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Abstract—The focus of this paper is on co-existence between
a communication system and a pulsed radar sharing the same
bandwidth. Based on the fact that the interference generated
by the radar onto the communication receiver is intermittent
and depends on the density of scattering objects (such as,
e.g., targets), we first show that the communication system is
equivalent to a set of independent parallel channels, whereby
pre-coding on each channel can be introduced as a new degree
of freedom. We introduce a new figure of merit, named the
compound rate, which is a convex combination of rates with
and without interference, to be optimized under constraints
concerning the signal-to-interference-plus-noise ratio (including
signal-dependent interference due to clutter) experienced by the
radar and obviously the powers emitted by the two systems:
the degrees of freedom are the radar waveform and the afore-
mentioned encoding matrix for the communication symbols. We
provide closed-form solutions for the optimum transmit policies
for both systems under two basic models for the scattering
produced by the radar onto the communication receiver, and
account for possible correlation of the signal-independent fraction
of the interference impinging on the radar. We also discuss
the region of the achievable communication rates with and
without interference. A thorough performance assessment shows
the potentials and the limitations of the proposed co-existing
architecture.

Index Terms—Coexistence, Compound rate, Pulsed radar,
Spectrum sharing, Waveform design.

I. INTRODUCTION

Co-existence between radar and communication systems
over overlapping (if not coincident) bandwidths has been
a primary investigation field in recent years and has been
put forward as a challenging topic at both theoretical and
implementation stages [1]–[4]. The prevailing approach so
far—with some exception—has been to guarantee the detec-
tion and estimation performance of the radar by designing
waveforms producing a tolerable level of interference on the
communication system.

Some early results concerning the preservation of radar
detection capabilities in the presence of co-existing—possibly
un-licensed—wireless users have been established in [5]–[7]:
the approach taken here relies on maximizing the Signal-
to-Interference-plus-Noise Ratio (SINR) in signal-dependent
clutter under constraints concerning both the interference pro-
duced on overlaid communication networks and similarity with
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a standard waveform, possibly in the presence of some side
information on the environment. A combined approach based
on Mutual Information (MI) and SINR is developed in [8].
The philosophy of dual-function radar-communication relies
instead on regarding the radar as the primary function and the
communication as a secondary one, whose data can be em-
bedded in the radar waveform [9]–[12]. A more Information-
Theoretic approach is instead taken in [13], wherein the object
of interest is again the radar, dealt with through MI, under the
constraint that it does not produce excessive interference on
the coexisting communication system. The attention is steered
back to the performance of the communication system in [14],
wherein Matrix-Completion based Multiple-Input Multiple-
Output (MIMO) radars are made to co-exist with wireless
systems by constraining the average capacity of the latter,
while minimizing a measure of the interference induced on
the former. Communications and Radar functions are likewise
given equal weight in [15], [16], aimed at investigating the
interplay between the estimation accuracy in target localiza-
tion on the delay-Doppler plane and the performance of a
multiple-access coexisting system, characterized through the
rate achievability regions of the active users.

The present contribution is aimed at further investigating
the achievable performance of spectrally overlapping radar
and communication systems by conjugating the detection-
based approach of [5]–[7] and [10]–[12] with the more recent
trends safeguarding also the communication rate. To this end,
we exploit the fact that, while the interference produced by
the communication system onto the radar is persistent, the
interference produced by the radar onto the communication
link is intermittent, namely, is tied to the duty cycle of the
transmitted waveforms and to the number of objects reflecting
towards the communication system. On the other hand, while
the radar system may rely on range-gating to cope with
multiple target situations and is typically equipped with clutter-
reduction devices, the communication system is completely
unprotected against spurious reflections produced by the radar
signal and hitting the communication receiver. Considering the
scenario of a pulsed radar whose basic pulse is equal to that
employed by the communication system (consistent with [14]),
the contribution of this paper is two-fold. At the system model
level, we show that, exploiting the range-gating induced by the
radar onto the communication system, the latter can be viewed
as an ensemble of parallel, independent channels, whose
maximum rates bounce between that of a possibly fading
additive white Gaussian noise channel, call it R0, and that of
an interference channel, call it R1. At the design level, we set
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Figure 1. A possible scenario with two interference sources produced by the
radar onto the communication system.

up the problem of determining the optimum radar waveform
and communication system code-book as the solution of the
constrained maximization of a convex combination of the
above two rates, called compound rate, subject to the condition
that the average SINR experienced by the radar—in turn
affected by the interference from the communication system,
by signal-dependent interference due to possible point-like
clutters, and additive, possibly correlated signal-independent
noise—exceeds a given minimum level. We offer closed-form
solutions under two major situations of relevant theoretical and
practical interest, that we name “coherent” and “incoherent”
scattering: in the former, the objects producing scattering
towards the communication receiver produce a delayed and
randomly attenuated replica of the transmitted radar signal,
as it happens, e.g., when they are stationary, while in the
latter they produce a “scintillating” echo, as it happens, e.g.,
as they have random Doppler shift with uniform distribution.
For the latter situation, we also offer an in-depth discussion
on practical issues concerning the feasibility of the optimum
solution. As a side result, we also derive the region of
the achievable rate pair (R0, R1) in some relevant cases. A
thorough performance assessment is also given to validate the
proposed approach, showing that the nature of the scattering
and the density of the interferers has a deep impact on the
performance of the communication system, but remarkable
gains can be obtained through co-design especially if the
requisites on the radar detection capabilities are particularly
stringent.

The paper outline is as follows. Sec. II is devoted to the
signal model and the problem formulation, while Sec. III
focuses on the constrained optimization of the aforementioned
compound rate under white and colored radar noise. Sec. IV is
devoted to the performance assessment and result validation,
while conclusions and hints for future developments form the
object of Sec. V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, the joint radar-communication system con-
sists of an active, mono-static, pulsed radar and a single-
user communication system: Fig. 1 outlines a scheme of
the considered architecture. We assume that the radar and
communication systems share the same bandwidth. The radar
is allowed to transmit an amplitude-modulated pulse train with
Pulse Repetition Time (PRT) T , each pulse having the same
duration Tc = T/K, K ∈ N, as the symbol duration in the
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Figure 2. Example of the overlayed radar and communication. The first row
is the transmitted radar signal and the echo from a target whose delay is
kTc. The superposition of the last two rows gives the received signal of
communication.

communication system, so that the situation of the overlay is
the one outlined in Fig. 2.

Suppose that the amplitude of the n-th radar pulse is sn, so
that the length-N pulse train emitted by the radar is

ξ(t) =

N∑
n=1

snφ
(
t− (n− 1)T

)
(1)

where φ(·) satisfies the Nyquist criterion with respect to Tc,
whereby the bandwidth is 1/Tc, and K range cells are defined.
As to N , we assume that it is chosen in such a way that no
cell migration takes place in the time interval NT , i.e., that
the targets do not change resolution cell for the duration of
the pulse train. The signal transmitted by the communication
system is

χ(t) =

∞∑
`=−∞

x`φ(t− `Tc) (2)

where x` denotes the `-th transmitted symbol.
If a target is present in the k-th range cell, k ∈ {1, . . . ,K},

it back-scatters towards the radar antenna with a given cou-
pling coefficient a, and hits it with time delay kTc, thus
generating echoes at time instants {kTc + (n− 1)T}Nn=1: we
assume that the targets of interest are coherent (e.g., follow a
Swerling 0, I or III model), since no signal design could take
place for scintillating targets (i.e., Swerling II or IV [17]).
Letting νCRTc and g be the delay and the channel gain
between the communication transmitter and the radar receiver,
respectively, the radar should process the return from the k-th
range [18] cell to discriminate between the two hypotheses

r(t) =


aξ(t− kTc) + gχ(t− νCRTc) + cξ(t− kTc) + w(t),

under H1

gχ(t− νCRTc) + cξ(t− kTc) + w(t), under H0

(3)
where w(t) is the measurement noise of the radar receiver, and
c is the scattering coefficient from all the other unwanted re-
flectors present (such as clutter and/or environmental reverber-
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ation) in the same range cell.1 The discrete-time representation
of the observations pertaining to the k-th range cell (corre-
sponding to a delay kTc) after illumination through the pulse
train can be obtained by projecting the previous observations
onto the orthonormal functions {φ(t− kTc − (n− 1)T )}Nn=1,
i.e.,

rk,n = 〈r(t), φ
(
t− (n− 1)T − kTc

)
〉

=

{
asn + gxk−νCR+(n−1)K + csn + wk,n, under H1

gxk−νCR+(n−1)K + csn + wk,n, under H0

(4)

where 〈y(t), q(t)〉 =
∫∞
−∞ y(t) conj{q(t)}dt is the inner

product, conj{ · } denoting complex conjugation, and wk,n =
〈w(t), φ

(
t − kTc − (n − 1)Tc

)
〉. Note that this dicretization

process can be equivalently performed by standard filtering
through a filter matched to the pulse waveform φ(t) and
subsequent sampling at the inverse of the bandwidth Tc, as it
is commonly done in radar receivers. Regrouping the returns
pertaining to each range cell in N -dimensional vectors, we
obtain, for the k-th range cell,

rk =

{
as + gxk−νCR + cs + wk, under H1

gxk−νCR + cs + wk, under H0

(5)

where rk = [rk,1 rk,2 · · · rk,N ]T , s = [s1 s2 · · · sN ]T ,
xm = [xm xm+K · · · xm+(N−1)K ]T , for m integer, and
wk = [wk,1 wk,2 · · · wk,N ]T , ( · )T denoting transpose. We
assume that the distribution of wk is CN (0N ,M), where 0N
is the all-zeros N -dimensional vector, M ∈ CN×N is the
covariance matrix, on whose diagonal elements is the unique
value σ2

w, representing the noise power, and CN denotes the
complex circularly symmetric Gaussian distribution. Notice
that here the time scale is the PRT, so the vector xk−νRC

includes data spaced T apart. This model implicitly assumes
that the radar, although undertaking clutter reduction functions,
may still be left with some signal-dependent interference,
whose intensity is encapsulated in the mean square value of
the random coefficient c; moreover, this clutter suppression
functions might introduce some correlation between the noise
samples, encapsulated in the matrix M , which is assumed
from now on known, e.g., as a consequence of accurate
estimation conducted offline through secondary data.

As to the communication system, we denote by h the gain of
the channel linking the communication transmitter and radar
receiver. In practice, h can be obtained through the transmis-
sion of pilot signals [19], [20], so it is assumed known in this
paper: it may be the realization of a random gain, thus yielding
a block-fading channel, or a non-random constant. Let νCTc
be the delay between the transmitter and the receiver of the
communication system. For sure, the communication receiver
is not equipped, like the radar system, with interference and/or

1We have not accounted for the Doppler shift of the target, which boils
down to considering it zero or to focusing on a specific Doppler resolution cell
(e.g., the one with largest interference from the unwanted reflectors, in light
of a worst-case design paradigm). Also, we are implicitly assuming point-like
scatterers, which is quite reasonable in the narrowband low resolution scenario
we are considering. This widely used signal model [18] is simple but allows
to capture the main performance tradeoffs.

clutter suppression devices: the signal emitted by the radar
produces echoes from a number of reflectors, each belonging
to a given range-cell, resulting in significant scattering towards
the communication receiver (see Figs. 1 and 2). In an overlay
situation the timing information between the two systems is
shared,2 whereby, letting νRCTc be the delay from the radar
transmitter to the communication receiver and M be the total
number of such interferers, the signal at the communication
side can be cast as

z(t) = hξ(t− νCTc) +

M∑
m=1

N∑
n=1

fkm,nsn

× φ
(
t− νRCTc − kmTc − (n− 1)T

)
+ v(t) (6)

where both M and k1, . . . , kM are unknown quantities,3 fkm,n
is the reflection coefficient of the m-th interfering object4

in the n-th PRT, and v(t) is the measurement noise of the
communication receiver. As to the reflection coefficients fkm,n
they are typically random and will be commented upon later
on in the paper. This model does not rule out, in principle, the
case that one of the interferers is a direct path from the radar
transmitter to the communication receiver, and the subsequent
derivations would hold true in this case too. However, the
most damaging sources of interference onto the communica-
tion system are those produced by objects—either targets or
reverberation—whose angles and ranges are unknown, since
the direct path might in principle be canceled through such
techniques beam-forming [24], [25]. By adopting the orthonor-
mal basis {φ(t− νRCTc− `Tc)}∞`=−∞, the KN projections of
the observations received in the interval [νRCTc, νRCTc +NT ]
can be re-arranged in the form

zk,n = 〈z(t), φ
(
t− νRCTc − kTc − (n− 1)T

)
〉

=


hxk−νC+νRC+(n−1)K + fk,nsn + vk,n,

if k ∈ {k1, . . . , kM}
hxk−νC+νRC+(n−1)K + vk,n,

if k ∈ {1, . . . ,K} \ {k1, . . . , kM}.

(7)

for n = 1, . . . , N , where vk,n = 〈v(t), φ
(
t−kTc−(n−1)Tc

)
〉.

The previous equation highlights that co-existence induces a
form of range gating on the communication system, whereby,
regrouping the above observations into K vectors of dimension
N , whose entries represent samples, spaced T apart, pertaining

2This boils down to assuming that frame synchronism is guaranteed, i.e., the
communication system is made aware of the beginning of the train pulse. This
is a low-rate information, which can be shared once and for all, and regularly
updated to account for possible timing drifts [21], [22]. For example, it can
be reliably estimated offline, e.g., by using the direct path, or with a properly
designed training phase.

3Here we assume that the interferers’ Doppler shift with respect to the
communication system receiver is zero, i.e. that they are either stationary or
in tangential motion. The subsequent results, however, hold true whenever
the relevant figure of merit is Doppler-independent, as it happens for one
of the two major situations considered in this paper, i.e., totally incoherent
scattering, which has a particularly important meaning (see Sec. II-B). Once
again, accounting for arbitrary interference Doppler shift would be compatible
with the present framework, once a worst-case philosophy is embraced (see
also [23]).

4At the communication system side, we do not distinguish between target
and clutter returns, for it is not concerned with target detection: any source
of reflection causes interference and is therefore generally referred to as an
interfering object.
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to a given range cell, we obtain the model for the communi-
cation signal:

zk =

{
hxk−νC+νRC + Sfk + vk, if k ∈ {k1, . . . , kM}
hxk−νC+νRC + vk, if k ∈ {1, . . . ,K} \ {k1, . . . , kM}

(8)
where zk = [zk,1 zk,2 · · · zk,N ]T , S =
diag(s1, s2, . . . , sN ) ∈ CN×N , diag( · ) denoting the
diagonal matrix whose diagonal entries are the input elements,
fk = [fk,1 fk,2 · · · fk,N ]T , and vk = [vk,1 vk,2 · · · vk,N ]T .
Here we assume that vk ∼ CN (0N , σ

2
vIN ), with IN denoting

the N -dimensional identity matrix; also, we assume that5

fk ∼ CN (0N ,Rf,k): in other words, the radar produces
a signal-dependent interference onto the communication
system, the nature of the reflecting object being encapsulated
in the covariance matrix Rf,k, on whose diagonal elements
is a unique value, σ2

f,k say, representing the intensity of the
scattered power.

In principle, the communication system alone would achieve
capacity by random coding through independent Gaussian
codewords. In a co-existing architecture, a new degree of
freedom is introduced, i.e., the covariance matrix Rx =
E
[
xkx

H
k

]
= E

[
xk−νCRx

H
k−νCR

]
= E

[
xk−νC+νRCx

H
k−νC+νRC

]
,

k = 1, . . . ,K, where ( · )H denotes conjugate transpose. This
form of “rake encoding” corresponds to introducing correla-
tion between coordinates spaced KTc apart; on a different
point of view, it amounts to generating a white N × K-
dimensional matrix, inducing the correlation Rx between the
elements of each column, and undertaking depth-K interleav-
ing (i.e., transmitting the elements along the rows). Fig. 3
shows an implementation of this encoding scheme. Also notice
that the subscripts νCR in (5) and νC, νRC in (8) become
now irrelevant, whereby they will be omitted in subsequent
derivations.

In next Section, we introduce the key performance measure
that will be used for joint optimization of the communication
and radar systems, while, in Sec. II-B, we present the opti-
mization problem tackled in this paper.

A. Performance measures

For the radar system, the SINR is used as the figure of merit,
which is expressed as

SINR(Rx, s) = Tr
(
(σ2
gRx + σ2

css
H + M)−1σ2

ass
H
)

= σ2
as
H(σ2

gRx + σ2
css

H + M)−1s (9)

where σ2
a, σ2

c , and σ2
g are the variances of a, c and g,

respectively.6 The SINR is a key performance measure [5],
[7], [26] and is also closely related to another pivotal figure
of merit used for detection optimization purposes: the pair
of Kullback-Leibler divergences between the densities of the
observations under the two alternative hypotheses [18], [27].
Indeed, the two divergences can be interpreted, in the light of
the Chernoff-Stein Lemma [28], as error exponents of miss
and false alarm probabilities in a Neyman-Pearson theoretic

5This assumption will be justified shortly.
6In what follows, the dependency of SINR on (Rx, s) will be omitted

whenever possible, so as to make the notation lighter.

environment, and, in the framework of sequential decision
rules [29], they offer guarantees on the average sample
number necessary to make decisions. Also, the divergences
have already been validated as valid alternatives to the usual
probabilities of detection and false-alarm for waveform design
purposes [30]. For the observation model in (5), when g is
deterministic and a ∼ CN (0, σ2

g), maximizing the SINR is
equivalent to maximizing the Kullback-Leibler divergences,
as it is shown in Appendix A, which reinforces the choice of
adopting the SINR as a figure of merit in our framework.

For the communication system, assuming that rake-type
random coding with Gaussian codewords is used, the rate of
the k-th channel bounces between that of an additive white
Gaussian noise channel, i.e.,

R0(Rx) =
1

N
log det

(
IN +

|h|2

σ2
v

Rx

)
[bits/channel use]

(10)
and that of an interference channel, where the interference
has covariance matrix σ2

vIN + SRf,kS
H . In principle, such

an interference might not be Gaussian (e.g., if the reflectors
represent clutter); however, on top of the fact that we are
considering low-resolution systems, wherein the Gaussian as-
sumption might be justified, at the design stage and inasmuch
as the communication system performance is considered the
Gaussian model has strong theoretical motivations (e.g., in the
light of mini-max principle [28, p. 298]), whereby we assume
it outright, and the rate takes on the form

R1,k(Rx, s) =
1

N
log det

(
IN +

|h|2

σ2
v

Rx

×
(
IN +

1

σ2
v

SRf,kS
H

)−1
)
. (11)

Also, we let Rf be the “worst case” covariance7 of the
reflectors (more on this infra), and define σ2

f the common
value of its diagonal elements; this implies that R1,k(Rx, s) ≥
R1(Rx, s), with

R1(Rx, s) =
1

N
log det

(
IN +

|h|2

σ2
v

Rx

×
(
IN +

1

σ2
v

SRfS
H

)−1
)
. (12)

The objective function we propose is the convex combination
of the rates in (12) and (10), hereinafter referred to as
compound rate (CR), defined as8

CR(Rx, s) = βR1 + (1− β)R0

=
β

N
log det

(
IN +

|h|2

σ2
v

Rx

×
(
IN +

1

σ2
v

SRfS
H

)−1
)

7In this paper no form of cognition is assumed, whereby the basic
philosophy must necessarily be that of the “worst case.”

8In what follows, the dependency of CR on (Rx, s) will be omitted
whenever possible, so as to make the notation lighter.
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{b`−νC+νRC
}NK`=1

{b1−νC+νRC+(n−1)K}Nn=1

{bK−νC+νRC+(n−1)K}Nn=1

S/P
{x`−νC+νRC

}NK`=1

{x1−νC+νRC+(n−1)K}Nn=1

{xK−νC+νRC+(n−1)K}Nn=1

N -Block
Encoder

N -Block
Encoder

P/S

Figure 3. The information symbols {b`} are serial-to-parallel converted into K streams, whose symbols are spaced K epoch apart. Each stream is then
encoded through an N -length block code with Gaussian codewords with correlation Rx. The K streams are then parallel-to-serial converted and transmitted.

+
1− β
N

log det

(
IN +

|h|2

σ2
v

Rx

)
(13)

where β ∈ [0, 1].
The above choice deserves some further comments. Denote

ζk as the indicator of the presence (ζk = 1) or absence
(ζk = 0) of radar interference on the k-th channel. If there
is no “preferential” range where the reflectors are located,
we may assume that {ζk}Kk=1 are independent and identically
distributed, with Pr(ζk = 1) = α. Thus, in the considered
scenario, the presence of a co-existing radar system is ac-
counted for by modeling the communication system as K
mutually independent parallel channels, each of them being
interfered with probability α. In this framework, when β = α
and Rf,k = Rf ∀k, the quantity NCR can be interpreted as the
conditional MI, given the channel state, between the input and
the output of the k-th channel,9 i.e., I(xk; zk | ζk) = NCR;
moreover NCR differs from the input-output MI, I(xk; zk),
by less than 1/N . Consider indeed the identity

I(xk, ζk; zk) = I(xk; zk) + I(ζk; zk|xk)

= I(ζk; zk) + I(xk; zk|ζk). (14)

Since

I(xk; zk|ζk) = αI(xk; zk|ζk = 1)

+ (1− α)I(xk; zk|ζk = 0)

= NCR (15)

the CR is in fact a conditional MI. Furthermore, we have

I(xk; zk)−NCR

= I(ζk; zk)− I(ζk; zk|xk),

= H(ζk)−H(ζk|zk)−
(
H(ζk|xk)−H(ζk|xk, zk)

)
,

= −H(ζk|zk) +H(ζk|xk, zk)

= −I(ζk;xk|zk) (16)

where H( · ) denotes entropy and the independence between
ζk and xk has been exploited. As a consequence CR is not
achievable through the proposed encoding scheme. However,
since 0 ≤ I(ζk;xk|zk) ≤ 1, we have that

CR− 1

N
≤ 1

N
I(xk; zk) ≤ CR (17)

which shows that the MI per channel use differs from the CR
by less than 1/N . We hasten to underline here that, contrary

9In principle the input would be xk−νC+νRC , but since I(xk−νC+νRC ;zk |
ζk) = I(xk;zk | ζk), with a slight notational abuse, we use here xk as
channel input.

to CR, 1
N I(xk; zk) represents the maximum achievable trans-

mission rate, provided the pulse number N is large enough.
Notice that, lacking prior information on α, the chosen value
of β (for optimization purposes) should depend on a coarse
information (or forecast) on how crowded the scene is.

B. Problem Formulation

The degrees of freedom available for optimization are the
covariance matrix of the communication system Rx and the
radar waveform s. The objective function is the CR in (13),
while a constraint is imposed on the minimum required SINR
at the radar receiver [26], denoted ρmin, and on the maximum
powers of the radar and of the communication system, denoted
Pr and Pc, respectively. Concerning ρmin, it is usually set
considering a reference target, i.e., a target set at a given
distance (typically, the one corresponding to the K-th range
cell) and following a given fluctuation model with a given
average Radar Cross-Section (RCS) [17]. The joint radar and
communication waveform optimization problem could thus be
set up in the following form:

max
Rx,s

CR(Rx, s)

s.t. SINR(Rx, s) ≥ ρmin,
1

N
‖s‖2 ≤ Pr

1

N
Tr(Rx) ≤ Pc, Rx � 0

(18)

where � denotes positive semi-definiteness.
Before presenting the solution to this problem, it is worth-

while giving the following comments.
Observation 1: The system model considered here relies on

the assumption that the radar and the communication system
sharing the same bandwidth are narrow-band: this implies that
the channel is flat-fading, and that each reflector—whether it
is a target the radar wants to detect or an interferer—scattering
the radar signal towards the communication receiver produces
a single resolvable path. Notice, however, that, should this not
be the case, the mathematical setup of the design problem
would require only updating the definition of the CR for the
communication system. Indeed, an interferer producing resolv-
able paths would spread its reverberation across a number of
different range cells (corresponding to delays that are multiple
of Tc) with independent scattering coefficients [31]. As a
consequence, from the point of view of the communication
system, this would translate into a denser environment (i.e.,
larger values of α), while having no effect on the SINR, which
is in fact evaluated focusing on a single range cell.
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Observation 2: The complex vector s in (5) and (8) rep-
resents the slow-time code sequence of the radar, in that the
coefficients {sn} encode pulses spaced PRT apart. However,
a similar discrete-time data model can be set up for fast-
time coding. In that case, the transmitted pulse has duration
NTc and is composed of N sub-pulses with bandwidth 1/Tc;
the coefficient sn, instead, represents the amplitude of the n-
th sub-pulse, as in [5], [7]; similarly, the codewords at the
communication systems contain N symbols spaced Tc apart.
However, the main advantage of designing the radar slow-
time code is that we are not concerned with the stringent
requirements—in terms of range resolution, peak-to-sidelobe
levels of the correlation function, and, more generally, ambi-
guity function [32]—posed by fast-time coding. We underline
here that the model lends itself to account for joint fast-
time/slow-time coding, wherein a train of N sophisticated
pulses, each composed of M encoded sub-pulses, is amplitude-
modulated. The discrete-time model would be similar, with s
having a Kronecker product structure with MN entries, and
the interference density α at the communication system being
M -times larger. This problem is more challenging, since the
constraints on the fast-time code must be included, and will
be the subject of our future work.

III. WAVEFORM OPTIMIZATION

Determining a general and closed-form solution to (18) for
arbitrary Rf appears unwieldy, but a deep insight into the
consequences of having the two systems co-exist can be given
by considering two important limiting situations, i.e.,

a) Coherent interference, such as, e.g., coherent targets
yielding the rank-1 matrix Rf = σ2

f1N , 1N denoting
the all-ones N ×N matrix;

b) Incoherent interference, such as scintillating scattering
objects with low coherence time, yielding Rf = σ2

fIN .
Here we consider, for both situations above, the case that the
noise impinging on the radar is white. The case of colored
noise is handled in Sec. III-B, where the relationship between
these two cases is also inspected. Finally, in Sec. III-D, the
scope is enlarged beyond the optimization problem in (18) by
focusing the attention on the regions of achievable communi-
cation rate pairs.

A. Coherent Interference

When Rf = σ2
f1N , the communication rate in (12) can be

rewritten as

R1(Rx, s) =
1

N
log det

IN +
|h|2

σ2
v

Rx

(
IN +

σ2
f

σ2
v

ssH

)−1


=
1

N

[
log det

(
IN +

|h|2

σ2
v

Rx

)
+ log det

(
IN

−
(
IN +

|h|2

σ2
v

Rx

)−1 |h|2

σ2
v

Rx

σ2
f

σ2
v
ssH

1 +
σ2
f

σ2
v
‖s‖2


=

1

N

[
log det

(
IN +

|h|2

σ2
v

Rx

)

− log

 1 +
σ2
f

σ2
v
‖s‖2

1 +
σ2
f

σ2
v
sH
(
IN + |h|2

σ2
v
Rx

)−1

s




(19)

where the last equality follows from the fact that det(IN +
pqH) = 1 + pHq, with p, q ∈ CN , whereby, plugging (19)
into (13) and (18), the optimization problem can be reformu-
lated as

max
s,Rx

{
log det

(
IN +

|h|2

σ2
v

Rx

)

−β log

 1 +
σ2
f

σ2
v
‖s‖2

1 +
σ2
f

σ2
v
sH
(
IN + |h|2

σ2
v
Rx

)−1

s




s.t. σ2
as
H(σ2

gRx + σ2
css

H + σ2
wIN )−1s ≥ ρmin

1

N
‖s‖2 ≤ Pr,

1

N
Tr(Rx) ≤ Pc, Rx � 0.

(20)

For the sake of completeness, here we also discuss the situation
when s is optimized under given Rx and Rx is optimized
under fixed s, on the understanding that the main result is the
joint design. The proofs can be found in Appendix B.

1) Fixed communication codebook: In this case, the com-
munication Rx is given,10 with 1

N Tr(Rx) ≤ Pc. The radar
system is overlaid, and its waveform must be properly de-
signed by solving (20) with fixed Rx. This problem admits a
solution only if

ρmin ≤
σ2
aNPr

σ2
gγN + σ2

cNPr + σ2
w

(21)

where γN is the smallest eigenvalue of Rx, in which case, the
optimal radar waveform is

s∗ =

√
ρmin(σ2

gγN + σ2
w)

σ2
a − σ2

cρmin
uN (22)

where uN is the eigenvector of Rx corresponding to γN . This
situation matches the intuition that the radar transmits, with
minimum power compatible with the constraint, in the least-
interfered direction of the signal space where.

2) Fixed radar waveform: In this case, the radar waveform
s is given, with {

1
N ‖s‖

2 ≤ Pr
ρmin ≤ σ2

a‖s‖
2

σ2
c‖s‖2+σ2

w

(23)

so that the radar constraints are satisfied when no interfering
system is present. Once a communication system is overlaid,
the covariance matrix of its codewords should solve (20) with
s fixed. The solution is

R∗x = U∗ diag

(
NPc − γ∗N
N − 1

, . . . ,
NPc − γ∗N
N − 1

, γ∗N

)
(U∗)H

(24)
with U∗ ∈ CN×N any unitary matrix whose last column is

1
‖s‖s, while the expression of γ∗N is reported in Appendix B,

10This situation has a purely theoretical interest and is intended to show the
difference between joint and single optimization, since in fact a non-coexisting
communication system should use Rx ∝ IN .
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Eq. (54). This strategy boils down to splitting the power
between the N−1 interference-free eigenvectors—where noise
whiteness explains the uniform allocation—and the direction
of the radar signal. The fraction of power allocated to the
interfered direction is dictated by γ∗N , which depends on the
system parameters and constraints.

3) Joint optimization: The problem is formulated by (20),
and admits a solution only if

ρmin ≤
σ2
aNPr

σ2
cNPr + σ2

w

. (25)

In this case, the optimal covariance of the communication
system is

R∗x = U∗ diag

(
NPc − γ∗N
N − 1

, . . . ,
NPc − γ∗N
N − 1

, γ∗N

)
(U∗)H

(26)
where U∗ ∈ CN×N is any unitary matrix and γ∗N is reported
in Eq. (60) of Appendix B, while the optimal radar waveform
is

s∗ =

√
ρmin(σ2

gγ
∗
N + σ2

w)

σ2
a − σ2

cρmin
u∗N (27)

with u∗N denoting the last column of U∗. The previous
equation clearly shows that, under joint optimization, the
structure of the solution in (26) and (27) is similar to (24)
and (22).

B. Incoherent interference

When Rf = σ2
fIN , the communication rate in (12) can be

rewritten as

R1(Rx, s) =
1

N
log det

(
IN + |h|2Rx

(
σ2
vIN + σ2

fSS
H
)−1
)

=
1

N
log det

(
IN +

|h|2

σ2
v

Rx

×diag

({(
1 +

σ2
f

σ2
v
|si|2

)−1
}N
i=1

))
(28)

whereby, plugging (28) into (13) and (18), the problem be-
comes

max
Rx,s

{
(1− β) log det

(
IN +

|h|2

σ2
v

Rx

)
+ β log det

(
IN

+
|h|2

σ2
v

Rx diag

({(
1 +

σ2
f

σ2
v
|si|2

)−1
}N
i=1

))}
s.t. σ2

as
H(σ2

gRx + σ2
css

H + σ2
wIN )−1s ≥ ρmin

1

N
‖s‖2 ≤ Pr,

1

N
Tr(Rx) ≤ Pc, Rx � 0.

(29)
This situation represents the case that the communication
system is affected by scintillating interferers. Also, as shown
in [23], it can model the case where, lacking any prior
information as to the Doppler frequencies of the objects
producing interference on the communication receiver, the
Doppler shifts—normalized to T—are modeled as uniformly
distributed on an interval of amplitude 1.

As shown in Appendix C, Problem (29) admits a solution
only if

ρmin ≤
σ2
aNPr

σ2
cNPr + σ2

w

(30)

in which case, the optimal covariance matrix of the commu-
nication system and radar waveform are

R∗x = diag

(
NPc − γ∗N
N − 1

, . . . ,
NPc − γ∗N
N − 1

, γ∗N

)
(31a)

s∗ =

√
ρmin(σ2

gγ
∗
N + σ2

w)

σ2
a − σ2

cρmin
[0 · · · 0 1]T (31b)

respectively, where γ∗N is reported in Eq. (64a) of Appendix C.
This solution is similar to the one for the coherent scattering

in (27) and (26), and results in the same optimized CR.
However, the degree of freedom in the choice of the eigen-
vector matrix U∗ is now lost, and this may lead to practical
implementation problems. Indeed, the radar waveform in (31b)
might not be feasible, since all of the energy is concentrated
in a single pulse, and this can break practical limitations on
the Peak-to-Average Power Ratio (PAPR). In this case, one
could include in the design the additional constraint

max
n∈{1,...,N}

|sn|2 ≤ δ
1

N
‖s‖2 (32)

where δ ∈ [1, N ] is the maximum allowed PAPR. Unfortu-
nately, no closed-form solution to this optimization problem,
appears to be available. Nevertheless, one can always approx-
imate (31) as

R∗x = U diag

(
NPc − γ∗N
N − 1

, . . . ,
NPc − γ∗N
N − 1

, γ∗N

)
UH

(33a)

s∗ =

√
ρmin(σ2

gγ
∗
N + σ2

w)

σ2
a − σ2

cρmin
u (33b)

where

u =

[√
N − δ

N(N − 1)
· · ·

√
N − δ

N(N − 1)

√
δ

N

]T
(34)

and U ∈ CN×N is any unitary matrix with u as its last
column. A discussion of the impact of a PAPR constraint,
whether solution (33) is adopted or exact solution is numeri-
cally determined, is deferred to Sec. IV

C. Colored radar noise

The results of the previous sections are based on the as-
sumption that the radar is affected by white noise. In practical
systems, the overall interference contains also a fraction of
correlated noise, and in fact radar waveform optimization in
colored noise is of great interest in radar community [30],
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[33]. Under coherent interference and colored noise case,
Problem (18) is reformulated as

max
s,Rx

{
log det

(
IN +

|h|2

σ2
v

Rx

)

−β log

 1 +
σ2
f

σ2
v
‖s‖2

1 +
σ2
f

σ2
v
sH
(
IN + |h|2

σ2
v
Rx

)−1

s




s.t. σ2
as
H(σ2

gRx + σ2
css

H + M)−1s ≥ ρmin

1

N
‖s‖2 ≤ Pr,

1

N
Tr(Rx) ≤ Pc, Rx � 0.

(35)

As shown in Appendix D, this problem admits a solution only
if

ρmin ≤
σ2
aNPr

σ2
cNPr + φN

(36)

where φN is the smallest eigenvalue of M . In this case, the
optimal covariance of the communication system is

R∗x = U∗ diag

(
NPc − γ∗N
N − 1

, . . . ,
NPc − γ∗N
N − 1

, γ∗N

)
(U∗)H

(37)
where U∗ ∈ CN×N is any unitary matrix whose last column
is vN , the latter denoting the eigenvector of M corresponding
to φN , and γ∗N is reported in Eq. (66a) of Appendix D, while
the optimal radar waveform is

s∗ =

√
ρmin(σ2

gγ
∗
N + φN )

σ2
a − σ2

cρmin
vN . (38)

No closed-form solution is instead available in the case of
incoherent interference, and system optimization should rely
upon numerical methods.

D. Achievable communication rates

An important role is played by the region of communica-
tion rate pairs, (R0, R1), achievable under the constraints of
Problem (18), i.e.,

S(M) =

{(
R0(Rx, s), R1(Rx, s)

)
:

σ2
as
H(σ2

gRx + σ2
css

H + M)−1s ≥ ρmin,

1

N
Tr(Rx) ≤ Pc,

1

N
‖s‖2 ≤ Pr,Rx � 0

}
. (39)

Knowledge of this region allows determining the optimal
transmission policy for any merit function of the form
Q(R0, R1); since Q is generally increasing in R0 and R1,
the solution to the optimization problem would be the point
on the border of the achievable region that touches the level
set {(R0, R1) : Q(R0, R1) = κ} corresponding to the largest
κ ∈ R. Following the proof in Appendix E, we have following

Lemma 1: When Rf = σ2
f1N , if (R′0, R

′
1) ∈ S(σ2

wIN ),
then there exists a point (R′0, R

′′
1 ) ∈ S(M), such that R′′1 ≥

R′1.
According to the lemma, for fixed noise power in radar, white
Gaussian noise is the worst case for waveform optimization
in the presence of coherent scattering.

IV. ANALYSIS

We consider a communication system that, when operating
in a non-coexisting mode, may rely on a received Signal-
to-Noise Ratio (SNR) per symbol, |h|2Pc/σ2

v , of 10 dB, so
that its maximum rate is simply the capacity, i.e., log(1 +
|h|2Pc/σ2

v) = 3.46 bits/channel use, and we set |h|2 = 1.
This is the maximum (un-attainable) rate and is the yardstick
we compare our results to. As to the radar system, we assume
it is designed so that, when operating in non-coexisting mode,
under white noise and no clutter, it detects a reference target,
located at the K-th range cell, and whose RCS is exponentially
distributed with average value σ2

a = 1 m2, with probability
of false alarm (Pfa) and probability of detection (Pd) equal to
10−4 and 0.9, respectively. Since, for such a Swerling I target,
Pd = P

1/(1+NPrσ
2
a/σ

2
w)

fa [34], this conditions corresponds to
requiring a cumulated SNR NPrσ

2
a/σ

2
w = 19.4 dB. Similar

to |h|2, we assume σ2
g , the variance of the coupling coefficient

from the communication transmitter to the radar receiver,
equal to 1. Concerning the interference, we define, at the
communication system, the Interference-to-Noise Ratio (INR)
as σ2

f/σ
2
v and, at the radar, the Signal-to-Clutter Ratio (SCR)

as σ2
a/σ

2
c .

At first, we study the impact, on the communication system,
of the constraint forced on the minimum SINR received by the
radar. The results, referring to the cases β = 0.1 and β = 0.5
(representing scattering environments with different densities)
are represented in Fig. 4, where the optimum CR is plotted
versus ρmin for different SCR’s when N = 8, INR = 10 dB,
α = β, and the radar noise is white. We underline here that,
in the considered scenario, the limiting performance of the
jointly optimal design under coherent and incoherent scattering
is the same, whereby the curves corresponding to the optimum
CR is unique. Not surprisingly, larger values of β turn out to
be detrimental in terms of CR; the effect of SCR, instead, is
rather dramatic, because it limits the feasibility region of the
optimum design, mainly because the SINR constraint cannot
be met.

The advantages of a joint optimized design over a non-
cooperative approach are outlined in Fig. 5; here we have
reported the optimal joint design, the disjoint design, where
both systems optimize the respective performance measure ig-
noring coexistence,11 and the orthogonal design, where the two
systems transmit in orthogonal spaces; the other parameters
are N = 8, INR = 10 dB, SCR = 20 dB, α = β = 0.1,
and white radar noise. The results clearly indicate the disjoint
design is nearly optimal for small values of ρmin, while
being catastrophic at larger values of ρmin. Also, while for
coherent scattering, the conservative approach of transmitting
into orthogonal subspaces guarantees a performance level very
close to that of the joint design, this is no longer the case for
incoherent scattering, since the reflector scintillations spreads
the interference at the communication systems over all of the
directions of the signal space. Similar trends are observed for

11In this case, the communication system uses the correlation matrix
Rx = PcIN , while the radar, after having estimated the overall disturbance,
employes an unmodulated pulse train with the minimum power satisfying the
SINR constraint.
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Figure 4. Optimized compound rate versus the minimum required SINR for
two values of β when N = 8, INR = 10 dB, α = β, and the radar noise is
white.
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Figure 5. Compound rate versus the minimum required SINR for the optimum
design in (18), the orthogonal design (where systems transmit in orthogonal
subspaces), and the disjoint design (where the systems ignore coexistence),
when N = 8, INR = 10 dB, SCR = 20 dB, β = α = 0.1, and the radar
noise is white; both coherent and incoherent interference are considered.

higher values of β = α, even though we do not show this
curves for space limitation.

Next, we analyze the effect of an additional PAPR con-
straint: as we have seen in Sec. III, this does not affect the
design in the presence of coherent interference, where the
eigenvector matrix can be freely chosen, but it may influence
the design in the presence of incoherent interference. In the
latter case, we resort to numerical methods to derive the
solution, and we compare it with the “naïf” solution in (33).
The results are shown in Figs. 6, where the optimized CR
is reported versus ρmin for two values of δ and β, when
INR = 10 dB, SCR = 20 dB, and α = β, assuming white
radar noise. In order to reduce the computational burden, we
have set N = 2. It can be seen that the solution in (33) results
in a CR almost coincident with the optimal one, even for the

0 5 10 15
0.5

1

1.5

2

2.5

3

3.5

ρ
min

 [dB]

C
R

 [b
its

/c
ha

nn
el

 u
se

]

 

 

δ = N = 2
δ = 1.9
δ = 1.9, sol. in (33)
δ = 1
δ = 1, sol. in (33)

β = 0.5

β = 0.1

Figure 6. Optimized compound rate versus the minimum required SINR for
incoherent interference in the presence of a PAPR constraint δ for two values
of β when N = 2, INR = 10 dB, SCR = 20 dB, α = β, and the radar
noise is white. The case δ = N corresponds to unconstrained PAPR. For
comparison purposes, the naïf solution in (33) is also included.
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Figure 7. Compound rate versus the minimum required SINR for incoherent
interference in the presence of a PAPR constraint δ when N = 8, INR =
10 dB, SCR = 20 dB, α = β, and the radar noise is white. Dashed lines
refer to β = 0.1 and solid lines to β = 0.5; the case δ = N corresponds to
unconstrained PAPR.

tightest PAPR constraint, δ = 1, corresponding to a constant
amplitude pulse train. We therefore use the solution in (33) to
study the trends in CR performance at higher values of N . In
Fig. 7 the optimized CR is reported versus ρmin for β = 0.1
and β = 0.5, when N = 8, INR = 10 dB, SCR = 20 dB, and
α = β, assuming white radar noise. Obviously, more stringent
constraints on the PAPR (i.e., smaller values of δ) result in
larger losses in terms of CR with respect to the case where
PAPR is unconstrained (δ = N = 8). However, the sensitivity
of the performance to the PAPR constraint is modest as far
as δ is large enough to allow a substantial reduction of the
amount of the interference along the N − 1 dimensions that
the optimum solution would guarantee interference-free.

The effect of β is highlighted in Fig. 8 for different values
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Figure 9. Compound rate loss versus β for ρmin = 5 dB when α = 0.3,
N = 8, INR = 10 dB, and SCR = 20 dB.

of INR and two values of ρmin, when N = 8, SCR = 20 dB,
α = β, and the radar noise is white. As expected, increasing
values of β result in decreasing values of the optimized CR,
on the understanding that the loss is at most in the order of
1/N . The effects of possible mismatches between α (the true
interference density) and β (the value assumed at the design
stage) is elicited in Fig. 9, referring to the cases of ρmin =
5 dB, α = 0.3, N = 8, INR = 10 dB, and SCR = 20 dB.
As it can be seen, the percentage loss is very limited, which
shows marked robustness of the proposed joint design scheme
with respect to possible errors in the estimated target density.
The percentage loss when ρmin = 10 dB is slightly smaller,
the figure not being reported due to lack of space.

Fig. 10 represents the optimized CR for different values of
β and varying INR. It is interesting to observe that the “strong
interference” condition is reached pretty soon, i.e., for INR in
the order of 0 dB.

The effect of the pulse number onto the optimized CR is
instead studied in Table I when ρmin = 10 dB, SCR = 20 dB,
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Figure 10. Optimized compound rate versus the interference-to-noise ratio
with different values of β when ρmin = 10 dB, N = 8, SCR = 20 dB, and
β = α; for comparison purposes, the non-coexisting case is also included.

Table I
OPTIMIZED CR [BITS/CHANNEL USE] FOR ρMIN = 10 dB, SCR = 20 dB,

β = α, AND WHITE RADAR NOISE

INR = −10 dB INR = 10 dB
N β = 0.1 β = 0.5 β = 0.1 β = 0.5

2 3.29 2.85 3.25 2.66
4 3.38 3.16 3.36 3.07
8 3.42 3.31 3.41 3.27

16 3.44 3.39 3.44 3.36
32 3.45 3.42 3.45 3.41

β = α, and the radar noise is white. This table should be read
and interpreted in the light of (17). Indeed, while increasing
with N , CR is not a rate achievable through the proposed
encoding scheme: however, since its distance with respect to
the MI per channel use decreases as 1

N , Table I gives an idea
of the transmission rates achievable by the communication
system through Gaussian random coding employing the matrix
Rx for varying β and interferers strength. For example, we
see that, if 10% of the scatterers interfer with the communi-
cation system, then using a pulse train of length 32 makes it
possible to achieve a transmission rate in the range [3.34, 3.45]
bits/channel use12 under both weak and strong interferers; this
interval becomes [2.86, 3.27] bits/channel use for N = 8,
β = 0.5 and strong interference.

Finally, we focus our attention on the region of achievable
rate pairs, S(M), defined in (39), which, as remarked in
Sec. III-D, is key for determining the transmission policy
optimizing arbitrary merit functions of the form Q(R0, R1): in
particular, the maximum of any reasonable Q(R0, R1) will lie
on the upper boundary of S(M). Therefore, we also introduce
the curve ψ( · ,M) : [0, 1]→ R2, defined as

ψ(β,M) = arg max
(R0,R1)∈S(M)

{
βR1 + (1− β)R0

}
(40)

12We remind here however that N = 32 could not be enough to enforce
the asymptotic behavior the channel coding theorem relies upon. All the
subsequent considerations should be read in the light of this fact.
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Figure 11. Example of the achievable region of rate pairs S in (39) (grey area
corresponds to incoherent interference, hatched area to coherent interference)
and of the curve ψ in (40) (red line), when ρmin = 5 dB, INR = 10 dB,
SCR = 20 dB, β = α, and the radar noise is white.

which lies on such boundary. In Fig. 11, the region S and the
curve ψ are reported for coherent and incoherent interference
when ρmin = 5 dB, INR = 10 dB, SCR = 20 dB, β = α, and
the radar noise is white. In order to reduce the computational
complexity of the simulations, we have set N = 2. It can be
seen that the region corresponding to coherent interference is
included into the one corresponding to incoherent interference,
and that the upper border is coincident in the two cases, which
also confirms the result of Sec. III-B, stating that the optimized
CR’s are equal.

The impact of the correlation of the interference impinging
on the radar is finally studied in Fig. 12, where the curves
ψ( · ,M) when M = σ2

wIN (white radar noise) and when
M is such that Mi,j = σ2

w2−|i−j| (exponentially correlated
radar noise) is reported; the remaining parameters are N = 8,
ρmin = 10 dB, SCR = 20 dB, β = α, and two values of INR
are considered. As proven in Lemma 1, white radar noise turns
out to be the most detrimental situation, even though this is
relevant for low values of INR.

V. CONCLUSIONS

This paper has introduced a new framework for co-existing
radar and communication systems. While the key performance
measure for the radar remains the SINR, the performance
of the communication system is characterized through a new
figure of merit, the Compound Rate, which reflects the inter-
mittent nature of the interference generated by the radar and,
form an information-theoretic point of view, is a conditional
mutual information of a channel which may be or not subject
to interference. This is a direct consequence of the fact
that a communication system co-existing with a pulsed radar
behaves as a set of independent parallel channels affected
by contaminated-normal interference. Considering arbitrary
correlation of the radar interference and two fundamental
situations of interference generated by the radar (i.e., perfectly
coherent and totally incoherent interference), we illustrate the
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Figure 12. Plot the curve ψ( · ,M) in (40) for two values of the
INR when M = σ2

wIN (white radar noise) and when Mi,j =
σ2
w(2/3)

|i−j|(exponentially correlated radar noise); the remaining parameters
are N = 8, ρmin = 10 dB, SCR = 20 dB, and β = α.

design of the radar waveform and the communication system
encoding matrix by maximizing the compound rate under a
constraint on the SINR of the radar, showing that co-design is
key in order to guarantee the performance of both systems in
co-existing architectures.

The proposed setup, which has been developed, at the
radar side, assuming slow-time coding only, lends itself to
incorporate also fast-time coding. Also, the scheme assumes
frame synchronism between the radar and the communication
receiver: even though such an assumption is rather mild in
the considered scenario, current efforts of the authors are
directed towards the design of timing-free schemes, which
would allow extending the present framework to multiple co-
existing systems, e.g., involving a number of radars, using
different waveforms and occupying different locations, co-
existing with one (or more) communication systems. Finally,
the impact of some cognition of the surrounding scene on the
achievable performance could be a topic of great interest, since
it would allow releasing the “worst case” philosophy in favor
of further optimization.
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APPENDIX

This Appendix contains six sections. In next section we re-
port the connection between the SINR in (9) and the Kullback-
Leibler divergence pair the observations in (5). In Secs. B, C,
and D, we derive the solutions to the optimization Problems
in (20), (29), and (35), respectively. Finally, in Sec. E, we
report the proof of Lemma 1. Before proceeding, we give the
following simple lemma, which will be used next.

Lemma 2: Let y ∈ CN and A ∈ CN×N be an Hermitian
positive definite matrix; let λmin( · ) and umin( · ) denote the
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smallest eigenvalue and the corresponding eigenvector, respec-
tively, of the matrix in the parentheses; then we have

yH(A + yyH)−1y ≤ ‖y‖2

λmin(A) + ‖y‖2
(41)

and equality holds if umin(A) and y are linearly dependent.
Proof: Exploiting [35], we have

yH
(
A + yyH

)−1
y = Tr

((
A + yyH

)−1
yyH

)
≤ ‖y‖2

λmin (A + yyH)

≤ ‖y‖2

λmin(A) + ‖y‖2
(42)

where the last inequality follows from the property of the
minimum operator, and equality holds if umin(A) and y are
linearly dependent.

A. Kullback-Leibler divergence and SINR

Denoting with f1 and f0 the densities of the observations
in (5) under H1 and H0, respectively, we have that, when g
is deterministic and a ∼ CN (0, σ2

a),

f0 (r) =
e−Tr(rH(σ2

gRx+σ2
css

H+M)−1r)

πN det(σ2
gRx + σ2

css
H + M)

(43a)

f1 (r) =
e−Tr(rH(σ2

gRx+σ2
css

H+M+σ2
ass

H)−1r)

πN det(σ2
gRx + σ2

css
H + M + σ2

ass
H)

(43b)

so that the log-likelihood ratio of f1 to f0 is

log
f1(r)

f0(r)
= Tr

(
rH
(
(σ2
gRx + M)−1

− (σ2
gRx + M + σ2

ass
H)−1

)
r
)

− log det
(

(σ2
gRx + σ2

css
H + M + σ2

ass
H)

× (σ2
gRx + σ2

css
H + M)−1

)
. (44)

Then, it can be easily shown that the Kullback-Leibler diver-
gences between these two densities are

D(f1‖f0) = SINR− log(1 + SINR) (45a)

D(f0‖f1) = log(1 + SINR)− SINR

1 + SINR
(45b)

which are both increasing with SINR. Therefore, maximizing
the SINR is equivalent to maximizing the divergences.

B. Solution to Problem (20)

We present the proofs for the three situations in Sec. III-A.
1) Fixed communication codebook: Let λN and uN be the

smallest eigenvalue of Rx and the corresponding eigenvector,
respectively. Then, from Lemma 2, we have

σ2
as
H(σ2

gRx+σ2
css

H +σ2
wIN )−1s ≤ σ2

a‖s‖2

σ2
gγN + σ2

c‖s‖2 + σ2
w

(46)
and equality holds if s = ‖s‖uN . Therefore, the problem
admits a solution only if condition (21) is satisfied. In this case,
for fixed ‖s‖2 = ε, the solution is s =

√
εuN , for it guarantees

the largest SINR level and, again from Lemma 2, the largest
CR, for the latter is increasing with sH

(
IN + |h|2

σ2
v
Rx

)−1
s.

As to ε, it must be determined by solving

min
ε

1 +
σ2
f

σ2
v
ε

1 +
(

1 + |h|2
σ2
v
γN

)−1 σ2
f

σ2
v
ε

s.t.
ρmin(σ2

gγN + σ2
w)

σ2
a − σ2

cρmin
≤ ε ≤ NPr.

(47)

Since the objective function is increasing, the solution is the
lower bound for ε, and the optimal s is the one reported in (22).

2) Fixed radar waveform: Suppose that Rx satisfies the
constraints, and let UΓUH be its eigenvalue decomposition,
where U = [u1 u2 · · · uN ] ∈ CN×N is unitary and
Γ = diag(γ1, γ2, . . . , γN ), with γ1 ≥ γ2 ≥ · · · ≥ γN ≥ 0.
Let U∗ ∈ CN×N be any unitary matrix with 1

‖s‖s as its
last column. Then, R′x = U∗Γ(U∗)H still satisfies the
power constraint and, by virtue of Lemma 2, SINR(R′x, s) ≥
SINR(Rx, s) ≥ ρmin, so that also the SINR constraint is
satisfied. The objective function is in turn increasing with
sH
(
IN + |h|2

σ2
v
Rx

)−1
s, which, again based on Lemma 2, is

upper-bounded as

sH
(
IN +

|h|2

σ2
v

Rx

)−1

s ≤ ‖s‖2

1 + |h|2
σ2
v
γN

= sH
(
IN +

|h|2

σ2
v

R′x

)−1

s (48)

whereby, CR(R′x, s) ≥ CR(Rx, s), and U∗ is optimum. As to
the eigenvalues, they must be determined by solving

max
γ1,...,γN


N∑
i=1

log

(
1 +
|h|2

σ2
v

γi

)
+ β log

1 +

σ2
f

σ2
v
‖s‖2

1 + |h|2
σ2
v
γN


s.t.

σ2
a‖s‖2

σ2
gγN + σ2

c‖s‖2 + σ2
w

≥ ρmin

γ1 ≥ · · · ≥ γN ≥ 0,

N∑
i=1

γi ≤ NPc.

(49)
For fixed γN , the objective function is maximized, due to
Jensen’s inequality [36], by γi = NPc−γN

N−1 , i = 1, . . . , N − 1,
leading to the optimization problem

max
γN

G′(γN )

s.t. 0 ≤ γN ≤ γ′
(50)

where

G′(γN ) = (N − 1) log

(
1 +
|h|2

σ2
v

NPc − γN
N − 1

)
+ (1− β) log

(
1 +
|h|2

σ2
v

γN

)
+ β log

(
1 +
|h|2

σ2
v

γN +
σ2
f

σ2
v

‖s‖2
)

(51)

γ′ = min

{
Pc,

σ2
a‖s‖2 − (σ2

w + σ2
c‖s‖2)ρmin

σ2
gρmin

}
. (52)
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It can be easily checked that G is continuously differentiable
and convex, whereby the solution can either be a critical
point of G or a point of the boundary. Since the condi-
tion d

γN
G(γN ) = 0 is equivalent to the quadratic equation

Aγ2
N +BγN + C = 0, where

A = −N |h|4 (53a)

B = |h|2
(
N |h|2Pc −Nσ2

v − (N − β)σ2
f‖s‖2

)
(53b)

C = |h|2NPc
(
σ2
v + (1− β)σ2

f‖s‖2
)

− β(N − 1)σ2
vσ

2
f‖s‖2 (53c)

the solution is

γ∗N =



0, if ∆ ≤ 0 or
∆ > 0 and λ2 ≤ 0 or
∆ > 0 and λ1 ≥ γ′

λ2, if ∆ > 0 and 0 < λ2 < γ′

arg max
γN∈{0,γ′}

G′(γN ), otherwise.

(54)
where ∆ = B2 − 4AC is the discriminant of the quadratic
equation and λ1 < λ2 are its two real roots when ∆ > 0.
At this point γ∗i =

NPc−γ∗N
N−1 for i = 1, 2, . . . , N − 1, and the

optimal covariance is the one in (24).
3) Joint optimization: Suppose that the pair (Rx, s) satis-

fies the constraints; let UΓUH be the eigenvalue decomposi-
tion of Rx, where U = [u1 u2 · · · uN ] ∈ CN×N is unitary
and Γ = diag(γ1, γ2, . . . , γN ), with γ1 ≥ γ2 ≥ · · · ≥ γN ≥ 0.
Consider s′ =

√
εuN , where ε = ‖s‖2. Then, using the same

arguments as those in the previous case, the pair (Rx, s
′)

still satisfies the constraints and CR(Rx, s
′) ≥ CR(Rx, s).

Moreover, since the CR is easily seen to be independent of
U , the design reduces to

max
ε,γ1,...,γN

{
N∑
i=1

log

(
1 +
|h|2

σ2
v

γi

)

−β log

 1 +
σ2
f

σ2
v
ε

1 +
σ2
f ε

σ2
v

(
1 + |h|2

σ2
v
γN

)−1




s.t. 0 ≤ ε ≤ NPr,
σ2
aε

σ2
gγN + σ2

c ε+ σ2
w

≥ ρmin

γ1 ≥ · · · ≥ γN ≥ 0,

N∑
i=1

γi ≤ NPc

(55)

which admits a solution if condition (25) is satisfied. In this
case, the constraints imply that 0 ≤ γN ≤ γ̄, where

γ̄ = min

{
Pc,

σ2
aNPr − (σ2

w + σ2
cNPr)ρmin

σ2
gρmin

}
. (56)

Now, for fixed γN , since the objective function is decreasing
with ε, we have that

ε =
ρmin(σ2

gγN + σ2
w)

σ2
a − σ2

cρmin
. (57)

Furthermore, from Jensen’s inequality, the objective function
of Problem (55) is maximized when γi = NPc−γN

N−1 , i =
1, . . . , N − 1. The problem therefore reduces to

max
γN

Ḡ(γN )

s.t. 0 ≤ γN ≤ γ̄
(58)

where

Ḡ(γN ) = (N − 1) log

(
1 +
|h|2

σ2
v

NPc − γN
N − 1

)
+ (1− β) log

(
1 +
|h|2

σ2
v

γN

)
− β log

(
1 +

σ2
f

σ2
v

ρmin(σ2
gγN + σ2

w)

σ2
a − σ2

cρmin

)

+ β log

(
1 +
|h|2

σ2
v

γN +
σ2
f

σ2
v

ρmin(σ2
gγN + σ2

w)

σ2
a − σ2

cρmin

)
.

(59)

It can be easily seen that Ḡ is a continuously differentiable
convex function, so that the solution is either a critical point of
Ḡ or a boundary point. Moreover, the condition d

γN
G(γN ) = 0

is equivalent to the cubic equation Āγ3
N +B̄γ2

N + C̄γN +D̄ =
0, where the expression of the coefficients is not reported for
the sake of conciseness. Therefore, denoting ∆̄ the discrimi-
nant of the cubic equation, λ̄0 its unique real root, if ∆̄ > 0,
or the largest of its two real roots, if ∆̄ = 0, and λ̄1, λ̄2, λ̄3

its three real roots, if ∆̄ < 0, the solution is

γ∗N = arg max
γN∈T̄

Ḡ(γN ) (60)

where

T̄ =


{

0, γ̄, λ̄01{0≤λ̄0≤γ̄}

}
, if ∆̄ ≥ 0{

0, γ̄, λ̄11{0≤λ̄1≤γ̄},

λ̄21{0≤λ̄2≤γ̄}, λ̄31{0≤λ̄3≤γ̄}

}
, otherwise

(61)

1A denoting the indicator function of the event A, i.e.,
1A = 1, if A is verified, and 1A = 0, otherwise. At this point,
the remaining eigenvalues are γ∗i = (NPc − γ∗N )/(N − 1),
while ε∗ =

(
ρmin(σ2

gγ
∗
N + σ2

w)
)
/(σ2

a − σ2
cρmin), so that

the optimal covariance matrix and radar waveform are those
in (26) and (27), respectively.

C. Solution to Problem (29)

Suppose that Rx = UΓUH and s, with ‖s‖2 = ε, satisfy
the constraints. Then R′x = Γ and s′ = (0 · · · 0 ε) still
satisfy the power constraints and, by virtue of Lemma 2,
SINR(R′x, s) ≥ SINR(Rx, s) ≥ ρmin, so that also the SINR
constraint is satisfied. Furthermore, CR(R′x, s

′) ≥ CR(Rx, s),
since R0(Rx) is independent of U and s, while R1, exploiting
Hadamard’s inequality, can be upper-bounded as follows

R1(Rx, s) =
1

N
log det

(
IN +

|h|2

σ2
v

Rx

×diag

({(
1 +

σ2
f

σ2
v
|si|2

)−1
}N
i=1

))
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≤ 1

N

N∑
i=1

log

1 +

|h|2
σ2
v
γi

1 +
σ2
f

σ2
v
si


≤ 1

N

N−1∑
i=1

log

(
1 +
|h|2

σ2
v

γi

)

+
1

N
log

1 +

|h|2
σ2
v
γN

1 +
σ2
f

σ2
v
ε


= R1(R′x, s

′) (62)

which shows that the structure of s′ and R′x is optimal. As to
the eigenvalues of the covariance matrix and the norm of the
radar waveform, they can be determined by solving

max
ε,γ1,...,γN

{
N∑
i=1

log

(
1 +
|h|2

σ2
v

γi

)

−β log

 1 + |h|2
σ2
v
γN

1 +
(

1 +
σ2
f

σ2
v
ε
)−1

|h|2
σ2
v
γN




s.t. 0 ≤ ε ≤ NPr,
σ2
aε

σ2
gγN + σ2

c ε+ σ2
w

≥ ρmin

γ1 ≥ · · · ≥ γN ≥ 0,

N∑
i=1

γi ≤ NPc

(63)

which is exactly Problem (55). Therefore, it admits a solution
only if condition (30) is satisfied, in which case

γ∗N = arg max
γN∈T̄

Ḡ(γN ) (64a)

γi =
NPc − γN
N − 1

, i = 1, . . . , N − 1 (64b)

ε∗ =
ρmin(σ2

gγ
∗
N + σ2

w)

σ2
a − σ2

cρmin
(64c)

where Ḡ is the function in (59) and T̄ is the set in (61), so that
the optimal covariance matrix and radar waveform are those
in (31).

D. Solution to Problem (35)

Suppose that the pair (Rx, s) satisfy the constraints. Let
UΓUH be the eigenvalue decomposition of Rx, where
U = [u1 u2 · · · uN ] ∈ CN×N is unitary and Γ =
diag(γ1, γ2, . . . , γN ), with γ1 ≥ γ2 ≥ · · · ≥ γN ≥ 0;
let also φN and vN be the smallest eigenvalue of M and
the corresponding eigenvector, respectively. Consider s′ =√
εvN , where ε = ‖s‖2 and R′x = U∗Γ(U∗)H , where

U∗ ∈ CN×N is any unitary matrix with vN as last column.
Then (R′x, s

′) still satisfy the power constraints and, from
Lemma 2, SINR(R′x, s) ≥ SINR(Rx, s) ≥ ρmin, so that also the
SINR constraint is satisfied. The objective function is in turn
increasing with sH(IN + |h|2

σ2
v
Rx)−1s, which, again based on

Lemma 2, is upper-bounded as

sH
(
IN +

|h|2

σ2
v

Rx

)−1

s

= sH
(
IN +

|h|2

σ2
v

Ū Γ̄ŪH +
|h|2

σ2
v

γNuNuHN

)−1

s

≤ ε

1 +
σ2
f

σ2
v
γN

= (s′)H
(
IN +

|h|2

σ2
v

R′x

)−1

s′ (65)

where Ū = [u1 · · · uN−1] and Γ̄ = diag
(
{γi}N−1

i=1

)
. This

implies that CR(R′x, s
′) ≥ CR(Rx, s), and U∗ is optimum.

As to {γi}Ni=1 and ε, they can be determined by solving the
optimization problem in (55), with σ2

w replaced by φN . From
Sec. B3, it admits a solution if (36) is satisfied and

γ∗N = arg max
γN∈T̄

Ḡ(γN ) (66a)

γ∗i =
NPc − γ∗N
N − 1

, i = 1, . . . , N − 1 (66b)

ε∗ =
ρmin(σ2

gγ
∗
N + φN )

σ2
a − σ2

cρmin
(66c)

where Ḡ and T̄ are the function in (59) and the set in (61),
respectively, when σ2

w is replaced by φN . The optimal covari-
ance matrix and radar waveform are, therefore, those in (37)
and (38), respectively.

E. Proof of Lemma 1

Let
(
R′0, R

′
1

)
∈ S(σ2

wIN ) be achievable with
(
R′x, s

′),
and consider ŝ =

√
εuN , where uN is the eigenvector

corresponding to the smallest eigenvalue of R′x and ε = ‖s′‖2.
Then, the point

(
R′x, ŝ

)
satisfies all the constraints in (39),

including that on the SINR, since, from Lemma 2,

SINR
(
R′x, ŝ

)
=

σ2
aε

σ2
gγN + σ2

c ε+ σ2
w

≥ SINR
(
R′x, s

′)
≥ ρmin. (67)

Therefore, letting R̂1 = R1

(
R′x, ŝ

)
, we have that

(
R′0, R̂1

)
∈

S(σ2
wIN ). Furthermore, R̂1 ≥ R′1, since R1(Rx, s) is increas-

ing with sH
(
I+ |h|

2

σ2
v
Rx

)−1
s, and, exploiting again Lemma 2,

(s′)H
(
IN +

|h|2

σ2
v

R′x

)−1

s′ ≤ ε

1 + |h|2
σ2
v
γN

= (ŝ)H
(
IN +

|h|2

σ2
v

R′x

)−1

ŝ.

(68)

Let now φN be the smallest eigenvalue of M and vN be
the corresponding eigenvector, and consider s′′ =

√
εvN and

R′′x = U∗Γ(U∗)H , where U∗ ∈ CN×N is a unitary matrix
whose last column is vN . Then,

(
R′′x, s

′′) satisfies all the
constraints in (39), including the one on the SINR, since

SINR
(
R′′x, s

′′) =
σ2
aε

σ2γN + σ2
c ε+ φN

≥ σ2
aε

σ2γN + σ2
c ε+ σ2

w

≥ ρmin (69)
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where the first inequality follows from the fact that γN ≤
σ2
w and the second inequality from (67). Therefore, denoting
R′′1 = R1

(
R′′x, s

′′), we have that
(
R′0, R

′′
1

)
∈ S(M) and

R′′1 = R̂1 ≥ R′1.
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