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Low-Complexity Robust MISO Downlink Precoder

Design With Per-Antenna Power Constraints
Mostafa Medra Timothy N. Davidson

Abstract—This paper considers the design of the beamformers
for a multiple-input single-output (MISO) downlink system that
seeks to mitigate the impact of the imperfections in the channel
state information (CSI) that is available at the base station (BS).
The goal of the design is to minimize the outage probability
of specified signal-to-interference-and-noise ratio (SINR) targets,
while satisfying per-antenna power constraints (PAPCs), and
to do so at a low computational cost. Based on insights from
the offset maximization technique for robust beamforming, and
observations regarding the structure of the optimality conditions,
low-complexity iterative algorithms that involve the evaluation
of closed-form expressions are developed. To further reduce the
computational cost, algorithms are developed for per-antenna
power-constrained variants of the zero-forcing (ZF) and max-
imum ratio transmission (MRT) beamforming directions. In
the MRT case, our low-complexity version for systems with a
large number of antennas may be of independent interest. The
proposed algorithms are extended to systems with both PAPCs
and a total power constraint. Simulation results show that the
proposed robust designs can provide substantial gains in the
outage probability while satisfying the PAPCs.

Index Terms—Broadcast channel, downlink beamforming, ro-
bust precoding, outage, per-antenna power constraints, massive
MIMO, zero-forcing, maximum ratio transmission.

I. INTRODUCTION

The spatial multiplexing capabilities of base stations (BSs)

with multiple antennas offer the potential for substantial gains

in the quality of service (QoS) that can be offered to users in

a downlink system; e.g., [1]. In particular, linear beamforming

schemes have been developed to simultaneously serve multiple

users at their requested signal-to-interference-and-noise ratio

(SINR) targets [2]–[6]. However, the performance of those

beamforming schemes can be quite sensitive to the accuracy

of the channel state information (CSI) that is available at

the BS. Since that information is typically obtained through

estimation on the uplink (in time division duplexing, TDD,

systems) or through estimation on the downlink and quantized

feedback (in frequency division duplexing, FDD, systems),

the CSI at the BS is inherently uncertain. That observation

has spawned the development of a variety of design strategies

that incorporate different models for the uncertainty into the

design. One strategy is to require the requested SINR to be

met for all channels that are within a specified distance of
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the BS’s model for the channel [7]–[12]. However, in many

scenarios that is a rather conservative approximation of the

outage that occurs in practice. Furthermore, although this

strategy, or a mild approximation thereof, often results in a

convex optimization problem for finding the beamformers, the

computational cost of solving those problems can be quite

significant. Fortunately, different approaches to approximating

the outage probability can yield alternative design strategies

that provide excellent performance in practice, even when the

uncertainties in the CSI are quite substantial, and do so in

a computationally inexpensive way. One such strategy is the

offset maximization algorithm [13], in which the beamformers

are designed to maximize a carefully structured offset on the

performance specification (see Section II-B).

The above-mentioned design strategies seek to jointly de-

sign the beamforming directions and the power allocated to

each direction. However, significant reductions in the com-

putational cost can be obtained by computing the beamform-

ing directions using a (computationally cheap) conventional

technique and then developing a robust power loading al-

gorithm. The beamforming directions in this approach are

typically chosen to be either the maximum ratio transmission

(MRT) [14] or zero-forcing (ZF) directions [15]. For the case

of additive Gaussian uncertainties in the BS’s CSI, single-

integral expressions for the outage probability can be obtained

[16] and an effective algorithm for finding the power loading

that minimizes the power required to meet the specified outage

constraint has been developed [17]. However, that algorithm

is rather computationally expensive. In [18], insights from

bounds on the cumulative distributive function were used to

develop a new robust power loading technique that provides

performance close to that of the optimal algorithm in [17], but

has significantly lower computational cost.

The existing literature on robust downlink beamforming has

tended to focus on designs that impose a constraint on the total

power transmitted by the BS. In practice, each antenna will

typically be driven by its own power amplifier, and hence the

design ought to include constraints on the power transmitted

from each antenna, as well as the total power. In the case of

perfect CSI, a number of downlink beamforming algorithms

that incorporate per-antenna power constraints (PAPCs) have

been developed [19]–[23]. For robust beamforming designs

that can be formulated as convex problems (e.g., [8], [9], [12])

and are solved using generic solvers, incorporating these addi-

tional constraints is quite straightforward. However, doing so

increases the computational cost of what are, in comparison to

the perfect CSI case, already quite expensive algorithms. The

goal of this paper is to develop robust beamforming designs
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that incorporate PAPCs and have reasonable computational

costs. Our technique is based on insights developed from the

offset maximization approach to robust beamforming [13], a

closely related power loading technique [18], and observations

regarding the structure of the optimality conditions for the

design problem. These observations enable us to develop a

low-complexity dual update optimization startegy related to

that in [23] that involves the evaluation of a sequence of

closed-form expressions. After extending that algorithm to

systems that have both PAPCs and a total power constraint, we

make the observation that a large fraction of the computational

cost arises from the design of the beamforming directions.

To reduce that cost, we develop PAPCed variants of the ZF

and MRT directions, and show how these can be incorporated

into our design approach. Furthermore, we develop a low-

complexity version of our PAPCed MRT beamforming algo-

rithm for “massive MIMO” systems with a large number of

antennas. As scaling techniques for large MRT beamformers

have been recently proposed [24], that algorithm may be of

independent interest.

II. SYSTEM MODEL AND DESIGN APPROACH

We consider a narrowband multiple-input single-output

(MISO) downlink in which an Nt-antenna BS sends inde-

pendent messages to K single-antenna users. The transmitted

signal at a given signalling instant is constructed using linear

beamforming as x =
∑K

k=1 wksk, where sk is the power-

normalized data symbol for user k, and wk is the associated

beamformer. In some settings we will refer to uk = wk/‖wk‖
as the direction of the beamformer, and βk = wH

k wk as the

power allocated to that direction. That enables us to write

wk =
√

βk uk.

The received signal at user k can be written as

yk = hH
k wksk +

∑

j 6=k

hH
k wjsj + nk, (1)

where hH
k denotes the channel between the BS and receiver

k, and nk represents the additive zero-mean circular complex

Gaussian noise at that user.

In the problems that we will consider, each user specifies

the SINR that it will require in order to support the service

that it desires. This constraint takes the form

SINRk =
hH
k wkw

H
k hk

hH
k (
∑

j 6=k wjw
H
j )hk + σ2

k

≥ γk, (2)

where σ2
k is the noise variance at receiver k, and γk is the

required SINR. We will find it convenient to rewrite that

constraint as

hH
k Qkhk − σ2

k ≥ 0,

where

Qk = wkw
H
k /γk −

∑

j 6=k

wjw
H
j . (3)

If we denote the signal transmitted from antenna i by xi,

then the power constraint on the BS as a whole can be written

as
∑Nt

i=1 E{|xi|2} =
∑K

k=1 w
H
k wk ≤ Pt, where we have used

the assumptions that the messages are independent and that the

symbols sk are normalized. If we let pi denote the maximum

power that can be transmitted from antenna i, the PAPC can

be written as E{|xi|2} =
[
∑K

k=1 wkw
H
k

]

i,i
≤ pi, where [·]i,i

denotes the (i,i)th entry of the given matrix.

In order for a BS to be able to evaluate whether a can-

didate set of beamformers {wk}Kk=1 satisfies the K SINR

constraints in (2), the BS must know each channel vector

hk; e.g., [2]. However, typically the BS will only have an

estimate of each channel, denoted hek . To incorporate the

uncertainty in that channel estimate into the design, we will

postulate a conditional distribution, p(hk|hek), and convert

the deterministic QoS constraint SINRk ≥ γk into the chance

constraint Prob(SINRk ≥ γk) ≥ 1 − δk, where δk is the

required outage probability. In this paper, we will model the

uncertainty additively; i.e.,

hk = hek + ek, (4)

with ek having zero-mean and being independent of the

channel and data. Our results will focus on the case where ek is

a zero-mean circular Gaussian random variable of covariance

σ2
ek
I. Among a number of scenarios, that model is appropriate

in certain TDD systems in which channels are estimated during

the uplink training phase.

A. Design approach

With the uncertainty modeled as described above, one

approach to the design of the downlink beamformers wk is

to seek to minimize the probability of outage of the SINR

targets, subject to a total power constraint and PAPCs; i.e.,

min
wk,δk

max
k

δk (5a)

s.t.
∑

k w
H
k wk ≤ Pt, (5b)

[

∑K
k=1 wkw

H
k

]

i,i
≤ pi, ∀i, (5c)

Prob(SINRk ≥ γk) ≥ 1− δk, ∀k. (5d)

This problem is hard to solve even without the PAPCs.

However, in the case that the PAPCs are omitted, the offset

maximization algorithm [13] is a low-complexity algorithm

that has been shown to provide good performance. The goal

of this paper is to use insights from the development of the

offset maximization approach to develop an effective low-

complexity algorithm for the PAPCed case. One observation

that we will use is that the performance of the offset max-

imization approach can be improved by applying the robust

power loading algorithm in [18] to the beamforming directions

generated by the offset maximization. Doing so reveals that

robust beamformers can be obtained with a computational cost

that is similar to that of beamformer design in the perfect CSI

case. (Many existing approaches to robust beamforming are

much more expensive than the perfect CSI case; e.g., [11],

[12].) However, like the perfect CSI case, it is the computation

of the directions that dominate the computational cost. There-

fore, we also propose to apply the principles that underlie

the power loading in [18] to beamforming directions that

can be computed more efficiently, such as PAPCed variants,
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derived herein, of the classical ZF and MRT directions; see

Sections IV, and V. In the latter case, a further approximation

that is suitable for scenarios with a large number of antennas

at the BS substantially reduces the computational cost, and

has almost the same outage performance.

To lay the groundwork for the development of the proposed

beamforming schemes, in the following subsections we briefly

review the offset maximization approach to beamformer design

under a total power constraint [13], and the low-complexity

robust power loading technique for systems with a total power

constraint that was developed in [18].

B. Offset maximization beamforming directions

The offset maximization beamformers [13] can be found by

solving the following problem:

r⋆t = max
wk,r

r (6a)

s.t.
∑K

k=1 w
H
k wk ≤ Pt, (6b)

hH
ek
Qkhek − σ2

k − r ≥ 0, ∀k. (6c)

It is implicit in (6c) that this algorithm tries to find the largest

noise-plus-interference power each user can endure, under the

total power constraint. In [13] an efficient method to solve

(6) was developed by considering the following problem, in

which, for now, it is assumed that the optimal value for (6),

r⋆t , is known:

P ⋆ = min
wk

∑

k w
H
k wk (7a)

s.t. hH
ek
Qkhek − σ2

k − r⋆t ≥ 0, ∀k. (7b)

It can be shown [13] that the optimal value of the problem in

(7) is Pt, and that any set of beamformers that optimize (7)

are also optimal for (6). Also, at optimality, all the constraints

are satisfied with equality.

The advantage of the connection between problems (6) and

(7) is that a highly efficient algorithm for the problem in (7)

with r = 0 (i.e., the perfect CSI case) was developed in [3];

see also [6]. That algorithm can be extended to jointly find

the optimal beamformers and the optimal offset, r⋆t , for the

problem in (6). In particular, if we let νk denote the Lagrange

multiplier for the SINR constraint in (7b), then from the

KKT conditions of (7) we can find the offset maximization

directions by solving the eigen problem

uk =

(

νk
γk

hekh
H
ek

−
∑

j 6=k

νjhejh
H
ej

)

uk, (8)

where the Lagrange multipliers must satisfy the fixed-point

relation

ν−1
k = hH

ek

(

INt
+
∑

j νjhejh
H
ej

)−1

hek

(

1 + 1
γk

)

. (9)

Since (8) can be solved using a power method, the complexity

of finding the directions is dominated by the matrix inversion

in (9), which requires O(N3
t ) operations. Having found those

directions, the offset maximization power loading and the

optimal offset can be found by solving the K + 1 linear

equations that arise when the constraints in (6b) and (6c) hold

with equality.

C. Robust power loading

The offset maximization algorithm described above uses the

same offset r to increase the robustness of each user to channel

uncertainty. The goal of robust power loading approach in [18]

is to provide a computationally-efficient way to adapt the offset

to the characteristics of each user’s channel. For an arbitrary

set of beamforming directions {uk}, the generic power loading

problem can be stated as

min
βk,δk

max
k

δk (10a)

s.t.

K
∑

k=1

βk ≤ Pt, (10b)

Prob(SINRk ≥ γk) ≥ 1− δk, ∀k. (10c)

The derivation of the algorithm developed in [18] for

producing good solutions to (10) begins by observing the

under the additive uncertainty model in (4), the probability

that SINRk ≥ γk is equal to the probability that

fk(ek) = hH
ek
Qkhek +2Re(eHk Qkhek)+ eHk Qkek −σ2

k ≥ 0.
(11)

If we assume that the norms of the errors ek are small, as

they will need to be for reliable operation [25], then we

can approximate the quadratic term eHk Qkek by a Gaussian

random variable of the same mean and variance. In that case,

the distribution of fk(ek) becomes Gaussian. (Recall that we

are focusing on the case where ek is Gaussian, with zero mean

and of covariance σ2
ek
I; cf. (4).) Under that approximation, if

we design the power loading so that the mean, µfk , of fk(ek)
is a significant multiple of its standard deviation, σfk , then

that user will achieve a low outage probability. Indeed, we

can choose a value for that multiple so that the target outage

probability is guaranteed to be satisfied; see, e.g., [7]. We

also note that the optimal solution of (10) has equal values

for δk. If that were not the case, the user(s) with higher

outage probability could be allocated more power and the other

user(s) less, which would reduce the objective value, and thus

contradict the assumed optimality. Therefore, it is natural to

choose the same multiple, r, for each user in the approximation

of the outage constraint in (10c). The resulting approximation

of the problem in (10) can be written as [18]

max
βk,r

r (12a)

s.t.

K
∑

k=1

βk ≤ Pt, (12b)

µfk ≥ rσfk , ∀k. (12c)

From the definition of fk(ek) in (11) and the channel uncer-

tainty model in (4), it can be shown that

µfk = hH
ek
Qkhek − σ2

k + σ2
eβk (1/γk + 1)− σ2

ePt, (13)

which is linear in the design variables {βk}Kk=1. (Recall from

(3) that Qk = βkuku
H
k /γk −∑j 6=k βjuju

H
j .) Similarly, we

have that

σ2
fk

= var{fk(ek)} = 2σ2
eh

H
ek
Q2

khek + σ4
e tr(Q2

k). (14)
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The structure of the problem in (12) is such that the

constraints hold with equality at optimality [18]. Since σfk

is not a linear function in β, that results in a set of non-

linear equations for the power loading. The following iterative

linearization technique has been shown in [18] to be an

effective way to obtain good solutions to (12):

1) Initialize each σfk = 1.

2) Find {βk} and r by solving the set of linear equations

that arise from equality in (12b) and (12c) for the current

values of σfk , where µfk is defined in (13).

3) Update each σfk using (14).

4) Return to (2) until a convergence criterion is satisfied.

We note that the matrix that relates {βk} to σfk and r in

step 2 is constant, and, accordingly, we need only invert this

matrix once [18]. In practice, this algorithm converges quickly

with a high probability [18]. In [26], the performance of this

algorithm was shown to provide very similar performance

to the optimal power loading in [17], and at a cost that is

dominated by the O(K3) operations that result from the initial

matrix inversion.

III. OFFSET MAXIMIZATION DESIGNS WITH PAPCS

To simplify the development of the proposed robust beam-

forming technique, we will first consider the addition of

PAPCs to the offset maximization problem in (6). We will

then modify the resulting algorithm using insights from the

above robust power loading algorithm.

When we add the PAPCs to the offset maximization problem

in (6), the design problem becomes

r⋆tpa = max
wk,r

r (15a)

s.t.
∑K

k=1 w
H
k wk ≤ Pt, (15b)

[

∑K
k=1 wkw

H
k

]

i,i
≤ pi, ∀i, (15c)

hH
ek
Qkhek − σ2

k − r ≥ 0, ∀k. (15d)

Although the formulation in (15) is not convex, it can be

transformed in a straightforward way into a second order cone

program, using the technique that was used for the case of

perfect CSI; cf. [4], [23]. While that formulation can be solved

using a generic interior point method (e.g., [27]), such generic

methods do not exploit the structure of the problem, and the

development of tailored algorithms that do exploit the structure

offers the potential for improved computational efficiency.

In the following subsections, we will first develop a low-

complexity algorithm for the case where we have PAPCs

only, with no total power constraint. Then we will tackle the

general problem with both types of power constraints. The

development will use insights from algorithms developed for

the perfect CSI case [23] and insights from the robust power

loading algorithm described in Section II-C.

A. Dominant PAPCs

If Pt >
∑Nt

i=1 pi, the total power constraint can never be

active and the problem in (15) can be rewritten as

r⋆pa = max
wk,r

r (16a)

s.t.
[

∑K
k=1 wkw

H
k

]

i,i
≤ pi, ∀i, (16b)

hH
ek
Qkhek − σ2

k − r ≥ 0, ∀k. (16c)

Motivated by the way that a customized algorithm for (7)

was adapted [13] to solve the problem in (6), we consider

the following problem in which, for now, r⋆pa is presumed to

be known,

min
wk,α

α
∑Nt

i=1 pi (17a)

s.t.
[

∑K
k=1 wkw

H
k

]

i,i
≤ αpi, ∀i, (17b)

hH
ek
Qkhek − σ2

k − r⋆pa ≥ 0, ∀k. (17c)

In the context of (17), the constant term
∑Nt

i=1 pi in the

objective is superfluous, but it will simplify the interpretation

of the Lagrangian. Using arguments analogous to those in

[13], [23], it can be shown that any set of beamformers that

is optimal for (17) is also optimal for (16), and the optimal

value of α in (17) is one.

Now, let qi denote the dual variable of the ith condition

in (17b) and νk denote the dual variable of the kth condition

in (17c). Let us also define the diagonal matrix Q̂, such that

[Q̂]i,i = qi. These definitions enable us to write the Lagrangian

of the problem in (17) as

L(wk, α, νk, qi) =
K
∑

k=1

νk(σ
2
k+r⋆pa)+α

(

Nt
∑

i=1

pi−
Nt
∑

i=1

qipi

)

+

K
∑

k=1

wH
k

(

Q̂+
∑

j 6=k

νjhejh
H
ej

− νk/γkhekh
H
ek

)

wk. (18)

Using the notion of complementary slackness, since the

optimal value of α is one, at optimality we have that
∑Nt

i=1 pi − ∑Nt

i=1 qipi = 0. Also, at optimality we have

Q̂ +
∑

j 6=k νjhejh
H
ej

− νk/γkhekh
H
ek

� 0, with wk lying in

the null space of this matrix. This can be simplified to show

that wk and

ŵk =
(

Q̂+
∑

k

νkhekh
H
ek

)†

hek , (19)

where (·)† denotes the Moore-Penrose pseudo-inverse, should

be in the same direction. Further simplifications show that the

dual variable νk in (19) should satisfy the fixed point equation

ν−1
k = hH

ek

(

Q̂+
∑

j νjhejh
H
ej

)†

hek

(

1 + 1
γk

)

. (20)

From (20) we observe that if we were given the optimal

Q̂, we could find the optimal values for {νk} using (20) and

then the optimal directions {uk} by normalizing the {ŵk}
obtained using (19). After doing so, we could complete the

solution of (17) by finding the optimal values for βk = ‖wk‖2.

That can be done by solving the set of K linear equations that
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arise from the fact that at optimality (17c) holds with equality.

(If this were not the case for condition k in (17c), then the

amplitude of wk could be decreased which would allow a

smaller value of α while satisfy all the other constraints.) To

adapt that approach to solve (16), in the final step we must

simultaneously solve for {βk} and r⋆pa. To do so we observe

that r⋆pa enters linearly into (17c), and hence all we need is one

more linearly independent equation. To obtain that equation we

observe that if qi > 0, then the ith component of (17b) holds

with equality. By summing over all the active constraints in

(17b) we obtain the following equation

∑

i,∀qi 6=0

[

∑K
k=1 βkuku

H
k

]

i,i
=
∑

i,∀qi 6=0 pi. (21)

In the case that all the qi are positive — a case that happens

quite often — the equation in (21) simplifies to
∑K

k=1 βk =
∑Nt

i=1 pi.
To complete the algorithm, we need to develop a tech-

nique to determine the optimal Q̂. One strategy for doing

so is to apply the projected subgradient technique developed

in [23]. That involves applying the update equation Q̂n+1 =
proj

(

Q̂n + tndiag(diag(
∑

i wiw
H
i ))
)

, where proj(·) denotes

the projection of a matrix on the space of diagonal positive

semidefinite matrices that satisfy
∑Nt

i=1 qipi =
∑Nt

i=1 pi and,

consistent with the syntax used in MATLAB, when diag(·)
operates on a matrix it produces a vector containing the

diagonal elements and when it operates on a vector it produces

a diagonal matrix with the elements of the vector on the

diagonal. The initialization parameters used in [23] were

chosen to be Q̂0 = I and the step size chosen to be tn = 1/n.

Although this strategy converges, it can be quite slow [23].

In this paper, we will refine the approach in two ways. First,

in Appendix A we develop a computationally cheap quasi-

closed-form expression for the projection of Q̂n+1 in a 2-

norm sense. Second, based on insights from [28] we will

choose a step size of the form tn = tn−1 − t2n−1/a, for

some positive scalar a. In addition, in Section III-C we will

identify a prediction step that can be used in the first iteration

to accelerate the algorithm. One simple termination strategy is

to stop the algorithm when [
∑

k wkw
H
k ]i,i−pi < ǫi, ∀i, where

ǫi is the maximum allowable violation of the power constraint

for the ith antenna. Following the above development, the

algorithm can be summarized as shown in Algorithm 1.

Algorithm 1 Offset maximization with PAPCs

1: Initialize the diagonal matrix Q̂0 such that each element

is non-negative and
∑Nt

i=1 qipi =
∑Nt

i=1 pi. Set n = 0.

2: while [
∑

k wkw
H
k ]i,i − pi > ǫi for any i do

3: Find {νk} using (20).

4: Solve for the directions {uk} by normalizing the {ŵk}
obtained using (19).

5: Find the power loading {βk} and r⋆pa by solving the

set of linear equations arising from (17c) holding with

equality and (21).

6: Update Q̂n+1 using the results in Appendix A.

7: Increment n.

8: end while

Having developed an efficient algorithm for the offset

maximization problem with PAPCs, we now seek to incor-

porate the principles of the robust power loading discussed in

Section II-C. To do so, we note that in the offset maximization

design, the directions are independent of the offset term r in

(16c); cf. (19) and (20). That suggests that we could simply

modify the power loading step. Indeed, once the directions

have been obtained in step 4 of Algorithm 1, we can replace

the power loading in step 5 by the {βk} and r⋆ that solve (12).

Those values can be found using the algorithm in Section II-C;

see [18]. Incorporating that robust power loading algorithm

into the framework of Algorithm 1 results in Algorithm 2.

Algorithm 2 PAPCed offset maximization with robust power

loading

1: Initialize the diagonal matrix Q̂0 such that each element

is non-negative and
∑Nt

i=1 qipi =
∑Nt

i=1 pi. Set n = 0.

2: while [
∑

k wkw
H
k ]i,i − pi > ǫi for any i do

3: Find {νk} using (20).

4: Solve for the directions {uk} by normalizing {ŵk}
obtained using (19).

5: Find {βk} and r⋆ by solving E(hH
k Qkhk − σ2

k) =
σskr

⋆ and (21) using the method provided in Section II-C.

6: Update Q̂n+1 using the results in Appendix A.

7: Increment n.

8: end while

B. Total and PAPCed algorithm

Using the principles outlined in Section II-B and the pre-

vious section, we can develop an algorithm for solving the

general problem in (15), which has PAPCs and a total power

constraint. In this section, we will focus on the case when

Pt is sufficiently smaller than
∑

i pi to ensure that the total

power constraint is active. (Otherwise, the problem can be

solved by the techniques in the previous section.) Similar to the

previous section, we will obtain the beamforming directions

by normalizing the beamformers resulting from the following

problem

min
wk

∑K
k=1 w

H
k wk (22a)

s.t.
[

∑K
j=1 wjw

H
j

]

i,i
≤ pi, ∀i (22b)

hH
ek
Qkhek − σ2

k − r⋆tpa ≥ 0, ∀k, (22c)

and then we will refine the power loading using the method

described in Section II-C. As in the previous development, the

Lagrangian of (22) plays a key role. It can be written as

L(wk, νk, qi) =

K
∑

k=1

νk(σ
2
k + r⋆tpa)−

Nt
∑

i=1

qipi+

K
∑

k=1

wH
k

(

I+ Q̂+
∑

j 6=k

νjhejh
H
ej

− νk/γkhekh
H
ek

)

wk. (23)

Using the KKT conditions, for a given value for Q̂ we can

compute the corresponding directions and then the robust

power loading in Section II-C. Furthermore, the subgradient
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used in the previous section remains a subgradient in this case.

However, the structure of the KKT conditions is simpler in this

case, which results in a more straightforward projection for the

Q̂ matrix. Indeed, since the only constraint on qi in this case

is that it is non-negative, the update equation for Q̂ can be

written as

Q̂n+1 = max
(

Q̂n + tndiag
(

diag
(

∑

k

wkw
H
k

)

− p
)

,0
)

,

(24)

where the maximum operator is defined element-wise, and p is

the vector whose ith element is pi. Therefore, we can construct

an algorithm that has a similar structure to that in Algorithm 2.

Having said that, in the case of PAPCs only there is a strong

likelehood that the PAPCs will be active at optimality, and

hence it makes sense to initialize the algorithm with a positive

definite matrix Q̂0. In the general case, the PAPCs are less

likely to be active at optimality, and hence we will initialize the

algorithm with Q̂0 = 0. The resulting algorithm is provided

in Algorithm 3.

Algorithm 3 Generalized offset maximization

1: Initialize Q̂0 = 0. Set n = 0.

2: while [
∑

k wkw
H
k ]i,i − pi > ǫi for any i do

3: Find νk using the fixed point equations

ν−1
k = hH

ek

(

I+ Q̂n +
∑

j νjhejh
H
ej

)−1

hek

(

1 + 1/γk

)

.

4: Solve for the directions uk = ŵk/‖ŵk‖, where

ŵk =
(

I+ Q̂n +
∑

j ν
n
j hejh

H
ej

)−1

hek .

5: Find {βk} and r⋆ by solving E(hH
k Qkhk − σ2

k) =
σskr

⋆ and
∑

k βk = Pt using the method provided in

Section II-C.

6: Update Q̂n+1 using (24).

7: Increment n.

8: end while

C. Algorithm acceleration

As will be apparent in the simulations in Section VI,

the modified update in Appendix A and the improved step

size selection result in a substantial reduction of the number

of iterations required over the number required using the

choices made in [23]. Furthermore, we have observed that

Q̂1 and the corresponding matrix Q̂n at the termination of

the algorithm are typically closely related. If that relationship

can be determined with reasonable accuracy, this observation

suggests that a predictive step could be used to further reduce

the number of iterations. As an example of what can be done,

in Section VI we illustrate how replacing Q̂1 with a simple

affine prediction, Q̂1
p, of the terminating matrix Q̂n results in

substantial reduction in the number of iterations.

IV. CONVENTIONAL ZF BEAMFORMING WITH

PER-ANTENNA POWER CONSTRAINTS

Even though the computational cost of each iteration of

the PAPCed offset maximization beamforming algorithms in

the previous section is dominated by terms that are only

O(N3
t ), when the BS has a large number of antennas the

resulting computational load can still be substantial. The dom-

inating components arise from determining the beamforming

directions, and the fact that these directions are updated at

each iteration. That suggests that we may be able to develop

lower cost algorithms for systems with a large number of

antennas if we could find a way to simplify the computation

of the beamforming directions. In this section we will do

that by developing variants of the nominal ZF directions,

and we will integrate them with the robust power loading

technique while ensuring that the required PAPCs are satisfied.

In the following section we will develop analogous techniques

based on variants of the MRT directions. For the ZF case,

the beamforming directions are obtained using techniques

developed in [29], but in the MRT case, the design of the

beamforming directions appears to be new.

To develop PAPCed variants of the conventional ZF and

MRT beamformers, we observe that in contrast to QoS-

based designs, in which the SINR is controlled directly (e.g.,

(15d)), the conventional ZF and MRT designs focus on the

desired signal power and interference components of the SINR

separately. In particular, given that the SINR for user k is

SINRk =
hH

k wkw
H
k hk

hH
k
(
∑

j 6=k wjw
H
j
)hk+σ2

k

, if we were to maximize the

minimum nominal received signal power subject to a total

power constraint (i.e., max{wk} mink h
H
ek
wkw

H
k hek subject

to
∑

k w
H
k wk ≤ Pt) we would obtain beamformers that are

a particular power loading of the nominal MRT directions. If

we were to add the nominal ZF constraints on the interference

into that problem (i.e., hH
ej
wkw

H
k hej = 0, ∀k 6= j), then

we would obtain beamformers that are a particular power

loading of the ZF directions [29]. Due to the structure of the

total power constraint, in many simple beamforming problems

the optimization of the beamforming directions decouples

from the power loading. That is indeed the case for our

formulation for MRT and ZF beamforming directions. As

an example, if we were to maximize the minimum value

of hH
ek
wkw

H
k hek/‖hek‖2, which is the power of the signal

transmitted in the direction of user k, rather than the power

received by that user, we would obtain a set of beamformers in

the MRT or ZF directions, but with a different power loading.

When the total power constraint is replaced by PAPCs,

the optimization of the beamforming directions becomes cou-

pled with the power loading and hence the choice of the

metric to optimize changes both the power loading and the

directions. While our approach will work for either metric,

and indeed for several others, we will focus on the second

metric hH
ek
wkw

H
k hek/‖hek‖2. The rationale for this choice

is that while the received signal power is suitable for the ZF

problem in the perfect CSI case, where the ZF constraints

will eliminate the interference [29], it can be quite sensitive

to the interference incurred due to channel estimation errors.

(This is illustrated in our simulation results in Section VI.)

Accordingly, we define the normalized channel directions

hnk
= hek/‖hek‖ and we formulate the following generic

problem to obtain PAPCed versions of the conventional beam-
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formers

max
wk,t

t (25a)

s.t.
[

∑K
k=1 wkw

H
k

]

i,i
≤ pi, ∀i (25b)

hH
nk
wkw

H
k hnk

≥ t ∀k, (25c)

hH
nj
wkw

H
k hnj

≤ ε ∀k 6= j. (25d)

The value of ε determines whether the problem is of the ZF

type, the MRT type, or a variant thereof. When ε is negligible

compared to the noise power, the formulation describes a ZF-

based approach, and when ε is of the order of the noise

power this represents a regularized ZF-based approach; cf.

[15]. When ε is sufficiently large, the constraints in (25d)

become inactive, and accordingly the formulation describes

an MRT-based approach.

One strategy for solving (25) is to employ a semidefinite

relaxation [30]. As in related beamforming methods based on

semidefinite relaxation (e.g., [2]), that approach involves the

solution of a convex optimization problem for a set of matrices

and a post-processing step that extracts good beamformers

from these matrices. However, the computational cost of

solving the convex optimization problem is even higher than

that of the offset maximization algorithm, and that is only the

cost of determining the beamforming directions. Accordingly,

in the following sections we will present low-cost algorithms

for robust beamforming with PAPCed variants of the ZF and

MRT beamforming directions.

A. ZF beamforming with PAPCs only

When ε = 0, the problem in (25) involves finding the beam-

forming vectors that remove the interference at the receivers

under the nominal channel conditions and satisfy the PAPCs.

The essence of this problem was addressed in [29] using a

re-parametrization technique. In particular, let us define the

matrix H as the matrix whose kth column is hnk
and the

matrix ŨZF = H(HHH)−1. The kth column of ŨZF, denoted

ũZFk
is a zero-forcing direction for the kth user with a unit

signal gain; i.e., ũH
ZFk

hnk
= 1. If we let H⊥ denote a matrix

whose columns form a basis for the null space of H, then

the set of all ZF directions for the kth user is given by the

kth column of ŨZF +H⊥M, for an arbitrary scaling matrix

M. Accordingly, the solution to the problem in (25) takes the

form

wk =
√
t(ũZFk

+H⊥mk), (26)

where mk is the kth column of matrix M [29]. Note that the

constraints in (25c) and (25d) (with ε = 0) are automatically

satisfied by designing the precoding vectors wk in the form

in (26). The conditions that remain to be met are the PAPCs,

and that can be done by adjusting the scaling matrix M. In

[29], this problem was formulated as a convex quadratically-

constrained program that can be efficiently solved

min
M,p̂

p̂ (27a)

s.t. ‖(ŨZF +H⊥M)H ẽi‖2 ≤ p̂, ∀i, (27b)

where ẽi is the ith column of the identity matrix. To complete

the design, we choose the largest value for t such that tp̂ ≤
pi, ∀i, which means that the beamformers of the form in (26)

satisfy the remaining constraints; i.e., those in (25b).

If we let the (k, k)th entry of the diagonal matrix Q̂ denote

the dual variable of the kth PAPC in (27b), then the KKT

conditions of the dual problem of (27) show that the scal-

ing matrix should satisfy M = −(HH
⊥Q̂H⊥)

†(HH
⊥ Q̂ŨZF).

Although such a relation does not allow for a closed-form

solution, as we do not know Q̂, it does allow for the integration

of the robust power loading method in [18], as an alternative

to giving all the users the same nominal signal strength t.
Furthermore, the explicit relation between Q̂ and M allows

us to use the sub-gradient algorithm for Q̂ and to calculate

M accordingly. The proposed algorithm is summarized as

Algorithm 4.

Algorithm 4 ZF with PAPCs and robust power loading

1: Find H⊥ and ŨZF. Initialize Q̂0 = I. Set n = 0.

2: while [
∑

k wkw
H
k ]i,i − pi > ǫi for any i do

3: Compute M = −(HH
⊥ Q̂nH⊥)

†(HH
⊥ Q̂nŨZF).

4: Find the beamformers directions {uk} by normalizing

ũZFk
+H⊥mk.

5: Find {βk} and r⋆ by solving E(hH
k Qkhk − σ2

k) =
σskr

⋆ and (21) using the method provided in Section II-C.

6: Update Q̂n+1 using the results in Appendix A.

7: Increment n.

8: end while

From a computational respective, the key steps in the ini-

tialization of this algorithm are the finding of the ZF directions

and the null space of H, which requires O(N2
t K) operations.

Each iteration of the algorithm involves the iterative solution

of the K + 1 linear equations in step 5, which, as explained

in Section II-C, requires O(K3) operations, and the matrix

operations required to update M in step 3, which require

O((Nt −K)3) operations. When the number of antennas Nt

is close to the number of users K , the dimensions of the

matrix HH
⊥Q̂H⊥ are small, which means that in that case the

computational cost of this algorithm is dominated by finding

the ZF directions and the null space in the initialization step.

B. Generalized ZF beamforming

The extension of the ZF design with PAPCs to accommo-

date a total power constraint is straightforward, and follows

the same steps that were used in the generalized offset

maximization problem; see Section III-B. The generalized

ZF problem can be formulated by adding the total power

constraint
∑K

k=1 w
H
k wk ≤ Pt to the constraints in (25).

Then we consider the equivalent power minimization problem,

assuming, for now, that the optimal t is known

min
M

t
∑

i

‖(ŨZF +H⊥M)ẽi‖2 (28a)

s.t. t‖(ŨZF +H⊥M)H ẽi‖2 ≤ pi, ∀i. (28b)

Consistent with our previous analysis, we will let Q̂ denote

the diagonal matrix with the dual variables of the PAPCs on
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its diagonal. From the KKT conditions we can then show

that M = −(HH
⊥ (Q̂ + INt

)H⊥)
−1(HH

⊥ (Q̂ + INt
)ŨZF).

Furthermore, as in the previous algorithm we replace the

uniform power loading, t, with the robust power loading from

[18]. The resulting modified version of Algorithm 4 is stated

in Algorithm 5. As is apparent from Algorithm 5, the order

of its computational cost is the same as that of Algorithm 4.

Algorithm 5 Generalized ZF

1: Find H⊥ and ŨZF. Initialize Q̂0 = 0. Set n = 0.

2: while [
∑

k wkw
H
k ]i,i − pi > ǫi for any i do

3: Compute M = −(HH
⊥ (Q̂n + INt

)H⊥)
−1(HH

⊥ (Q̂n +
INt

)ŨZF).
4: Find the beamformers directions {uk} by normalizing

ũZFk
+H⊥mk.

5: Find {βk} and r⋆ by solving E(hH
k Qkhk − σ2

k) =
σskr

⋆ and
∑

k βk = Pt using the method provided in

Section II-C.

6: Update Q̂n+1 using (24).

7: Increment n.

8: end while

V. CONVENTIONAL MRT WITH PER-ANTENNA POWER

CONSTRAINTS

As we have seen in the previous section, our approach to

imposing PAPCs on the class of ZF beamformers can result

in an algorithm of lower computational cost than that of

offset maximization with PAPCs. However, any advantage is

dependent on the size of the null space of the channel matrix.

In settings with a large number of antennas and a small number

of users, such as those arise in massive MIMO, the size of the

null space can be quite large. In this section, we will show how

the complexity can be further reduced by using an MRT-based

approach rather than the ZF-based approach.

A. MRT with PAPCs

In the MRT case, the interference conditions

hH
nj
wkw

H
k hnj

≤ ε are omitted from the problem in (25),

and the problem of finding nominal MRT-based beamformers

that satisfy PAPCs can be written as

max
wk,t

t (29a)

s.t.
[

∑K
k=1 wkw

H
k

]

i,i
≤ pi, ∀i (29b)

hH
nk
wkw

H
k hnk

≥ t, ∀k. (29c)

Following a similar analysis to those performed earlier, if we

let qi denote the dual variable for the ith PAPC, define the

diagonal matrix Q̂ such that [Q̂]i,i = qi, and define νk to

be the dual variable for the kth condition in (29c), then the

Lagrangian of the problem in (29) can be written as:

L(t,wk, νk, qi) = −t+

Nt
∑

i=1

qi

([

K
∑

k=1

wkw
H
k

]

i,i
− pi

)

−
K
∑

k=1

νk(h
H
nk
wkw

H
k hnk

− t). (30)

Accordingly, we can state the KKT conditions in a simplified

form as
∑K

k=1 νk = 1, t =
∑Nt

i=1 qipi, and Q̂wk =
νkhnk

hH
nk
wk. The last condition can be re-written as wk =

νkh
H
nk
wkQ̂

−1hnk
, which means that wk and Q̂−1hnk

have

the same direction. We note that at optimality [Q̂]i,i is equal

to the ith element of hnk
, scaled by νkh

H
nk
wk, then divided

by the ith element of wk. This equation does not allow any

optimal [Q̂]i,i to be zero except if the channel vector hnk

contains a zero, which, under most reasonable channel models,

is a “zero-probability” event. Since each qi is positive, the

constraints in (29b) are all active, and accordingly
∑

k βk =
∑

i pi.
Similar to the analysis of the previous problems, if we

know Q̂, then we can find the beamforming directions using

Q̂−1hnk
and subsequently solve for the power loading using

the linear equations that arise when (29c) holds with equality.

The value of t in (29c) can be calculated using the KKT

equation t =
∑Nt

i=1 qipi. If the equations in (29c) were

not satisfied with equality at optimality, we could rescale

the beamforming vectors to get a larger value of t, which

would contradict the assumed optimality. This observation is

similar to the observation in the offset maximization section

that enabled the use of the subgradient algorithm to find

Q̂. Accordingly, we can suggest the iterative algorithm in

Algorithm 6.

Algorithm 6 Nominal MRT with PAPCs

1: Initialize Q̂0 = I. Set n = 0.

2: while [
∑

k wkw
H
k ]i,i − pi > ǫi for any i do

3: Solve for the directions using (Q̂n)−1hnk
.

4: Find the beamformer magnitudes {βk} and t using the

linear equations that arise when the constraints in (29c)

are satisfied with equality and
∑

k βk =
∑

i pi.

5: Update Q̂n+1 using Appendix A.

6: Increment n.

7: end while

Algorithm 6 provides an iterative way to find the values of

Q̂, and, accordingly, the optimal precoding vectors. Its com-

plexity per iteration is no more than linear in Nt. However, we

will now develop a closed-form expression that approximates

the optimal solution of Algorithm 6 when the PAPCs are the

same; i.e., pi = p, ∀i. This closed-form removes the need for

any iterations, which allows for an algorithm that is suitable

for massive MIMO settings. To develop the approximation, we

first note that the PAPCs and the MRT constraints hold with

equality at optimality. That means that at optimality

[

K
∑

k=1

wkw
H
k

]

i,i
=

K
∑

k=1

ν2k|hH
nk
wk|2

∣

∣

∣

[

Q̂−1hnk

]

i

∣

∣

∣

2

=
K
∑

k=1

ν2kt
∣

∣

∣

[

Q̂−1hnk

]

i

∣

∣

∣

2

.

= p.

(31)

Now let us define

gi =
K
∑

k=1

ν2k
∣

∣

[

hnk

]

i

∣

∣

2
. (32)
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Using (31), we can also write gi = pq2i /t = pq2i /(
∑Nt

i=1 qip).
Accordingly, we can calculate qi from {gi} as qi =
(
∑

j

√
gj)

√
gi. The objective of maximizing t =

∑Nt

i=1 qip
is, therefore, equivalent to maximizing

∑

j

√
gj . Since the

dual variables ν2k enter (32) as weighting variables for the

power gains of the components of hnk
, the optimal values of

νk are influenced by the relative values of the elements of

each set {
∣

∣

[

hnk

]

i

∣

∣

2}Kk=1. When these elements have the same

distribution, the optimal values of νk tend to get closer as the

number of antennas grows. Since
∑

k νk = 1, that suggests the

approximation νk ≈ 1/K . Since the approximation only holds

in the limit, there will be discrepancy between the actual power

on the antennas and p, but as the number of antennas grows,

that difference decreases. For a finite number of antennas, we

may rescale the result so that the PAPCs are satisfied. That is

done in steps 6 and 7 in Algorithm 7.

Algorithm 7 One-shot approximate nominal MRT with PAPCs

1: Approximate νk ≈ 1/K .

2: Calculate gi =
∑K

k=1 ν
2
k

∣

∣

[

hnk

]

i

∣

∣

2
and t =

∑

j

√
gj .

3: Calculate Q̂ using qi = (
∑

j

√
gj)

√
gi.

4: Calculate the beamformer directions {uk} by normalizing

Q̂−1hnk
.

5: Find βk = t/hH
nk
uku

H
k hnk

.

6: Form the vector y, such that yi = [
∑K

k=1 wkw
H
k

]

i,i
.

7: Form the correction vector z such that zi =
√

pi/yi.
8: Correct each beamformer vector by element-wise multi-

plying each wk by the correction vector z.

Both of the algorithms for the nominal MRT-based ap-

proach (Algos 6 and 7) result in beamformers that satisfy

the PAPCs. As we will see in the simulation section, the

resulting beamformers provide similar outage performance

even for relatively small number of antennas. However, both

of the algorithms are based on nominal performance criteria

and any robustness that is obtained arises only implicitly. To

address that point, we observe that Algorithm 6 updates Q̂

iteratively using the sub-gradient algorithm, which allows for

the incorporation of the robust power loading described in

Section II-C. The ability to incorporate that power loading

can significantly reduce the outage probability by allocating

each user an appropriate amount of power rather than forcing

the nominal signal power of different users to be the same

value t. The resulting algorithm is stated in Algorithm 8. In

scenarios in which it is reasonable to use the same value of

t for all users, or when we can pre-define different weights

for the value of t, Algorithm 7 can provide a closed-form

solution that is close to the optimal one, without the need for

any iterations.

The complexity of Algorithm 8 is dominated by operations

that are linear in the number of antennas for each user.

This means that the complexity per iteration is of the order

of O(NtK) operations. The robust power loading can be

effectively approximated in the massive MIMO settings so

that it requires only O(NtK) operations, beside the O(K3)
operations for the initial matrix inversion [18].

Algorithm 8 Robust MRT with PAPCs

1: Initialize Q̂0 = I. Set n = 0.

2: while [
∑

k wkw
H
k ]i,i − pi > ǫi for any i do

3: Find the beamforming directions {uk} using Q̂−1hnk
.

4: Find {βk} and r⋆ by solving E(hH
k Qkhk − σ2

k) =
σskr

⋆ and (21) using the method provided in Section II-C.

5: Update Q̂n+1 using Appendix A.

6: Increment n.

7: end while

B. Generalized MRT

The derivation of the MRT-based algorithm when the total

power constraint is added to (29) follows the same steps that

were performed in the ZF case and the offset maximization

case. The modified algorithm is presented in Algorithm 9.

Algorithm 9 Generalized MRT

1: Set Q̂0 = 0, and n = 0.

2: while [
∑

k wkw
H
k ]i,i − pi > ǫi for any i do

3: Find the beamformers directions {uk} by normalizing

(INt
+ Q̂)−1hnk

.

4: Find {βk} and r⋆ by solving E(hH
k Qkhk − σ2

k) =
σskr

⋆ and
∑

k βk = Pt using the method provided in

Section II-C.

5: Update Q̂n+1 using (24).

6: Increment n.

7: end while

VI. SIMULATION RESULTS

In this section, we will show how the application of PA-

PCs to substantially reduce the dynamic range of the power

transmitted from each antenna can be implemented without

significantly degrading the outage probability of the system.

We consider a system in which a BS with Nt antennas

serves K single-antenna users distributed uniformly in a disk

of radius 3.2km around the BS. The large scale fading is

modelled using a path-loss exponent of 3.52 and log-normal

shadow fading with 8dB standard deviation. The small scale

fading is modelled using the standard i.i.d. Rayleigh model.

We assume an additive channel estimation error of covariance

0.04I, and an SINR target of γ = 3dB for all users. For

the algorithms with PAPCs only, the PAPC is uniform and

is set to pi = Pt/Nt, where Pt is the total power constraint,

which is implicit in this case. For the generalized algorithms

with both PAPCs and a total power constraint (Algos 3, 5,

and 9), the PAPCs are set to be slightly larger, so that the

total power constraint is active. For these cases we choose

pi = 1.2Pt/Nt. We assume that each user has a signal

sensitivity of -90dBm, and we will consider this power as the

noise power. The termination parameter for the algorithms is

chosen to be ǫi = 0.1pi, and each experiment is repeated

on 20,000 channel realizations. A simple channel-strength

user selection technique is employed, where users having

‖hek‖2Pt/kσ
2
k ≥ γk are served.
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To demonstrate the application of PAPCs with offset max-

imization, in Fig. 1 we plot the outage probability versus

the total power constraint Pt for six different algorithms

in a scenario in which Nt = 4 and K = 3. The first

algorithm is the nominal PAPCed design algorithm presented

in [23], with the beamforming vectors scaled so that the total

power is equal to Pt. This is equivalent to solving (17) when

r⋆pa = 0, then scaling the resulting beamforming vectors.

We compare the performance of [23] to the performance of

Algo. 1 with and without the acceleration step, and Algo. 2

with the acceleration step. We note that while the performance

of Algo. 1 is close to that of [23], the application of the robust

power loading in Algo. 2 provides a significant reduction in

the outage probability. To asses the impact of the PAPCs we

compare the performance of Algo. 2 to that of the robust

offset maximization technique with a total power constraint

only [18]. As seen in Fig. 1, Algo. 2 achieves a performance

close to that of [18] even though it imposes PAPCs. As

expected, the performance of Algo. 3, which imposes a total

power constraint and weaker PAPCs, falls in between that

of [18] and Algo. 2.

The convergence rate of the subgradient algorithm strongly

depends on how the step size is chosen and, hence, this

should be tailored to the application. Based on insights

from [28] we have chosen a step size that is updated using

tn = tn−1 − t2n−1/1000. Our numerical experience has

suggested choosing t0 = Nt/(PtK). To examine the potential

impact of the prediction scheme outlined in Section III-C,

we have implemented a linear predictor of the form Q̂1
p =

2.8 diag(q1)−1.8I. To show the effectiveness of these choices,

we plot in Fig. 2 the percentage of violated PAPCs versus

the iteration number for the scenario in which Pt = 40. We

set the violation to one when any antenna is transmitting a

power that is more than 10% higher than pi. (Recall that

we set ǫi = 0.1pi.) We observe from Fig. 2 that within the

first few iterations, the PAPCs are met in most cases. We

also note that the acceleration step can reduce the average

number of iterations while providing almost the same outage

performance. In order to provide context for these results, we

point out that the average number of iterations required by the

nominal algorithm in [23] is much higher. Indeed, as shown

in [23], it can range from a few tens to hundreds in analogous

settings.

In assesing the performance of the ZF-based PAPCed

beamforming algorithms, rather than examining the outage

performance against the transmission power, we will fix the

total power constraint to Pt = 2 and examine the performance

as the number of antennas, Nt, increases. Other than that,

the scenario is the same as the previous one. As performance

benchmarks for Algo. 4, we have included the performance

of the algorithm in [29] which maximizes the minimum

received signal power, hH
ek
wkw

H
k hek , and a modified version

of the algorithm in [29] that maximizes the minimum value of

hH
nk
wkw

H
k hnk

instead. We observe that in the case of noisy

channel estimates, the normalization step significantly reduces

the outage probability. More importantly, the application of

the robust power loading in Algo. 4 provides significantly

better performance. As a lower bound on the outage achieved
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Fig. 1. Outage probability for a 4 antenna BS serving 3 users with a total
transmitted power of Pt.
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Fig. 2. Convergence behaviour for a 4 antenna BS serving 3 users with a
total transmitted power of Pt. The violation probability measures the fraction
of the 20,000 realizations for which at least one PAPC was violated by more
then 10% at the given iteration of the algorithm.

by Algo. 4 we consider ZF beamforming with the nominal

ZF directions and robust power loading with only a total

power constraint [18]; i.e., without the PAPCs. The resulting

comparison shows that the degradation incurred by imposing

the PAPCs is quite small. Finally, as expected, the performance

of the generalized algorithm (Algo. 5) lies in between that of

Algo. 4 and that of [18].

To assess the performance of the MRT-based PAPCed

algorithms, we will allow for more users, K = 8, and set

the total power constraint Pt to be 1. As in the ZF case, we

examine the outage performance versus the total number of

antennas, Nt, but we do so for a larger number of antennas.

In Fig. 4, the performance of Algos 6, 7, and 8 is compared to

the performance of the algorithm in [24]. We observe that the
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Fig. 4. Outage probability for a BS serving 8 users with a total transmitted
power of Pt = 1.

performance of Algos 6, and 7 is almost identical to that of

the algorithm presented in [24], and that the performance of

Algo. 8 is superior. As a benchmark, the performance of the

robust MRT beamformer with only a total power constraint

(i.e., no PAPCs) [18] is plotted in Fig. 4. The performance of

the generalized algorithm (Algo. 9) is also plotted.

VII. CONCLUSION

In this paper, we developed low-complexity algorithms

for finding robust beamformers that provide low outage of

target SINRs while satisfying specified per-antenna power

constraints (PAPCs). Initially, we used insights from the

subgradient method for designing PAPCed beamformers in

the case of perfect channel state information [23] to obtain

PAPCed version of the offset maximization algorithm devel-

oped in [13]. Further reductions in the outage probability

were then obtained by incorporating the robust power loading

presented in [18] into the design problem. While the pro-

posed algorithms are of low complexity, we identified the

evaluation of the beamforming directions as the computational

bottleneck. To address that, we developed algorithms that

employ PAPCed variants of the conventional zero-forcing

(ZF) and maximum ratio transmission (MRT) directions and

incorporate the robust power loading. In the process of doing

so, we developed a closed-form expression for an MRT-based

beamformer that satisfies PAPCs and may be appropriate for

massive MIMO systems. Our simulation results revealed that

PAPCed beamforming can be achieved without incurring a

significant degradation in outage performance.

APPENDIX A

Q̂ UPDATE

To determine the updated value for Q̂n+1, we have to

determine the projection,

Q̂n+1 = proj
(

Q̂n + tndiag(diag(
∑

iwiw
H
i ))
)

.

To do so, we let q = diag(Q̂n+1), and qo = diag(Q̂n +
tndiag(diag(

∑

i wiw
H
i ))). That enables us to write the pro-

jection problem as

min
q

‖q− qo‖2 (33a)

s.t.
∑Nt

i=1 qipi =
∑Nt

i=1 pi (33b)

qi ≥ 0, ∀i. (33c)

If we let ζ denote the dual variable of the equality constraint,

then from the KKT conditions of (33) we can show that the

optimal qi is

qi = max(qoi − piζ/2, 0),

where ζ/2 =
(
∑

i,∀qi 6=0 piqoi −
∑

i pi
)

/
∑

i,∀qi 6=0 p
2
i . Given

the nature of dependence of {qi} and ζ on each other, we will

solve for their values using a fixed-point approach. First, we

initialize ζ = 0, and then we iteratively calculate qi and ζ
from the provided equations until their values stabilize.

In the case of equal pi (i.e., pi = p, ∀i), and when all the qi
are positive (i.e., all the PAPCS are active), the update equation

can be simplified to

Q̂n+1 = Q̂n + tndiag
(

diag
(

∑

i

wiw
H
i − pI

))

. (34)
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