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Robust Distributed Fusion with Labeled Random
Finite Sets

Suqi Li, Wei Yi*, Reza Hoseinnezhad, Giorgio Battistelli, Bailu Wang, Lingjiang Kong

Abstract—This paper considers the problem of the distributed
fusion of multi-object posteriors in the labeled random finite
set filtering framework, using Generalized Covariance Intersec-
tion (GCI) method. Our analysis shows that GCI fusion with
labeled multi-object densities strongly relies on label consistencies
between local multi-object posteriors at different sensor nodes,
and hence suffers from a severe performance degradation when
perfect label consistencies are violated. Moreover, we mathemat-
ically analyze this phenomenon from the perspective of Principle
of Minimum Discrimination Information and the so called yes-
object probability. Inspired by the analysis, we propose a novel
and general solution for the distributed fusion with labeled
multi-object densities that is robust to label inconsistencies
between sensors. Specifically, the labeled multi-object posteriors
are firstly marginalized to their unlabeled posteriors which are
then fused using GCI method. We also introduce a principled
method to construct the labeled fused density and produce tracks
formally. Based on the developed theoretical framework, we
present tractable algorithms for the family of generalized labeled
multi-Bernoulli (GLMB) filters including δ-GLMB, marginalized
δ-GLMB and labeled multi-Bernoulli filters. The robustness
and efficiency of the proposed distributed fusion algorithm are
demonstrated in challenging tracking scenarios via numerical
experiments.

I. INTRODUCTION

D ISTRIBUTED multi-sensor multi-object tracking
(DMMT) solutions are generally designed to benefit

from lower communication cost and higher fault tolerance
than centralized methods. Devising DMMT solutions
becomes particularly challenging when the correlations
between the estimates from different sensors are not known.
The optimal solution to this problem was developed in
[1], but the computational cost of calculating the common
information can make the solution intractable in many
real-world applications. A number of suboptimal solutions

This work was supported by the Chang Jiang Scholars Program, the
National Natural Science Foundation of China under Grants 61501505 and
61771110, the Fundamental Research Funds of Central Universities under
Grants ZYGX2016J031, the Chinese Postdoctoral Science Foundation under
Grant 2014M550465 and Special Grant 2016T90845, and the Australian
Research Council (ARC) through the Linkage Project Grant LP160101081.
(Corresponding author: Wei Yi.)

S. Li, B. Wang, W. Yi, and L. Kong are with the School of Elec-
tronic Engineering, University of Electronic Science and Technology of
China, Chengdu 611731, China (Email: qi qi zhu1210@163.com; kus-
soyi@gmail.com; w b l3020@163.com; lingjiang.kong@gmail.com).

R. Hoseinnezhad is with the School of Aerospace, Mechanical and Man-
ufacturing Engineering, RMIT University, Victoria 3083, Australia (Email:
reza.hoseinnezhad@rmit.edu.au).

G. Battistelli is with the Dipartimento di Ingegneria dell’ Informazione
(DINFO), Universit̀a degli Studi di Firenze, Via Santa Marta 3, 50139, Firenze,
Italy (Email: giorgio.battistelli@unifi.it).

with demonstrated tractability have been formulated based
on the Generalized Covariance Intersection (GCI) [2], [3]
or the exponential mixture densities (EMD) [4]–[6] or the
Kullback-Leibler average (KLA) [7], [8].

The GCI fusion rule is an extension of the Covariance Inter-
section method which only utilizes the mean and covariance
and is limited to Gaussian posteriors [9]. The GCI fusion rule
relaxes the Gaussian constraint, and can be used to fuse multi-
object distributions with completely unknown correlations,
since it intrinsically avoids any double counting of common
information. Furthermore, the GCI can be computed in a
distributed way by means of suitable consensus algorithms [7],
[8]. Finally, from an information-theoretic point of view, GCI
fusion rule admits a meaningful interpretation that the fused
density is the centroid of the local posteriors with Kullback-
Leibler divergence considered as the distance.

Based on the GCI fusion rule and its variants, several
DMMT algorithms have been proposed in the literature.
Specifically, the distributed fusion algorithms for probabil-
ity hypothesis density (PHD) [10], [11], cardinalized PHD
(CPHD) [12], [13] and multi-Bernoulli (MB) [14]–[17] filters
have been explored in [2], [5]–[8], [18]–[21]. The aforemen-
tioned methods are multi-object filters not trackers in the sense
that object states are estimated without labels.

Recently, in a series of works, the notion of labeled random
finite set (RFS) was introduced to address object trajectories
and their uniqueness [22]–[28]. Vo et al. [22], [23] proposed
a particular class of labeled multi-object densities called
generalized labeled multi-Bernoulli (GLMB) densities.1 The
class of GLMB densities are conjugate priors with respect
to the standard multi-object likelihood and also closed under
the Chapman-Kolmogorov equation in Bayesian inference. A
variant of the GLMB filter called the δ-GLMB filter can be
used to multi-object tracking directly, and not only produces
trajectories formally but also outperforms the aforementioned
filters [22]. Two computationally-efficient approximations of
the δ-GLMB filter, i.e., the labeled multi-Bernoulli (LMB) fil-
ter [24] and the marginalized δ-GLMB (Mδ-GLMB) filter [26],
have also been developed.

The enhanced accuracy and superior tracking capability
that are inherent in the labeled random finite set filters, have
motivated the development of distributed fusion methods that
work in tandem with these multi-object tracking algorithms.
Fantacci et al. [30] were among the first who investigated the
distributed fusion of labeled multi-object densities and derived

1GLMB distribution was also named as Vo-Vo distribution by Mahler in
his book [29].
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closed-form solutions for GCI fusion with Mδ-GLMB and
LMB densities, based on the assumption that different sensors
share the same label space for the birth process. However, their
work does not explore the profound meaning of “sharing the
same label space” and does not address the conditions implied
by the assumption in practice.

In this paper, we further investigate the distributed fusion
for labeled random finite set filters. Our major contributions
are as follow:

i) We analyse the drawback of GCI fusion with labeled
multi-object densities by showing that the fusion performance
is highly sensitive to label inconsistencies between sensor
nodes. The analysis is carried out in a principled theoretical
framework by virtue of the following proposed notions:

– GCI divergence, which is a new measure of discrepancy
compatible with GCI fusion rule to quantify the degree of
similarity between multiple densities.

– Conditional multi-label distribution, which facilitates a
new decomposition of the labeled multi-object density.

– Label inconsistency indicator, which quantifies the incon-
sistency of label information embedded in multiple labeled
multi-object densities.

ii) Motivated by the aforementioned performance analysis,
we propose a novel and general solution to the distributed
fusion with labeled set filters that is immune to the effect
of label inconsistencies between sensor nodes. Based on the
developed theoretical framework, we also present tractable
distributed fusion algorithms for the family of GLMB filters
including the δ-GLMB, Mδ-GLMB and LMB filters.

Extensive numerical experiments verify the robustness and
effectiveness of the proposed fusion algorithm with Gaussian
mixture implementation in challenging tracking scenarios.

Preliminary results have been announced in the conference
paper [31]. This paper presents a more complete theoretical
and numerical study. The layout of this paper is as follows. The
background and notations are presented in Section II, followed
by drawbacks of GCI fusion with labeled densities discussed
in Section III. Section IV provides a mathematical analysis
of the performance degradation of GCI fusion with labeled
densities. Section V proposes a robust solution to distributed
fusion with labeled set filters and presents tractable algorithms
for the family of GLMB filters. Section VI demonstrates
the performance of the proposed algorithms via numerical
examples. Conclusions are presented in Section VII.

II. NOTATIONS AND BACKGROUND

A. Notations

We adopt the convention that single-object states are de-
noted by lowercase letter “x”, e.g. x,x, while the multi-
object states are denoted by capital letter “X”, e.g. X,X. To
distinguish labeled states and distributions from the unlabeled
ones, bold face letters are adopted for the labeled ones, e.g.
x, X, π. Observations generated by single-object states are
denoted by z, and the multi-object observations are denoted
by Z. Moreover, blackboard bold letters represent spaces, e.g.
the state space is represented by X, the label space by L, and
the observation space by Z. The collection of all finite subsets

of X is denoted by F(X). The number of elements in a set is
called its cardinality, and denoted by | · |. The set of all finite
subsets of X with cardinality n is denoted by Fn(X).

We use the multi-object exponential notation

hX ,
∏

x∈X
h(x) (1)

for any set X and real-valued function h, with h∅ = 1 by
convention. The inclusion function is given by

1Y (X) ,

{
1, if X ⊆ Y
0 otherwise. (2)

If X is a singleton, i.e., X = {x}, the notation 1Y (x) is used
instead of 1Y ({x}).

B. Labeled Random Finite Set Distributions and Filters

Let L : X×L→ L be the projection defined by L((x, `)) =
`, then L(x) is called the label of the point x ∈ X×L. A
finite subset X of X×L is said to have distinct labels if and
only if X and its labels L(X) , {L(x) : x ∈ X} have the
same cardinality. We define the distinct label indicator of X
as ∆(X) = δ|X|(|L(X)|).

Definition 1. Given a labeled multi-object density π on X×
L, and any positive integer n, we define the joint existence
probability of the label set {`1, · · · , `n} ⊆ L by

w({`1, · · · , `n}) ,
∫

π({(x1, `1), · · · , (xn, `n)})d(x1, · · · , xn)

and the joint probability density on Xn conditional on their
corresponding labels `1, · · · , `n by

p({(x1, `1), · · · , (xn, `n)}) , π({(x1, `1), · · · , (xn, `n)})
w({`1, · · · , `n})

For n = 0, we define w(∅) , π(∅) and p(∅) , 1. It is implicit
that p(X) is defined to be zero whenever w(L(X)) is zero.

Definition 1 is first provided in [32], and using Definition
1, the labeled multi-object density can be decomposed as

π(X) = w(L(X))p(X). (3)

In this paper, we focus on two most commonly used labeled
multi-object distributions, namely the GLMB and LMB dis-
tributions. A GLMB labeled RFS is distributed according to:
[22], [29]

π(X) = ∆(X)
∑

c∈C
w(c)(L(X))[p(c)]X (4)

where C is a discrete index set, and w(c)(L) and p(c) satisfy
∑

L⊆L

∑
c∈C

w(c)(L) = 1, and
∫
p(c)(x, `)dx = 1. (5)

A GLMB RFS is completely characterized by the set of
parameters {(ω(c)(I), p(c)(·)) : (I, c) ∈ F(L)× C}.

A labeled multi-Bernoulli (LMB) RFS [24] with state space
X, label space L and (finite) parameter set {(r(`), p(`)(x)) :
` ∈ L}, is distributed according to

π(X) = ∆(X)w(L(X))pX (6)
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where

w(I) =
∏

i∈L
(1− r(i))

∏
`∈I

1L(`)
r(`)

1− r(`)
(7)

p(x, `) = p(`)(x). (8)

The centerpiece of the RFS based multi-object filtering is
the Bayes multi-object filter [33], which recursively propagates
the multi-object posterior density forward in time through a
prediction then an update step. When the objects are modelled
by labeled RFSs, the Bayesian filter also becomes a multi-
object tracker, as object identities (along with other parameters
of labeled multi-object distributions) are propagated through
the prediction and update steps of the filter. Of particular
interest in this paper is the δ-GLMB filter proposed by
Vo et al. [22], [23]. This filter is devised based on assuming
a special type of GLMB distribution (called δ-GLMB distri-
bution), and is more intuitive on label and data association
hypotheses and can be directly implemented.

Due to presence of explicit data associations in the standard
multi-object likelihood, the δ-GLMB suffers from exponential
growth of number of components of the posterior with time.
To resolve this problem, approximations of δ-GLMB filter
that allow tractability have been proposed. An approximation
that preserves both the first-order moment and cardinality
distribution of the posterior is the Mδ-GLMB filter [26]. A
faster yet less accurate approximation (that only preserves the
first-order moment of the posterior) is LMB filter [24]. The
LMB filter can be implemented substantially faster than the
Mδ-GLMB filter.

Remark 1. In this paper, an RFS X defined on space F(X) is
referred to as an unlabeled RFS, while an RFS X defined on
space F(X × L) with each realization having distinct labels
is referred to as a labeled RFS. Both unlabeled and labeled
RFSs belong to the family of simple finite point processes [34].

C. Generalized Covariance Intersection (GCI)
Using the concept of GCI for distributed multi-sensor fusion

was first proposed by Mahler [2] who later developed the GCI
fusion to extend the theory of finite set statistics (FISST) to the
distributed environment. Consider a set of sensor nodes N =
{1, 2,· · ·, Ns} in a sensor network. Suppose that in each node
s ∈ N , an RFS-based multi-object filter returns a local multi-
object posterior πs(X) defined on a space χ and computed on
the basis of the local information embedded in measurements
acquired at node s. The GCI fusion rule combines all the local
posteriors, returning their geometric mean in the form of an
exponential mixture of the local densities,

πω(X) =

∏
s∈N [πs(X)]ωs

∫ ∏
s∈N [πs(X)]ωsδX

(9)

where the integral is a set integral as defined in
FISST (see [33]) and the weights ωs are user-defined param-
eters with the constraint:

ωs > 0,
∑

s∈N
ωs = 1. (10)

Note that the GCI rule (9) can also be used to fuse labeled
multi-object densities. In that case, the labeled set integral

should be used, as defined in [23]. With labeled multi-object
posteriors the space χ is X× L, otherwise we have χ = X.

The name GCI stems from the fact that (9) is the multi-
object counterpart of the analogous fusion rule for (single-
object) probability densities [4] which, in turn, is a gener-
alization of Covariance Intersection originally conceived for
Gaussian probability densities [9]. In [7], [35], it has been
shown that the GCI fusion in (9) essentially minimizes the
weighted sum of the Kullback-Leibler divergence (KLD) with
respect to the local densities, i.e.

πω = arg min
π

∑
s∈N

ωsDKL(π;πs) (11)

where DKL denotes the KLD, defined as:

DKL(f ; g) ,
∫
f(X) log

(
f(X)

/
g(X)

)
δX. (12)

In view of (11), the GCI fusion is also called Kullback-
Leibler average (KLA) fusion. In Bayesian statistics, the KLD
can be seen as the information gain achieved when moving
from a prior density to a posterior density. Hence, the GCI
fusion essentially provides the density that minimizes the
weighted sum of the information gains from the local densities
on the basis of (11). This choice is coherent with the Principle
of Minimum Discrimination Information (PMDI) according to
which the probability density which best represents the current
state of knowledge is the one which produces an information
gain as small as possible. This property is important in order
to ensure immunity to double counting, thus avoiding being
overconfident on the available information.

III. DRAWBACKS OF GCI FUSION WITH LABELED
MULTI-OBJECT DENSITIES

Consider a set of labeled multi-object densities and the
corresponding weights Π = {(πs(X), ωs)}s∈N , with each
πs defined on space X× L, in the form of (3),

πs({(x1, `1), · · · , (xn, `n)}) =

ws({`1, · · · , `n})ps({(x1, `1), · · · , (xn, `n)}). (13)

Substituting into the GCI fusion rule (9), leads to a fused
density in the similar form

πω({(x1, `1), · · · , (xn, `n)}) =

wω({`1, · · · , `n})pω({(x1, `1), · · · , (xn, `n)}), (14)

where

wω({`1,· · ·, `n}) =∏
s∈N [ws({`1, · · · , `n})]ωsη({`1, · · · , `n})∑

I∈F(L)

∏
s∈N [ws(I)]ωsη(I)

(15)

pω({(x1, `1),· · ·, (xn, `n)}) =∏
s∈N [ps({(x1, `1),· · ·, (xn, `n)})]ωs

η({`1, · · · , `n})
(16)

with

η({`1,· · ·, `n}) =

∫ ∏
s∈N

[ps({(x1, `1),· · ·, (xn, `n)})]ωs

d (x1 · · ·xn).
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This indicates that GCI fusion for labeled densities essentially
is performed label-wise, and thus inherently demands perfect
label consistencies between different local sensors, i.e., the
same track has the same label in all sensor nodes. When
different labels are associated with the same object in different
sensors, GCI fusion does not make sense and indeed performs
poorly because the probabilities ws(I) or the conditional
probability density ps(X) for the same label set hypothesis
(except for ∅) can have large disparity at different sensor
nodes, which can largely diminish the fused probability of
the label set hypothesis, wω(I).

In the following, we present three common phenomena that
lead to the label consistency assumption being violated and
GCI fusion failing to produce accurate results.

Using Adaptive Birth Processes
The standard formulation of labeled multi-object filters is

based on assuming that object birth process is known as
a priori. In some practical situations where the objects can
appear anywhere in the surveillance area, the object birth
intensity needs to cover the entire the surveillance area and
does not add any prior information to the filtering process. An
extension which can distinguish between the persistent and
newly-born objects is to formulate an adaptive birth process
that is tuned at each scan using the received observations. In
presence of such adaptive birth processes at each sensor of a
distributed multi-object tracking system, the same newly-born
object may be labeled differently in different sensors.

Random Uncertainties in Observations
Suppose different sensors share the same prior information

based birth processes [23]. In this situation, even if the same
label drawn from the label spaces of different sensors has the
same implication, statistical distribution of labels conditioned
on the observation set could be substantially different from
one sensor node to another, because of randomness of obser-
vations. As a result, the estimated label for the same object
may be different in different sensor nodes.

Note that to ensure uniqueness of labels, in labeled multi-
object tracking algorithms, a label ` is comprised of two
elements: the time of birth k and the index i that distinguishes
different objects born at the same time, i.e. ` = (k, i). It is
common that with the labeled multi-object posterior formed in
each sensor node, for each object there is a label, say (k̂, î),
with a large weight and hence, representing the estimated label
for that object. Due to false alarms (clutters), miss-detections
or excessive observation noise, the estimated time of birth k̂
may be different from one sensor node to another and from
the true time of birth k0. Specifically,
• k̂ < k0 may occur in a local sensor node due to a

false measurement appearing nearby the true track before k0,
leading to the deduction that the object is born earlier than k0.
• k̂ > k0 may occur in a local sensor node due to the

excessive observation noise or mis-detection of the object
during a few first time steps, leading to the deduction that
the object is born after k0.
Local pruning

For the sake of numerical tractability of the labeled set

filtering algorithms, and reduction of communication costs in
a distributed sensor network, pruning strategies are usually
devised to keep the number of hypotheses bounded in each
sensor node. This can clearly lead to an object’s label to be
pruned in one sensor node while remaining in the other, and
the label-wise GCI fusion will lead to that the fused label set
hypothesis including this label to be given a zero probability
because it not supported by all sensor nodes.

Example 1. Consider a sensor network with two sensors
employing an LMB filter in each sensor node. The surveillance
region is [−800, 800] m × [−600, 600] m. The standard dy-
namic and observation models provided in [23] are used. The
observation model of each single object is linear Gaussian,
the probability of detection PD,k = 0.99, and the intensity
function of clutter κ(·) = 5.2 × 10−6. The transition of
each single target follows the linear Gaussian model, and the
probability of survival PS,k = 0.99. Both sensors have the
prior knowledge that objects are born during times k =4 s, 5 s
or 6 s, and around the origin (0, 0) m. The birth process used
at each sensor is a labeled Bernoulli process (r(k,i), p(k,i)(x)),

p(k,i)(x) = N (x; (0, 0, 0, 0); diag([300 300 300 300]))

where the state x is a vector of planar position and velocity, the
index i = 1 because only one object is born at the same time,
and k denotes the time of birth taking values from {4, 5, 6} s.
The true object is born at k = 5 s, and the true track is shown
in Fig. 1 (a). Two representative types of measurements from
sensors 1 and 2 are shown in Fig. 1 (a). No pruning strategies
are adopted.

Fig. 1 (a) also shows object state estimates computed at
each sensor node of a single run, which reflect that both
local sensors can estimate the kinematic states accurately in
general. However, the time of birth estimates computed at the
two sensor nodes have a small but indeed existing difference.
Specifically,

Sensor 1: due to an excessively noisy measurement at k=5 s,
the object is missed but detected for the first time
at k̂1 =6 s which is later than the true time of birth.

Sensor 2: at time k= 4 s a false measurement is close to the
true track and lead to an estimated birth time of
k̂2 =4 s which is earlier than the true time of birth.
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Fig. 1. (a) Tracks and measurements at two sensors; (b) The respective
posterior probabilities w1(I) and w2(I) for different label set hypotheses
at sensors 1 and 2.
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Fig. 1 (b) shows the posterior probabilities w1(I)
and w2(I) for different label set hypotheses
I = {(4, 1)}, {(5, 1)}, {(6, 1)}, ∅ at sensor nodes 1 and
2, respectively. A large disparity can be observed between
the probabilities of the same label set hypothesis at the two
sensor nodes, which is the main reason why k̂1 and k̂2 are
different. Furthermore, if we prune all the label set hypotheses
with probabilities less than a threshold Γ = 10−6, at times
k > 8 s, only one label set hypothesis survives at each sensor
node: (6,1) at sensor 1, and (4,1) at sensor 2. GCI fusion will
be completely erroneous in this case.

IV. MOTIVATING ANALYSIS

In the previous section, we revealed the drawback of GCI
fusion for labeled multi-object densities through an intuitive
observation of the fusion formulas, three common phenomena
and a typical numerical experiment. In this section, we present
a principled analysis of how label inconsistencies affect the
fusion performance from the perspective of PMDI and the
declaration of the object existence. The performance analysis
will also motivate the proposed solution that is robust to label
mismatches.

A. Mathematical Tools

We firstly introduce the following notions which are the
basis of the subsequent theoretical analyses.

1) Conditional Multi-label Distribution: We firstly review
the mathematical treatment to transform a labeled multi-object
density to its unlabeled version. The unlabeled version of a
labeled RFS on X × L is given by K(X) = {K(x) : x ∈
X}, where K : X × L → X is the projection defined by
K((x, `)) = x. Given a labeled RFS X distributed according
to π, X = K(X) is distributed according to the following
marginal: [23]

π({x1,· · ·, xn})=
∑

(`1,···,`n)∈Ln
π({(x1, `1),· · ·, (xn,`n)}). (17)

Definition 2. Given a labeled multi-object density π on X×L,
and any positive integer n, the joint probability distribution of
labels `1, · · · , `n on Ln conditional on their corresponding
(unlabeled) states x1, · · · , xn is given by

$({(`1|x1),· · ·, (`n|xn)}) , π({(x1, `1),· · ·, (xn, `n)})
π({x1,· · ·, xn})

(18)

where π({x1,· · ·, xn}) is given in (17). By convention,$(∅),1.

Note that (18) can be rewritten as:

π({(x1, `1), · · · , (xn, `n)}) =

$({(`1|x1), · · · , (`n|xn)})π({x1, · · · , xn})
(19)

where n takes values from the field of real number N,
which actually provides a new decomposition of labeled multi-
object density. Thus, the conditional multi-label distribution
$({(`1|x1),· · ·, (`n|xn)}) encapsulates all label-related infor-
mation embedded in the labeled multi-object density π(·). It
is this information that makes it possible to estimate the labels
of kinematic states and produce tracks in labeled set filters.

2) GCI Divergence: In this subsection, GCI divergence is
introduced as a new measure of discrepancy to quantify the
degree of similarity between multiple densities, and evaluate
the minimal information gain of GCI fusion with multiple
densities. Consider a set of multi-object densities associated
with their corresponding weights, denoted by

Π = {(πs(X), ωs) : s ∈ N},
where each πs(X) is defined on the same space χ, each weight
ωs is a given confidence for πs, and the weights satisfy (10).
For any multi-object density π(X) on χ (possibly X or X ×
L), the weighted average information gain (AIG) from π to
densities in Π is defined as

DAIG(π; Π) ,
∑

s∈N
ωsDKL(π;πs). (20)

According to (11), the GCI fusion rule by principle minimizes
the weighted AIG. The resulting minimal weighted AIG over
all densities on χ is given by: [7]

min
π
DAIG(π; Π) = − log c(Π) (21)

where
c(Π) =

∫ ∏
s∈N

[πs(X)]ωsδX. (22)

The quantity c(Π) is referred to as GCI coefficient. It is always
in [0,1] and presents a measure of similarity between densities
in Π. In this paper, we will call the minimal weighted AIG
given in (21) and (22) as GCI divergence denoted by G(Π):

G(Π) = − log c(Π) = − log

∫ ∏
s∈N

[πs(X)]ωsδX. (23)

GCI divergence is a tool to quantify the degree of similarity
between multiple densities. The larger the GCI divergence
among densities in Π is, the more the corresponding GCI
fusion is violating the PMDI. Hence a large GCI divergence
can be an indication that the information contained in the
densities to be fused are not coherent. The extreme case
G(Π) → +∞ (c(Π) → 0+) occurs when the densities are
compeletly incompatible and have different supports.

3) Yes-Object Probability: We define yes-object probability
and no-object probability as Py(π) , 1 − π(∅) and Pn(π) ,
π(∅), respectively, for a given multi-object posterior π [33].
Usually, object existence can be declared only if the yes-object
probability is greater than a threshold τ ( usually 0.5 6 τ < 1).
The yes-object probability is the basis of multi-object state
estimation in the sense that only if the existence of objects
can be declared, the object states can be extracted; otherwise
the best estimate of multi-object state set will be an empty set
(no-object inference).

B. Theoretical Analysis

This section provides a thorough theoretical analysis of how
the label inconsistencies between different labeled multi-object
densities affect the performance of GCI fusion.

Consider a set of labeled multi-object densities Π =
{(πs, ωs)}s∈N with each πs defined on space X×L, and a set
of unlabeled multi-object densities Π = {(πs, ωs)}s∈N with
each πs the marginal of πs on X. The following proposition
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states the relationship between GCI divergences of the two
sets of multi-object densities.

Proposition 1. If each labeled multi-object density πs(·) is

πs({(x1, `1), · · · , (xn, `n)}) =

$s({(`1|x1), · · · , (`n|xn)})πs({x1, · · · , xn})
(24)

of form (19), then the GCI divergence for densities in Π is
given by

G(Π) = G(Π)− log Eπω
[µ(X)] (25)

where G(Π) is the GCI divergence for densities in Π, and

µ({x1, · · · , xn}) =∑
(`1,··· ,`n)∈Ln

∏
s∈N

[$s({(`1|x1), · · · , (`n|xn)})]ωs (26)

is GCI coefficient for the set of conditional multi-label dis-
tributions {($s({(`1|x1),· · ·, (`n|xn)}), ωs)}s∈N , and Eπω

(·)
denotes expectation with respect to πω , with πω being the fused
density returned by GCI fusion of all densities in Π.

Proof. Substituting the densities in (24) in the definition of
GCI divergence (23) leads to

G(Π) = − log
∑∞

n=0

1

n!

∫ ∏
s∈N

[πs({x1, · · · , xn})]ωs∑
(`1,···,`n)∈Ln

∏
s∈N

[$s({(`1|x1),· · ·, (`n|xn)})]ωsd(x1,· · ·, xn).
(27)

Substituting

c(Π)=

∞∑
n=0

1

n!

∫ ∏
s∈N

[πs({x1,· · ·, xn})]ωsd(x1,· · ·, xn) (28)

and (26) into (27), G(Π) can be rewritten as

G(Π)=− log c(Π)
∑∞

n=0

1

n!

∫ ∏
s∈N [πs({x1,· · ·, xn})]ωs

c(Π)

× µ({x1, · · · , xn})d(x1, · · · , xn).
(29)

Based on the GCI fusion rule, the GCI fusion for Π is

πω(X) =
∏

s∈N
[πs(X)]ωs

/
c(Π).

Hence, (29) can be further represented as

G(Π) =− log c(Π)− log
∑∞

n=0

1

n!

∫
πω({x1, · · · , xn})

× µ({x1, · · · , xn})d(x1, · · · , xn)

=G(Π)− log Eπω [µ(X)].

The above result reveals that G(Π) can be decomposed into
two parts: one part is G(Π) which reflects the discrimination
information between kinematic states of different sensors; the
other part is − logEπω [µ(X)] with Eπω [µ(X)] being the
statistical average of the GCI coefficient of conditional multi-
label distribution which reflects the discrimination information
between label distributions of different sensors.

Definition 3. We define the “label inconsistency indicator”
with respect to a set of labeled multi-object densities Π as

dG(Π) , G(Π)−G(Π) = − logEπω
[µ(X)]. (30)

The label inconsistency indicator dG(Π) is a measure to

quantify the inconsistencies of label information embedded
into multiple labeled densities. A larger value of dG(Π) indi-
cates a higher level of label inconsistencies between densities
in Π. Moreover, the quantity dG(Π) can reflect the difference
between GCI divergences of Π and Π. The following corollary
establishes upper and lower bounds on dG(Π).

Corollary 1. The following inequalities hold,

0 6 dG 6 − log πω(∅) (31)

with πω the fused density returned by GCI fusion of Π.

Proof. By definition, $s(∅) = 1 is always true. Therefore,

µ(∅) =
∏

s∈N
[$s(∅)]ωs = 1. (32)

For X 6= ∅, the term µ(X) denotes a GCI coefficient and is
therefore, within [0,1]. The quantity Eπ[µ(X)] is given by

Eπω
[µ(X)]=πω(∅)µ(∅)+

∑∞

n=1

1

n!

∫
πω({x1,· · ·, xn})

× µ({x1,· · ·, xn})d(x1,· · ·, xn).

(33)

Since each µ(·) term within summing integrations is less than
or equal to 1, the upper bound of Eπω

[µ(X)] is given by

Eπω [µ(X)] 6 πω(∅)+
∑∞

n=1

1

n!

∫
πω({x1, · · · , xn})d(x1, · · · , xn)

=

∫
πω(X)δX = 1.

This also establishes the lower bound of − log Eπω
[µ(X)],

dG = − log Eπω
[µ(X)] > 0.

On the other hand, since µ(∅) = 1 and each
µ({x1, · · · , xn})(n > 1) term is non-negative, we have:

Eπω
[µ(X)] > πω(∅)

which also establishes an upper bound on − log Eπω
[µ(X)],

− log Eπω [µ(X)] 6 − log πω(∅).
Together, we have:

0 6 dG = − log Eπω [µ(X)] 6 − log πω(∅) (34)

From Corollary 1, we conclude that the upper bound on the
quantity dG depends on πω(∅). In the limit case πω(∅) = 0,
upper bound can reach +∞.

To further investigate how the label inconsistencies affect
the fusion performance, we build up the functional relationship
between dG(Π) and the so-called yes-object probability and
its opposite counterpart, no-object probability in the following
corollary.

Corollary 2. The yes-object probability of the labeled GCI
fusion πω can be written in terms of the label inconsistency
indicator dG(Π) and the yes-object probability of the corre-
sponding unlabeled GCI fusion πω as follows

Py(πω) = 1− edG(Π)[1− Py(πω)]. (35)

Proof. According to (9), we can get the no-object probabilities
after GCI fusion with Π and GCI fusion with Π as, respec-
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Fig. 2. Sharp decline of Py(πω) with increasing dG(Π) for various given
values of Py(πω).

tively,

Pn(πω) =
∏

s∈N
[πs(∅)]ωs

/
c(Π)

Pn(πω) =
∏

s∈N
[πs(∅)]ωs

/
c(Π).

(36)

As for each labeled density πs and its corresponding unlabeled
version πs, πs(∅) = πs(∅), we have

Pn(πω) =
c(Π)

c(Π)
Pn(πω) = eG(Π)−G(Π)Pn(πω). (37)

Hence, we can get the following yes-object probability

Py(πω) = 1− Pn(πω) = 1− edG [1− Py(πω)]. (38)

The above result shows that given Py(πω), Py(πω) mono-
tonically decreases with dG. As shown in Fig. 2, there can
be a sharp decline for Py(πω) if Py(πω) is close to one.
Particularly, when

dG > − log πω(∅) + log(1− τ),

we have
Py(πω) < τ,

and as a result, existence of no object can be inferred from GCI
fusion with Π. Hence, when the label inconsistency indicator
dG(Π) is too large, the GCI fusion with labeled densities can
lose all tracks. Indeed, from Fig. 2, we observe that with the
unlabeled yes-object probability is Py(πω) = 0.999, if dG is
larger than 6.2, GCI fusion of labeled multi-object posteriors
in Π will (mis)lead us to the no-object inference since the
yes-object probability Py(πω) will be less than 0.5.

Remark 2. Having Py(πω) < τ is a sufficient condition
for no-object inference, but a necessary one. A filter can
also lead to an empty set estimate (no-object inference) if
Pn(πω) = πω(∅) becomes larger than the probabilities of
any other cardinalities (n 6= 0).

C. Summary and Motivation

The analysis presented in this section shows that the label
inconsistency indicator dG(Π) can reflect the impact of dis-
parities between label information in different sensor nodes on
the performance of GCI fusion with labeled densities. Given

the labeled posteriors Π and their unlabeled versions Π, a
larger dG(Π) means

• a larger GCI divergence for Π, and thus, less optimality
of GCI fusion (as it will violate PMDI more); and

• a smaller yes-object probability for the fused labeled
density.

This shows that GCI fusion with labeled densities is highly
sensitive to the label inconsistency indicator dG(Π) and has
little tolerance (if not none) to inconsistencies between label
information embedded in different local sensor nodes.

In practice, even if all the local sensors work well, the label
inconsistency indicator dG(Π) can be still large. This can
happen with any of the common phenomena listed in previous
section, i.e., when we have an adaptive birth process in place
within each local filter, or due to uncertainties in observations
(excessive noise, false alarm rate, low probability of detection),
or due to local pruning operations.

Revisiting example 1, we calculate the divergences G(Π),
G(Π), the label inconsistency indicator dG(Π) and its the
upper bound − log πω(∅). Fig. 3(a) shows those values plotted
versus time. It can be seen that while GCI fusion of the
unlabeled densities consistently returns small GCI divergence
values, those values returned by the GCI fusion of labeled
densities are large to the extent that the label inconsistency
indicator dG(Π) is very close to its upper bound. This provides
an in-depth explanation for the reason why GCI fusion of the
LMB densities fails in this case. We also compute yes-object
probabilities returned by each local filter, by GCI fusion of
labeled posteriors, and by GCI fusion of unlabeled posteriors.
The results are plotted in Fig. 3(b) showing that while the two
local filters and GCI fusion of unlabeled posteriors work well
(in terms of successfully returning one object state estimate),
GCI fusion of labeled posteriors fails.
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Fig. 3. (a) GCI divergences vs time; (b) Yes-object probabilities vs time.

V. ROBUST DISTRIBUTED FUSION: PROPOSED METHOD

The discussions and analyses presented in previous sections
show that the performance of GCI fusion with labeled densities
is highly sensitive to disparities in local label information
embedded in labeled posteriors at each sensor node, which
is quantified by the label inconsistency indicator dG(Π).
Moreover, in Section IV, the functional relationships between
the GCI fusion with Π and Π are also founded in terms of
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the GCI divergence and the yes-object probability. Revisiting
Proposition 1 and Corollary 2, we can easily conclude that

G(Π) 6G(Π) (39)
Py(πω) >Py(πω) (40)

which mean that GCI fusion with unlabeled posteriors Π is
expected to achieve a smaller minimal AIG value and a larger
yes-object probability than GCI fusion with labeled posteriors
Π. Indeed, G(Π)=G(Π) and Py(πω)=Py(πω) hold only if

∀X ∈ F(X), µ(X) = 1

and this occurs only if there is 100% consistency between
label-object relationships inferred from local sensor node
posteriors; a condition that is hardly satisfied in practice.
Hence, GCI fusion is generally expected to perform better on
unlabeled posteriors assembled in Π rather than the labeled
posteriors in Π. Quality of performance of GCI fusion algo-
rithms with unlabeled random set densities, has been already
verified in several works involving particular classes of RFSs
such as Poisson, i.i.d clusters and MB RFSs [6], [7], [19].

As for the task of producing tracks (equivalent to get
$ω(·)), the fusion with the conditional multi-label distribution
$s(·), s ∈ N does not make sense when the discrimination
between the statistics of labels at different sensors is large.
Hence, our strategy is that if the fusion is performed at sensor
s0, the conditional multi-label distribution for the fused density
$ω(·) is produced by performing the GCI fusion with $s0(·)
with uniform distributions based on (9), i.e.

$ω({(`1|x1), · · · , (`n|xn)}) =

[$s0({(`1|x1), · · · , (`n|xn)})]ωs0∑
(`1,··· ,`n)∈Ln

s0

[$s0({(`1|x1), · · · , (`n|xn)})]ωs0

(41)

where Ls0 is the label space at sensor s0.
The proposed robust solution to the distributed fusion of

labeled posteriors is summerized as follows. Suppose that at
the current time step, sensor s0 has received agent densities
from its neighbours,

Step 1: All agent labeled posteriors πs(X) are marginalized
to their unlabeled versions πs(X);

Step 2: Get the GCI fusion πω(X) with the unlabeled poste-
riors πs(X) based on (9);

Step 3: The labeled fused density is produced by augmenting
πω(X) with the labels in Ls0 , i.e.

πω({(x1, `1), · · · , (xn, `n)}) =

$ω({(`1|x1), · · · , (`n|xn)})πω({x1, · · · , xn})
(42)

where $ω(·) is given in (41).

Remark 3. That the label spaces of the algorithms at different
sensors are the same, i.e. L1 = · · · = LNs

= L, is an inherent
assumption for GCI fusion with labeled densities. However, in
the practice, the real used label spaces for different sensors
may be different, for example when the filters use pruning and
merging strategies, or if the sensors use the adaptive birth
process. Note that the proposed solution can work even if the
real used label spaces are not the same, because the fusion is

performed on the state space X.

A. The Unlabeled Version of Labeled RFS

According to the proposed robust distributed fusion so-
lution, the first step is to compute the marginals of local
labeled densities on kinematic space X. In this subsection,
we investigate the unlabeled versions of common labeled
densities, i.e. GLMB densities and its subclass. Firstly, we
present a class of RFS defined on unlabeled state space, named
as generalized multi-Bernoulli (GMB) RFS. Then we provide
the mathematic representations of the unlabeled version of
GLMB densities and its subclass, which turned out to be the
same unlabeled RFS family, namely, GMB RFS family.

1) GMB RFS: The GMB RFS was first proposed in [19],
and this paper provides a formal definition of GMB RFS.

Definition 4. A GMB RFS is an RFS on state space X
distributed according to

π({x1,· · ·, xn})=
∑

σ

∑

(I,φ)∈Fn(I)×Φ

w(I,φ)
n∏

i=1

p(φ),Iv(i)(xσ(i)) (43)

where σ denotes one permutation of I, σ(i) denotes the ith
element of the permutation, the summation

∑
σ is taken over

all permutations on the numbers 1, · · · , n, Φ is a discrete
space, I is the set of indexes of densities, Iv ∈ I|I| is a vector
constructed by sorting the elements of the set I, w(I,φ) and
p(φ),ı(x) satisfy∑

I∈F(I)

∑
φ∈Φ

w(I,φ) = 1,∫
p(φ),ı(x)dx = 1, ı ∈ I.

(44)

A GMB distribution is constructed by a set of hypotheses,
{(I, φ) : (I, φ) ∈ F(I)×Φ}. We define a set of densities for
each φ ∈ Φ as:

P(φ) , {p(φ),ı(x)}ı∈I. (45)

Under each hypothesis, the corresponding weight is w(I,φ)

and the corresponding density set is P(φ). Thus a GMB
density is completely characterized by the set of parameters
{(w(I,φ),P(φ)) : (I, φ) ∈ F(I)× Φ}.

The first-order moment of a GMB RFS distributed accord-
ing to (43) is given by: [19]

v(x) =
∑

ı∈I
r(ı)p(ı)(x). (46)

where

r(ı) =
∑
I∈F(I)

∑
φ∈Φ

1I(ı)w(I,φ), (47)

p(ı)(x) =
∑
I∈F(I)

∑
φ∈Φ

1I(ı)w(I,φ)p(φ),ı(x)

/
r(ı). (48)

2) Unlabeled Versions of Common Labeled Densities:
We present the mathematical representations of the unlabeled
versions for GLMB density and its subclass, LMB density.
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Proposition 2. If a labeled RFS X on X×L is a GLMB RFS
distributed according to (4), then X = K(X) is distributed as

π({x1, · · · , xn}) =
∑

σ

∑
(I,c)∈Fn(L)×C

w(I,c)
∏n

i=1
p(c),Iv(i)(xσ(i))

(49)

where

w(I,c) , w(c)(I), I ∈ F(L)

p(c),`(x) , p(c)(x, `), ` ∈ L.
(50)

Proof. See Appendix A.

Proposition 3. If a labeled RFS X on X×L is an LMB RFS
distributed according to (6), then X = K(X) is distributed
as:

π({x1,· · ·, xn})=
∑

σ

∑

I∈Fn(L)

w(I)
∏n

i=1
p(Iv(i))(xσ(i)) (51)

where

w(I) , w(I), I ∈ F(L)

p(`)(x) , p(x, `), ` ∈ L.
(52)

Proof. See Appendix B.

Remark 4. Propositions 2 and 3 explicitly describe the rela-
tionship between the parameters of GLMB and LMB densities
and the parameters of their unlabeled versions, respectively.
Specifically, the unlabeled version of GLMB is a GMB with
I = L and Φ = C; the unlabeled version of LMB is a GMB
with and I = L and the discrete space Φ only has one point.
Note that (51) is an MB density with a set of parameters
{r(`), p(`)(x)}`∈L in nature.

B. GCI Fusion with GMB Distributions

Once the labeled multi-object posteriors in GLMB RFS
family are marginalized to the GMB densities based on
Propositions 2-3, the subsequent task is to perform GCI fusion
with GMB densities according to the proposed robust solution.
We present the formula of GCI fusion with two GMB densities
in this subsection, and for the case of more than two densities,
a common method is to perform the pair-wise fusion [7],
[19]. Actually, a manipulatable formula for GCI fusion has
two implicit demands: one is the formula should make the
computation of the set integral in (9) tractable; the other is
the fused distribution should belong to the same RFS family
of local posteriors or its unlabeled version, to enable the pair-
wise fusion of more than two densities. In the following, we
are devoted to deriving an explicit formula for GCI fusion with
GMB distributions to satisfy these two demands.

The following Definition 4 first provided in [19] describes
the degree of separation for different tracks from the view
of highest posterior density (HPD) [36] region. With this
definition, [19] also provides an approximation technique
to simplify the fractional order exponential power of MB
distribution. Since they are pertinent to the derivation that
follows, we firstly introduce them here.

Definition 5. Consider an MB posterior π ={(
r(ı), p(ı)(·)

)}
ı∈I, where I is the index set of Bernoulli

components. If Xı is the HPD of confidence λ for p(ı)(·),
then the Bernoulli components of π(X) are said to be
mutually λ× 100% separated if,

∀ı 6= ı′, Xı ∩ Xı′ = ∅.

The approximation technique proposed in [19] is that if the
Bernoulli components of an MB posterior density denoted by
π =

{(
r(ı), p(ı)(·)

)}
ı∈I are mutually λ× 100% separated and

λ is very close to 1 (e.g. λ > 0.9), then

π({x1,. . .,xn})ω≈
∑

σ

∑

I∈Fn(I)

[
w(I)

]ω
[
n∏

i=1

p(Iv(i))(xσ(i))

]ω
(53)

where w(I) =
∏
ı∈I r

(ı)
∏
ı′∈I−I(1− r(ı′)).

Consider two GMB distributions πs , s = 1, 2, which are
the unlabeled versions of posteriors output by two sensors in
a network, i.e.

πs({x1, · · · , x2}) =

∑

σs

∑

(I,φ)∈Fn(Is)×Φs

ω(I,φ)
s

n∏

i=1

p(φ),Iv(i)
s (xσs(i)), s = 1, 2.

(54)

According to GCI fusion rule, by substitution of (54) into (9),
we are faced with a tough task that is to simplify the following
expression involving the fractional order exponential power,

πωs
s =


∑

σ

∑

(I,φ)∈Fn(Is)×Φs

ω(I,φ)
s

∏n

i=1
p(φ),Iv(i)
s (xσ(i))



ωs

. (55)

Obviously, (55) is computationally intractable due to the sum
over the discrete space Fn(Is)× Φ and over σ.

Herein, we adopt a two-step approximation strategy that
is to approximate the GMB distribution as a more tractable
distribution preserving its key statistical properties firstly and
then compute the GCI fusion of the approximated distribu-
tions. On one hand, in the RFS based multi-object tracking
algorithms, approximating the multi-object posterior as a sim-
ple distribution preserving its key statistical properties can
usually obtain a great reduction in computation burden with a
slight compromise in accuracy. For instance, in LMB filter, the
multi-object posterior is approximated as an LMB distribution
which preserves its first-order moment, and the performance of
LMB filter has been well demonstrated in [23]. On the other
hand, by adopting the approximation technique in [19], the
MB density can accommodate simplification of the fractional
order exponential power in (55) manageable as shown in (53).
Inspired by these two aspects, we seek the MB approximation
which preserve the first-order moment of the original GMB
distribution in this paper.

For the subsequent development, we firstly give the defini-
tion of fusion map.

Definition 6. Without loss of generality, assume that |I1| ≤
|I2|. A fusion map (for the current time) is a function τ : I1→
I2 such that τ(i) = τ(i∗) implies i= i∗. The set of all such
fusion maps is called fusion map space denoted by T . The
subset of T with domain I is denoted by T (I). For notation
convenience, we define τ(I) , {τ(i), i ∈ I}.
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Remark 5. Note that each fusion map denotes a hypothesis
that the tracks in sensor 2 are one-to-one matching with the
tracks in sensor 1. The fusion map plays the similar role as the
measurement-track association map in δ-GLMB filter [24].

The two-step approximation strategy is described as follow:

> The MB approximation of GMB density preserving the first-
order moment: According to (46), the first-order moments of
the GMB densities of form (54) are given by

vs(x) =
∑

ı∈Is
r̃ (ı)
s p̃ (ı)

s (x), s = 1, 2 (56)

where

r̃(ı)
s =

∑
I∈F(Is)

∑
φ∈Φs

1I(ı)w(I,φ)
s (57)

p̃(ı)
s (x) =

∑
I∈F(Is)

∑
φ∈Φs

1I(ı)w(I,φ)
s p(φ),ı

s (x)

/
r̃ (ı)
s (58)

The above expression can be interpreted as a weighted sum
of the densities of all individual tracks, with each track denoted
by a Bernoulli RFS {(r̃(ı)

s , p̃
(ı)
s )}, ı ∈ Is. Hence, the MB

distributions that match exactly the first-order moments of the
GMB densities of form (54) are

π̃s = {(r̃ (ı)
s , p̃ (ı)

s (x))}ı∈Is , s = 1, 2. (59)

> The GCI fusion with MB approximations: By adopting the
approximation technique in (53) proposed in [19], we have
on condition that the Bernoulli components of π̃s =

{(r̃(ı)
s , p̃

(ı)
s (x))}ı∈Is are mutually λ× 100% separated with λ

close to 1, the fractional order exponential power of the MB
distribution can be simplified as

π̃s({x1,· · ·, xn})ωs≈
∑

σs

∑

Is∈Fn(Is)

[
w̃(Is)
s

]ωs
[∏n

i=1
p̃

(Ivs (i))
s (xi)

]ωs

(60)
where w̃(Is)

s =
∏
ı∈Is r

(ı)
s
∏
ı′∈Is−Is(1− r̃(ı)

s ). By substitution
of (60) for s = 1, 2 into (9), and utilizing Definition 5,
according to Proposition 3 given in [19], the fused density
can be computed as

πω({x1, . . . , xn})

=
1

C

∏

s=1,2

∑

σs

∑

Is∈Fn(Is)

[
w̃ (Is)
s

]ωs
[∏n

i=1
p̃

(Ivs (i))
s (xi)

]ωs

=
∑

σ

∑

(I,τ)∈Fn(I1)×T (I)

w(I,τ)
ω

∏n

i=1
p(τ),Iv(i)
ω (xσ(i))

(61)

where

w(I,τ)
ω = w̌(I,τ)

ω /C, (62)

p(τ),ı
ω (x) = p̃(ı,τ(ı))

ω (x) (63)

η(τ),ı
ω = η̃(ı,τ(ı))

ω (64)

w̌(I,τ)
ω = [w̃

(I)
1 ]ω1 [w̃

(τ(I))
2 ]ω2

∏
ı∈I

η(τ),ı
ω (65)

C =

∫
πω(X)δX =

∑
(I,τ)∈F(I1)×T (I)

w̌(I,τ). (66)

with

p̃(ı,)
ω (x) =[p̃

(ı)
1 (x)]ω1 [p̃

()
2 (x)]ω2

/
η̃(ı,)
ω , (ı, ) ∈ I1 × I2 (67)

η̃(ı,)
ω =

∫
[p̃

(ı)
1 (x)]ω1 [p̃

()
2 (x)]ω2dx, (ı, ) ∈ I1 × I2 (68)

Finally, via the aforementioned two-step approximation, we
derive the explicit formula for GCI fusion with two GMB
distributions as shown in (61). It can be observed that (61) is
another GMB distribution, it can enable the distributed fusion
with GLMB RFS family in a sensor network owning more
than two sensors by applying pair-wise fusion.

Remark 6. Usually the true single object state corresponding
to each Bernoulli component {(r̃(ı)

s , p̃
(ı)
s )} determines the

center of its HPD region. Furthermore, the width of HPD
region of a Bernoulli component is smaller with lower ma-
neuverability and higher SNR. In such practical scenarios, the
MB approximation preserving the first order moment of the
original GMB posterior can be easily assumed to be mutually
separated with very high confidence, and the condition of the
approximation in (60) can be easily satisfied.

C. Construction of the Labeled Fused Posterior

After fusing the unlabeled densities and obtained the GMB
fused density πω , one can extract the multiple object states
directly from the fused GMB density if the trajectories are not
required; otherwise if the system does need distinguish object
identities and form the trajectories, we can also construct the
labeled density based on (41) and (42).

The conditional multi-label distribution $s0(·) in (41) can
be computed from πs0(X), i.e., the local labeled density of
sensor s0, by combination of (17) and (18), however, it is hard
to obtain an analytic solution even for GLMB densities. As a
result, the calculations of (41) and (42) are even more difficult.
However, we find that if $s0(·) is replaced by $s0(·) of the
first-order moment preserved LMB approximation of πs0(X),
the calculation of (42) can be dramatically simplified, and
more importantly, the labeled fused density is another GLMB.

Assume that the labeled posterior πs0(X) is a GLMB
density of form (4), i.e.,

πs0(X) = ∆(X)
∑

c∈Cs0

w(c)
s0 (L(X))[p(c)

s0 ]X (69)

According to Proposition 4 in [24], the LMB approximation
which preserves the first-order moment of πs0(X) is

πs0(X) = {(r(`)
s0 , p

(`)
s0 (x))}`∈Ls0

(70)

with

r(`)
s0 =

∑
I∈F(Ls0

)

∑
c∈Cs0

1I(`)w
(c)
s0 (I), (71)

p(`)
s0 (x)=

∑
I∈F(Ls0

)

∑
c∈Cs0

1I(`)w
(c)
s0 (I)p(c)

s0 (x, `)

/
r(`)
s0 (72)

According to (17) and (18), the conditional joint probability
density of `1, · · · , `n of πs0(X) can be computed by

$s0({(`1|x1), · · · , (`n|xn)}) =

ws0({`1, · · · , `n})
∏n
i=1 p

(`i)
s0 (xi)∑

(`1,··· ,`n)∈Ln
s0

ws0({`1, · · · , `n})
∏n
i=1 p

(`i)
s0 (xi)

(73)
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where ws0(I) =
∏
`∈I r

(`)
s0

∏
`′∈Ls0

−I(1 − r
(`′)
s0 ). Replacing

$s0(·) with $s0(·), according to (41), by simple deduction
we can obtain the corresponding $ω(·) as

$ω({(`1|x1), · · · , (`n|xn)}) =

[ws0({`1,· · · ,`n})]ωs0
∏n
i=1

[
p

(`i)
s0 (xi)

]ωs0

∑
(`1,··· ,`n)∈Ln

s0

[ws0({`1,· · ·, `n})]ωs0
∏n
i=1

[
p

(`i)
s0 (xi)

]ωs0
.

(74)

Without loss of generalisation, let s0 = 1, we can obtain
the following proposition:

Proposition 4. If the labeled fused density is constructed as

πω({(x1, `1), · · · , (xn, `n)}) =

$ω({(`1|x1), · · · , (`n|xn)})πω({x1, · · · , xn})
(75)

where πω(·) and $w(·) is given in (61) and (74) (with s0 = 1)
respectively, then the labeled fused density is given by

πω(X) =∆(X)
∑

τ∈T
1T (L(X))(τ)w(τ)

ω (L(X))[p(τ)
ω ]

X
(76)

defined on Lω = I1 = L1, where

p(τ)
ω (·, `) ,p(τ),`

ω (·) (77)

w(τ)
ω (I) ,w(I,τ)

ω . (78)

Proof. See Appendix C.

Remark 7. Note that constructing the labeled fused density in
(76) from the fused GMB density in (61) does not require any
additional computation because (76) is completely determined
by the parameters of fused GMB density according to Propo-
sition 4. Moreover, it is obvious that the constructed GLMB
fused density has the same cardinality distribution and the
(unlabeled) first-order moment as the fused GMB density.

D. Summary and Discussions

In this section, we proposed a novel distributed fusion
solution for label densities. More specifically, we proposed
a robust GCI fusion algorithms for GLMB densities (R-GCI-
GLMB) according to the proposed solution. The schematic of
the R-GCI-GLMB fusion algorithm is shown in Fig. 4. One
should note that R-GCI-GLMB fusion algorithm also suitable
for the fusion with LMB filters or Mδ-GLMB filters. For
the LMB filter, approximating GMB density as a first-order
moment preserved MB density is not required, because the
unlabeled version of an LMB posterior is just an MB density.
After the fused GLMB density is constructed, if feedback is
required, the fused GLMB density should be approximated as
the same class of local posterior, such as the LMB or Mδ-
GLMB densities.

In the following, we provide the pseudocode of the R-
GCI-GLMB fusion algorithm in three parts (algorithms).
Algorithm 1 shows the pseudocode for approximating a GMB
density as an MB density matching the first-order moment.
Algorithm 2 shows the pseudocode of GCI fusion with GMB
densities from Ns (Ns > 2) sensors, where the pair-wise
fusion strategy is adopted and the ordering of pair-wise fusions
is irrelevant. Taking the case that local sensors perform GLMB

GLMB
Density

GMB
Density

 MB
Density GCI 

with MB
GMB

Density

(∑

i

di

)ω

≈
∑

i

dω
i

Fusion 
map

GCI fusion with GMB Density

Unlabeled 
Version

GLMB
Density

GMB
Density

 MB
Density

Preserve First 
Order Moment 

GLMB
Density

Construct Labeled 
Density 

Fig. 4. A schematic diagram of the R-GCI-GLMB fusion algorithm.

filtering as an example, Algorithm 3 shows the pseudocode of
the whole fusion algorithm.

The computational cost of the R-GCI-GLMB algorithm
mainly lies in the GCI fusion of GMB densities, since
marginalizing the GLMB density to its unlabelled version
and constructing the fused GLMB density from the fused
GMB density are only conceptual operations with no need to
calculate any quantities. Taking the Gaussian mixture (GM)
implementation as an example, we analyse the computational
complexity of the R-GCI-GLMB fusion algorithm by the
following comparison of the GCI fusion with the CPHD filter
(GCI-CPHD) proposed in [6], [7]. Suppose that each single-
object density for the local GLMB filter is approximated by
MG Gaussian components, and the location density of each
local CPHD filter is approximated by nmaxMG Gaussian com-
ponents, where nmax denotes the maximum number of objects.
The computational cost of the R-GCI-GLMB fusion mainly
depends on two parts: one is for computing the fused single-
object densities p̃(ı,)

ω which has the computational complexity
O
[
(|Imax|MG)Ns

]
, where Imax = arg maxI∈{Is:s∈N} |I|; the

other part is for the calculation of the fused weights w(I,τ)
ω

which has the computational complexity O [NsNH ] where
NH = |F(Imax)×Tmax| with Tmax being the fusion map space
defined on Imax. Overall, the R-GCI-GLMB fusion has the
computational complexity O

[
max{NsNH , (|Imax|MG)Ns}

]
.

By contrast, the computational complexity of the GCI-CPHD
fusion is O

[
(nmaxMG)Ns

]
. As it is common with the GM

implementation of stochastic filters, the fused Gaussian com-
ponents with negligible coefficients are pruned to reduce the
computational cost when implementing the GCI-CPHD fusion
[7]. When implementing the R-GCI-GLMB fusion, we apply
the same strategy to reduce the computational cost of the
first part. Moreover, to keep the computational cost of the
second part moderate, some common efficient strategies, such
as the truncation of the fused GMB density with the ranked
assignment strategy [22], [23], are adopted.

VI. PERFORMANCE ASSESSMENT

In this section, the performance of the proposed R-GCI-
GLMB fusion is examined by comparison with the state of
art over distributed sensor networks. The GM implementations
are adopted for all the distributed tracking algorithms.

The standard object and observation models [23] are used.
The object state variable is a vector of planar position and
velocity xk = [px,k py,k ṗx,k ṗy,k]>, where “>” denotes
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Algorithm 1: Approximate a GMB density as an MB
density matching the first-order moment.

INPUT: A GMB density with the parameter set
πs = {(w(I,φ)

s ,P
(φ)
s ) : (I, φ) ∈ F(Is)× Φs};

OUTPUT: An MB density with the parameter set
π̃s ={(r̃(ı)

s , p̃
(ı)
s (·))}ı∈Is .

function GMB2MB (πs)
for ı ∈ Is do

r̃
(ı)
s :=

∑
I∈F(Is)

∑
φ∈Φs

1I(ı)w
(I,φ)
s ;

p̃
(ı)
s :=

∑
I∈F(Is)

∑
φ∈Φs

1I(ı)w
(I,φ)
s p

(φ),ı
s (x)

/
r̃

(ı)
s

end
return π̃s ={(r̃(ı)

s , p̃
(ı)
s (·))}ı∈Is .

Algorithm 2: GCI fusion with GMB Densities.
INPUT: Ns GMB Densities with the repective parameter set
πs = {(w(I,φ)

s ,P
(φ)
s ) : (I, φ) ∈ F(Is)× Φs}, s = 1, · · · , Ns;

OUPUT: The fused GMB density with the parameter set
πω = {(w(I,τ)

ω ,P
(τ)
ω ) : (I, τ) ∈ F(I1)× T }.

function GCI GMB Fusion (π1, · · · , πNs )
for s = 2 : Ns do
{(r̃(ı)

s , p̃
(ı)
s (·))}ı∈Is : = GMB2MB (πs);

{(r̃(ı)
1 , p̃

(ı)
1 (·))}ı∈I1 : = GMB2MB (π1);

for (ı, ) ∈ I1 × Is do
Calculate p̃(ı,)

ω according to (67);
Calculate η̃(ı,)

ω according to (68);
end
Create a fusion map space Ts := {τ |τ : I1 → Is}

according to Definition 6;
for τ ∈ Ts do

P
(τ)
ω := {p̃(ı,τ(ı))

ω }ı∈I1 ;
end
for (I, τ) ∈ F(I1)× T (I) do

Calculate the un-normalized weight w̌(I,τ)
ω according

to (64) and (65);
end
Calculate the normalized factor C according to (66);
for (I, τ) ∈ F(I1)× T (I) do

Calculate the normalized weight w(I,τ)
ω according to

(62);
end
π1 := {(w(I,τ)

ω ,P
(τ)
ω ) : (I, τ) ∈ F(I1)× T };

end
πω = π1;
return: πω

matrix transpose. The single-object transition model is the
linear Gaussian

fk(xk|xk−1) = N (xk; Fkxk−1,Qk)

with its parameters given for a nearly constant velocity model:

Fk =

[
I2 ∆I2

02 I2

]
, Qk = σ2

v

[
1
4I2

1
2∆I2

1
302 I2

]

where I2 and 02 denote the 2× 2 identity and zero matrices,
∆ = 1 s is the sampling period, and σν = 5 m/s2 is the
standard deviation of the process noise. The state independent
survival probability of the object is given by PS,k = 0.98.

Two types of birth procedures are considered in different ex-
periments. One is the prior knowledge-based birth procedure.

Algorithm 3: R-GCI-GLMB fusion algorithm.
INPUT: GLMB densities from Ns sensors, πs, s = 1, · · ·, Ns ;
OUPT: The fused GLMB density πω .
function main loop (π1, · · · ,πs)
for s = 1 : Ns do

Marginalize the GLMB density πs to its unlabeled version
πs according to Proposition 2;

end
πω: = GCI GMB Fusion (π1, · · · , πNs );
Construct the labeled fused posterior πω according to

Proposition 4;
return πω

At each time k, the birth process is an LMB RFS with the
parameter set πB = {(r(k,i)

B , p
(k,i)
B )}3i=1 where r(k,i)

B = 0.04

and p
(k,i)
B = N (x;m

(i)
B , PB) with m

(1)
B = [200 400 0 0]>,

m
(2)
B = [−150 −310 0 0]>, m

(3)
B = [0 400 0 0]>, and

PB = diag([900 900 400 400]).

The other birth procedure is the adaptive birth procedure
proposed in [24]. The LMB birth process at time step k + 1
depends on the measurement set Z of the current time step
k and is given by

πB = {r(k+1,i)
B (z), p

(k+1,i)
B (x|z)}z∈Z .

More specifically, the existence probability r(k+1,i)
B (z) is pro-

portional to the probability that z is not assigned to any track
during the update at time step k:

r
(k+1,i)
B (z) = min

(
rB,max,

1− rU,k(z)∑
ξ∈Z 1− rU,k(ξ)

· λB,k+1

)

where rU,k(z) denotes the probability that a measurement z
is associated to a track in the hypotheses at time step k,
λB,k+1 is the expected number of object births at time step
k + 1, and rB,max ∈ [0, 1] is the maximum existence proba-
bility of a newly born object. Each density p

(k+1,i)
B (x|z) =

N (x;mB(z), PB) with mB(z) = [z(1) z(2) 0 0]>, PB =
diag([900 900 400 400]). The parameters λB,k+1 and rB,max

are set to be 0.8 and 0.3, respectively. The details about how
to compute the probability rU,k(z) are given in [24].

Each sensor node detects an object independently with the
same probability PD,k. The single-object observation model
is linear Gaussian

gk(z|xk) = N (z; Hkxk,Rk)

with parameters

Hk =
[

I2 02

]
, Rk = σ2

εI2

where σε = 25 m is the standard deviation of the measurement
noise. The number of clutter reports in each scan is Poisson
distributed with λ = 10. Each clutter report is sampled
uniformly over the whole surveillance region.

The optimal sub-pattern assignment (OSPA) error [37]
serves as the main performance metric with the cut-off value
c = 100 m and the order parameter p = 1. All performance
metrics are averaged over 200 Monte Carlo (MC) runs.
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Fig. 5. The scenario of a distributed sensor network with two sensors tracking
three objects.

A. Scenario 1

The robustness of the proposed R-GCI-GLMB fusion algo-
rithm is verified by comparison with the classical GCI fusion
of LMB posteriors (C-GCI-LMB) [30] in two experiments
with the ABP and the PBP used respectively. To this end,
we consider a scenario involving three objects on a two di-
mensional surveillance region [−500, 500] m× [−500, 500] m,
which is shown in Fig. 5. For both fusion algorithms, the LMB
filter is chosen as the local filter. For GM implementations
of local LMB filter and fusion algorithms, the parameters
are chosen as follows: the truncation threshold for Bernoulli
components is γt = 10−4; pruning and merging thresholds
for Gaussian components are γp = 10−5 and γm = 4,
respectively; the maximum number of Gaussian components
is Nmax = 10. The duration of this scenario is T = 65 s. The
probability of detection PD,k for each sensor is 0.99.
Experiment 1: The performance metrics for R-GCI-GLMB
and C-GCI-LMB fusions in presence of an ABP are shown
in Fig. 6. Specifically, the cardinality estimates (Est.) and the
corresponding standard deviations (Std.) are presented in Fig.
6(a), while the OSPA errors are provided in Fig. 6(b).

Not surprisingly, C-GCI-LMB fusion completely fails (re-
turns highly erroneous estimates) when the ABP is in place
due to the resulting inconsistencies between label assignments
in each local filters and the reliance of labeled GCI fusion
on label consistency between filters. This is while R-GCI-
GLMB fusion leads to errors that are significantly lower than
errors returned by each local filter after each transient. These
results highlight the robustness of the proposed R-GCI-GLMB
algorithm when label mismatches happen.
Experiment 2: In this experiment, the performance of R-GCI-
GLMB and C-GCI-LMB fusions are compared in presence of
a non-adaptive birth model that is based on prior information –
PBP model [24]. The comparisons in terms of the cardinality
statistics and OSPA errors between R-GCI-GLMB fusion and
C-GCI-LMB fusion are presented in Figs. 7(a) and (b).

It can be seen from Fig. 7(a) that cardinality estimates of the
C-GCI-LMB fusion are biased with large standard deviations,
while the cardinality estimates returned by the R-GCI-GLMB
fusion are much more accurate with less deviations (high
level of confidence). From the results shown in Fig. 7(b), we
observe that whenever an object appears or disappears, the
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Fig. 6. Tracking performances of local sensor filter, R-GCI-GLMB and C-
GCI-LMB fusion algorithms in scenario 1 in presence of an adaptive birth
process: (a) cardinality statistics, (b) OSPA errors.
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Fig. 7. Tracking performances of the local sensor filter, R-GCI-GLMB and
C-GCI-LMB fusion algorithms in scenario 1 in presence of a non-adaptive
birth process designed based on prior information: (a) cardinality statistics,
(b) OSPA errors.

OSPA errors returned by all methods sharply increase. Another
observation is while the local filter and the proposed R-GCI-
GLMB fusion handle the change well (and their tracking errors
gradually retract after every jump), the classical GCI fusion
does not survive the impact of a sudden change in number
of objects (especially for the births) and its error increases. A
third observation is that our R-GCI-GLMB fusion significantly
outperforms the other methods in terms of the OSPA error.

The above observations are in line with the result of
Example 1 and the mathematical analysis presented earlier.
Each time a new object is born, the average disparity between
the label information embedded in various labeled posteriors
is enhanced because one more object may have different
estimated labels in different sensors, which leads to a larger
label inconsistency indicator dG(Π) in turn resulting in a
degraded performance for C-GCI-LMB fusion.

B. Scenario 2

In order to further demonstrate the performance of the
proposed R-GCI-GLMB fusion in challenging scenarios, a
sensor network scenario with three sensors and eight objects
is considered as shown in Fig. 8(a). The objects appear and
disappear at different times as listed in Table I.

The performance of the R-GCI-GLMB fusion is com-
pared to the GCI-CPHD fusion [6], [7]. The CPHD filter
and the LMB filter are chosen as the local filter for GCI-
CPHD fusion and R-GCI-GLMB fusion, respectively. Since
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Fig. 8. (a) Scenario 2: a distributed sensor network involving three sensors
tracking eight objects on a two dimensional surveillance region. (b) Tracking
results of the R-GCI-GLMB fusion algorithm with different colors denoting
different identities of objects under PD,k = 0.98.

TABLE I
TARGET BIRTH AND DEATH TIMES IN SCENARIO 2.

Target Birth Death Target Birth Death
T1 1 s 56 s T5 25 s 66 s
T2 1 s 56 s T6 25 s 81 s
T3 10 s 66 s T7 56 s >100 s
T4 10 s 81 s T8 56 s >100 s

the objects appear at unknown positions, LMB filters use an
ABP introduced in [24] and CPHD filter uses the adaptive
birth distribution introduced in [11]. Pruning and merging
thresholds for GM implementations of local CPHD filter and
GCI-CPHD fusion algorithms are chosen as γp = 10−5 and
γm = 4, respectively, and the maximum number of Gaussian
components is Nmax = 30. For the GM implementation of the
R-GCI-GLMB fusion, the parameters are set to be the same
as Scenario 1. The duration of this scenario is T = 100 s.

The sensors have the same detection parameters and each
sensor can only exchange posteriors with its neighbour(s).
Therefore, sensors 1 and 3 perform fusion with two posteriors
from sensor 2 and their local filters, and sensor 2 performs
fusion with three posteriors from sensor 1, sensor 3 and the
local filter by sequentially applying the pairwise fusion twice.

Fig. 8(b) shows the estimated tracks returned by R-GCI-
GLMB fusion for a single run under PD,k = 0.98. It can
be seen that R-GCI-GLMB fusion performs accurately and
consistently for the entire scenario in the sense that it maintains
locking on all tracks, estimates object positions accurately,
and recognizes object identities correctly. Fig. 9(a) presents
the cardinality estimates and the corresponding standard de-
viations returned by R-GCI-GLMB fusion and GCI-CPHD
fusion algorithms at sensor 2 under PD,k = 0.98. It shows
that cardinality estimates given by R-GCI-GLMB fusion are
more accurate with less variations (higher level of confidence)
than GCI-CPHD fusion. Note that since two objects are born
at time 56 s and two objects die at time 56 s (as shown in Table
I), the cardinality curves have a notch at time 56 s.

Under PD,k = 0.98, the OSPA errors for tracking results
returned by the algorithms are shown in Fig. 9(b). Further,
we compute the corresponding standard deviations of OSPA
errors and average the post-transient values over 200 MC runs
and 100 time steps, and the results are provided in Table II.

They demonstrate the performance difference between the R-
GCI-GLMB and GCI-CPHD fusions at sensor 2. OSPA errors
of the R-GCI-GLMB fusion are significantly lower than the
GCI-CPHD fusion with lower standard deviations after each
transient. Moreover, when objects die at time 66 s and 81 s,
OSPA error of the R-GCI-GLMB filter retracts to a stable
value much faster than the GCI-CPHD fusion method.
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Fig. 9. Tracking performances of R-GCI-GLMB and GCI-CPHD fusion
algorithms under PD,k = 0.98 in Scenario 2: (a) cardinality statistics (b)
OSPA errors.

TABLE II
AVERAGE STANDARD DEVIATIONS OF OSPA ERRORS UNDER

PD,k = 0.98.

Algorithm R-GCI-GLMB GCI-CPHD Local LMB Local CPHD

Std. (m) 1.673 8.083 6.838 10.580

To assess the computational efficiency of the algorithms,
the average execution times of the R-GCI-GLMB (adopting
the efficient implementation strategy) and GCI-CPHD fusions
under PD,k = 0.98 are depicted in Fig. 10. It can be seen that
the execution time of the R-GCI-GLMB fusion is only slightly
longer than the GCI-CPHD fusion with the R-GCI-GLMB
fusion providing the enhanced performance (as demonstrated
previously) and also automatically accounts for track labelling.

Further, we assess the performance of R-GCI-GLMB and
GCI-CPHD fusion methods under different PD,k values in
terms of the averaged post-transient values of OSPA errors
(over 200 MC runs and 100 time steps) as shown in Table III.
Not surprisingly, while the performances of both algorithms
degrade as the PD,k value decreases, the R-GCI-GLMB fusion
performs remarkably better than the GCI-CPHD fusion under
each PD,k value with the performance difference stable.

TABLE III
AVERAGE OSPA ERRORS (M) OF R-GCI-GLMB AND GCI-CPHD

FUSIONS UNDER DIFFERENT PD,k VALUES.

PD,k 0.98 0.88 0.78

R-GCI-GLMB 5.160 6.026 7.688

GCI-CPHD 11.079 12.411 13.659

To demonstrate how the performance advantage gained
from sensor fusion increases with the number of sensors, we



15

0 20 40 60 80 100
Time / s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Av
er

ag
e 

Ex
ec

ut
io

n 
Ti

m
e 

 [s
]

R-GCI-GLMB Fusion
GCI-CPHD Fusion

Fig. 10. Average execution times for R-GCI-GLMB and GCI-CPHD fusion
algorithms under PD,k = 0.98 in Scenario 2.

compute the OSPA errors returned by R-GCI-GLMB fusion
and average the post-transient values over 200 MC runs and
100 time steps. Table IV shows the recorded values in presence
of one, two and three sensors. The results demonstrate the
efficacy of the proposed sensor fusion algorithm in the sense
that estimation accuracy improves with more sensors. These

TABLE IV
AVERAGE OSPA ERRORS vs NO. OF SENSORS (PD,k = 0.98)

Number of sensors One Two Three

OSPA Errors (m) 10.711 5.948 5.160

results demonstrate that the two-step approximation used in the
derivation of GCI fusion with GMB distributions is reasonable,
and the significant enhancement in performance (in terms of
OSPA errors) also verifies the robustness and effectiveness of
the R-GCI-GLMB fusion devised and presented in this work.

VII. CONCLUSION

In this paper, we addressed the problem of distributed multi-
object tracking with labeled set filters based on generalized
Covariance Intersection (GCI). Firstly, we showed that the
performance of GCI fusion with labeled multi-object densities
is highly sensitive to inconsistencies between label information
from the local labeled posteriors. We provided a mathematical
analysis from the perspective of Principle of Minimum Dis-
crimination Information and yes-object probability. Secondly,
inspired by the analysis, a novel and general solution was pro-
posed for distributed fusion of labeled multi-object posteriors
that is robust to label inconsistencies between different sensor
node posteriors. Thirdly, for the case of fusing generalized
labeled multi-Bernoulli (GLMB) filter family including the
GLMB, δ-GLMB, marginalized δ-GLMB and labeled multi-
Bernoulli (LMB) filters, we formulated the robust fusion
solution. Simulation results for Gaussian mixture (GM) imple-
mentation demonstrated the robustness and effectiveness of the
proposed fusion algorithms in challenging tracking scenarios.

APPENDIX A
PROOF OF PROPOSITION 2

According to (17), the unlabeled version of a GLMB density
of form (4) is distributed according to

π({x1,· · ·, xn})=
∑

(`1,··· ,`n)∈Ln

π({(x1, `1),· · ·, (xn, `n)})

=
∑

(`1,··· ,`n)∈Ln

∑
c∈C

w(c)({`1, · · · , `n})
n∏
i=1

p(c)(xi, `i)

=
∑
σ

∑
I∈Fn(L)

∑
c∈C

w(c)(I)

n∏
i=1

p(c)(xσ(i), I
v(i)).

(79)

where σ denotes one permutation of I , σ(i) denotes the
ith element of the permutation, and Iv denotes a vector
constructed by sorting the elements of the set I .

Let

w(I,c) , w(c)(I), I ∈ F(L)

p(c),`(x) , p(c)(x, `), ` ∈ L.
(80)

Equation (79) can be further represented as

π({x1, · · · , xn})=
∑
σ

∑
(I,c)∈Fn(L)×C

w(I,c)
∏n

i=1
p(c),Iv(i)(xσ(i))

APPENDIX B
PROOF OF PROPOSITION 3

According to (17), the unlabeled version of an LMB density
of form (6) is distributed according to

π({x1,· · ·, xn})=
∑

(`1,··· ,`n)∈Ln

π({(x1, `1),· · ·, (xn, `n)})

=
∑

(`1,··· ,`n)∈Ln

w({`1, · · · , `n})
n∏
i=1

p(xi, `i)

=
∑
σ

∑
I∈Fn(L)

w(I)

n∏
i=1

p(xσ(i), I
v(i)).

(81)

Let

w(I) , w(I), I ∈ F(L)

p(c),`(x) , p(`)(x), ` ∈ L.
(82)

Equation (81) can be further represented as

π({x1, · · · , xn}) =
∑
σ

∑
I∈Fn(L)

w(I)
n∏
i=1

p(Iv(i))(xσ(i))

APPENDIX C
PROOF OF PROPOSITION 4

Combination of (61) and (74) yields

πω({(x1, `1), · · · , (xn, `n)})=

[w1({`1,· · ·, `n})]ω1
∏n
i=1

[
p

(`i)
1 (xi)

]ω1

∑
(`1,··· ,`n)∈Ln

1
[w1({`1,· · ·, `n})]ω1

∏n
i=1

[
p

(`i)
1 (xi)

]ω1
×

1

C

∏
s=1,2

∑
σs

∑
Is∈Fn(Is)

[
w̃(Is)
s

]ωs
[∏n

i=1
p̃

(Ivs (i))
s (xi)

]ωs

.

(83)
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As shown in Proposition 2, the unlabeled version of GLMB
density in (69) is a GMB density with Is0 = Ls0 and Φs0 =
Cs0 . Hence, (71) and (72) (with s0 = 1) can be rewritten as

r
(`)
1 =

∑

I∈F(I1)

∑

φ∈Φ1

1I(`)w
(I,φ)
1 = r̃

(`)
1 (84)

p
(`)
1 (x)=

1

r̃
(`)
1

∑

I∈F(I1)

∑

φ∈Φ1

1I(`)w
(I,φ)
1 p

(φ),`
1 (x)= p̃

(`)
1 (x) (85)

where r̃(`)
1 and p̃(`)

1 (x) are shown in (57) and (58) respectively.
As a result, we have the following equality,

∑

(`1,··· ,`n)∈Ln
1

[w1({`1, · · · , `n})]ω1
∏n

i=1

[
p

(`i)
1 (xi)

]ω1

=

∑
σ

∑
I1∈Fn(I1)

[
w̃

(I1)
1

]ω1∏n

i=1

[
p̃

(Iv1 (i))
1 (xσ(i))

]ω1

(86)

Substitution of (84), (85) and (86) into (83), we have

πω({(x1, `1), · · · , (xn, `n)})

=
1

C
[w̃

({`1,··· ,`n})
1 ]ω1

∏n

i=1
[p̃

(`i)
1 (xi)]

ω1×
∑

σ

∑
I2∈Fn(I2)

[
w̃

(I2)
2

]ω2∏n

i=1

[
p̃

(Iv2 (i))
2 (xσ(i))

]ω2

(87)

Substitution of (63), (64), (62) and (65) into (87), and utilizing
Definition 5, we can obtain

πω({(x1, `1), · · · , (xn, `n)})

=
∑

τ∈T ({`1,··· ,`n})

1

C
[w̃

({`1,··· ,`n})
1 ]ω1 [w̃

(τ({`1,··· ,`n})
2 ]ω2×∏n

i=1
η(τ),`i
ω

∏n

i=1
p(τ),`i
ω (xi)

=
∑

τ∈T ({`1,··· ,`n})
w({`1,··· ,`n},τ)
ω

∏n

i=1
p(τ),`i
ω (xi)

(88)

Using the definition of p(τ)
ω (·, `) in (77) and w(τ)

ω (I) in (78),
we can obtain (76).
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