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Multi-object Tracking for Generic Observation
Model Using Labeled Random Finite Sets

Suqi Li, Wei Yi∗, Reza Hoseinnezhad, Bailu Wang, Lingjiang Kong

Abstract—This paper presents an exact Bayesian filtering
solution for the multi-object tracking problem with the generic
observation model. The proposed solution is designed in the
labeled random finite set framework, using the product styled
representation of labeled multi-object densities, with the standard
multi-object transition kernel and no particular simplifying
assumptions on the multi-object likelihood. Computationally
tractable solutions are also devised by applying a principled
approximation involving the replacement of the full multi-object
density with a labeled multi-Bernoulli density that minimizes
the Kullback-Leibler divergence and preserves the first-order
moment. To achieve the fast performance, a dynamic grouping
procedure based implementation is presented with a step-by-
step algorithm. The performance of the proposed filter and its
tractable implementations are verified and compared with the
state-of-the-art in numerical experiments.

I. INTRODUCTION

Finite set statistics (FISST) [1] has become a hot spot in
multi-object inference for the random finite set (RFS) frame-
work can perfectly accommodate relatively accurate models
for the behavior of multi-object dynamic systems, especially
in terms of its ability to capture the randomness of both
the number of, and the values of object states, as well as
their statistical correlations. FISST has attracted substantial
interest from academia as well as the commercial sector
with applications spanning many areas such as, biology [2],
physics [3], computer vision [4], multi-object tracking [5]–
[7], and robotics [8]. At the core of multi-object tracking
is Bayes filter which is usually intractable due to suffering
from the curse of dimensionality with computing set integrals
and the combinatorial growth of computations involved with
increasing number of objects. In order to solve these prob-
lems, several tractable approximations of multi-object Bayes
filter have been proposed successively, namely the probability
hypothesis density (PHD) filter [5], [9], the cardinalized PHD
filter [10], [11], and the multi-Bernoulli filter [1], [12], [13].
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With the recent development of labeled set filters [14]–
[22] and their enhanced performance compared to previous
unlabeled versions, the study on the FISST-based multi-object
tracking has recently turned its focus on the labeled random set
filters. Vo et al. [14] proposed a class of generalized labeled
multi-Bernoulli (GLMB) densities1 and the relevant tracking
filter, the GLMB filter. The advantages of GLMB RFS family
are that they are conjugate priors with standard multi-object
likelihood, and are closed under the multi-object Chapman-
Kolmogorov equation with respect to the standard multi-object
transition kernel. Nevertheless, the δ-GLMB filter involves
exponential growth in the number of posterior components
with the number of objects and therefore, tractable techniques
for truncating the posterior and prediction densities are also
proposed in [15]. Later, to further decrease the computational
costs, principled approximations of the GLMB filter were pro-
posed, including the labeled multi-Bernoulli (LMB) filter [18]
and the marginalized δ-GLMB filter [16]. These two filters are
not only computationally cheaper, but also preserve the key
statistical properties of the full multi-object posterior density.

All of the aforementioned labeled set filters are originally
designed for the standard observation model, and are not
necessarily suitable for the generic observation model (GOM)
which involves no simplifying assumptions made on the
multi-object likelihood. In many applications, there might be
sensor observations that cannot be accurately modelled by
the standard multi-object likelihood. Examples include the
track-before-detect (TBD) problem [13], [23]–[28], superposi-
tional sensors [20], [29]–[31], merged observations [17], and
extended objects [32]. Sensors providing such non-standard
observations are widely used in applications such as vehicle
tracking using automotive radars, person tracking using laser
sensors, acoustic amplitude sensors [33], and video track-
ing [4], [34]. Consequently, there is a substantial demand for
devising multi-object tracking algorithms that work with the
GOM.

There is no specified class of labeled RFSs that can be
closed under the Bays’ rule with respect to the GOM. In an
independent work from this paper, Papi et al. [19] proposed a
decomposition of the general case of the labeled multi-object
(LMO) density, as the product of the joint existence probability
of the label set and the joint probability density of states
conditional on their corresponding labels. This decomposition
provides an explicit expression for the LMO density, and
is fundamental in the labeled multi-object filtering context

1GLMB distribution was also termed as Vo-Vo distribution by Mahler in
his book [6].
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especially with the GOM. Papi et al. [19] also proposed an
extension of the δ-GLMB filter that works with the GOM, by
replacing the multi-object posterior with a principled δ-GLMB
density approximation that minimizes the Kullback-Leibler di-
vergence (KLD), and preserves the cardinality distribution and
the first-order moment. To distinguish it from the conventional
δ-GLMB filter, it is referred to as the δ-GLMB-GOM filter in
this paper.

Unlike the δ-GLMB-GOM filter which is an approximate
solution for the multi-object tracking problem with the GOM,
the novel solution presented in this paper, the LMO-GOM
filter2, is an exact solution for the same problem. The pre-
diction equations of the LMO-GOM filter are exact under
the standard multi-object transition kernel which embeds the
basic assumptions commonly made with multi-object tracking
solutions, such as Markovian dynamics for object states, and
the independence of the birth process from other object states.
The update equations of the LMO-GOM filter are not based
on any approximations or simplifying assumptions with the
multi-object likelihood model. Essentially, the δ-GLMB-GOM
filter is an approximation of the LMO-GOM filter with the
multi-object posterior approximated as a principled δ-GLMB
density.

Another major contribution is a generalization of the LMB
filter, called the LMB-GOM filter, that works with generic
multi-object likelihoods. The LMB-GOM filter is devised by
approximating the original multi-object posterior with the
closest LMB density in terms of its KLD. The approximate
LMB density also matches the first-order moment of the
original multi-object posterior. Our analysis shows that the
computational cost of the LMB-GOM filter is less than the
δ-GLMB-GOM filter.

A third major contribution of is this paper is a variant of
the proposed LMB filter, called the grouping based LMB-
GOM (G-LMB-GOM) filter which is essentially an efficient
implementation of the LMB-GOM filter. The G-LMB-GOM
filter is based on a dynamic grouping procedure which en-
ables parallelization. This parallel implementation significantly
reduces both the number and the dimension of integrals,
leading to a substantial improvement in computational costs
as well as the numerical accuracy when the computing and
memory resources are limited. In some cases, the resulting
improvements in the numerical accuracy are well beyond the
extent of inaccuracies stemmed from the grouping procedure.

The performance of the proposed algorithms including
the LMO-GOM and LMB-GOM/G-LMB-GOM filters, im-
plemented via Sequential Monte Carlo (SMC) method, are
presented and demonstrated in numerical experiments.

The rest of the paper is organized as follows. A background
on notations, labeled RFSs and the formal statement of the
labeled multi-object tracking problem is provided in Section
II. Section III proposes the LMO-GOM filter and Section IV
presents the “best” LMB approximation for the general LMO
density and the resulting LMB-GOM filter. Section V provides
a comparative summary for different labeled multi-object

2Preliminary results have been published in [35]. This paper provides a
complete and detailed picture with extended results, proofs, and experiments.

tracking algorithms with the GOM. Section VI demonstrates
the performance of the proposed algorithms via numerical
experiments. Conclusions are remarked in Section VII.

II. BACKGROUND

A. Notations

We adhere to the convention that single-object states are
represented by lowercase letters, e.g., x, x, while multi-object
states are represented by uppercase letters, e.g., X, X . To
distinguish labeled states and distributions from the unlabeled
ones, bold-type letters are adopted for the labeled ones, e.g.,
x, X, π. Moreover, blackboard bold letters represent spaces,
e.g., the state space is represented by X, the label space by L.
The collection of all finite subsets of X is denoted by F(X).

The labeled single-object state x is constructed by augment-
ing a state x ∈ X with a label ` ∈ L. The labels are usually
drawn from a discrete label space, L = {αi, i ∈ N}, where all
αis are distinct and N is the set of positive integers.

We use the multi-object exponential notation

hX ,
∏

x∈X
h(x) (1)

for real-valued function h, with h∅ = 1 by convention.
To admit arbitrary arguments like sets, vectors and integers,

the generalized Kronecker delta function and the inclusion
function are repectively given by

δY (X) ,

{
1, if X = Y
0, otherwise, 1Y (X) ,

{
1, if X ⊆ Y
0, otherwise. (2)

If X is a singleton, i.e., X = {x}, the notation 1Y (x) is used
instead of 1Y ({x}). For functions a(x) and b(x) defined on
X×L, the inner product is denoted by

〈
a, b
〉

=
∫
a(x)b(x)dx.

B. Labeled RFS

The notion of labeled RFSs was firstly proposed in [14] to
address the uniqueness of tracks. A labeled RFS [14], [15]
with (kinematic) state space X and (discrete) label space L is
an RFS on X × L such that each realization X has distinct
labels. Let L : X× L→L be the projection L((x, `))=`, and
hence L(X)={L(x),x∈X} is the set of labels of X. A labeled
RFS and the set of its labels have the same cardinality, namely,
|L(X)|=|X|. The function ∆(X)=δ|X|(L(X)) is called the
distinct label indicator.

1) Decomposition of LMO Density: For an arbitrary la-
beled RFS, its multi-object density can be decomposed as
the product of the joint existence probability of the label
set and the joint probability density of states conditional on
their corresponding labels [19]. The definitions of necessary
quantities and the decomposition of the LMO density are
briefly reviewed by providing a more rigorous definition.

The set of labels L(X) of a labeled RFS X (distributed
according to π) is distributed according to the marginal

ω({`1,· · ·, `n}) ,{∫
π({(x1, `1),· · ·, (xn, `n)})d(x1,· · ·, xn), if n > 0

π(∅), if n = 0.

(3)

The quantity ω({`1, · · · , `n}) is referred to as the joint exis-
tence probability of the label set {`1, · · · , `n} in this paper.
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Definition 1. Given an LMO density π on F(X × L), we
define a function P (X) on F(X× L) as (4).

Remark 1. Given a certain set of distinct labels
{α1, · · · , αn}, if n > 0 and the weight ω({α1, · · · , αn}) > 0,
P ({(x1, α1), · · · , (xn, αn)}) is essentially a joint probability
density on Xn conditional on their corresponding labels
α1, · · · , αn. Indeed, from Definition 1, the LMO density π
can be decomposed as

π(X) = ω(L(X))P (X). (5)

2) Common Labeled RFSs: The most commonly used
labeled RFSs in existing labeled multi-object filtering algo-
rithms belong to the GLMB RFS family [14] [15]. They are
distributed according to

π(X) = ∆(X)
∑

c∈C
ω(c)(L(X))[p(c)]

X
(6)

where C is a discrete space, each p(c)(·, `) is a prob-
ability density, and each w(c)(I) is non-negative with∑

(I,c)∈F(L)×C w
(c)(I) = 1.

The class of LMB RFSs is a subclass of the GLMB RFS
family. An LMB RFS with state space X and label space L is
distributed according to [14], [15], [18]

π(X) = ∆(X)ω(L(X))pX (7)

where

ω(L) =
∏

i∈L
(1− r(i))

∏
`∈L

1L(`)r(`)

1− r(`)
(8)

and r(`) represents the existence probability of track `, and
p(·, `) is the probability density of the kinematic state of track
` given its existence.

From (7) and (8), an LMB RFS is completely determined
by the parameters r(`) for each ` ∈ L and a function p(x, `)
defined on X × L. Also, an LMB RFS can be completely
characterized by its LMB parameters, i.e.,

π = {(r(α), p(α)(x, `)) : α ∈ L}, (9)

with
p(α)(x, `) , δα(`)p(x, `) (10)

Note that the definition in (10) is applied for all the LMB
RFSs throughout the paper.

Definition 2. Given the LMB parameters {(r(α), p(α)(·))}α∈L,
the labeled Bernoulli component (r(α), p(α)(·)) is referred to
as track α, with p(α)(·) representing the joint spatial and label
density, and r(α) the probability of existence of track α.

C. Multi-object Bayes Filter

Multi-object Bayes filter is at the core of multi-object
filtering in RFS framework. This subsection provides a review
of the multi-object Bayes filter in the formulation of labeled
multi-object state, which is firstly presented in [14]. To incor-
porate object tracks, objects are identified by an ordered pair of
integers ` = (k, i), where k is the time of birth, and i ∈ N is a
unique index to distinguish objects born at the same time. The
label space for objects born at time k, denoted as Lk, is then

{k} × N. An object born at time k has a state x ∈ X × Lk.
The label space for objects at time k (including those born
prior to k), denoted as L0:k, is constructed recursively by
L0:k = L0:k−1 ∪ Lk. A multi-object state X at time k, is a
finite subset of X×L0:k. Note that L0:k−1 and Lk are disjoint.

The multi-object posterior density πk is propagated forward
recursively by the multi-object Bayes filter,

πk|k−1(Xk) =

∫
fk|k−1(Xk|X)πk−1(X)δX (11)

πk(Xk) =
gk(Υk|Xk)πk|k−1(Xk)∫
gk(Υk|X)πk|k−1(X)δX

(12)

where πk|k−1 is the multi-object predicted density from time
k − 1 to time k; fk|k−1(·|·) is the multi-object transition
density; gk(Υk|·) is the multi-object likelihood function and
Υk denotes the observations of multi-object state at time k.
Note that Υk is a general notation which can represent a vector
observation zk, or a set observation Zk, depending on the
observation model adopted.

For convenience, in what follows we omit explicit references
to the time index k, and denote L , L0:k, B , Lk+1, L+ ,
L ∪ B, π , πk, π+ , πk+1|k, g , gk, and f , fk|k+1.

D. Multi-object Transition Kernel

This paper considers the standard multi-object transition
model [1], [14]. Given a labeled multi-object state X, each
state (x, `) ∈ X either continues to exist at the next time step
with probability pS(x, `) and evolves to a new state (x+, `+)
with probability density f+(x+, `+|x, `) = f+(x+|x, `)δ`+(`),
or dies with probability 1−pS(x, `). According to Definition 1,
The set of new objects born at the next time step defined on
X× B is distributed according to

fB(Y) = ωB(L(Y))PB(Y). (13)

Note that the birth density fB also can be specified as an LMB
density of form (7) or a GLMB density of form (6).

A multi-object state X+ is the superposition of surviving
objects and newly born objects. Assuming that the surviving
and the newly born object states evolve independently, the
multi-object transition function is given by [15]

f(X+|X) = fS(X+ ∩ (X× L)|X)fB(X+ ∩ (X× B)) (14)

where

fS(W|X) =∆(W)∆(X)1L(X)(L(W))[Φ(W; ·)]X (15)

Φ(W;x, `)=

{
pS(x, `)δ`+(`)f+(x+|x, `), if (x+, `)∈W
1− pS(x, `), if ` /∈ L(W).

(16)

E. Generic Observation Model

The standard formulation in the RFS based multi-object
tracking is based on the standard observation model [6] where
observation data is assumed to have been preprocessed into
thresholded detections, each object is assumed to cause at
most one detection, and each detection is assumed to be
either a false alarm (clutter) or generated from one object.
The tracking filters under the standard observation model have
been well investigated. One remarkable development is the
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P ({(x1, `1), · · · , (xn, `n)}) ,


π({(x1,`1),··· ,(xn,`n)})

ω({`1,··· ,`n}) , ifn > 0 and w({`1, · · · , `n}) > 0

1, if n > 0 and w({`1, · · · , `n}) = 0
1, ifn = 0.

(4)

GLMB family of densities are conjugate prior with respect
to the standard multi-object likelihood. Utilizing this property,
the GLMB filter is proposed as a closed form of the multi-
object Bayes filter under the standard observation model, and
its performance has been well demonstrated in [14], [15].

This paper considers the generic observation model which
has the indication that no simplifying assumptions on the
multi-object likelihood are made. The terminology “generic
measurement (observation) model” first arised in [19] for the
δ-GLMB filter with the generic multi-object likelihood.

The considered GOM covers both the standard and non-
standard observation models. As the first category of sensor
models has been well investigated, this paper mainly focuses
on the non-standard sensor models. Below, we present two
typical examples for the non-standard observation models,
namely, the pixled TBD model and the acoustic amplitude
sensor model.
Example 1 - Pixeled TBD Model: The surveillance region
is divided into M cells. The observations at the current time
step are collected in the vector z = (z1, · · · , zM ) ∈ RM , with
zj being the intensity observation obtained in the jth cell.
An object x can illuminate several cells of its surroundings.
Within the effective template of x, the intensity contribution
from x to the jth cell follows a point spread function [36]

cj(x) =
δxδyσT
2πσ2

b

exp

(
− (δxa− px)2 + (δyb− py)2

2σ2
b

)
(17)

where σT is the source intensity, σ2
b is the blurring factor,

δx and δy are the cell side lengths, and j = (a, b) denotes
the position of the jth cell in a two-dimensional image of the
surveillance region. For the cells beyond the effective template
of x, the intensity contribution cj(x) = 0.

The observations obtained from different cells are assumed
to be independently distributed conditioned on the multi-object
state X, and thus the multi-object likelihood is

g(z|X) =
∏M

j=1
g(zj |X) (18)

where g(zj |X) denotes the likelihood of the jth cell. The
distribution of g(zj |X) varies from different applications.
For instance, in the infrared/image application [13], [36], the
likelihood g(zj |X) is assumed to be a Gaussian distribution,

g(zj |X) = N
(
zj ;
∑

x∈X
cj(x), σ2

N

)
(19)

where N (z;µ,Γ) denotes the Gaussian probability density
evaluated at z with mean µ and covariance matrix Γ.
Example 2 - Acoustic Amplitude Sensor: We consider a
wireless sensor network consisting of M sensors [33]. At
a certain time step, sensor m (m ∈ {1, · · · ,M}) acquires
an observation zm ∈ R. Each object x emits a sound with
amplitude A that is assumed to be constant. For sensor m
located at position ξm, the received sound amplitude due to

target x is modelled as A/‖ρ(x) − ξm‖κ, where ρ(x) is the
position of object x, and κ is the path loss exponent. The
scalar observation zm obtained by sensor m is then given by

zm = hm(X) + vm (20)

with
hm(X) =

∑
x∈X

A

‖ρ(x)− ξm‖κ
(21)

where vm ∼ N (0, σ2
v) for m = 1, · · · ,M are zero-mean

Gaussian noise variables of equal variance σ2
v . Assume that

v1, · · · , vM are mutually independent and independent of
X. The likelihood function between observation vector z =
(z1 · · · , zM) ∈ RM and multi-object state X is given by

g(z|X) =
∏M

m=1
N (zm;hm(X), σ2

v). (22)

Note that both (19) and (22) are highly non-linear likeli-
hoods which are not closed under the Bayes update equation
(12).

III. THE LMO-GOM FILTER

In this section, we derive the multi-object prediction and
update equations of Bayes filter by specifying the multi-
object prior and posterior as the product styled LMO densities
provided in (5). The result is an exact solution for labeled
multi-object Bayes filter with GOM under the standard multi-
object transition model, and thus is called as the LMO-GOM
filter. Furthermore, an SMC implementation of the LMO-
GOM filter is presented.

A. Recursive Equations of the LMO-GOM Filter

Proposition 1. Suppose that the current multi-object prior
density is a general LMO density of the form (5) and the
birth density is also a general LMO density of the form (13),
then the multi-object predicted density under the multi-object
transition function of the form (14) is given by

π+(X+) = ω+(L(X+))P+(X+) (23)

on state space X and label space L+ = L ∪ B, where

ω+(L) = ωB(L ∩ B) ωS(L ∩ L) (24)
P+(X+) = PB(X+ ∩ X× B) PS(X+ ∩ X× L) (25)

ωS(J) =
∑

I⊆L
1I(J)ω(I)ηS,I(J) (26)

PS(W) =

∑
I⊆L 1I(L(W))ω(I)PS,I(W)

ωS(L(W))
(27)

with

PS,{`1,···,`n}(W)=

∫
1{`1,··· ,`n}(L(W))

∏n

i=1
Φ(W;xi, `i)

· P ({(x1, `1) · · · , (xn, `n)})d(x1 · · ·xn)
(28)
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ηS,{`1,···,`n}({`+,1, · · · , `+,n+})=

∫
PS,{`1,··· ,`n}·

({(x+,1,`+,1), · · · , (x+,n+ ,`+,n+)})d(x+,1,· · ·, x+,n+).
(29)

Proof. See Appendix A.
Proposition 1 explicitly describes how to calculate ω+(·)

and P+(·) of the multi-object predicted density from ω(·)
and P (·) of the multi-object prior density. We note that
πS(W) = ωS(L(W))PS(W) is the density of the surviv-
ing objects with ωS(·) and PS(·) shown in (26) and (27).
For a given label set J , ωS(J) is the weighted sum of
the prior weights ω(I) over all subsets of L that contain
the surviving set J . The function PS(W) given a certain
label set L(W) is also a weighted sum of PS,I(W) terms
over all subsets of L that contain the surviving set L(W).
PS,{`1,··· ,`n}(W) in (28) for a certain L(W) is a non-
normalized joint density evolved from the prior joint prob-
ability density P ({(x1, `1), · · · , (xn, `n)}) with the “pseudo”
transition density

∏n
i=1 Φ(W;xi, `i). PS,{`1,··· ,`n}(W) is

conditional on that the previous label set is I = {`1, · · · , `n}
and only the objects with the label set L(W) ⊆ I exist
after evolving. ηS,{`1,··· ,`n}(I+) in (29) is essentially the
normalizing constant of PS,{`1,··· ,`n}(W) with L(W) = I+.

Utilizing the independence of surviving objects and newly
born objects, the multi-object predicted density can be ob-
tained by multiplying the weights and the corresponding joint
probability densities of newly born objects and surviving
objects.

Proposition 2. Suppose that the current multi-object predicted
density is a general LMO density of the form (23), then the
multi-object posterior density under a generic multi-object
likelihood g(Z|X) is given by

π(X|Υ) = ω(L(X); Υ)P (X; Υ) (30)

on state space X and the label space L+, where

P (X; Υ) =
g(Υ|X)P+(X)

ηΥ(L(X))
(31)

ω(I+; Υ) =
ηΥ(I+)ω+(I+)∑
I+∈L+

ηΥ(I)ω+(I)
(32)

with

ηΥ({`1, `2,· · ·,`n}) =

∫
g(Υ|{(x1, `1),· · ·, (xn, `n)})

· P+({(x1,`1),· · ·, (xn,`n)})d(x1,· · ·, xn).
(33)

Proof. See Appendix B.
Proposition 2 explicitly describes how to calculate the

parameters ω(·; Υ) and P (·|Υ) of the multi-object posterior
density from the parameters ω+(·) and P+(·) of the multi-
object predicted density. For a given label set L(X), the
posterior joint probability density P (X|Υ) in (31) is computed
from the prior joint probability density P+(X) via “Bayes’
rule” with likelihood g(Υ|X). For a given label set I , the
posterior weight ω(I; Υ) is proportional to the predicted
weight ω+(I) scaled by the normalizing constant ηΥ(I).

B. The SMC Implementation of the LMO-GOM Filter

In the above subsection, the combination of Propositions
1 and 2 provides an exact Bayesian solution by adopting
the decomposition of the LMO density in the form of (5).
Hence, an intuitive implementation of the LMO-GOM filter
is to recursively compute the functions ω(·) and P (·) at each
time step. However, when implementing the LMO-GOM filter,
the approximation of P (X) is not straightforward since P (X)
(defined on F(X × L)) is not a probability density. To this
end, we represent the product styled of the LMO density of
the form (5) in another equivalent form as Remark 2.

Remark 2. An LMO density π on F(X×L) can be expressed
as a mixture of multi-object densities,

π(X) =
∑

I∈F(L)
ω(I)P (I)(X) (34)

where

ω(I) , ω(I), (35)

P (I)(X) , δI(L(X))P (X) (36)

in which the definitions of P (X) and ω(I) are given in
Definition 1, ω(I) denotes the existence probability of the label
set I satisfying

∑
I∈F(L) ω

(I) = 1, and P (I)(·) is the multi-
object probability density (defined on F(X× L)) conditional
on the existence of the label set I . Hence, π(·) is completely
characterized by a set of parameters {(ω(I), P (I)(·))}I∈F(L).

The integrals of P (I)(X) and P (X) have the following
relationship. For any I = {α1, · · · , αn} ∈ F(L), and given
an arbitrary function υ(X) on F(X× L), we have∫

P (I)(X)υ(X)δX=

∫
δI(L(X))P (X)υ(X)δX

=

∫
P ({(x1, α1), · · · , (xn, αn)})

υ({(x1, α1),· · ·, (xn, αn)})d(x1,· · ·, xn).

(37)

Eq. (37) indicates that the set integral of P (I)(·) is equivalent
to the Euclidean notion of integral of the joint probability
density P ({(·, α1), · · · , (·, αn)}) on X|I|.

Utilizing the formulas provided in Remark 2, imple-
menting the LMO-GOM filter, based on Propositions 1
and 2, amounts to computing the predicted parameter set
{(ω(I+)

+ , P
(I+)
+ (·))}I+∈F(L+) with L+ =L ∪ B and

ω
(I+)
+ = ω+(I+); P

(I+)
+ (X+)=δI+(L(X+))P+(X+),

and the posterior parameter set
{(ω(I+)(Υ),P (I+)(·; Υ))}I+∈F(L+) with

ω(I+)(Υ) = ω(I+; Υ); P (I+)(X; Υ) = δI+(L(X))P (X; Υ)

forwards in time.
As it was mentioned earlier, our algorithms are mainly de-

signed for the non-standard observation model which usually
involves the non-Gaussian/non-linear model and has no closed-
from solution. Hence, in this subsection, we provide an SMC
implementation of the LMO-GOM filter. Each P (I)(X) is
represented by a set of weighted particles. Associated weights,
and normalizing constants can be computed from particles and
their weights.
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Suppose that the current prior parameter set is π =
{(ω(I), P (I)(·))}I∈F(L) where each P (I)(X) is approximated

with a set of particles {(w(I)
j ,X

(I)
j )}N

(I)
p

j=1 , i.e.,

P (I)(X) =
∑N(I)

p

j=1
w

(I)
j δ

X
(I)
j

(X). (38)

Utilizing (37), the quantities in the prediction step are com-
puted as

PS,I(W) =

∫
1I(L(W))[Φ(W; ·)]XP (I)(X)δX

=
∑N(I)

p

j=1
1I(L(W))w

(I)
j [Φ(W; ·)]X

(I)
j ,

(39)

ηS,I(J) =

∫
δJ(L(W))PS,I(W)δW

=
∑N(I)

p

j=1
w

(I)
j [pS ]X

(I)
j ∩X×J [1−pS ]X

(I)
j ∩X×(I−J).

(40)

Then ωS(J) is computed by substitution of (40) into (26), and
ω+(L) is computed by substitution of the computed ωS(J)
into (24).

For each label set I+ ∈ F(L+), firstly, choose a subset U
of F(L) according to

U = {I ∈ F(L) : 1I(I+ ∩ L) = 1}.

Utilizing (25), (27) and (31), the posterior parameter
P (I+)(·; Υ) is computed as

P
(I+)
+ (X; Υ) ∝ g(Υ|X)δI+∩B(L(XB))PB(XB)×

δI+∩L(L(XS))
∑

I∈U
ω(I)

∑N(I)
p

j=1
w

(I)
j [Φ(XS ; ·)]X

(I)
j

(41)

where

XS ,X+ ∩ X× L, XB , X+ ∩ X× B (42)

ω(I) =
ω(I)

ωS(I+ ∩ L)
. (43)

By employing the idea of the auxiliary particle filter [23]–
[25], sampling from (41) can be achieved by sampling from
the higher dimensional joint density

P
(I+)
+ (X, I, u;Υ)∝ g(Υ|X)δI+∩B(L(XB))PB(XB)

δI+∩L(L(XS))ω(I)w(I)
u [Φ(XS ; ·)]X(I)

u .
(44)

where the auxiliary variable I ∈ U is the previous label set
from which the current label set I+ is evolved, and the aux-
iliary variable u ∈ {1, · · · , N (I)

p } is the index on the sample
at the previous time step conditional on the previous label
set I. The auxiliary variables aid in the sampling of suitable
values of the multi-target state X. They are discarded after the
sampling procedure is completed. States X

(I+)
j+

, the previous
label set Ij+ , and particle indices uj+ are drawn from an
importance density q(I+)(X, I, u|Υ) for j+ = 1, · · · , N (I+)

p ,
and the un-normalized weight is computed as

w̃
(I+)
j+

= g(Υ|X)δI+∩B(L(XB))PB(XB)ω(I)

δI+∩L(L(XS))w(I)
u [Φ(XS ; ·)]X(I)

u /q(X
(I+)
j+

, Ij+ , uj+)
(45)

A feasible choice of the proposal function q(I+)(X, I, u|Υ) is
as follows:

q(I+)(X, I, u|Υ)= δI+∩B(L(XB))PB(XB)

· δI+∩L(L(XS))ω(I)w(I)
u [Φ(XS ; ·)]X(I)

u .
(46)

In this case, the un-normalized weight is computed as

w̃
(I+)
j+

= g(Υ|X(I+)
j+

).

Note that it is possible to design a more sophisticated proposal
density than (46), but it is beyond the scope of this paper.

Utilizing (37), the quantity ηΥ(I+) is computed as

ηΥ(I+)=

∫
δI+(L(X))g(X|Υ)P+(X)δX=

∑N
(I+)
p

j+=1
w̃

(I+)

j+
(47)

and the posterior parameter ω(I+)(Υ) = ω(I+; Υ) is computed
by substitution of (47) into (32).

Resampling and Implementation Issues: After the update
step, for each P (I+)(·; Υ), perform resampling [37] to ob-
tain an evenly weighted particle set. To reduce the grow-
ing number of parameters, the pair of posterior parameters
(w(I+)(Υ), P (I+)(·; Υ)) with existence probabilities w(I+)(Υ)
below a threshold are discarded [14], [16], [19].

C. Discussions and Analysis

The LMO-GOM filter provides an exact Bayesian solution
for the labeled multi-object tracking problem under the GOM
and the standard transition kernel. Nevertheless, in general,
the LMO-GOM filter can be computationally prohibitive,
especially for a large number of objects. Computing integrals
on high-dimensional spaces (the integral of P (I)(·)) and expo-
nential growth of the number of parameters with the number
of objects are the two main reasons in many applications.

Observing Proposition 1, the prediction step of the LMO-
GOM filter can be further simplified for particular multi-
object priors such as the δ-GLMB and LMB densities. This
can be achieved due to the independence assumption between
object motions when formulating the multi-object transition
kernel. The δ-GLMB-GOM filter [19] is essentially derived
by approximating the multi-object posterior as a principled
δ-GLMB density and assuming the δ-GLMB prior.

Remark 3. The implementation of the LMO-GOM filter only
involves one source of inaccuracy which is the numerical error
caused by the Monte Carlo (MC) approximation of the high-
dimensional integral. Based on the convergence properties of
the MC approximation [38], when the number of samples
approaches infinity, the numerical errors of the integral com-
putations approach zero, and the LMO-GOM filter is imple-
mented with perfect accuracy. Hence, with sufficient computing
resources, the LMO-GOM filter is expected to exhibit the
optimal performance, and possibly served as a performance
benchmark in labeled multi-object tracking with the standard
transition kernel. In comparison, the implementation of the δ-
GLMB filter involves two sources of inaccuracy. One is related
to the approximation of posteriors and the other to the MC
approximation. Due to the first source of inaccuracy, even if
the number of particles approaches infinity, the δ-GLMB filter
is not exact.
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IV. THE LMB-GOM FILTER

As an efficient approximation of the LMO-GOM filter,
the δ-GLMB-GOM filter alleviates the computation burden
by simplifying the prediction equation. However, the δ-
GLMB prediction can be still intractable (both memory- and
computational-wise) due to the exponential growth of the
number of terms of multi-object exponentials in the predicted
δ-GLMB density with the number of objects.

In this section, we further explore more tractable approx-
imations of the LMO-GOM filter. [18] proposed an LMB
filter for the standard multi-object likelihood which approx-
imates the δ-GLMB multi-object posterior as a principled
LMB density preserving the first-order moment, and further
proposed a dynamic grouping procedure based implementation
which drastically reduces execution time with slight accuracy
promise by exploiting the mathematical formulation of the
LMB prior. Motivated by the LMB filter and its fast imple-
mentation proposed in [18], in this section, we seek the “best”
LMB approximation to replace the full multi-object posterior
under the GOM, and consequently, develop an extension of the
LMB filter for the GOM, referred to as the LMB-GOM filter.
Furthermore, we also present an efficient implementation for
the LMB-GOM filter based on a dynamic grouping procedure.

A. The “Best” LMB Approximation

In this subsection, we derive the “best” LMB approximation
of the general LMO density. Herein, the “best” approxima-
tion means the best information-theoretic fit in terms of the
minimal KLD. Propositions 3 and 4, respectively, derive the
explicit formulas of the labeled PHDs for the general LMO
density and the LMB density, which are the basis of the deriva-
tion of the “best” LMB approximation. Proposition 5 provides
the explicit formula for the “best” LMB approximation of the
general LMO density.

Proposition 3. Given an arbitrary LMO density π(X) =
ω(L(X))P (X) on state space X and label space L, the
labeled PHD of π is

v(x, `) =
∑

I∈F(L)
1I(`)ω(I)pI−{`}(x, `) (48)

where “−” denotes set difference, and

p{`1,··· ,`n}(x, `) =

∫
P ({(x, `), (x1, `1), · · · ,

(xn, `n)})d(x1, · · · , xn).

(49)

Proof. See Appendix C.

Proposition 4. Given an LMB RFS with the LMB parameters
π = {(r(α), p(α)(·))}α∈L, the labeled PHD of π is

v(x, `) =
∑

α∈L
r(α)p(α)(x, `) = r(`)p(x, `) (50)

with p(α)(x, `) = δα(`)p(x, `).

Proof. See Appendix D.

Proposition 5. Given an arbitrary LMO density with the pa-
rameter set π = {(ω(I), P (I)(·))}I∈F(L), the LMB density in
the class defined in (7) which minimizes the Kullback-Leibler

divergence from π, and preserves the first-order moment of π
is given by

π̂LMB = {(r̂(α), p̂(α)(·))}α∈L
where

r̂(α) =
∑

I∈F(L)
1I(α)ω(I) (51)

p̂(α)(x,`)=
1

r̂(α)

∑
I∈F(L)

1I(`)ω(I)δα(`)pI−{`}(x,`). (52)

The density π̂LMB is referred to as the “best” LMB approxi-
mation of π.

Proof. See Appendix E.

B. Recursive Equations of the LMB-GOM Filter

In this subsection, we apply the derived “best” LMB
approximation to the labeled multi-object filtering problem,
and develop the LMB-GOM filter. The following proposition
provides the update equations of the LMB-GOM filter.

Proposition 6. Suppose that the current multi-object predicted
density is an LMB density with the LMB parameters π+ =

{(r(α+)
+ , p

(α+)
+ (·))}α+∈L+

. Under a generic multi-object like-
lihood g(Υ|X), the best “LMB” approximation of the multi-
object posterior is π̂(·|Υ) = {(r̂(α+)(Υ), p̂(α+)(·; Υ))}α+∈L+

,
where

r̂(α+)(Υ) =
∑

I+∈F(L+)
1I+(α+)ω(I+; Υ) (53)

p̂(α+)(x, `; Υ)=
δα+(`)

r(α+)(Υ)

∑
I+∈F(L+)

1I+(`)ω(I+; Υ)pI+−{`}(x, `; Υ)

(54)
with

p{`1,··· ,`n}(x, `; Υ) =

∫
P ({(x, `), (x1, `1), · · · ,

(xn, `n)}; Υ)d(x1, · · · , xn) (55)

ω(I+; Υ) =
ηΥ(I+)ω+(I+)∑

I+∈F(L+) ηΥ(I+)ω+(I+)
(56)

P (X+; Υ) =
[p+]

X
g(Υ|X+)

ηΥ(L(X+))
(57)

ω+(I+) =
∏

i∈L+

(
1− r(i)

+

)∏
`∈I+

1L+(`)r
(`)
+

1− r(`)
+

(58)

ηΥ({`1, `2,· · ·, `n}) =

∫
g(Υ|{(x1, `1), · · · , (xn, `n)})(∏n

i=1
p+(xi, `i)

)
d(x1, · · · , xn). (59)

Proof. See Appendix F.
Proposition 6 explicitly describes how to calculate the poste-

rior LMB parameters {(r̂(α+))(Υ), p̂(α+)(·; Υ)}`∈L+ from the
predicted multi-Bernoulli parameters {(r(α+)

+ , p
(α+)
+ (·))}`∈L+

.
The update stage of the LMB-GOM filter has three steps:
– Write the predicted LMB density in the general LMO density
form, i.e., π+(X) = ∆(X)ω+(L(X))[p+]X;
– Compute the full multi-object posterior density π(X+|Υ)
from the general LMO density form according to Proposition
2, resulting in π(X+|Υ) = ω(L(X+); Υ)P (X+; Υ);
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– Approximate π(X+|Υ) with its “best” LMB approximation
π̂(·|Υ) according to Proposition 5.

Remark 4. From Propositions 5 and 6, we can deduce that
in the LMB filter proposed in [18], the LMB RFS which
matches the first-order moment of the δ-GLMB posterior, also
minimizes the KLD from the δ-GLMB posterior, among all the
LMB densities.

Utilizing Proposition 6 and the prediction equations of the
LMB filter in [18], we can obtain the recursive equations
of the LMB-GOM filter. Under the standard object motion
model, the multi-object predicted density π+ is an LMB
density if the multi-object prior is an LMB density [18].
Moreover, based on Proposition 6, the multi-object posterior
density π(·|Υ) can be approximated as a principled LMB
density under the GOM, if the multi-object predicted density
π+ is an LMB density. The specified prediction and update
steps of the LMB-GOM filter are given via the following:

LMB prediction: Given the current prior LMB density
with the LMB parameters π = {(r(α), p(α)(·))}α∈L and
the LMB multi-object birth with the LMB parameters
πB = {(r(α′)

B , p
(α′)
B (·))}α′∈B, the multi-object prediction is

another LMB density on state space X and finite label space
L+ = B ∪ L given by

π+ = {(r(α)
+,S , p

(α)
+,S(·))}α∈L ∪ {(r(α′)

B , p
(α′)
B (·))}α′∈B (60)

where

r
(α)
+,S = η

(α)
S r(α) (61)

p
(α)
+,S(x+, `+) = δα(`+)

〈
pS(·)f+(x+|·), p(α)(·)

〉/
η

(α)
S (62)

η
(α)
S =

〈
pS(·), p(α)(·)

〉
. (63)

LMB update: Given the current predicted LMB den-
sity π+ = {(r(α+)

+ , p
(α+)
+ (·))}α+∈L+ and the generic

multi-object likelihood function g(Υ|·), the approximate
multi-object posterior is another LMB density π̂(·; Υ) =
{(r̂(α+)(Υ), p̂(α+)(·; Υ))}α+∈L+

computed by (53) and (54).

Remark 5. Compared with the δ-GLMB-GOM filter, the
LMB-GOM filter involves less computation in its prediction
step because it not only reduces the integration space to
single-object space, but also involves a number of integrals
that increases linearly with the object number. Actually,
the computational efficiency of the LMB-GOM filter can be
achieved because the “best” LMB approximation completely
loses correlation between object states, while the “best” δ-
GLMB approximation still preserves part of the correlation
between object states. The δ-GLMB density has the ability
to depict the statistical dependence between points [19].
However, unlike the general LMO density, the points in a δ-
GLMB RFS are assumed statistically independent conditional
on their existences with a set of distinct labels. This assumption
can lead to a scarification of some part of information on
correlation between object states when approximating the full
multi-object posterior as the “best” δ-GLMB approximation.
As for the LMB density, the points (including object states
and their labels) are assumed to be statistically independent.

Hence, information on correlation between object states is
completely discarded when approximating the full multi-object
posterior as the “best” LMB approximation.

C. The SMC Implementation of the LMB-GOM Filter

Suppose that the current LMB prior is parameterised by
π = {(r(α), p(α)(·))}α∈L, where each single object density
p(α)(x, `) is approximated by a set of weighted particles.

At the prediction stage, for each label α ∈ L of the
surviving objects, the predicted existence probability r

(α)
+,S

and the probability density p
(α)
+,S(x) are evaluated using the

particles and the corresponding weights of p(α)(x, `). For
explicit calculation formulas, refer to the SMC implementation
of multi-Bernoulli filter [12].

At the update stage, in the first place, we evaluate the param-
eter set {ω(I+), P (I+)(X; Υ)}I+⊆L+ of the full multi-object
posterior π+(X|Υ). Similar to the SMC implementation of the
LMO-GOM filter presented in Subsection III-B, for each label
set I+ ⊆ L+, the multi-object density P (I+)(X; Υ) is approx-

imated by a set of weighted particles {(w(I+)
j+

,X
(I+)
j+

)}N
(I+)
p

j+=1 ,

where each particle X
(I+)
j+

for j = 1, · · · , N (I+)
p is drawn from

a properly designed importance density.
Then for each label α+ ∈ L+, the updated LMB parameters

r̂(α+)(Υ) and p̂(α+)(x+, `+; Υ) can be calculated from the pa-
rameter set {ω(I+), P (I+)(X; Υ)}I+⊆L+

utilizing the particles
and the corresponding weights of each P (I+)(X; Υ). A key
term when calculating the single object density p(α)(x, `; Υ)
is δα+

(`)pI+−{`}(x,`) in (54). By utilizing (55) and (37), this
term is evaluated as,

δα+(`)pI+−{`}(x, `)

=δα+
(`)

∫
P (I+)(X+ ∪ X×{`}; Υ)δX+

∝δα+
(`)
∑N

(I+)
p

j+=1
ω̃

(I+)
j+

∫
δ
X

(I+)

j+

(X+ ∪ X× {`})δX+

∝
∑N

(I+)
p

j+=1
ω̃

(I+)
j+

δ
X

(I+)

j ∩X×{α+}
(x+, `+).

(64)

After the update step, the resampling and truncation processes
are also applied similar to the SMC implementation of the
LMO-GOM filter.

D. Grouping based LMB-GOM Filter

The proposed LMB-GOM filter can be seen as an extension
of the LMB filter proposed in [18] that accommodates generic
multi-object likelihood. To enhance the implementation effi-
ciency of the LMB filter for the standard observation model,
the parallel group update via the construction of the so called
“groups” was proposed in [18]. Each group contains only
closely spaced objects and their associated measurements.
This method can achieve significant reductions in computation
because updating independent groups in parallel is usually
much faster than updating the entire multi-target state. In this
subsection, we also extend the parallel group update to the
LMB-GOM filter. Combining the prediction step of the LMB-
GOM filter with the parallel group update leads to a variant of
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the LMB-GOM filter, called the grouping based LMB-GOM
(G-LMB-GOM) filter.

In this subsection, the observation set is considered as an
RFS Z defined on the observation space Z. By exploiting the
mathematical formulation of LMB RFSs, the LMB predicted
density π+ = {(r(α), p(α)(·))}α∈L+

admits an exact decom-
position based an arbitrary partition of tracks in the label space
L+, denoted by {L1

+, · · · ,LN+}, i.e.,

π+(X) =
∏N

i=1
πi+(X ∩ X× Li+) (65)

where πi+ = {(r(α), p(α)(·))}α∈Li+ . The decomposition in (65)
is achieved by utilizing the independence between Bernoulli
components and the convolution formula given in [1, p.385].

Having the flexible decomposition of the LMB prediction,
as long as there exist one partition of the tracks such that the
multi-object likelihood can be decomposed as

g(Z|X) = g(Z0|∅)
∏N

i=1
g(Zi|X ∩ X× Li+), (66)

where Zi ⊆ Z for i = 1, · · · , N denotes the observation
subset associated with the tracks in Li+ and Z0 = Z−∪Ni=1Z

i,
then the parallel group update can be achieved, i.e.,

π(X|Z) ∝ π+(X)g(Z|X)

=
∏N

i=1
πi+(X ∩ X× Li+)

∏N

i=1
g(Zi|X ∩ X× Li+)

∝
∏N

i=1
π(i)(X ∩ X× Li+|Zi).

(67)

The decomposition of the multi-object likelihood in (66)
essentially demands that the effects of different multi-object
subsets X × X ∩ Li+ on the observations can be separated.
Specifically, each observation subset Zi is only correlated
with the multi-object subset X ∩ L × Li+. Nevertheless, this
demand is not necessarily valid for the GOM. Hence, in the
following, we firstly discuss the constrains on the observation
model. Then we provide a principled method to partition tracks
and observations for which the decomposition in (66) holds
approximately. Finally, the parallel group update is formulated.

1) Decomposition of the Likelihood : The following as-
sumptions on the observation model are made.

A.1: The observations z ∈ Z are conditionally independent
under the multi-object state X;

A.2: The object with state x only contributes to the obser-
vations within a region T (x) ⊂ Z.

The first assumption is common in multi-object tracking
(see, for example, [13], [26], [30]). The second assumption
indicates that each observation z ∈ Z is generated by a set
of objects Xz = {x ∈ X : z ∈ T (x)} (Xz can also be an
empty set). T (x) is referred to as the valid observation region
(VOR) of object x, and T (X) , ∪x∈XT (x) is referred to as
the VOR of the state set X. The VOR is related to the sensing
characteristic of a sensor.

Proposition 7. Given an observation model characterized by
multi-object likelihood g(Z|X), and satisfing Assumptions A.1
and A.2, if a subset of object states, X′ ⊆ X satisfies

T (X′) ∩ T (X−X′) = ∅, (68)

then the observation subset Z ∩ T (X) is statistically inde-
pendent of object states X −X′, and the observation subset

Z − T (X) is statistically independent of object states X, i.e.,
the multi-object likelihood can be represented as

g(Z|X) = g(Z ∩ T (X′)|X′)g(Z − T (X′)|X−X′) (69)

Herein, X′ is called as an isolated object cluster.

Proof. See Appendix G.
According to Proposition 7, as long as one isolated object

cluster arises, the multi-object likelihood can be further de-
composed as (69). Observing (68), one can easily obtain that
the smaller the size of the VOR T (x) is, the more likely
it is for an isolated object cluster to arise. Generally, the
sensor models can be divided into three categories in terms
of different types of VORs.
• Type I: Completely confined VOR. The size of T (x)

is relatively small compared with the observation space Z,
namely, an object x can only affect the observations in a
very limited region, and then the contribution of x on the
observations beyond this region is zero. For example, in video
tracking [4], [13], [34], a rigid body can only occupy several
pixels of its surroundings. For this category of sensors, it
is easy to produce isolated object clusters and then exactly
decompose the likelihood according to Proposition 7. The
pixeled TBD observation model employed in subsection III-E
belongs to this type.

Except for Type I sensors, there also exist sensors whose
VOR is the whole observation space (or a region having a
comparable size with the whole observation space). Hence, all
the objects contribute to almost all the observations, making
the observations correlated with all the objects. These sensors
can be further classified into two types as follow.
• Type II: Approximately confined VOR. Correlation be-

tween observation z and object x decays as the “distance”
between z and x increases. The acoustic sensor network
observation model [33] shown in Section III-E is a typical
example. When the distance ‖ρ(x)− ξm‖ between the sensor
and the object is sufficiently large, the received sound ampli-
tude at sensor ξm due to the object x decays rapidly according
to A
‖ρ(x)−ξm‖ . Hence, the contribution of the object x to the

observation at sensor m can be negligible. Consequently, by
suitably truncating the complete VOR, the decomposition of
the multi-object likelihood according to (69) can be achieved
with an affordble approximation error.
• Type III: Full VOR. In this case, observations are strongly

correlated to all the objects, and the decomposition of like-
lihood is not possible. For instance, when estimating the
slowly diffusing sources using a sensor network, the received
observations at a certain sensor are strongly affected by all the
remote sources [39].

2) Grouping and Parallel Group Update: For the standard
observation model, track grouping is based on a standard
gating procedure which also partitions the observation set [18],
[40]. Inspired by this, this subsection provides a principled
method to construct independent groups of tracks and observa-
tions for a wide variety of observation models. The following
two definitions will be used in formulating our method.

Definition 3. Let fΘ(x) be a density function of a random
variable Θ. A measurable subset of the sample space O of Θ,
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denoted by R is called the highest density region (H.D.R.) of
confidence λ if

a) Pr{Θ ∈ R} =
∫
R
fΘ(x)dx = λ;

b) for x1 ∈ R and x2 /∈ R, fΘ(x1) > fΘ(x2).

Remark 6. The concept of H.D.R. is provided in [41], [42].
The posterior density for every point inside the H.D.R. is
greater than that for every point outside of region. Thus, the
region includes the more probable values of Θ. Usually, the
confidence λ is set to be very close to one, e.g. λ = 0.99. Thus
fΘ(x) is negligible for x /∈R and can be approximated with 0.

Definition 4. Consider an LMB density with the LMB pa-
rameters π = {(r(α), p(α)(·))}α∈L. Denote the H.D.R. of
confidence λ for p(α)(·) by X(α)

, with X(α) ⊂ X × L.
T (α) =

⋃
x∈X(α) T (x) is called as the VOR of track α. Tracks

α and α′ are referred to as the coupling tracks if their VORs
have intersection, i.e., T (α) ∩ T (α′) 6= ∅.

Given the LMB prediction with the LMB parameters π+ =
{r(α), p(α)(·)}α∈L+

, the predicted label set is partitioned as
L+ =

⊎
i=1:N Li+ such that no track in Li+ is coupled with

any track in Lj+ for any i 6= j, where
⊎

denotes the disjoint
union. In other words, ∀(i, j) ∈ [1, N ]2,

i 6= j ⇒
(
∪α∈Li+T

(α)
)⋂(

∪
α′∈Lj+

T (α′)
)

= ∅. (70)

Accordingly, the multi-object observation set Z is partitioned
as {Z0, Z1, · · · , ZN} where

Zi = Z
⋂(
∪α∈Li+T

(α)
)

(71)

denotes the observation subset related to the group of tracks
with label subset L(i)

+ , i = 1, · · · , N , and

Z0 = Z −
⋃N

i=1
Zi (72)

denotes the observation subset having no associated tracks.
The above partitions of the predicted label set and the

observation set naturally produce a set of pairs

{(L1
+, Z

1), · · · , (LN+ , ZN )}
with each (Li+, Zi), i = 1, · · · , N , referred to as a group.

Consider the multi-object state X ⊆ ⋃
α∈L+

X(α)
with

confidence λ sufficiently large. According to Definition 4, for
each group (Li+, Zi), we have

∪α∈Li+T
(α) ⊇ T (X ∩ X× Li+),

then by the combination of (70), the observation subset Zj of
any other group with j 6= i has the following relationship,

Zj ⊆ Z − ∪α∈Li+T
(α) ⊆ Z − T (X ∩ X× Li+).

Under Assumption A.1, by utilizing the independence between
any Zj and X ∩ X × Li+ (i 6= j), the multi-object likelihood
can be decomposed as

g(Z|X) ∼= g(Z0|∅)
∏N

i=1
g(Zi|X ∩ X× Li+), (73)

and consequently the posterior density is decomposed as

π(X|Z) ∝
∏N

i=1
πi(X ∩ X× Li+|Zi) (74)

where πi(·|Zi) denotes the posterior density of the ith group.
For the multi-object state X *

⋃
α∈L+

X(α)
with confi-

dence λ sufficiently large, the predicted density π+(X) =
∆(X)ω+(L(X))pX+ is negligible, and consequently the corre-
sponding posterior density π(X|Z) is negligible.

As a result, the full Bayes update can be approximated as
a group of parallel updates. Specifically, the LMB prediction
πi+ for the ith group, is updated by the likelihood g(Zi|·)
resulting in the posterior density πi(·|Zi) of the ith group.

3) Partition Criterion: An important issue of the partition
procedure is the choice of the criterion used to judge whether
two tracks are coupling or not. A straightforward criterion
according to the previous subsections is the predicted tracks
α and α′ exhibit significant coupling if their VORs have the
intersection, i.e., T (α) ∩ T (α′) 6= ∅.

In practice, the criterion can be simplified by the com-
bination of the specific observation model. Taking the two
observation models provided in Section III-E as examples, we
provide principled criterions as follow.

– For the pixeled TBD model, as suggested by [23]–[25],
the predicted tracks α and α′ exhibit significant coupling if
their distance is small, i.e.,

d(α, α′) 6 Λ (75)

where Λ is a grouping threshold and d(·, ·) is a distance
function which depends on the way in which observations are
acquired and the statistics of the predicted tracks. A feasible
distance function is

d(α, α′) = ‖ẑ(α)
+ − ẑ(α′)

+ ‖, (76)

where ẑ(α)
+ is the predicted position of the track α, and ‖ · ‖

denotes 2-norm distance [23]–[25]. In this case, the threshold
Λ is mainly decided by both the covariance of p(α)(·) and the
VOR T (x). Analytical details of the selection of the threshold
can be found in [24]. Another suitable distance function can be
the Mahalanobis distance (MHD) which depicts the impacts
of both state and covariance estimate, and then the threshold
is mainly decided by the VOR T (x).

– For the acoustic amplitude sensor model, a feasible
criterion is the predicted tracks α and α′ exhibit coupling if

{(zm, ξm) : ‖ξm−ẑ(α)‖ 6 β}∩{(z′m, ξ′m) : ‖ξ′m−ẑ(α′)‖ 6 β}
(77)

where β is a given threshold for which the value A
βκ is

sufficiently small.
After the criterion is established, we can obtain the partition

of tracks by adopting suitable clustering algorithms [43]. Then
according to (71) and (72), the associated observation subset
of each group can be obtained.

Remark 7. The G-LMB-GOM filter can be extended to the
case of vector observations easily, because a random vector
can be equivalently transformed to a labeled RFS having a
constant cardinality [44].

Remark 8. If a Type III sensor is used or all tracks are
too close to be isolated, then the partition of tracks and
observations is not possible. In this case, the G-LMB-GOM
filter degenerates to the LMB-GOM filter automatically.
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Algorithm 1: The G-LMB-GOM filter.
Input: the prior LMB density with the LMB parameters π =
{(r(α), p(α)(·))}α∈L.
1. Perform LMB prediction and compute the predicted LMB

density with the LMB parameters π+ ={r(α)
+ , p

(α)
+ (·)}α∈L+

using (60)-(63).
2. Partition the predicted tracks in L+ and the observation

set Z into groups {(L1
+, Z

1), · · · , (LN+ , ZN )} according to
(70)−(72).

3. for each group (Li+, Zi), i = 1, · · · , N do
4. Perform LMB update under the multi-object likelihood

g(Zi|·) using (53)-(59) and get the “best” LMB ap-
proximation of posterior multi-object density π̂i(·|Zi) =

{(r̂(αi)(Zi), p̂(αi)(·;Zi))}αi∈Li+ .
5. end
Output: the posterior LMB density with the LMB parameters
π̂(·|Z) = ∪Ni=1π̂

i(·|Zi).

4) Summary: Algorithm 1 summarizes the steps through
which the G-LMB-GOM filter can be implemented. The
advantages of the G-LMB-GOM filter are two-fold:
– Firstly, it improves the computational efficiency dramati-
cally by exploiting the parallel implementation. The detailed
computational complexity is analyzed later in Section V.
– Secondly, it has the potential to improve the tracking per-
formance especially when computing and memory resources
(e.g., the number of particles that can be handled in real-
time applications) are limited. On one hand, the performance
compromise incurred by the grouping procedure is slight
when the grouping threshold is sufficiently large. On the
other hand, the densities required to be approximated (by
particles) after grouping at the update stage have much lower
dimensions than those in the original LMB-GOM and δ-
GLMB-GOM filters. Since the number of particles required
to keep a certain tracking performance increases exponentially
with the dimension of the state space to be sampled [24],
[45], the performance improvement stemmed from the better
numerical approximation of the lower dimensional densities
(given a fixed number of particles) can sometimes go beyond
the inaccuracy due to the grouping procedure.

V. COMPUTATIONAL COMPLEXITY ANALYSES AND
SCHEMATICS

In this section, we compare the LMO-GOM, δ-GLMB-
GOM, LMB-GOM and G-LMB-GOM filters in terms of
computational complexities of their respective prediction and
update equations, as shown in Table I. Fig. 1 shows how these
filters operate at the conceptual level. All these algorithms can
accommodate the GOM because they all embed the LMO-
GOM update (or the parallel group LMO-GOM update) which
is an exact solution with the generic multi-object likelihood.

VI. PERFORMANCE ASSESSMENT

In this section, the performance of the proposed algorithms
including the LMO-GOM, LMB-GOM, and G-LMB-GOM
filters is examined and compared with the state-of-the-art
in comprehensive numerical experiments. The two observa-
tion models listed in Subsection II-E, i.e., the pixeled TBD

TABLE I
COMPUTATIONAL COMPLEXITY ANALYSIS

• LMO-GOM filter: In the prediction equations, a dominant portion of
computation is for calculating the quantities ηS,I(J), J ⊆ I, I ⊆ L in
(29) which involve

∑|L|
a=n C

n
a integrals each to be computed on Xn with n

varying from 1 to |L|, where Cna denotes the number of possible combinations
of n objects from a set of a objects. In the update equation, computation is
dominated by calculation of the quantities ηΥ(I), I ⊆ L+ in (33) which
involve computing Cn|L+|

integrals on Xn with n varying from 1 to |L+|.

• δ-GLMB-GOM filter: In the prediction equations, the main part of
computation is for the quantities η(I)

S (`), ` ∈ I, I ⊆ L which involve
computing

∑|L|
n=1 n·Cn|L| integrals on X. In the update equation, computation

is mainly for the quantities ηΥ(I), I ⊆ L+ with its computational complexity
being the same as that of the LMO-GOM filter.

• LMB-GOM filter: In the prediction equations, a major part of computation
is for the quantities ηS(`), ` ∈ L in (63) which involve computing |L|
integrals on X. In the update equation, the main part of computation is for
the quantities ηΥ(I), I ⊆ L+ in (59) whose computational complexity are
also the same as that of the LMO-GOM filter.

• G-LMB-GOM filter: The computational complexity of prediction equations
is same as that of the LMB-GOM filter. If the label space L+ is partitioned
into {L1

+, · · · ,LN+ }, then the main part of computation in the update step is
for calculating N groups of quantities {ηΥi (I

i), Ii ⊆ Li+}Ni=1. For a certain
group i, it involves computing Cn|Li+|

integrals on Xn with n varying from 1

to |Li+|. Another computation lies in the clustering algorithm for the partition
procedure. Taking the hierarchical clustering algorithm [43] as an example,
the computational expense is O(|L+|2 log(|L+|)), which is much cheaper
than the computational expense for filtering.
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Fig. 1. Schematic presentation of how the LMO-GOM, δ-GLMB-GOM,
LMB-GOM and G-LMB-GOM filters operate in prediction and update steps.

model and the acoustic amplitude model are considered in
our experiments. As we analysed in Subsection IV-D, these
two observation models are two typical examples of Type
I and Type II sensors, respectively. All the algorithms are
implemented using the SMC approximation method.

The standard multi-object transition kernel provided in
Section II-D is adopted. The kinematic object state vari-
able is a vector of the plannar position and velocity x =

TABLE II
PARTICLE NUMBER OF PARAMETERS FOR DIFFERENT ALGORITHMS

LMO-GOM
Filter

δ-GLMB-
GOM Filter

LMB-GOM
Filter

G-LMB-
GOM Filter

Prior
P (I)(·) p(I,α)(·) p(α)(·) p(α)(·)
2× 106 Np Np Np

Posterior
P (I+)(·; Υ) P (I+)(·; Υ) P (I+)(·; Υ) P (Ii+)(·; Υi)
2× 106 Np Np Np
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[
px py ṗx ṗy

]>
, where “>” denotes matrix transpose.

The single-object transition model is linear Gaussian with

F =

[
I2 ∆I2

02 I2

]
, Q = σ2

v

[
∆4

3
I2

∆3

2
I2

∆3

2
I2 ∆2I2

]
(78)

where I2 and 02 denote the 2 × 2 identity and zero matrices
respectively, ∆ = 1s is the sampling period, and σv is the
standard deviation of the process noise. The probability of
object survival PS is set to be 0.98.

The optimal sub-pattern assignment (OSPA) error [46]
serves as the main performance metric with the cut-off value
c = 30 m and the order parameter p = 1. All performance
metrics are averaged over 100 MC runs.

A. Pixeled TBD Model

The efficacy of the proposed algorithms is first evaluated
in a typical TBD scenario which presents object crossing,
objects in a close proximity for a long time, and well-separated
objects. Observations are collected on a 50×50 array of cells
with cell lengths δx = δy = 1 m. The blurring factor for the
Gaussian point spread function is set to be δ2

b = 1. The
effective template is the 7×7 pixel square region whose center
is closest to (px, py). The SNR value of each object is set to be
15 dB. Figs. 2(a) and (b) show the trajectories of five objects
and an observation map at a certain time step, respectively.
The duration of this scenario is Ts = 28 s.

We compare our methods with the δ-GLMB-GOM filter
and the MB-TBD filter [13]. The SMC implementation for
the MB-TBD filter adopts 5×104 particles for each Bernoulli
component. The particles employed by the other algorithms
are assigned according to Table II, with Np = 5 × 104.
With the G-LMB-GOM filter, we choose the partition criterion
given in (75) with the distance function (76), and the grouping
threshold is set to be Λ = 10 m.

One of the main purposes of this experiment is to verify that
the LMO-GOM filter is possibly served as the theoretical per-
formance upper bound under the standard observation model
as we analysed in Remark 3. Hence, in order to guarantee
a negligible numerical error with a sufficiently large but
tractable number of particles (i.e., 2 × 106), the uncertainties
of parameters are set to be relatively low. Specifically, all
filters assume no object births and are initialized from the
regions around the correct object positions. Also the five
trajectories are considered with only slight maneuverability,
i.e., σν = 0.01 m/s2. The aim of this setting is to ensure a
controlled experiment in which the objects can approach each
other in a small distance for a relatively long period. The
duration of this scenario is Ts = 60 s.

Fig. 3(a) shows the respective outputs of the LMB-GOM
and MB-TBD filters for a single MC run. It can be seen
that the LMB-GOM filter performs accurately and consistently
for the entire scenario in the sense that it maintains locking
on all tracks and correctly estimates object positions. On the
other hand, the MB-TBD filter performs considerably worse.
Specifically, it loses object tracks very quickly after object
crossing since object superpositions are not formulated in the
MB-TBD filter.
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Fig. 2. (a) The trajectories of five objects in x − y plane with the initial
positions of objects indicated by several crosses; (b) An observation map at
time k = 12 s.
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Fig. 3. (a) The respective outputs of the LMB-GOM and MB-TBD filters
for a single MC run; (b) Execution time per frame for the δ-GLMB-GOM,
LMO-GOM and G-LMB-GOM filters.

Fig. 3(b) shows the execution times per frame for the δ-
GLMB-GOM, LMB-GOM and G-LMB-GOM filters. It can
be seen that the execution time of the LMB-GOM filter is
only slightly less than the δ-GLMB-GOM filter since the
scenario only considers a relative small and fixed number
of objects without object birth, i.e., |L| = 5. However, due
to the utilization of parallel group updates, the execution
time of the G-LMB-GOM filter is dramatically less than its
other competitors especially when more separated objects exist
during periods 1 – 10 s and 19 – 28 s.

Fig. 4(a) shows the estimation errors over time in terms
of average OSPA errors for the LMO-GOM, LMB-GOM, G-
LMB-GOM and δ-GLMB-GOM filters. We observe compa-
rable performance from the LMB-GOM and δ-GLMB-GOM
filters at all times except for the periods 7 – 12 s and 16 – 21 s
during which objects the very close to each other. As the
performance upper bound, the LMO-GOM filter still performs
the best. Moreover, the G-LMB-GOM filter has even better
performance than both the LMB-GOM and δ-GLMB-GOM
filter, because the grouping of objects alleviates the combina-
tional and high-dimension problem at the update stage.

Fig. 4(b) shows average OSPA errors for the MB-TBD filter
and others. The results observed are consistent with that of the
single run of the MB-TBD filter. When objects are far away
from each other before the time of 8 s, the MB-TBD filter has
decent accuracy, then its error begins to increase as objects
get close to each other, and finally it diverges.
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Fig. 4. (a) OSPA errors: (a) the δ-GLMB-GOM, LMB-GOM, G-LMB-GOM
and LMO-GOM filters; (b) all five algorithms.

B. Acoustic Amplitude Model

To further assess the capabilities of the LMB-GOM and
G-LMB-GOM filter, the scenario considers the problem of
tracking an unknown and time varying number of objects using
acoustic amplitude sensors. A number of 961 acoustic sensors
are dispersed evenly over a two-dimensional surveillance re-
gion [0 300] m × [0 300] m as shown in Fig. 5(a). At most
four objects appear and travel with the standard deviation of
the process noise σv = 0.7 m/s2. The path loss exponent is
set to be κ = 1. The duration of this scenario is Ts = 60 s.

This case is quite different from the pixeled TBD obser-
vation model in the sense that the VOR T (x) is able to
cover the whole observation space, which can be reflected
from Fig. 5(b) drawing the received sound amplitude at each
acoustic sensor. For the G-LMB-GOM filter, the grouping
criterion (77) is utilized with the threshold β = 45 m by
approximately truncating T (x). The particles employed by
each algorithm are set according to Table II with Np = 104.
The birth procedure for each algorithm is as follows. At
each time step, the birth process is an LMB RFS with the
parameter set πB = {(r(i)

B , p
(i)
B )}2i=1 where r

(i)
B = 0.02

and p
(i)
B = N (x;m

(i)
B , PB) with m

(1)
B = [50 180 0 0]>,

m
(2)
B = [200 105 0 0]> and PB = diag([2 2 2 2]).
Figs. 6 and 7 show the execution times, average OSPA errors

and the cardinality estimates over time for the LMB-GOM, G-
LMB-GOM and δ-GLMB filters under the sound amplitude
A = 7.9, respectively. We observe a comparable performance
from the LMB-GOM and δ-GLMB-GOM filters in terms of
both the cardinality estimates and the OSPA errors, while the
LMB-GOM filter achieves a more evident reduction in the
execution time compared to the δ-GLMB-GOM filter due to
the incorporation of the object birth process in this scenario.
On one hand, whenever an object is born, the tracking error of
the δ-GLMB-GOM filter sharply increases but retracts to the

TABLE III
THE AVERAGE OSPA ERRORS (M) FOR DIFFERENT SOUND AMPLITUDES.

Sound Amplitude A 10 7.9 5.6
δ-GLMB-GOM 2.0296 2.4284 3.7133

LMB-GOM 2.1012 2.4510 3.7404
G-LMB-GOM 1.9852 2.4092 3.8196
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Fig. 5. (a) the trajectories of four objects in x − y plane; (b) the received
sound amplitude at each acoustic sensor under A = 7.9.
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Fig. 6. Performance metrics for the δ-GLMB-GOM, LMB-GOM, G-LMB-
GOM filters underA = 7.9: (a) average OSPA errors; (b) cardinality estimates
and true cardinalities.

normal level quickly, while the LMB-GOM filter can handle
the births of objects well. On the other hand, the tracking errors
of the LMB-GOM filter are slightly higher than the δ-GLMB-
GOM filter at the stable stage. The tracking performance of
the G-LMB-GOM filter is also comparable with the other two
filters. More importantly, the OSPA errors of the G-LMB-
GOM filter is even lower than the other two algorithms during
20 s – 40 s when more isolated tracks have appeared. Also, the
execution time for the G-LMB-GOM filter is dramatically
reduced compared with the other two algorithms. However,
one can also observe that when objects die (at times 40 s and
50 s), the OSPA error of the G-LMB-GOM sharply increases
but retracts to the normal level quickly, while the other two
algorithms can handle the deaths of objects better. The reason
is that the performance loss arising from the grouping error
can be larger than the improvement in the numerical accuracy
due to the parallel group update, when an object dies. The
results of this experiment also verify that the G-LMB-GOM
filter can also be effective for a Type II sensor.

Further, we investigate how the performances of different
algorithms are affected by different values of the sound
amplitude A. The post-transient values of the OSPA errors
under A = 10, 7.9, 5.6 averaged over 100 MC runs and 60
time steps are presented in Table III.

VII. CONCLUSION

An exact Bayesian filtering solution using labeled random
finite sets, for the multi-object tracking problem under the
generic observation model (GOM) and the standard transition
kernel, was presented. The proposed exact solution can be
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served as the theoretical performance benchmark in multi-
object tracking under the standard transition kernel. We also
proposed a generalization of the LMB filter, named LMB filter
for GOM (LMB-GOM filter) which is derived by approx-
imating the full multi-object density with the closest LMB
density in terms of Kullback-Leibler divergence (and it is
proven to preserve the first moment as well). A variant of
the LMB-GOM filter, called grouping based LMB-GOM (G-
LMB-GOM) filter was devised and presented through a step-
by-step algorithm. The G-LMB-GOM filter can be viewed as
a computationally tractable way to implement the LMB-GOM
filter. The efficacy of the proposed algorithms is demonstrated
using the sequential Monte Carlo implementation under two
types of non-standard observation models.

Possible future works incorporate the study on the numerical
implementation methods of the proposed algorithms, e.g., the
unscented Kalman filter, the cubature Kalman filter.

APPENDIX A
PROOF OF PROPOSITION 1

The density of the surviving multi-object state at the next
time is given by the Chapman-Kolmogorov equation

πS(W) =

∫
fS(W|X)π(X)δX

=

∞∑
n=0

1

n!

∑
(`1,··· ,`n)∈Ln

ω({`1, · · · , `n})1{`1,··· ,`n}(L(W))

∫ n∏
i=1

Φ(W;xi, `i)P ({(x1, `1),· · ·, (xn, `n)})d(x1,· · ·, xn).

(79)

Substituting PS,{`,··· ,`n} of form (28) into (79), we have

πS(W) =
∑

I⊆L
1I(L(W))ω(I)PS,I(W). (80)

According to Definition 1, we can compute the joint probabil-
ity of the label set {`+,1, · · · , `+,n+} for πS(W) as,

ωS({`+,1, · · · , `+,n+})

=
∑

I⊆L
1I({`+,1, · · · , `+,n+})ω(I)

∫
PS,I({(x+,1,

`+,1), · · · , (x+,n+ , `+,n+)})d(x+,1, · · · , x+,n+).

(81)

Substitution of ηS,I({`+,1, · · · , `+,n+
}) in (29) results in

ωS({`+,1, · · · , `+,n+})

=
∑
I⊆L

1I({`+,1, · · · , `+,n+})ω(I)ηS,I({`+,1, · · · , `+,n+}). (82)

Also, we can compute the joint probability density of the states
x+,1,· · ·, x+,n+ conditional on `+,1,· · ·, `+,n+ by Definition 1,

PS({(x+,1, `+,1), · · · , (x+,n+ , `+,n+)}) =∑
I⊆L1I({`+,1,· · ·, `+,n+})ω(I)PS,I({(x+,1,`+,1),· · ·, (x+,n+ ,`+,n+)})

ωS({(`+,1),· · ·, (`+,n+)}) .

Hence, πS(W) can be presented as

πS(W) = ωS(L(W))PS(W). (83)

For the predicted multi-object density, recall the birth den-
sity (13), then we have

π+(X+) =fB(X+ ∩ X× B)πS(X+ ∩ X× L)

=ωB(L(X+) ∩ B)ωS(L(X+) ∩ L)

· PB(X+ ∩ X× B)PS(X+ ∩ X× L).

(84)

Using (24) and (25), (84) can be computed by

π+(X+) = ω+(L(X+))P+(X+). (85)

APPENDIX B
PROOF OF PROPOSITION 2

Based on the Bayes’ rule, the numerator of the multi-object
posterior density π(X|Υ) can be computed as

g(Υ|X)π+(X) =g(Υ|X)ω+(L(X))P+(X). (86)

Substitution of ηΥ(·) in (33), and P (X|Υ) in (31), (86) can
be further computed by

g(Υ|X)π+(X) =ηΥ(L(X))ω+(L(X))
g(Υ|X)P+(X)

ηΥ(L(X))

=ηΥ(L(X))ω+(L(X))P (X; Υ).

(87)

Then, the denominator of (12) can be computed by∫
g(Υ;X)π+(X)δX =

∑
I+⊆L+

ηΥ(I+)ω+(I+). (88)

Hence, the multi-object posterior density is

π(X|Υ) =
ηΥ(L(X))ω+(L(X))P (X; Υ)∑

I+∈F(L+) ηΥ(I+)ω+(I+)
=ω(L(X); Υ)P (X; Υ)

where ω(I+; Υ) is given in (32).

APPENDIX C
PROOF OF PROPOSITION 3

According to the definition of the PHD [1], the labeled PHD
of π(X) = ω(L(X))P (X) can be computed as

v(x, `) =

∫
ω(L({(x, `) ∪X}))P ({(x, `)} ∪X)δX

=

∞∑
n=0

∑
(̀ 1,···,`n)∈Ln

(1−1{`1,··· ,`n}(`))δn({`1,· · ·, `n})ω({`, `1,· · ·, `n})

· 1

n!

∫
P ({(x, `), (x1, `1),· · ·, (xn, `n)})d(x1,· · ·, xn).

(89)
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Substituting p{`1,··· ,`n}(·) of form (49) into (89), (89) leads to

v(x, `)

=

∞∑
n=0

1

n!

∑
(`1,··· ,`n)∈Ln

δn({`1, · · · , `n})(1− 1{`1,··· ,`n}(`))

· ω({`, `1, · · · , `n})p{`1,··· ,`n}(x, `)
=
∑

I∈F(L)
1I(`)ω(I)pI−{`}(x, `).

(90)

Hence, the Proposition holds.

APPENDIX D
PROOF OF PROPOSITION 4

The LMB density can be presented as the form of (5) with

ω(L(X)) =
∏

i∈L
(1− r(i))

∏
j∈L(X)

1L(j)r(j)

1− r(j)
(91)

P (X) =∆(X)[p]X. (92)

According to Proposition 3, substituting (91) and (92) in (48),
we can obtain the labeled PHD of LMB density π as,

v(x, `) =
∑

I∈F(L)
1I(`)

∏
j∈I

r(j)
∏

i∈L−I
(1−r(i))p(x, `)

=r(`)p(x, `)
∑

I′∈F(L−{`})

∏
j∈I′

r(j)
∏

i∈L−{`}−I′
(1− r(i))

=r(`)p(x, `) =
∑

α∈L
r(α)p(α)(x, `).

(93)

Hence, the Proposition holds.

APPENDIX E
PROOF OF PROPOSITION 5

Given an arbitrary LMO density π(X) = ω(L(X))P (X) of
the form (5) on state space X and label space L, we can easily
obtain the LMB density π̂LMB(X) matching the labeled PHD
of π(X) by comparing the labeled PHDs of the general labeled
RFS and the LMB RFS shown in (48) and (50) respectively.
Specifically, the parameters of π̂LMB(X) of the form (7) can
be computed by

r̂(`) =

∫
v(x, `)dx =

∑
I∈F(L)

1I(`)ω(I) (94)

p̂(x, `) =
v(x, `)

r̂(`)
=

1

r̂(`)

∑
I∈F(L)

1I(`)ω(I)pI−{`}(x, `)

(95)

where v(x, `) is the labeled PHD of π.
In the following, we prove that π̂LMB which matches the

labeled PHD of π also minimizes the KLD from π over the
class of LMB RFS family.

The KLD from π and any LMB density πLMB of the form
(7) with the parameters r(`) and p(x, `), is given by

DKL(π;πLMB)

=

∫
log

(
ω(L(X))P (X)

ω(L(X))P (X)

)
ω(L(X))p(X)δX

=

∫
log

(
P (X)

P (X)

)
ω(L(X))P (X)δX +DKL(ω;ω)

(96)

where
ω(I) =

∏
`∈I

r(`)
∏

`′∈L−I

(
1− r(`′)

)
P (X) = ∆(X)[p]X.

(97)

Observing (96), one can find that DKL(π;πLMB) is the sum
of two parts. We define the first part as

C(P ),
∫

log

(
P (X)

P (X)

)
ω(L(X))P (X)δX (98)

and the second part as

C(ω) , DKL(ω;ω). (99)

First, we consider the part C(P ), and it can be computed by

C(P ) =K1 −
∫
ω(L(X))P (X)

∑
x∈X

log p(x)δX (100)

where K1 is a constant having no functional dependence on
πLMB(X).

According to Proposition 2a in [5], i.e.,∫ ∑
y∈Y

h(y)π(Y )δY =

∫
h(y)v(y)dy (101)

with v(y) being the PHD of π, we have∫
ω(L(X))p(X)

∑
x∈X

log p(x)δX=
∑
`∈L

∫
v(x, `) log p(x, `)dx.

(102)
According to Proposition 3, v(x, `) has the form of (48).

Substituting (48) and (102) into (100), we have

C(P ) = K1−
∑
`∈L

∫ ∑
I∈F(L)

1I(`)ω(I)pI−{`}(x, `) log p(x, `)dx.

(103)
The substituting (94) and (95) into (103), we have

C(P ) =K1 +K2 +
∑

`∈L
r̂(`)DKL(p̂(·, `); p(·, `)) (104)

where

K2 = −
∑

`∈L
r̂(`)

∫
p̂(x, `) log p̂(x, `)dx (105)

which is a constant that has no functional dependence on
p(·, `), ` ∈ L. Hence, C(P ) is minimized only if p(·, `) =
p̂(·, `) for each ` ∈ L.

Secondly, consider the part C(ω). According to the defini-
tion of KLD, we have

C(ω) =K3 −
∑

`′∈L

∑
I∈F(L)

1L−I(`
′)ω(I) log

(
1− r(`′)

)
−
∑

`∈L

∑
I∈F(L)

1I(`)ω(I) log r(`)

(106)
where K3 is a constant independent of ω(·).

It is obvious that∑
I∈F(L)

1L−I(`
′)ω(I) = 1−

∑
I∈F(L)

1I(`
′)ω(I) = 1− r̂(`′)

(107)
with r̂(`′) shown in (94). Thus (106) can be presented as

C(ω)=K3−
∑

`∈L

((
1−r̂(`)

)
log
(

1−r(`)
)

+r̂(`) log r(`)
)
.

(108)
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We define two Bernoulli distributions Ê` and E` for each
` ∈ L as

Pr(Ê` = 1) = r̂(`); Pr(Ê` = 0) = 1− r̂(`) (109)

Pr(E` = 1) = r(`); Pr(E` = 0) = 1− r(`). (110)

Then, Eq. (108) yields to

C(ω)=K3+K4+
∑

`∈L
DKL

(
Pr(Ê` = e); Pr(E` = e)

)
(111)

where

K4 =−
∑

`∈L

(
(1−r̂(`)) log(1−r̂(`))+r̂(`) log r̂(`)

)
(112)

which is a constant having no functional dependence on any
r(`), ` ∈ L. Hence, C(ω) is minimized only if r(`)= r̂(`) for
each `∈L.

According to (96), DKL(π;π) is minimized only if both
C(P ) and C(ω) are minimized. Hence, DKL(π;π) is min-
imized by πLMB = π̂LMB over the class of LMB RFS family.

APPENDIX F
PROOF OF PROPOSITION 6

Firstly, one can write the LMB prediction in the general
LMO density form,

π+(X) = ∆(X)ω+(L(X))[p+]
X

) (113)

with ω+(·) shown as (24) and p+(x, `) = p
(`)
+ (x).

Then, according to Proposition 2, we can obtain the fol-
lowing multi-object posterior under the generic observation
likelihood g(Υ|X),

π(X|Υ) =∆(X)ω(L(X); Υ)P (X|Υ) (114)

where ω(·; Υ) and P (·|Υ) are computed using (56) and (57),
respectively.

According to Proposition 5, the LMB RFS that matches
exactly the labeled first-order moment of π(X|Υ) as well as
minimizes the Kullback-Leibler divergence from π(X|Υ) can
be computed by

π̂(·|Υ) = {r̂(`)(Υ), p̂(`)(·; Υ)}`∈L+
, (115)

where r̂(`)(Υ) and p̂(`)(·; Υ) is computed by (51) and (52).

APPENDIX G
PROOF OF PROPOSITION 7

According to Assumption A.1, for a subset of X, denoted
by X′, the belief mass function [1] of the observation Z can
be presented as

β(S|X) = Pr(Z ⊆ S|X)

= Pr(Z ∩ T (X′) ⊂ S|X) Pr(Z − T (X′) ⊂ S|X).
(116)

Also, according to Assumption A.2, T (X′)∩T (X−X′) = ∅
which indicates that observations z ∈ T (X′) are generated
only by object states in X′, and hence are independent from
X−X′, i.e.,

Pr(Z ∩ T (X′) ⊆ S|X) = Pr(Z ∩ T (X′) ⊆ S|X′)

=

∫
S

1T (X′)(Z)g(Z|X′)δZ. (117)

Similarly, the observations z ∈ Z − T (X) are independent
from X −X′. As a result, the belief mass function given in
(116) can be calculated as follows:

βZ(S|X) =

∫
S

1T (X′)(Z)g(Z|X′)δZ

·
∫
S

(1− 1T (X′)(Z))g(Z|X−X′)δZ.

(118)

By computing the set derivative of the above mass believe
function, the multi-object likelihood can be represented as

g(Z|X) =
∑
Z′⊆Z

1T (X′)(Z
′)g(Z ′|X′)(1− 1T (X′)(Z−Z ′))

· g(Z−Z ′|X−X′)
=g(Z ∩ T (X′)|X′)g(Z − T (X′)|X−X′).

(119)
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