
grouping by visual identification and manual assignment of
the different components. This task fails if an elementary
component is a mixing of contributions from different signal
components, like the situation illustrated in Fig. 5.

Let’s get back to the question in the header of this section.
A mode is formally intended to mean an amplitude-frequency
modulated (AM-FM) wave. Comparing SSA to its analogues,
among which the EMD and the synchrosqueezing, SSA re-
quires an extensive supervised grouping work to be considered
as a mode decomposition-like tool. The proposed approach to
bypass this difficulty is: instead of applying SSA directly to the
whole signal, we rather propose to consider a sliding window
into which automatic SSA is be applied. This algorithm
involves linkage between the subcomponents of successive
frames (i.e. time series fragments), which is performed by
tracking a similarity measure between the subcomponents. The
next section details the proposed sliding SSA.
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Fig. 6. Singular spectrum (L= 40) and its image estimated through the signal
energy spectral density.

A. The sliding SSA algorithm

Sliding SSA contributes to extend the SSA separation ca-
pabilities to non-stationary signals with AM-FM components.
This approach is motivated by the following issues:
• an unsupervised grouping approach cannot be used due

to the low level of the interdependence between the ele-
mentary components belonging to one signal component;

• a mixing mode problem may occur due to spectral overlap
between different signal components;

• an appearance or vanishing of a component is possible;
a sliding locally-adaptive SSA is required in this case.

Thus, our proposal formulated by Algorithm 2, uses the
function autoSSA(x, r, L) to extract r components from a time
series x, through the automatic SSA method (cf. Algorithm 1).
At the first position of the sliding window (i.e. when p = 1),
the estimated components denoted x̂(i)

n are directly initialized
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with the result provided by autoSSA for the samples ranging in
[1, nc] (nc being the sample index at the center of the current
frame).

Then, for the next positions (i.e. p > 1, p being the
current position index), the current estimated components x̃(j)

provided by autoSSA (cf. Algorithm 1), are matched with
the previously estimated ones x̂

(j′)
p−∆+n (after considering a

delay ∆). The matching is completed through minimization
of a given distance metric function denoted dist(x̂, x̃) which
can be defined as Eq. (5) or as the Euclidean distance. For
the matching procedure, a variable J is used to store the
previously associated components j′ to ensure that, each one
is only associated once.

If the number of component increases, any j′ ∈ [1,max(r)]
is choosen among the non-affected components of x̂ and
is associated to the current component ˜x(j). If this number
is identical or decreases, each current component ˜x(j) is
necessary associated to a previously existing one of x̂(j).

When the last position is reached (i.e. p = N −W + 1),
all the samples ranging in [nc,W ] of each x̃(j)

n are stored in
their corresponding associated component.

Algorithm 2: Pseudo-code of the sliding SSA method.
(sa:b, with a ≤ b, denotes the time series (sa, sa+1, ..., sb)).

Data: sn ∈ RN : the input signal, rn ∈ NN : the number of
components of sn at each sample n, W : the sliding
window’s length (odd integer), L: the embedding
dimension, ∆: the number of samples between two
adjacent frames.

Result: x̂
(i)
n ∈ RN , ∀i ∈ [1,max(r)]: the resulting estimated

components.
for p← 1 to N −W + 1 by step ∆ do

nc ← p+ W−1
2 ; /* sample index at the center of the frame */

m← p+W − 1; /* sample index at the end of the frame */

/* compute current components x̃ through automatic SSA ∀j ∈ [1, rm] */

x̃(j) ← autoSSA(sp:m, rnc , L);
if p = 1 then

x̂
(j)
n ← x̃

(j)
n , ∀n ∈ [1, nc], ∀j ∈ [1, rnc ];

else
/* the set of already associated components indices */

J ← ∅;
for j ← 1 to rnc do

j′ ← argmin
k/∈J

(
dist

(
x̃(j)
n , x̂

(k)
p−∆+n

)
∀n∈[1,nc]

)
;

if j′ = ∅ and rnc−∆ < rnc then
/* choose any non-affected j′ when rnc increases */

j′ ← {∃k ∈ [1,max(r)], k /∈ J};
J ← {J, j′};
/* fill the component samples if the last frame is reached */

if p < N −W + 1 then
x̂

(j′)
p−1+n ← x̃

(j)
n ,∀n ∈ [nc, nc + ∆− 1];

else
x̂

(j′)
p−1+n ← x̃

(j)
n ,∀n ∈ [nc,W ];

.

B. Numerical results

1) Example 1: Consider the signal given by Eq. (20). Its
parameters are chosen such that the minimal frequency gap
between two components is equal to the critical value ∆λmin=
0.025 found in Section III-A and the logarithmic amplitude
ratio is equal to 0.1. Fig. 7 shows the signal components and
the components reconstructed using sliding SSA with rn = 3,
∀n ∈ [1, N ], while the embedding dimension L and the sliding
window W are set to 40 and 91 respectively. The window
moves one sample at each position, ∆ = 1. The linkage step
is based on the Euclidean distance between the samples of the
preceding and the current subcomponents located at indices in
[46, 76].

0 200 400 600 800 1000
−1

0

1
N= 91, component 1, QRF=18.28 dB

0 200 400 600 800 1000
−1

0

1
component 2, QRF=9.89 dB

0 200 400 600 800 1000
−1

0

1
component 3, QRF=9.52 dB

time index

Fig. 7. Example 1: Sliding SSA decomposition of sn, r = 3, L= 40: the
green plot is the reference and the black one is the reconstruction.

The QRF, computed through Eq. (7), is displayed in Fig. 7
which shows that the FM components can then be retrieved
using the sliding SSA.

C. Example 2

The local character of the sliding SSA makes it adaptive
to non-stationary components having different time supports.
Consider a signal made of two components, displayed in
Fig. 8(b) with linear frequency modulation and Gaussian
amplitude modulation. SSA, applied to this signal, gives the
components shown in Fig. 8(b). SSA extracts the component
y(1) associated with the maximal peak of the signal energy
spectral density and leaves the remaining of the signal energy
to the second component y(2). SSA fails to recover the desired
components. The sliding SSA, however, gives the components
shown in Fig. 8(a), for L = 40 and W = 131. It is able to
recover the signal components and gives high QRF. Numerical
experiments showed that the sliding SSA decomposition is
sensitive to the window length W . Nevertheless, acceptable
results having high positive QRFs, can easily be obtained with
a large set of W values for which tuning is not a tedious task.
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Fig. 8. Example 2: Sliding SSA decomposition and automatic SSA decom-
position (b) of sn results (r = 2, L= 40). In (a), the green line corresponds
to the reference signal and the black line is its reconstruction.

V. COMPARATIVE NUMERICAL RESULS

A. SSA, Empirical Mode Decomposition and Sliding SSA

As SSA, EMD [15] is a fully adaptive and data-driven
method for analysis of multicomponent signals that assumes
no a priori information about the linearity or stationarity of the
signal. EMD decomposes the signal into a set of components
called intrinsic mode functions (IMFs) such that their sum
is equal to the original signal. The separation of two pure
sinusoids from EMD perspective has been extensively studied
in [38]. For this case, EMD and SSA behave as follows:
• When the amplitude of the high frequency component is

higher than that of the low frequency, EMD and SSA act
as linear filters with constant cutoff frequency that depend
only on the number of sifting iterations for EMD, and the
embedding dimension for SSA.

• When the amplitude of the high frequency component is
smaller than that of the low frequency, EMD acts as a
non-linear filter with a cutoff that depends on the ampli-
tude ratio between the components. SSA however shows

a symmetrical behavior regarding the amplitude ratio of
the two components. SSA keeps the same constant value
of the cutoff frequency.

Indeed, EMD is expected to extract progressively the differ-
ent harmonics, starting with the highest frequency component
and ending up with the lowest one. When the amplitude of
the low frequency component gets higher than that of the high
frequency one, the EMD separation fails because the first IMF
is more likely to match the low frequency component.

In the particular case of a sum of a pure sinusoid and a
chirp, it has been shown that SSA can separate between the
two components when the amplitude of the pure sinusoid is
higher than that of the chirp. SSA shows the same behavior
as to whether the sinusoid frequency is higher or smaller than
that of the chirp. Let’s reconsider the following signal model

sn = cos(2πλ0n) +H cos(ϕ(n)) (21)
with ϕ(n) = 2π

(
λ1 n+ (δλ/2N)n2

)
, n = 1, ..., N (22)

Suppose λ0 < λ1 + δλ; SSA outperforms EMD when H < 1
because as H gets smaller than one, the first IMF will match
the pure sinusoid, which is the low frequency component, and
EMD will lead to a poor separation or a separation failure. The
SSA separation succeeds everywhere for H < 1, as shown
in Fig. 3(b). EMD, However, is expected to outperform SSA
when H gets higher than one. In this respect, EMD and SSA
have complementary separation capabilities.

In the case of general non-stationarity, Sliding SSA can
provide SSA separation of general (AM-FM) component.
Furthermore, EMD and Sliding SSA appear to have comple-
mentary separation capabilities of non-stationary components.
Considering the signal model defined in Eq. (20) and the speci-
fied values of frequencies, it follows from the above discussion
that on one hand the configuration of amplitudes which is
more favorable to a Sliding SSA decomposition than an EMD
decomposition is a1 > a2 > a3, and on the other hand, the
one which is more favorable for an EMD decomposition is
a1 < a2 < a3. However, while Sliding SSA algorithm is also
meant to deal with signals of components having different time
supports, as illustrated in section IV-C, EMD can only handle
components having identical time supports.

B. Sliding SSA and synchrosqueezing

Synchrosqueezing [39] is a sharpening method designed
to improve the energy localization of a Time Frequency
Representation (TFR). Contrarily to the reassignment method
[40], [41] which provides a non-invertible TFR, the syn-
chrosqueezed transform allows signal reconstruction or mode
extraction. To be used as an EMD-like tool, the syn-
chrosqueezed transform has to be combined with a ridge
detection algorithm, as in [42], [43]. Hence, the following
experiment compares the mode extraction results obtained
respectively by the proposed sliding SSA algorithm with the a
mode extraction method based on the synchrosqueezed STFT.

1) Mode extraction using the synchrosqueezed STFT: Let
Fhx (t, ω) =

∫
R x(u)h(t−u)∗ e−jωudu, be the STFT of a signal
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x using analysis window h. Thus, the synchrosqueezed STFT
of x can be defined as [44]

Sx(t, ω) =

∫
R
Fhx (t,Ω) ejΩtδ(ω − ω̂(t,Ω))dΩ, (23)

where ω̂(t, ω) is a local instantaneous frequency estimator
which can be provided by the frequency reassignment operator
defined as [41], [45]

ω̂(t, ω) = ω+Im

(
Fh
′

x (t, ω)

Fhx (t, ω)

)
, with h′(t) =

dh

dt
(t). (24)

Thus, for a given ridge curve denoted Ωi(t), the i-th associated
elementary component of the signal x can be recovered as

ŝi(t) =
1

h(0)

∫ Ωi(t)+∆ω/2

Ωi(t)−∆ω/2

Sx(t, ω)
dω

2π
, if h(0) 6= 0, (25)

while ∆ω sets the integration area around the ridge. In practice,
Ωi(t) can be obtained thanks to a ridge detector as proposed
by Brevdo et al. in [43].

This technique finds the best frequency curve Ω(t) in the
TFR, which maximizes the energy with a smooth constraint
through a total variation term penalization obtained by

Ω̂=argmax
Ω

∫
R
|Sx(t,Ω(t))|2 dt− λ

∫
R

∣∣∣∣dΩ

dt
(t)

∣∣∣∣2 dt, (26)

where λ controls the importance of the smoothness of Ω. When
the ridges of several components have to be estimated, this
method can be iterated after subtracting the energy located at
the previously estimated ridge.

2) Numerical results: Now, we consider the signal made of
three linear chirps, merged with a Gaussian white noise with
a SNR equal to 25 dB, as illustrated in Fig 9. We respectively
apply the synchrosqueezing mode extraction method described
in Section V-B1 and the proposed sliding SSA algorithm.
Results presented in Fig. 10, shows that sliding SSA can
obtain for each extracted component, better QRF values than
those obtained with the synchrosqueezing mode extraction
method. For this experiment, the settings of each method were
empirically tuned, in order to provide the best results. For
the sliding SSA method, we used a sliding analysis window
of length equal to W = 101 samples, the vector of the
instantaneous number of components rn was manually defined
such as max(r) = 3 and L = 39. The reconstruction errors
obtained by the synchrosqueezing method can be explained
by ridge detection errors due to the presence of noise (despite
several attempts for λ). This problem is clearly visible on the
third reconstructed component (cf. Fig. 10).
C. Application on a real-world signal

Now, we consider an audio signal of a cello musical
instrument recorded at a sampling frequency Fs = 11050 Hz,
playing the note G with a slight amplitude and frequency
modulation. Hence, we propose to compare the results pro-
vided respectively by each of the studied methods (automatic
SSA, sliding SSA, EMD and synchrosqueezed STFT) for the
extraction of the four most prominent components (or partials).
These components are located between 500 Hz and 3500 Hz,
as shown by Fig. 11(a). Sliding SSA achieves to correctly
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Fig. 9. TFRs of a multicomponent signal merged with a white Gaussian
Noise (SNR=25 dB).
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Fig. 10. Mode extraction comparison between the sliding SSA and the
synchrosqueezed STFT combined with [43] (SNR=25 dB).

extract the partials as illustrated by the resulting waveforms
11(b) and their corresponding spectrograms 11(c). To obtain
this result, we used a sliding window of length W = 300
with L = 150. This result can informally be compared to
Fig. 11(d) provided by the automatic SSA method and Fig.
11(e) provided by EMD which both fail to extract correctly
all the partials of the analyzed signal. Hence, some compo-
nents provided by SSA and EMD, contain energy located at



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 11

time [s]

fr
e
q
u
e
n
c
y
 [
H

z
]

Cello spectrogram

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

1000

2000

3000

4000

5000

(a) reference spectrogram

0 200 400 600 800 1000 1200 1400 1600
−0.5

0

0.5

time index

Component 1

0 200 400 600 800 1000 1200 1400 1600
−0.5

0

0.5

time index

Component 2

0 200 400 600 800 1000 1200 1400 1600
−0.5

0

0.5

time index

Component 3

0 200 400 600 800 1000 1200 1400 1600
−0.5

0

0.5

time index

Component 4

(b) sliding SSA (components waveforms)

fr
e
q
u
e
n
c
y
 [
H

z
]

sliding SSA extracted components

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

fr
e
q
u
e
n
c
y
 [
H

z
]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

fr
e
q
u
e
n
c
y
 [
H

z
]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

time [s]

fr
e
q
u
e
n
c
y
 [
H

z
]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

(c) sliding SSA (components spectrograms)

fr
e
q
u
e
n
c
y
 [
H

z
]

SSA extracted components

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

fr
e
q
u
e
n
c
y
 [
H

z
]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

fr
e
q
u
e
n
c
y
 [
H

z
]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

time [s]

fr
e
q
u
e
n
c
y
 [
H

z
]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

(d) automatic SSA (components spectrograms)

fr
e
q
u
e
n
c
y
 [
H

z
]

EMD extracted components

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

fr
e
q
u
e
n
c
y
 [
H

z
]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

fr
e
q
u
e
n
c
y
 [
H

z
]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

time [s]

fr
e
q
u
e
n
c
y
 [
H

z
]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

(e) EMD (components spectrograms)

fr
e
q
u
e
n
c
y
 [
H

z
]

synchrosqueezing extracted components

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

fr
e
q
u
e
n
c
y
 [
H

z
]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

fr
e
q
u
e
n
c
y
 [
H

z
]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

time [s]

fr
e
q
u
e
n
c
y
 [
H

z
]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2000

4000

(f) synchrosqueezing (components spectrograms)

Fig. 11. Analysis of a signal produced by a cello playing the note G5 (fundamental frequency is about 784 Hz). The components obtained with the new
proposed sliding SSA algorithm (a)-(b) are compared with those provided by automatic SSA (d), EMD (e) and synchrosqueezing (f). In this experiment, each
method is configured to provide r = 4 components.

several frequencies due to the merging of several components.
However, the synchrosqueezed STFT combined with [43] (cf.
Fig. 11(f), provides the best component extraction results with
less interferences than with the proposed sliding SSA method.

VI. CONCLUSION

The SSA method was investigated from a theoretical and
a practical point of view, with several enhancement proposals
for automatic components grouping and non-stationary signals
processing. A major contribution is the introduction of a new
algorithm, called sliding SSA, which enhances the analysis
of non-stationary signals thanks to a sliding analysis window
as for the STFT. This new algorithm was compared with the
classical SSA and with other state-of-the-art mode extraction
methods: EMD and synchrosqueezing. Our numerical experi-
ments show a clear advantage of the SSA over the EMD and
many situation where the sliding SSA can obtain comparable
results to the synchrosqueezing method. Future works consist

in improving the robustness of the new proposed algorithm ,
to obtain a better tracking of the components. This could lead
to the development more advanced applications for real-world
signals.
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