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Abstract—Energy efficiency (EE) is a key design criterion
for the next generation of communication systems. Equally,
cooperative communication is known to be very effective for en-
hancing the performance of such systems. This paper proposes a
breakthrough approach for maximizing the EE of multiple-input-
multiple-output (MIMO) relay-based nonregenerative coopera-
tive communication systems by optimizing both the source and
relay precoders when both relay and direct links are considered.
We prove that the corresponding optimization problem is at least
strictly pseudo-convex, i.e. having a unique solution, when the
relay precoding matrix is known, and that its Lagrangian can
be lower and upper bounded by strictly pseudo-convex functions
when the source precoding matrix is known. Accordingly, we
then derive EE-optimal source and relay precoding matrices that
are jointly optimize through alternating optimization. We also
provide a low-complexity alternative to the EE-optimal relay
precoding matrix that exhibits close to optimal performance,
but with a significantly reduced complexity. Simulations results
show that our joint source and relay precoding optimization can
improve the EE of MIMO-AF systems by up to 50% when
compared to direct/relay link only precoding optimization.

Index Terms—Energy efficiency, precoding/beamforming, co-
operative communication, MIMO, amplify-and-forward.

I. INTRODUCTION

Energy efficiency (EE) is one of the eight key figures

of merit identified by the international telecommunication

union (ITU) for shaping the next generation of communication

systems [1]; as such, EE has recently received a surge of

interests from the research community [2]–[4], as well as

network vendors and operators who perceive EE as an enabler

for sustainable communication (both from an economical and

environmental perspectives). Equally, relay-based cooperative

communication, which is also well-documented [5]–[7], has

proved to be very effective for improving the spectral effi-

ciency (SE) or/and the coverage of cellular networks [7], as

well as reducing the cost of network deployment [8]. More

recently, relays have also been used for improving the EE [9]–

[12]. As a result, relay-based cooperative communication is an

integral part of the existing wireless communication standards

[13]; it is also foreseen to play a major role for enabling

device-to-device communication in the near future [1].

Amongst the various existing relay-based communica-

tion strategies (e.g. amplify-and-forward (AF), decode-and-

forward, compress-and-forward), AF remains one of the most

popular strategy given its simplicity and practicality for en-

abling multi-input multi-output (MIMO) cooperative com-
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munication. As such, MIMO-AF communication has been

thoroughly investigated over the last decade, where numerous

works have focused on designing precoding/resource alloca-

tion techniques for improving the SE, reducing the detection

error rate, or reducing the power consumption of MIMO-AF

[14]–[22]. With EE becoming one of the key design parameters

in wireless communication, more recent works on MIMO-

AF communication have started to develop precoding/resource

allocation techniques for improving the EE of MIMO-AF

[10]–[12]. For instance, EE-optimal precoding/resource allo-

cation schemes have been designed in [10], [11] and [12] for

the MIMO-AF two-hop and multi-hop scenarios, respectively,

where a source node (SN) transmits data to a destination

node (DN) via one or more relay nodes (RNs). However,

these works do not take into account the direct link (DL)

transmission (i.e. SN to DN transmission is neglected) in their

precoding design. As far as SE/detection error-based MIMO-

AF precoding/resource allocation schemes are concerned, the

works in [16]–[20] have focused on the same scenario as

in this paper, i.e. the cooperative MIMO-AF scenario, where

both the relay link (RL) (i.e. SN to RN to DN transmission)

and DL transmissions are fully considered. For instance in

[16]–[19], which all focus on SE improvement, heuristic

precoding/resource allocation methods have been proposed;

however, none of these works have provided any closed-form

of the optimal precoding matrix at the SN or RN. Whereas

in [20], optimal SN and RN precoding matrices have been

obtained (in closed form) for minimizing the mean square error

(MSE) (i.e. detection error).

In this paper, we go beyond the works in [10], [11] and

propose a breakthrough approach for maximizing the EE of

cooperative MIMO-AF systems, where we derive both EE-

optimal SN and RN precoding matrices. Deriving SN and

RN precoding matrices was also the aim of [16]–[20], but the

precoding matrices of [16]–[20] are designed to either maxi-

mize the SE or minimize the MSE instead of maximizing the

EE, which is an entirely new proposition given the significant

difference in optimization problem formulation between our

work and these works. In addition, contrary to [16]–[19], we

formally prove the optimality of our SN and RN precoders by

relying on pseudo-convexity arguments and provide a closed-

form expression for the EE-optimal SN precoding matrix. We

assume, as in most existing works on MIMO-AF precoding

[16]–[20], [22] that full channel state information (CSI), i.e.

transmit and receive CSI, is available at both the SN and RN;

further practical detailed about CSI acquisition can be found

in [21], [22]. Note that a preliminary version of this work is

available in [23]; contrary to [23], we prove here the pseudo-

convexity/convexity of the main optimization problem, provide
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an EE-optimal relay precoding matrix (instead of suboptimal),

and consider power constraints for designing the source and

relay precoders.

The rest of the paper is organized as follows. Section II-A

first recalls the layout and then defines the achievable sum-rate,

power consumption, as well as energy-per-bit consumption of

the cooperative MIMO-AF system. Then, Section III intro-

duces the optimization problem that is solved in this paper,

i.e. EE-based iterative joint optimization of the SN and RN

precoding matrices. We first prove that the Lagrangian function

associated to this problem is strictly pseudo-convex or convex

for a known RN precoding matrix and obtain the EE-optimal

SN precoding matrix in closed-form. We then derive lower

and upper bounds of the Lagrangian function for a known

SN precoding matrix (which are proved to be strictly pseudo-

convex or convex functions) and proposed a novel method

for obtaining the EE-optimal RN precoding matrix. We also

provide a sub-optimal RN precoding matrix in closed-form.

An iterative process based on alternating optimization [24] is

finally utilized, as for instance in [10], [16], [20], for jointly

optimizing the SN and RN precoding matrices; a process that

is proved to converge towards a local optimum at each iteration

due to the strictly pseudo-convexity/convexity of the SN/RN

precoding optimization problem. Next, Section IV provides a

performance as well as complexity analysis of our scheme.

Simulation results confirm that joint SN and RN EE-based

precoding optimization can improve the EE performance of

MIMO-AF systems by up to 50% when compared to existing

EE-optimal precoding schemes such as in [10], [11]. They

also indicate that the classic relay precoding structure of

[14], which is known to be optimal in various MIMO-AF

optimization cases [10], [11], [14], [25], is not optimal here.

Conclusions are finally drawn in Section V.

Notation: The following notation is considered through-

out the paper. Boldface lowercase letters (e.g. a) denote

vectors, boldface uppercase letters (e.g. A) denote matrices,

boldface uppercase letters with a hat on top (e.g. Â) denote

diagonal matrices, and Ix denotes a x × x identity matrix.

Whereas the operator diag(.) transforms a vector into a diag-

onal matrix (e.g. diag(a) = Â). Moreover, A ≻ 0 or A � 0

indicates that A is a positive definite or semi-definite matrix,

respectively, and A
1
2 represents the Hermitian square root of

A � 0. Furthermore, |.|, tr{.}, .†, and .−1 are the determi-

nant, trace, conjugate transpose, and generalized inverse (both

inverse and pseudo-inverse) matrix operators, respectively. In

addition, 〈., .〉F denotes the Frobenius inner product between

two matrices, such that 〈A,B〉F = tr
{
A†B

}
. Finally, the

notation [.]+ refers to max{., 0}.

II. COOPERATIVE MIMO-AF EE FRAMEWORK

A. System Model

This paper focuses on the EE/energy consumption of a

classic nonregenerative cooperative MIMO system that is

composed of three nodes, i.e. a SN, a RN and a DN, as it

is illustrated in Fig. 1. The SN, RN and DN are equipped

with nSN, nRN and nDN antennas, respectively.

As in [14], we assume here that the data transmission is

performed over two phases of equal duration, such that the
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Fig. 1: Nonregenerative cooperative MIMO communication

system model.

aggregate mutual information/achievable rate (over two time

slots) of the cooperative MIMO-AF system depicted in Fig. 1

can be expressed, in two distinct manners (see equation (6) of

[17]), as I(y; s) =

RΣ(R,G)=R0(R)+W log2

∣∣∣∣ InDN
+
σ2
1

σ2
2

H2GΥ̇(R)G†H
†
2

×Ω(G)−1
∣∣ or (1a)

RΣ(R,G) =W log2

∣∣∣ InSN
+R†Ψ̇(G)R

∣∣∣ , (1b)

where

R0(R)= I(y0; s) =W log2

∣∣∣ InDN
+ σ−2

0 H0RR†H
†
0

∣∣∣ ,

Υ̇(R)=σ−2
1 H1R

(
InSN

+σ−2
0 R†H

†
0H0R

)−1

R†H
†
1,

Ω(G) = InDN
+
σ2
1

σ2
2

H2GG†H
†
2, and

Ψ̇(G)=σ−2
0 H

†
0H0+σ

−2
2 H

†
1G

†H
†
2Ω(G)−1H2GH1.

In addition W is the channel bandwidth, R ∈ CnSN×nSN

and G ∈ CnRN×nRN are the SN and RN precoding matrices,

respectively. Moreover, H0 ∈ CnDN×nSN , H1 ∈ CnRN×nSN , and

H2 ∈ CnDN×nRN model the SN to DN, SN to RN, and SN

to RN MIMO channels, correspondingly. Furthermore, σ2
0 , σ2

1

and σ2
2 are the variances of the Gaussian noise at the DN

(SN-DN link), RN and DN (SN-RN-DN link), respectively.

B. Power Consumption Model and EE-SE Trade-off

Given that the transmission between the SN and DN occurs

in two phases, the way in which power is consumed by each

node in each phase can be different. For instance, in the first

phase, the SN transmits data to both the RN and DN, which

receive it; whereas in the second phase, only the RN transmits

to the DN, such that the SN is idle (sleep mode). By assuming

that three power consumption modes are available for each

node, i.e. transmission, P Tx
. , reception, P Rx

. , and sleep, P Sl
. ,

the total consumed power (over two phases) of the cooperative

MIMO-AF system in Fig. 1 can hence be modeled as

PΣ =
(
P Tx

SN + P Rx
RN + P Rx

DN

)
+
(
P Sl

SN + P Tx
RN + P Rx

DN

)
. (2)

In transmission mode, a node consumes power for preparing

(e.g. baseband processing, RF transceiver chain) and sending

the information (power amplifier). According to [4], [26], [27],
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the power consumption of common communication equip-

ments/devices in a cooperative MIMO-AF system, e.g. BS,

RN or user equipment (UE), is linearly dependent with their

transmit power when transmitting. Hence, it can be expressed

via a generic linear MIMO power model [28]

P Tx
. = ∆.P. + n.P

CipA
. + P Ci

. , (3)

where P. represents the transmit power, ∆. accounts for the

inefficiency of the transmitting node power amplifier, n. is

the number of transmit antennas, P CipA
. models the circuit

power consumption scaling with n. (e.g. RF transceiver chain

power consumption), and P Ci
. models the other types of

circuit power consumption (e.g. DC-DC conversion, baseband

processing). In reception mode, the receiving node consumes

power for receiving (e.g. RF transceiver chain) and processing

the information (e.g. baseband processing), such that

P Rx
. = ς [n.P

CipA
. + P Ci

. ], (4)

where 0≤ ς≤1 given that reception is usually less demanding

in terms of circuit power than transmission. Finally, in sleep

mode, a node waits to transmit/receive and does not perform

any processing, such that only a fraction of the circuit power

is consumed [4], i.e. P Sl
. = n.P

SlpA
. , where P SlpA

. is the per-

antenna sleep power. By inserting the definitions of P Tx
. in

(3), P Rx
. in (4) and P Id

. into (2), the total consumed power of

the cooperative MIMO-AF system in Fig. 1 is reformulated as

PΣ = Pc +∆SNPSN +∆RNPRN, (5)

where, as in [14],

PSN(R) = tr
{
RR†

}
and (6a)

PRN(R,G) = tr
{
G

(
σ2
1InRN

+H1RR†H
†
1

)
G†

}
. (6b)

In addition, Pc = nSN(P
CipA

SN + P
SlpA

SN ) + P Ci
SN + (1 +

ς)(nRNP
CipA
RN + P Ci

RN) + 2ς(nDNP
CipA
DN + P Ci

DN) accounts for all

the fixed circuit consumed powers. Hence, based on (5) and

(6), PΣ can be expressed in two distinct manners as

PΣ(R,G) = P ′
c(R) +

σ2
1

σ2
2

tr
{
GΫ(R)G†

}
or (7a)

PΣ(R,G) = P ′
c(G) + tr

{
R†Ψ̈(∆SN,∆RN,G)R

}
, (7b)

where P ′
c(R) = Pc +∆SNPSN(R),

P ′
c(G) = Pc +∆RNσ

2
1 tr

{
GG†

}
,

Ϋ(R) =
σ2
2

σ2
1

∆RN

(
σ2
1InRN

+H1RR†H
†
1

)
, and

Ψ̈(α, β,G) = αInSN
+ βH†

1G
†GH1.

The energy consumption, Eb, (or EE, 1/Eb) being simply a

ratio between consumed power and rate [29], the EE-SE trade-

off of the cooperative MIMO-AF system in Fig. 1 can be

expressed as

Eb(R,G) =
PΣ(R,G)

RΣ(R,G)
, (8)

where detailed expressions for RΣ(R,G) and PΣ(R,G) are

provided in (1) and (7), respectively.

III. EE-OPTIMAL SOURCE AND RELAY PRECODING

In this section, our aim is to derive precoding matrices R

and G that minimizes the following optimization problem

min
R,G

Eb(R,G), (9a)

s.t. PSN(R) ≤ Pmax
SN , (9b)

PRN(R,G) ≤ Pmax
RN , (9c)

where R � 0, R 6= 0, and G � 0. In addition, Pmax
SN and

Pmax
RN are the maximum transmit power at the SN and RN,

respectively. Contrary to sum-rate maximization (e.g. [16],

[17]), or transmit power and MSE minimization problems

(e.g. [20], [22]), the EE objective function in (9a) is not a

Schur-concave/convex objective function, but a ratio between

Schur-concave/convex functions. As such, contrary to Schur-

concave/convex objective functions, (9a) exhibits a global op-

timum (which is not 0 or ∞ as long as Pc > 0 [30]) even when

no constraints are enforced. Indeed, as it explained in [31], the

sole EE-optimal solution for a given EE optimization problem

can only be obtained by solving its unconstrained form [31],

i.e. solving (9a) without (9b) and (9c). Consequently, in order

to optimally solve the optimization problem at hand, it is

necessary to first solve (9a) on its own and refine its solution

if it does not meet the constraints in (9b) and (9c), as it is

further detailed in Sections III-A and III-B.

The problem in (9) is generally non-convex, since (9a) is

not necessarily jointly convex in R and G. However, it can

be proved, by relying on Propositions 1, 2 and 3, that this

optimization problem has a unique global minimum when R

and G are treated independently. In other words, there exists

an optimal matrix R⋆ minimizing (9) for a known G and an

optimal matrix G⋆ minimizing (9) for a known R.

Proposition 1: Functions of the type

f(X) = p(X)/q(X), (10)

where p is a linear function of X and q is a strictly concave

function of X, are strictly pseudo-convex functions of X, for

X � 0. See section A of the Appendix for the proof. In turn,

according to [32], if X⋆ is a stationary point of f , i.e. a point

where ∇Xf(X = X⋆) = 0, then f⋆ = f(X⋆) is the unique

global minimum of f over its domain.

Proposition 2: Functions of the type

f(X) = p(X) + q(X), (11)

where p is a linear function of X and q is a strictly pseudo-

convex function of X, are strictly pseudo-convex functions of

X, for X � 0. See section B of the Appendix for the proof.

Proposition 3: Functions of the type

f(X) = a/q(X), (12)

where a is a constant and q is a strictly positive and concave

function of X, are convex functions of X, for X � 0.

Proof: Based on the scalar composition rules in [33], we

know that a function f = h ◦ g is convex if h is convex and

non-increasing, and g is concave. Given that h(x) = a
x is

convex and non-increasing function of x for x > 0, it implies

that f would be convex if g > 0 is concave.
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In the following, we first derive R⋆ for a known G and then

G⋆ for a known R. Next, an alternating optimization approach

is utilized (as in [10], [16], [20]) to find a global solution to

the problem in (9), as it is further detailed in Section III-C.

A. EE-Optimal Source Precoding

Based on equations (9), (8), (7b) and (1b), finding the

EE-optimal source precoding matrix, R⋆, for a given relay

precoding matrix G boils down to solving R⋆ =

argmin
R

Eb(R,G) =
P ′
c(G) + tr

{
R†Ψ̈(∆SN,∆RN,G)R

}

W log2

∣∣∣ InSN
+R†Ψ̇(G)R

∣∣∣
,

(13)

subject to (9b) and (9c). Given that tr {AB} = tr {BA} and

| I+AB| = | I+BA| (Sylvester’s determinant identity) for

any matrices A and B, Eb(R,G) in (13) is equivalent to

Eb(R) =
P ′
c + tr

{
RR†Ψ̈(∆SN,∆RN)

}

W log2

∣∣∣ InSN
+ Ψ̇

1
2RR†Ψ̇

1
2

∣∣∣
, (14)

since Ψ̇ ≻ 0. Note that the argument G is omitted in (14) and

in the rest of sub-Section III-A for simplifying the notation.

By applying the change of variables Y = Ψ̇
1
2RR†Ψ̇

1
2

(such that Y � 0, Y 6= 0, is a Hermitian matrix) and

Ψ(α, β) =
(
Ψ̇−1

) 1
2

Ψ̈(α, β)
(
Ψ̇−1

) 1
2

, to (14), (9b) and (9c),

the optimization problem in (13) can be re-expressed as

Y⋆ = arg min
Y

Eb(Y) =
P ′
c +∆SNPSN(Y) + ∆RNP RN(Y)

RΣ(Y)
,

s.t. PSN(Y) ≤ Pmax
SN and P RN(Y) ≤ P

max

RN ,
(15)

where RΣ(Y) =W log2 | InSN
+Y| , (16a)

PSN(Y) = tr {YΨ(1, 0)} , and (16b)

P RN(Y) = tr {YΨ(0, 1)} . (16c)

In addition, P
max

RN = (Pmax
RN −σ2

1 tr
{
GG†

}
). In turn, the La-

grangian associated to (16) can expressed as L (Y, λ1, λ2) =




Eb(Y) =
P ′
c + tr {YΨ(∆SN,∆RN)}

RΣ(Y)
,

P ′
c +∆SNP

max
SN +∆RNP RN(Y)

RΣ(Y)
+λ1 (PSN(Y) − Pmax

SN ),

P ′
c +∆SNPSN(Y) + ∆RNP

max

RN

RΣ(Y)
+λ2

(
P RN(Y)− P

max

RN

)
, or

P ′
c +∆SNP

max
SN +∆RNP

max

RN

RΣ(Y)
+λ1 (PSN(Y) − Pmax

SN )

+λ2

(
PRN(Y) − P

max

RN

)
,

(17)

in the unconstrained case, i.e. if PSN(Y
⋆) < Pmax

SN and

P RN(Y
⋆) < P

max

RN , single power constrained (SPC) case at the

SN, i.e. if PSN(Y
⋆) ≥ Pmax

SN and P RN(Y
⋆) < P

max

RN , SPC case

at the RN, i.e. if PSN(Y
⋆) < Pmax

SN and P RN(Y
⋆) ≥ P

max

RN , or

dual power constrained (DPC) case, i.e. if PSN(Y
⋆) ≥ Pmax

SN

and P RN(Y
⋆) ≥ P

max

RN , respectively. In addition, λ1 ≥ 0 and

λ2 ≥ 0 are Lagrange multipliers.

Corollary 1: The Lagrangian function in (17) is a strictly

pseudo-convex (in the unconstrained and both SPC cases) or

a convex function (in the DPC case) of Y, such that it has a

unique global minimum, E⋆
b = Eb(Y

⋆) = Eb(R
⋆).

Proof: Given that both PSN(Y) and P RN(Y) are linear

functions of Y and RΣ(Y) is a strictly positive and concave

function of Y, as it is fully proved in section C of the Ap-

pendix, the Lagrangian function in (17) meets the requirements

of Propositions 1 (unconstrained and SPC cases), 2 (SPC

cases) and 3 (DPC case).

Proposition 4: The optimal source precoding matrix, R⋆,

i.e. the optimal solution to the optimization problem in (13)

can be expressed in closed-form as

R⋆ =

[(
Ψ̇−1

) 1
2

UΨŶ
⋆U

†
Ψ

(
Ψ̇−1

) 1
2

] 1
2

, (18)

where UΨ is a unitary matrix that contains the eigenvectors

of Ψ(α, β). In addition, Ŷ⋆ = diag([y⋆1 , y
⋆
2 , . . . , y

⋆
nSN

]) is a

diagonal matrix with diagonal elements such as

y⋆i =

[
WE⋆

b

ln(2)

1

ψi(α, β)
− 1

]

+

, ∀i ∈ {1, . . . , nSN}, (19)

where ψi(α, β) are the eigenvalues of Ψ(α, β). See section

D of the Appendix for the proof. In addition, by inserting the

optimal precoding structure, R⋆ in (18), into (14), arguments

of both the trace and determinant operators become diagonal

matrices such that (14) simplifies as

E⋆
b =

P ′
c +

∑nSN

i=1 y
⋆
i ψi(α, β)

W
∑nSN

i=1 log2(1 + y⋆i )
. (20)

The values of α and β in (19) as well as (20) depend on

how constrained the problem in (13) or (15) is.

1) Unconstrained Optimization: In this case, α = ∆SN and

β = ∆RN in both (19) and (20) (see Section D of the Appendix

for more details). Consequently, the problem of finding R⋆

boils down to finding E⋆
b that satisfies equation (20), i.e. a

univariate root-search problem since (20) is expressed solely

as a function E⋆
b (via y⋆i ). This problem can be solved in a low-

complexity manner by using a classic univariate root-finding

algorithm, as it is detailed in Algorithm 1.

2) Single Power Constrained Optimization: In the SPC case

at the SN, α = λ⋆1 and β = ∆RN in both (19) and (20);

whereas in the SPC case at the RN, α = ∆SN and β = λ⋆2 in

both (19) and (20), where λ⋆1 and λ⋆2 are variables to optimize

(see Section D of the Appendix for more details). Thus, in the

SPC case at the SN, the problem of finding R⋆ is equivalent

to finding the variable λ⋆1 that minimizes E⋆
b in (20) when

the following power constraint equation (obtained by inserting

(18) into (9b)) is satisfied

nSN∑

i=1

y⋆i ψ̌i(1, 0) = Pmax
SN , (21)

where ψ̌i(1, 0) are the diagonal elements of U
†
ΨΨ(1, 0)UΨ.

Similarly, in the SPC case at the RN, it is required to find λ⋆2
that minimizes E⋆

b in (20) when

nSN∑

i=1

y⋆i ψ̌i(0, 1) = P
max

RN (22)
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Algorithm 1 : EE-Optimal Source Precoder, R⋆

1: function SN-OPT(E⋆
b ,G

⋆,W,Pc,∆SN,∆RN, nSN, nDN, σ
2
j ,Hj)

2: Set x = 0, ǫ = 10−6, λ⋆
1 = ∆SN and λ⋆

2 = ∆SN;
3: Set P ′

c(G
⋆), Ψ̇(G⋆), Ψ̈(λ⋆

1, λ
⋆
2,G

⋆), andΨ(λ⋆
1, λ

⋆
2,G

⋆) ;
4: Obtain UΨ and ψi(λ

⋆
1, λ

⋆
2) for any i ∈ {1, . . . , nSN} via

Eigen decomposition of Ψ(λ⋆
1, λ

⋆
2,G

⋆);
5: while (|E⋆

b − x| ≥ ǫ) do
6: Set x = E⋆

b ;
7: Obtain y⋆i , ∀i∈{1, . . . , nSN}, by inserting E⋆

b into (19),
for α = λ⋆

1 and β = λ⋆
2 in (19);

8: Obtain R
⋆ via (18);

9: if PSN(R
⋆) ≥ Pmax

SN ||PRN(R
⋆,G⋆) ≥ P

max

RN ≥ 0 then
10: Update λ⋆

1 or λ⋆
2 by using a univariate root-finding

algorithm, satisfying either (21) or (22).
11: Obtain R

⋆ via (18);
12: ifPSN(R

⋆)≥Pmax
SN &PRN(R

⋆,G⋆)≥P
max

RN ≥0 then
13: Update λ⋆

1 and λ⋆
2 by using a bivariate root-finding

algorithm, satisfying both (21) and (22).
14: Obtain R

⋆ via (18);
15: end if
16: end if
17: Update E⋆

b by inserting y⋆i into (20), where α = λ⋆
1 and

β = λ⋆
2;

18: end while
19: return E⋆

b and R
⋆.

20: end function

is satisfied (obtained by inserting (18) into (9c)), where

ψ̌i(0, 1) are the diagonal elements of U
†
ΨΨ(0, 1)UΨ. Finding

E⋆
b for a fixed λ⋆i , i = 1 or 2, via (20) can be computed as

in the unconstrained case, while finding λ⋆i for a fixed E⋆
b

via (21) or (22) is a univariate root-finding problem, which

can be solved in a low-complexity manner by using a classic

root-finding algorithm (e.g. Newton-Raphson method [34]).

3) Dual Power Constrained Optimization: In this case

α = λ⋆1 and β = λ⋆2 in both (19) and (20) (see Section D of

the Appendix for more details). Consequently, the problem of

finding R⋆ boils down to finding the variables λ⋆1 and λ⋆2 that

minimizes E⋆
b in (20) when both power constraint equations

in (21) and (22) are satisfied.

The different steps to obtain the EE-optimal source matrix

R⋆ for a known G are summarized in Algorithm 1.

B. EE-optimal Relay Precoding

Based on equations (9), (8), (7a) and (1a), finding the

EE-optimal relay precoding matrix, G⋆, for a given re-

lay precoding matrix R boils down to solving G⋆ =
argminG Eb(R,G) =

P ′
c(R) +

σ2
1

σ2
2
tr
{
GΫ(R)G†

}

R0(R) +W log2
∣∣Ω(GΥ(R)1/2)Ω(G)−1

∣∣ , (23)

subject to (9c), where Υ(R) = InRN
+ Υ̇(R). In turn, the

Lagrangian associated to (23) can expressed as

L (G, µ) =





Eb(G) or

P ′
c +∆RNP

max
RN

RΣ(G)
+µ (PRN(G)− Pmax

RN ),
(24)

in the unconstrained or power constrained case, i.e. if

PRN(G
⋆) < Pmax

RN or PRN(G
⋆) ≥ Pmax

RN in (9c), respectively,

where µ ≥ 0 is a Lagrange multiplier and RΣ(G) is given

in (1a). Note that the argument R is omitted in (24) and in

the rest of sub-Section III-B for simplifying the notation. By

applying the change of variables Z =
σ2
1

σ2
2
G†H

†
2H2G (such

that Z � 0 is a Hermitian matrix) to the Lagrangian function

in (24), the latter can be re-expressed as

L (Z,W, µ) =





Eb(Z,W) =
P ′
c +∆RNPRN(Z,W)

RΣ(Z)
or

P ′
c +∆RNP

max
RN

RΣ(Z)
+µ (PRN(Z,W) − Pmax

RN ),

(25)

where

RΣ(Z)= R0+W log2

∣∣∣∣
InRN

+Υ1/2ZΥ1/2

InRN
+ Z

∣∣∣∣ and

(26a)

PRN(Z,W)=
1

∆RN

tr

{
Z1/2W

(
H2H

†
2

)−1

W†Z1/2Ϋ

}
.

(26b)

Moreover, W ∈ CnRN×nDN , WW† = InRN
(if nDN ≥ nRN) in

(26). Contrary to (15), it is not possible to easily solve (23)

and obtain its global minimum E⋆
b = Eb(G

⋆); even though

RΣ(Z) is a strictly positive and concave function of Z, as it

is proved in section E of the Appendix, PΣ(Z,W) is not a

linear function of Z and, hence, the convexity of (24) or (25)

cannot be readily established. Nevertheless, it can be proved,

as it is further explained in the following, that (25) can be

lower and upper bounded by strictly pseudo-convex or convex

functions (i.e. meeting the requirements of Propositions 1 and

3). In turn, we prove that E−
b ≤ E⋆

b ≤ E+
b , where E−

b and

E+
b are the global minima of the lower and upper bounds of

(25), correspondingly. Based on these bounds, two methods

are then proposed to solve (23); an EE-optimal method and a

low-complexity energy-efficient (but suboptimal) method.
1) Lower and Upper Bounds of (25): Let G be decomposed

as

G = VGĜ
1
2U

†
G
, (27)

where VG as well as U
†
G

are unitary matrices and Ĝ is a

diagonal matrix containing the eigenvalues of G†G sorted in

descending order, such that G†G = UGĜU
†
G

. For instance

in [10], [11], [14], [25], VG = V2 and UG = U1, where

V2 contains the right-singular vectors of H2 and U1 contains

the left-singular vectors of H1. In addition, let Λ̂ be a

diagonal matrix containing the eigenvalues of H
†
2H2 sorted

in descending order, such that H
†
2H2 = V2Λ̂V

†
2.

a) Lower Bound:

Proposition 5: The function PRN(Z,W) in (26b) can be

lower bounded by

PRN(Ẑ) =
1

∆RN

tr

{
ẐΛ̂−1 ̂̈Υ

↑
}
, (28)

i.e. PRN(Ẑ) ≤ PRN(Z,W),where Ẑ =
σ2
1

σ2
2
ĜΛ̂ is a diagonal

matrix and
̂̈
Υ

↑

is a diagonal matrix containing the eigenvalues

of Ϋ sorted in ascending order. Whereas the function RΣ(Z)
in (26a) can be upper bounded by

RΣ(Ẑ) = R0 +W log2

∣∣∣ InRN
+ ẐΥ̂

∣∣∣−W log2

∣∣∣ InRN
+ Ẑ

∣∣∣ ,
(29)
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i.e. 1/RΣ(Ẑ) ≤ 1/RΣ(Z), where Υ̂ is a diagonal matrix

containing the eigenvalues of Υ sorted in descending order,

such that Υ = UΥΥ̂UΥ
†. In addition, UΥ is a unitary

matrix containing the eigenvectors of Υ. See section F of

the Appendix for the proof. Thus, the following Lagrangian

function

L
(
Ẑ, µ

)
=





Eb(Ẑ) =
P ′
c +∆RNPRN(Ẑ)

RΣ(Ẑ)
or

P ′
c +∆RNP

max
RN

RΣ(Ẑ)
+µ

(
PRN(Ẑ)− Pmax

RN

)
,

(30)

is a lower bound of the Lagrangian of the original problem in

(24) or (25).

Corollary 2: Contrary to (25), the Lagrangian function in

(30) is a strictly pseudo-convex (unconstrained case) or convex

function (power constrained case) of Ẑ, respectively, such that

it has a unique global minimum.

Proof: Given that PRN(Ẑ) is a linear function of Ẑ

and RΣ(Ẑ) is a strictly positive and concave function of Ẑ

(same proof as for RΣ(Z) in Section E of the Appendix),

the Lagrangian function in (30) meets the requirements of

Propositions 1 and 3.

Corollary 3: Let E−
b be the global minimum of (30), it then

implies that E−
b ≤ E⋆

b , (given that L
(
Ẑ, µ

)
≤ L (Z,W, µ)).

b) Upper Bound:

Proposition 6: Let G+ be the relay precoding matrix that

minimizes (23) subject to (9c) and G = V2Ĝ
1
2U

†
Υ

, i.e.

E+
b = min

Ĝ,VG,UG

Eb(Ĝ,VG,UG) (31)

s.t. (9c),VG=V2, and UG=UΥ;

it then implies that the global minimum of (31), E+
b =

Eb(G
+), verifies E+

b ≥ E⋆
b .

Proof: It is commonly known in optimization theory [33]

that enforcing extra constraints to an optimization problem

results in a reduction of the set of possible/feasible solutions

for the given problem; in other words, the new solution space

becomes a subset of the original solution space. Consequently,

it implies that the solution of a minimization problem is always

lower or equal to the solution of the same problem when extra

constraints are enforced on it; in other words, the solution of

the problem with extra constraints upper bounds the solution

of the original problem. Based on this premise, it can be

straightforwardly concluded that

E⋆
b = min

G

Eb(G) = min
Ĝ,VG,UG

Eb(Ĝ,VG,UG) ≤ (31)

s.t. (9c), s.t. (9c).

Indeed, the solution space in (31) is restricted to the domain

of positive semi-definite matrix having a specific structure, i.e.

a structure as in (27) with VG = V2 and UG = UΥ, instead

of the whole positive semi-definite matrix domain (as in the

left side of the inequality).

Corollary 4: Contrary to (23), the optimization problem in

(31) is strictly-pseudo convex or convex in the unconstrained

or power constrained case, respectively. Indeed, its Lagrangian

can be expressed as in (30) with RΣ(Ẑ) expressed as in (29)

and PRN(Ẑ) given by

PRN(Ẑ) =
1

∆RN

tr
{
ẐΛ̂−1Ϋ

}
, (32)

instead of (28), where Ϋ = UΥ
†ΫUΥ � 0 is a Hermitian

matrix. Note that PRN(Ẑ) in (32) is a linear function of Ẑ.

Proof: Same as proof of Corollary 2.

c) Lower and Upper Bound Algorithms:

Proposition 7: The global optimum of L
(
Ẑ, µ

)
in (30)

occurs at Ẑ• = diag([z•1 , z
•
2 , . . . , z

•
nRN

]), where

z•i =
1

2


−

(
1 +

1

υi

)
+

√(
1−

1

υi

)2

+
4Wγ(υi − 1)

ln(2)υiu•i



+

,

(33)

∀i ∈ {1, . . . , nRN}, and υi are the eigenvalues of Υ. Given

that PRN(Ẑ) is expressed differently in (28) and (32) for the

lower and upper bounds of (25), respectively, it implies that

the values of u•i in (33) are also different for each of these

bounds. For the lower bound, u•i represents the elements of

the diagonal matrix Λ̂−1 ̂̈Υ
↑

in (28). Whereas for the upper

bound, u•i represents the diagonal elements of Λ̂−1Ϋ in (32).

See section G of the Appendix for the proof. In addition, by

inserting Ẑ• into Eb(Ẑ) in (30), the latter simplifies as

E•
b =

P ′
c +

∑nRN

i=1 z
•
i u

•
i

R0 +W
∑nRN

i=1 log2(1 + z•i υi)− log2(1 + z•i )
, (34)

where E•
b = Eb

(
Ẑ = Ẑ•

)
.

The value of γ in (33) is dependent on the value of

PRN(Ẑ
•). If PRN(Ẑ

•) < Pmax
RN , i.e. unconstrained case, then

γ = E•
b in (33) (see Section G of the Appendix for mode

details). In this case, the problem of finding Ẑ• boils down

to finding the variable E•
b that satisfies equation (34). This

is a univariate root-finding problem, since (34) is expressed

solely as a function E•
b (via z•i ), that can be solved in a low-

complexity manner by using a classic univariate root-finding

algorithm. On the contrary, if PRN(Ẑ
•) ≥ Pmax

RN , i.e. power

constrained case, then γ = µ• in (33) (see Section G of

the Appendix for mode details), with µ• being a variable to

optimise. Thus, the problem of finding Ẑ• becomes equivalent

to finding the variables µ• that satisfies the following power

constraint equation (obtained by inserting Ẑ• into (28) or (32))

1

∆RN

nRN∑

i=1

z•i u
•
i = Pmax

RN , (35)

i.e. a univariate root-finding problem since (35) is expressed

solely as a function µ• (via z•i ) in this case. Hence, µ• can be

computed in a low-complexity manner by using a root-finding

algorithm (e.g. Newton-Raphson method [34]).

Given that the lower and upper bounds of the original

Lagrangian can be both formulated as in (30), it implies that

E−
b and E+

b can be computed by using a similar procedure,

which is summarized in Algorithm 2; E−
b = E•

b if u•i are

the elements of Λ̂−1 ̂̈Υ
↑

in (28), or E+
b = E•

b if u•i are the

diagonal elements of Λ̂−1Ϋ in (32).
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Algorithm 2 : Lower or Upper Bound of E⋆
b , E•

b

1: function RN-BND(E•
b ,W,nRN,∆RN, P

′
c, R0, Ϋ,Υ, Λ̂)

2: Set x = 0 and ǫ = 10−6;
3: Obtain UΥ and υi,∀i ∈ {1, . . . , nRN}, via Eigen decompo-

sition of Υ;

4: if “E•
b ”=“E−

b ” then ⊲ Lower bound, E−
b

5: Obtain the eigenvalues of Ϋ via Eigen decomposition,

and sort them in ascending order to form
̂̈
Υ

↑

;

6: Obtain the elements of Λ̂−1 ̂̈
Υ

↑

, u•
i , ∀i ∈ {1, . . . , nRN};

7: end if
8: if ”E•

b ”=”E+

b ” then ⊲ Upper bound, E+

b

9: Set Ϋ = U
†
Υ
ΫUΥ;

10: Obtain the diagonal elements of Λ̂
−1

Ϋ, u•
i ,∀i;

11: end if
12: while (|E•

b − x| ≥ ǫ) do
13: Obtain z•i ,∀i, by inserting γ = E•

b into (33);

14: if PRN(Ẑ
•) ≥ Pmax

RN then
15: Set µ• = E•

b ;
16: Obtain µ• via z•i by using a root-finding algorithm

such that (35) is satisfied;
17: end if
18: Update E•

b via (34);
19: end while
20: return E•

b and z•i ,∀i.
21: end function

2) EE-Optimal Relay Precoder:

Proposition 8: Let ε be a nonnegative real number that

increases in an infinitesimal manner from 0 to infinity; then,

the first value of ε, ε⋆, for which the equality

E−
b + ε = Eb(G = G(E−

b + ε)), (36)

when PRN(G = G(E−
b +ε)) ≤ Pmax

RN , is satisfied is the global

minimum of Eb, such that E⋆
b = E−

b + ε⋆. The EE-optimal

relay precoding matrix, G⋆, is then such that G⋆ = G(E−
b +

ε⋆), where the latter is a solution of ∇GEb(G=G⋆) =

1

RΣ(G⋆)
[∇GPΣ(G=G⋆)− E⋆

b∇GRΣ(G=G⋆)] = 0,

(37)

with PRN(G = G⋆) ≤ Pmax
RN . In addition, ∇GPΣ(G) and

∇GRΣ(G) are expressed in (70). See section H of the

Appendix for the proof.

Based on this proposition, the EE-optimal relay precoding

matrix, G⋆, can be obtained via Algorithm 3 in conjunction

with, for instance, a gradient search (in the unconstrained case)

or projected gradient search (in the power constrained case)

method for obtaining G(E−
b +ε⋆) for a given value of ε⋆. The

search for the optimal ε⋆ stops when the difference between

E⋆
b and E−

b +ε⋆ becomes negligible (i.e. when both equations

(36) and (37) are jointly satisfied). Note that w in line 5 of

Algorithm 3 is an accuracy parameter, which is utilized to

implement in practice the ”infinitesimal” increasing of ε from

0 to ε⋆; the larger w is, the more accurate is the algorithm, but

then the more iterations are likely to be required (i.e. increased

complexity).

3) Low-complexity Energy-Efficient Relay Precoder:

Proposition 9: Contrary to G⋆, which can only be obtained

via a numerical method, the solution of the optimization

Algorithm 3 : EE-Optimal Relay Precoder, G⋆

1: function RN-OPT(R⋆,W,Pc,∆SN,∆RN, nSN, nRN, nDN, σ
2
j ,Hj ,

Λ̂)
2: Set P ′

c(R
⋆), R0(R

⋆), Υ̇(R⋆), Ϋ(R⋆), and Υ(R⋆);
3: Obtain E−

b via RN-BND (E−
b ,W, ...) in Algorithm 2;

4: Obtain E+

b via RN-BND (E+

b ,W, ...) in Algorithm 2;

5: Set ε = 0, εmax = E+

b −E−
b , η = 1, w = 1, and ǫ = 10−6;

6: while (η > ǫ) do
7: Set ε⋆ = ε;
8: while (η > 0) and (ε⋆ ≤ εmax) do
9: Obtain G

⋆ � 0 by solving (37) for E⋆
b = E−

b + ε⋆

via a gradient/projected gradient search method;
10: Obtain E⋆

b by inserting G
⋆ in (23);

11: Set η = E⋆
b − (E−

b + ε⋆);
12: if η > 0 then Set ε⋆ = ε⋆ + 10−w (εmax − ε);
13: end while
14: Set ε = ε⋆ − 10−w (εmax − ε), εmax = ε⋆, and η = |η|;
15: end while
16: return E⋆

b and G
⋆.

17: end function

Algorithm 4 : Low-complexity EE Relay Precoder, G+

1: function RN-LCY(E+

b ,R
⋆,W, Pc,∆SN,∆RN, nSN, nRN, nDN, σ

2
j ,

Hj , Λ̂,V2)

2: Set P ′
c(R

⋆), R0(R
⋆), Υ̇(R⋆), Ϋ(R⋆), and Υ(R⋆);

3: Obtain E+

b and z•i ,∀i, via RN-BND (E+

b ,W, ...) in Alg. 2;

4: Set Ẑ• = diag([z•1 , z
•
2 , . . . , z

•
nRN

]) and obtain UΥ (as in line
3 of Algorithm 2);

5: Obtain G
+ via (38);

6: return E+

b and G
+.

7: end function

problem in (31), G+, can be expressed in closed-form as

G+ = V2

(
σ2
2

σ2
1

Ẑ•Λ̂−1

) 1
2

U
†
Υ
, (38)

where Ẑ• = diag([z•1 , z
•
2 , . . . , z

•
nRN

]), and z•i is defined as in

(33) with u•i being the diagonal elements of Λ̂−1Ϋ.

Proof: Given that Ẑ =
σ2
1

σ2
2
ĜΛ̂ and G+ minimizes (31),

i.e. (23) subject to G = V2Ĝ
1
2U

†
Υ

, it implies that G+ can

be defined as in (38).

Accordingly, G+, can be obtained via Algorithm 4, which

has a lower computational complexity than Algorithm 3.

Indeed, it only involves one or two univariate root-finding

search(es) since it is based on Algorithm 2. However, it is not

necessary optimal in general, given that the search domain is

restricted to the domain of positive semi-define matrix having

a particular structure.

C. Joint Source and Relay Precoding Optimization

1) Alternating Optimization Procedure: As in [10], [16],

[20], [24], the main optimization problem in (9) can be solved

by using an alternating optimization procedure based on R⋆

and G⋆ or G+, as follows:

1) Obtain Λ̂ and V2 via singular value decomposition.

Then, set R⋆(1)

= InSN
, G⋆(1)

, and obtain the eigenval-

ues of Ψ(∆SN,∆RN,G
⋆(1)

), ψi(∆SN,∆RN). As in [10],

we consider N different randomly selected initialization

matrices G⋆(1)

� 0. Next, set E⋆
b = 1+ ln(2)

W maxi{ψi}.



8

2) At the k-th iteration, G⋆(k)

is used as an input of

Algorithm 1, which updates the value of E⋆
b and return

R⋆(k+1)

.

3) Next, R⋆(k+1)

is used as an input of Algorithm 3, which

updates the value of E⋆
b and return G⋆(k+1)

.

4) Steps 2) and 3) are repeated iteratively until conver-

gence, i.e. until the values of E⋆
b at the end of the k-th

and k + 1-th iterations are the same.

Note that the same procedure can also be used for obtaining

G+ instead of G⋆, where Algorithm 4, instead of Algorithm

3, is used at step 3).

2) Convergence Discussion and Results: Following the

same line of reasoning as in [24], the convergence of the

alternating procedure for solving (9) in the previous subsection

can be established as follows; first, given that the optimization

problem in (9) has a unique global minimum when the

variable R is optimized for a known G, it implies that

Eb(R
⋆(k+1)

,G⋆(k)

) ≤ Eb(R
⋆(k)

,G⋆(k)

), at the k-th iteration.

Second, since the optimization problem in (9) has a unique

global minimum when the variable G is optimized for a known

R, it implies that Eb(R
⋆(k+1)

,G⋆(k+1)

) ≤ Eb(R
⋆(k+1)

,G⋆(k)

),
at the k-th iteration. By combining the two previous inequali-

ties, such that Eb(R
⋆(k+1)

,G⋆(k+1)

) ≤ Eb(R
⋆(k)

,G⋆(k)

), and

knowing that Eb is lower bounded, we can conclude that the

conditional updating of R⋆ (for a fixed G⋆) and G⋆ (for a

fixed R⋆) at each iteration either decreases or maintains the

value of E⋆
b = Eb(R

⋆,G⋆). In other words, E⋆
b is the best

local minimum of Eb, for a given R⋆ or G⋆, at each iteration.

However, similar to [10], [16], [20], it cannot be guaranteed

that E⋆
b is always the global minimum of (9) in the general

case since Eb(R,G) in (9) is not necessarily jointly strictly

pseudo-convex/convex in both R and G. Nevertheless, in the

following special cases, E⋆
b is guaranteed to be the global

minimum of (9):

• if σ2
0 ≪ 1, σ2

1 ≫ 1, or σ2
2 ≫ 1, then (9) becomes

equivalent to a DL only EE-based optimization problem

(i.e. independent of G), such that Eb(R
⋆,G⋆ = 0) is

optimal;

• if σ2
2 ≪ 1, then (9) becomes independent of G as in the

previous case;

• if σ2
2 ≪ 1 and σ2

1 ≪ 1, then R and G become

uncorrelated in (1). In turn, it has been discussed in

[10] (for the RL only scenario, i.e. σ2
0 ≫ 1) that it

is a sufficient condition for (9) to converge to a global

optimum.

Figure 2 depicts the number of iterations that are necessary

for the alternating optimization procedure to convergence in

the three special cases previously discussed, i.e. σ2
0 = −30

dB and σ2
1 = σ2

2 = 0 dB (⇔ σ2
0 ≪ 1), σ2

2 = −30 dB and

σ2
0 = σ2

1 = 0 dB (⇔ σ2
2 ≪ 1), or σ2

1 = σ2
2 = −30 dB and

σ2
0 = 0 dB (⇔ σ2

2 ≪ 1 and σ2
1 ≪ 1), respectively. In addition,

a case where convergence is not necessarily guaranteed, i.e.

σ2
0 = 20 dB and σ2

1 = σ2
2 = 10 dB, is also plotted. Note

that the alternating procedure is run N = 10 times (such

that each subplot has 10 dashed lines), where the random

initialization matrix G⋆(1)

is different for each run. The results

clearly show that the alternating procedure converges towards
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Fig. 2: Number of iterations required for the alternating

optimization procedure to converge in different settings.

the same value and, hence, is independent of G⋆(1)

, when

considering any of the three special case settings. In turn, this

confirms that the alternating procedure can reach the global

minimum in these special cases, regardless of G⋆(1)

. Whereas

in the case of σ2
0 = 20 dB and σ2

1 = σ2
2 = 10 dB, the outcome

of the alternating procedure is clearly dependent of G⋆(1)

, i.e.

different G⋆(1)

provide different outcomes. Thus, this justifies

the use of multiple initialization points [10] for increasing the

likelihood of reaching the global minimum of (9).

IV. NUMERICAL RESULTS AND DISCUSSIONS

Our simulations, which are averaged over 10000 runs,

assume a downlink transmission of the cooperative MIMO AF

system, such that the SN is a BS and the DN is a UE. They also

rely on the power model parameters of Table 1 of [12] (but

with P SlpA

SN = 0 W) for setting values to all the parameters

discussed in Section II-B. In addition, note that Pmax
. per

antenna is between 6 to 20 W for a typical micro/macro BS [4],

and between 1 to 5 W for a typical urban/rural RN [26]. We

also consider a single-tap i.i.d MIMO Rayleigh fading channel

between each node, a unit bandwidth (W = 1), and ς = 1/2
in Pc. Moreover, we assume that all the channel matrices have

the same dimension, i.e. n = nSN = nRN = nDN, and N = 10
in step 1) of Section III-C1.

A. Performance Results and Insights

In order to demonstrate the benefits, in terms of EE,

of our source and relay precoding optimization scheme for

cooperative MIMO-AF systems, we compare its performance

against existing approaches that either minimize the MSE [20],

maximize the SE [16], or minimize Eb [23] in the same

scenario (when considering both direct and relay links), and
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Fig. 3: MSE, sum-rate, and EE performances of our scheme,

against other existing non-EE-based cooperative MIMO-AF

precoding schemes, as a function of σ2
0 dB.

other existing EE/Eb-based approaches that either optimize the

EE of the DL [35] or RL [10], [11] on its own . For ease of

introduction, the different schemes that are compared in this

section are denoted, as follows

• E⋆⋆
b = Eb(R

⋆,G⋆) is the outcome of our EE-optimal

source and relay precoding design, which can be imple-

mented through Algorithms 1 and 3.

• E⋆+
b = Eb(R

⋆,G+) is the outcome of our EE-optimal

source and low-complexity relay precoding design, which

can be implemented through Algorithms 1 and 4.

• min MSE is the outcome of the MSE-optimal source and

relay precoding design proposed in [20].

• max SE is the outcome of the SE-based source and relay

precoding design proposed in [16].

• E⋆⋄
b denotes the outcome of our preliminary work in

[23], where the EE-optimal source precoding is utilized

in conjunction with a different relay precoding structure,

i.e. G = V2Ĝ
1
2U

†
1.

• E⋆◦
b = minREb(R,G = 0) is the outcome of the EE-

optimal source precoding design for DL only in [35].

• E∗∗
b = minR,G limσ0→∞ Eb(R,G) is the outcome of

the EE-optimal source and relay precoding design for RL

only in [10], [11].

Note that when comparing the EE of cooperative schemes with

DL or RL only scheme, it is necessary to integrate the fact that

Pc, which accounts for all the fixed circuit consumed powers

in the system, is different in each case. In the cooperative case,
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Fig. 4: Transmit power, sum-rate, and EE performances of

our scheme against other existing EE-based DL only and RL

only schemes, as a function of σ2
0 dB.

Pc is defined right after equation (6), whereas in the DL or

RL only case, Pc = nSNP
CipA

SN +P Ci
SN + ς(nDNP

CipA
DN +P Ci

DN) or

Pc = nSN(P
CipA

SN +P SlpA

SN )+P Ci
SN +(1+ ς)(nRNP

CipA
RN +P Ci

RN)+

ς(nDNP
CipA
DN + P Ci

DN) + nDNP
SlpA
DN , respectively.

Figure 3 compares the MSE, sum-rate, and EE performances

of our scheme, against other existing precoding schemes that

are dedicated to either minimize the MSE [20] or maximize

the SE [16] of cooperative MIMO-AF systems, for n = 4,

Pmax
SN = 80 W, Pmax

RN = 10 W, σ2
1 = σ2

2 = σ2
0/10. Note that

the unit for sum-rate is bit/2/s, since we consider the number

of transmitted bits over two transmission phases. As it is

expected, the precoding schemes of [20] and [16] provide the

best MSE and sum-rate performances, respectively, whereas

our scheme provides the best energy consumption. Indeed,

our scheme can reduce Eb by up to 25% in good channel

condition (when σ2
0 = −30 dB), but at the expense of a 15%

reduction in sum-rate when compared to max SE and almost

one order of MSE magnitude when compared to min MSE.

It can also be remarked that as the channel condition worsen

(when σ2
0 increases), as the results of the three schemes start

to converge. In turn, this indicates that the type of precoding

design becomes less of an issue in poor channel condition.

Figure 4 compares the transmit power (in both transmission

phases), sum-rate, and EE performances of our scheme, against

other existing EE/Eb-based approaches that either optimize the

EE of the DL [35] or RL [10], [11] on its own, for n = 4,

Pmax
SN = 80 W, Pmax

RN = 10 W, σ2
1 = σ2

2 = σ2
0/10. Note
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that both the unconstrained and power constrained results are

plotted for each scheme. In terms of Eb performance, the

results show that our new scheme can outperform the two other

schemes by more than 30% in both the unconstrained and

power constrained scenarios. Whereas in terms of sum-rate,

it can be remarked that in this particular setting, the DL only

transmission scheme [35] performs better than our cooperative

scheme or the RL only scheme, by up to 40%. This is similar

to the results in Fig. 3 and it indicates the existence of a trade-

off between EE and rate [30]. Even though DL transmission

provides a better rate than cooperative transmission, this does

not translates in a lower energy consumption. Indeed, the

transmit power results indicate that the DL transmission al-

ways utilizes more transmit power than the two other schemes

(up to 8 times more in the 2nd transmission phase) and, in

turn, this explains why it is less energy efficient than our

cooperative scheme. By analyzing the four subplots together,

we can conclude that our scheme provides the best trade-off

between power and rate, such that it exhibits the best Eb.

The transmit power results of Fig. 4 are also very informa-

tive about the way in which EE-based optimization works and

differs from SE maximization or MSE minimization, which

echoes the first paragraph of Section III. Indeed, the top two

subplots of Fig. 4 show that depending on the value of σ2
0 , the

optimization problem in (9) is either unconstrained (for σ2
0 ≤ 2

dB), SPC at the RN (for 2 dB < σ2
0 ≤ 22dB) or DPC (for σ2

0 >
22dB). Moreover, as it was expected, E⋆⋆

b is always lower in

the unconstrained rather than in the constrained regime. In

contrast, the minimum MSE and maximum SE are always

achieved when both power constraints are met (DPC regime)

in Fig. 3. This explains why E⋆⋆
b tends to converge towards

min MSE and max EE in Fig. 3 when σ2
0 ≫ 0, since in this

case, all the schemes operate in the DPC regime.

Figure 5 depicts the EE gain, ∆EE, of our novel EE-

based cooperative precoding scheme against EE-based non-

cooperative precoding schemes for various σ2
i values, ∀i ∈

{0, 1, 2}, n = 4, Pmax
SN = 80 W, Pmax

RN = 10 W, and where

∆EE = 100 [1− E⋆⋆
b /χ]+ %. (39)

Note that χ = min{E⋆◦
b , E∗∗

b } in Fig. 5. The results clearly

confirm the benefits, in terms of EE, of joint source and

relay precoding optimization in comparison with existing

approaches, where precoding matrices are optimized for either

the direct or relay link separately. Indeed, 45% or more of

each subplot area has a ∆EE ≥ 0, which graphically indicates

that joint source and relay precoding matrices optimization

is useful for improving the EE of MIMO-AF systems. For

instance, in Fig. 5 b) and c), an EE improvement of up to 28%

is achieved. However, it can be remarked that the intensity of

the gain is not uniform; it clearly depends on the values of

σ2
i , which themselves reflect the quality of each links. Similar

observations have also been reported in [17], [18], for the

case of SE-based joint source and relay precoding subject to

power constraints. On the one hand, we know that multi-hop

communication (RL only) is prone to the ‘bottleneck’ effect

(see Fig. 4 of [15]), where the overall rate of the RL is limited

by the rate of its worst hop (see Section IV. B1) of [11]).

Hence, whenever the DL exhibits a far better link quality than
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Fig. 5: EE gain comparison of our scheme against other

existing EE-based DL only and RL only schemes, as a function

of a) (σ2
1 , σ

2
2) when σ2

0 = 0 dB, b) (σ2
0 , σ

2
2) when σ2

1 = 0 dB,

and c) (σ2
0 , σ

2
1) when σ2

2 = 0 dB.

the worst link of the two-hop RL, i.e. σ2
0 << max{σ2

1 , σ
2
1},

the precoding at the SN prioritizes the DL transmission such

that E⋆⋆
b ≈ E⋆◦

b . In turn, this explains why ∆EE ≃ 0 in

the left region of both Fig. 5 b) and c), as well as in the

upper right region of Fig. 5 a). On the other hand, whenever

the RL exhibits a far better link quality than the DL, i.e.

σ2
0 >> max{σ2

1 , σ
2
1}, the precoding at both the SN and RN

prioritize the RL transmission such that E⋆⋆
b ≈ E∗∗

b . As a

result, ∆EE ≃ 0 in the lower right region of both Figs. 5 b)

and c), as well as in the lower left region of Fig. 5 a). Note

that similar results have been remarked for higher number of

antennas, e.g. n = 8 or n = 16. Finally, the link quality being

dependent on the RN placement in a practical deployment, Fig.

5 is quite informative for getting the most out of cooperative

MIMO-AF communication systems in terms of EE.

Figures 6 and 7 complement the results of Fig. 5 by

focusing on the impact of power constraints and imperfect

CSI, respectively, on the EE gain. By considering the same
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Fig. 6: EE gain comparison of our scheme against other

existing EE-based DL only and RL only schemes, for different

power constraints.

settings as in Fig. 5 c), except that Pmax
SN = 40 W, Pmax

RN = 20
W in Fig. 6 a) and Pmax

SN = 20 W, Pmax
RN = 5 W in Fig. 6 b),

Fig. 6 further confirms that our scheme can be more energy

efficient than existing approaches and that the improvement

is localized. In addition, it can be remarked that more EE

gain, around 33%, is achieved in Fig. 6 b) when the power

constraints are more stringent, i.e. Pmax
SN = 20 W, Pmax

RN = 5
W instead of Pmax

SN = 40 W, Pmax
RN = 20 W in Fig. 6 a) or

Pmax
SN = 80 W, Pmax

RN = 10 W in Fig. 5 c). Whereas in Fig.

7, by relying on the noisy CSI model of [36] for modeling

the imperfection in CSI estimation, the EE gain is depicted

when considering the same settings as in Fig. 5 c), except

that σ2
E = 0.1 in Fig. 7 a) and σ2

E = 0.5 in Fig. 7 b). In

the noisy CSI framework of [36], σ2
E is used to model the

quality of the CSI estimation; σ2
E = 0 being equivalent to the

perfect CSI estimation case (e.g., as in Figs. 5 and 6), whereas

the estimation quality degrades as σ2
E increases. Even though

the absolute performance of all the schemes will obviously

degrade as σ2
E increases, it is interesting to see in Fig. 7 that

it is not the case for the relative performance of our novel EE-

based cooperative precoding scheme against EE-based non-

cooperative precoding schemes. On the contrary, higher values

of ∆EE% can be achieved when σ2
E increases, i.e. an EE gain

of up to 50% is obtained in Fig. 7 b) for σ2
E = 0.5. In turn, this

indicates that our cooperative scheme is more resilient to CSI

estimation error that the existing non-cooperative precoding

schemes. This improved resilience could be due to diversity;

the cooperative scheme relies on two different transmission

routes, instead of one for the non-cooperative schemes. Finally,

as in Figs. 5 and 6, the EE gain is still localized in Fig. 7.
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Fig. 7: EE gain comparison of our scheme against other

existing EE-based DL only and RL only schemes, when

considering imperfect CSI.
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low-complexity alternative and b) our preliminary EE-based

precoding scheme of [23].

Figure 8 compares the EE performance of the our scheme

with the EE-optimal relay precoder against the low-complexity

energy efficient relay precoder in Fig. 8 a) and the relay
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precoder of [23] in Fig. 8 b), when considering the same

settings as in Fig. 5 c). Consequently, ∆EE is defined as in

(39), but where χ = E⋆+
b and χ = E⋆⋄

b in Fig. 8 a) and

b), respectively. On the one hand, Fig. 8 a) confirms that the

relay precoding matrix G+ is not as energy efficient as G⋆ in

the general case (since ∆EE ≥ 0); however, in this particular

example, the difference of performance between using G⋆ or

G+ remains below 4%. On the other hand, Fig. 8 b) clearly

indicates that the relay precoding structure G = V2Ĝ
1
2U

†
1,

which is known to be optimal in various other MIMO-AF

precoding scenarios [10], [11], [14], [25], is not optimal here

since E⋆⋄
b can differ by more than 6% compared to E⋆⋆

b .

B. Complexity Analysis and Results

In order to put the results in Figs. 5 and 8 into perspective,

we discuss here the computational complexity of the different

algorithms proposed in this paper, when assuming that n =
nSN = nRN = nDN:

• Even though R⋆ in Algorithm 1 is obtained through a

combination of simple univariate and/or bivariate root-

finding searches (with complexity linear in n), the com-

plexity of the whole algorithm is asymptotically driven by

the complexity of the matrix operations it uses, e.g. eigen

decomposition (ED) for obtaining UΨ, matrix multipli-

cation/inversion for computing Ψ̇, Ψ̈, and R⋆. Given that

these matrix operations usually exhibit a computational

complexity of O(n3), we expect Algorithm 1 to exhibit

the same sort of asymptotical complexity.

• Algorithm 2 also utilizes univariate root-finding searches

as well as ED and matrix multiplication/inversion; conse-

quently, we also expect Algorithm 2 to exhibit a compu-

tational complexity of O(n3). However, Algorithm 2 uses

at worst two root-finding searches (i.e. for unconstrained

and DPC cases) instead of three in Algorithm 1. Thus,

we expect Algorithm 2 to exhibit a lower computational

complexity than Algorithm 1.

• Algorithm 4 uses Algorithm 2 to return G+, such that it

follows the same structure as Algorithm 1. Hence, it is

expected to have a similar complexity of O(n3).
• The EE-optimal relay precoding in Algorithm 3 is based

on an iterative approach, where the average number of

iterations, Niter, that are necessary for finding G⋆ are

increasing with w and 1/ǫ; w and ǫ being accuracy

parameters that are defined at line 5 of Algorithm 3. The

larger w and 1/ǫ are, the more accurate is this algorithm,

but the more iterations (complexity) are required. For

instance, when w = 1, then inner while loop in Algorithm

3 (lines 8 to 13) is perform at most 10 times for each

outer while loop (lines 6 to 15). Meanwhile, inside the

inner while loop, a gradient/projected gradient search is

performed to update G⋆, which again relies on matrix

operations, such as determinant and multiplication, that

exhibit a computational complexity of O(n3). Overall,

the optimal approach is expected to exhibit a computa-

tional complexity of O(Nitern
3). In addition, given that

Algorithm 3 also required to run Algorithm 2 twice, its

computational complexity can only be always greater than

the one of Algorithm 4.
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Fig. 9: Comparison of the average number of basic operations

required by Algorithms 1, 3, and 4 as a function of n, for

σ2
0 = 0 dB and σ2

1 = σ2
2 = −6 dB.

Figure 9 depicts the computational complexity, measured in

terms of the average number of basic operations (e.g. addition,

substraction, multiplications, etc.), of Algorithms 1, 3, and 4,

as a function of the matrix dimension, n, for σ2
0 = 0 dB and

σ2
1 = σ2

2 = −6 dB (i.e. a setting for which the EE gain is

significant according to Fig. 5 a)). The results first confirm

that the complexity of all three algorithms is asymptotically

driven by the complexity of the matrix operations, i.e. n3,

and, as it was expected, that Algorithm 4 is the least complex

of the three algorithms; Algorithm 4 is roughly 60 times

less complex than Algorithm 3. Hence, the low-complexity

approach of Algorithm 4 has performance close to the original

approach of Algorithm 3 (based on Fig.8 a)), but with a far

lower computational complexity.

V. CONCLUSION

In this paper, an energy efficient precoding method for the

cooperative MIMO-AF scenario (i.e. when both relay and

direct links are considered) has been proposed, based on EE-

optimal source and relay precoding matrices. We have formally

proved the optimality of our source and relay precoders, when

treated independently, by using pseudo-convexity/convexity ar-

guments and have relied on alternating optimization (for which

the convergence has been proved) for jointly optimizing them.

We have provided a closed-form expression for the EE-optimal

source precoder and have designed an optimal numerical

approach for obtaining the relay precoder. We have also derive

a sub-optimal relay precoder in closed-form that exhibits EE

performance close to the EE-optimal relay precoder, but with

a far lower computational complexity. Simulation results have

confirmed that our novel EE-based approach can improve the

EE of cooperative MIMO-AF systems by up to 50% in

comparison with existing approaches. In the future, we plan to

extend our work for the case where only imperfect or partial

CSI is available at the source and/or relay node, given the

promising results of Fig. 7.
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APPENDIX

A. Proof of Proposition 1

Proof: Based on the definition of [32], any function f
must verify the following relationship in order to be a strictly

pseudo-convex function of X � 0,

〈∇Xf(X),E〉F ≥ 0 ⇒ f(X+E) > f(X), (40)

for any Hermitian matrix E such that X+E � 0 and E 6= 0.

Given that f(X) = p(X)
q(X) , it implies that 〈∇Xf(X),E〉F=

q(X)−1 [〈∇Xp(X),E〉F − f(X)〈∇Xq(X),E〉F] . (41)

In turn, based on (41), 〈∇Xf(X),E〉F ≥ 0 is equivalent to

〈∇Xp(X),E〉F ≥ f(X)〈∇Xq(X),E〉F. (42)

Based on the definition of [33], q is a strictly concave function

of X � 0 if and only if

〈∇Xq(X),E〉F > q(X+E)− q(X), (43)

for any Hermitian matrix E such that X+E � 0 and E 6= 0.

By inserting equation (43) into (42), we obtain

〈∇Xp(X),E〉F > f(X) [q(X+E)− q(X)]

⇔ q(X)〈∇Xp(X),E〉F > p(X) [q(X+E)− q(X)]

⇔ q(X) [p(X) + 〈∇Xp(X),E〉F] > p(X)q(X+ E).

(44)

Given that p is a linear function of X, it implies that p(X +
E) = p(X) + 〈∇Xp(X),E〉F. Consequently,

q(X)p(X +E) > p(X)q(X+E)

⇔
p(X+E)

q(X+E)
>
p(X)

q(X)
⇔ f(X+E) > f(X).

(45)

Hence, (40) is verified and f(X) is strictly pseudo-convex.

B. Proof of Proposition 2

Proof: Let q be a strictly pseudo-convex function, such

that it verifies (40), and p be a function of X � 0; hence,

(p(X+E)− p(X)) + 〈∇Xq(X),E〉F ≥ 0 ⇒

(p(X+E)− p(X)) + q(X+E)− q(X) > 0

⇔ (p(X+E)− p(X)) + 〈∇Xq(X),E〉F ≥ 0 ⇒

p(X+E) + q(X+E) > p(X) + q(X).

(46)

Let f(X) = p(X) + q(X) and p be linear, i.e. p(X + E) =
p(X) + 〈∇Xp(X),E〉F, it then implies that

〈∇Xp(X),E〉F+〈∇Xq(X),E〉F ≥ 0⇒f(X+E)>f(X)

⇔ 〈∇Xf(X),E〉F ≥ 0 ⇒ f(X+E) > f(X),
(47)

which is the definition of a strictly pseudo-convex function in

(40).

C. Proof of Corollary 1: Strict Positivity and Concavity of

(16a)

Proof: On the one hand, let RΣ(Y) be defined as in (16a),

it then implies that RΣ(Y) > 0 for Y � 0, Y 6= 0. Moreover,

by relying on matrix calculus [37], it also implies that

〈∇YRΣ(Y),E〉F =W/ ln(2) tr
{
( InSN

+Y)
−1

E
}
. (48)

Note that ( InSN
+Y)† = ( InSN

+Y) since ( InSN
+Y) is a

Hermitian matrix. On the other hand,

RΣ(Y +E)−RΣ(Y) =W log2

∣∣∣ InSN
+ ( InSN

+Y)
−1

E

∣∣∣ .
(49)

Knowing that for any square matrix X,
∣∣eX

∣∣ = etr{X} ⇔
tr{X} = ln

∣∣eX
∣∣, and by using the change of variable

X1 = ( InSN
+Y)

−1
E ≻ 0 (when assuming that E 6=

0), (48) and (49) can be re-expressed as W log2
∣∣eX1

∣∣ and

W log2 | InSN
+X1|, respectively. Since

∣∣eX1

∣∣ > | InSN
+X1|

for any square matrix X1 ≻ 0, RΣ verifies (43) and, in turn,

is a strictly positive and concave function of Y.

D. Proof of Proposition 4

Proof: The Lagrangian associated with the optimization

problem in (15) is formulated in (17). Given that, according to

Corollary 1, this function is strictly pseudo-convex or convex,

it implies that the global optimum of L (Y, λ1, λ2) occurs at

a stationary point, such that

∇YL (Y = Y⋆, λ⋆1, λ
⋆
2) = 0, (50)

where λ⋆i = λiRΣ(Y
⋆), ∀i ∈ {1, 2}.

1) Unconstrained Optimization: According to the first

equation of (17), (50) is equivalent to

∇YPΣ(Y = Y⋆)− E⋆
b∇YRΣ(Y = Y⋆) = 0, (51)

in the unconstrained case, where E⋆
b = Eb(Y

⋆) = PΣ(Y⋆)
RΣ(Y⋆) .

According to the definitions of RΣ(Y) in (16a) and PΣ(Y) =
P ′
c + tr {YΨ(∆SN,∆RN)} in the first line of (17), it then

implies, by relying on matrix calculus [37], that

∇YPΣ(Y) = Ψ(∆SN,∆RN) and

∇YRΣ(Y) =
W

ln(2)
(InSN

+Y)
−1
,

(52)

respectively. By inserting the results in (52) into (51), the latter

can be re-expressed as

WE⋆
b

ln(2)
InSN

= Ψ(∆SN,∆RN) [InSN
+Y⋆] (53a)

⇔Y⋆ =
WE⋆

b

ln(2)
Ψ(α, β)−1 − InSN

, (53b)

where α = ∆SN and β = ∆RN.

2) Single Power Constrained Optimization: According to

the second and third equations of (17), (50) is equivalent to

Ψ(0,∆RN)−
WE⋆

b

ln(2)
(InSN

+Y⋆)
−1

+Ψ(λ⋆1, 0) = 0 and

Ψ(∆SN, 0)−
WE⋆

b

ln(2)
(InSN

+Y⋆)
−1

+Ψ(0, λ⋆2) = 0,

(54)
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in the SPC case at the SN and SPC case at the RN, respec-

tively. Equivalently,

WE⋆
b

ln(2)
InSN

= Ψ(λ⋆1,∆RN) [InSN
+Y⋆] and

WE⋆
b

ln(2)
InSN

= Ψ(∆SN, λ
⋆
2) [InSN

+Y⋆] ,

(55)

such that equality (53b) holds, but where α = λ⋆1 and β = ∆RN

in the SPC case at the SN, and α = ∆SN and β = λ⋆2 in the

SPC case at the RN.

3) Dual Power Constrained Optimization: According to the

fourth equation of (17), (50) is equivalent to

0−
WE⋆

b

ln(2)
(InSN

+Y⋆)−1 +Ψ(λ⋆1, λ
⋆
2) = 0

⇔
WE⋆

b

ln(2)
InSN

= Ψ(λ⋆1, λ
⋆
2) [InSN

+Y⋆] ,

(56)

in the DPC case, such that equality (53b) holds, but where

α = λ⋆1 and β = λ⋆2.

Finally, since Ψ(α, β) is a Hermitian matrix, it can de-

composed as Ψ(α, β) = UΨΨ̂(α, β)U†
Ψ, where UΨ is a

unitary matrix containing the eigenvectors of Ψ(α, β) and

Ψ̂(α, β) = diag([ψ1(α, β), ψ2(α, β), . . . , ψnSN
(α, β)]) is a

diagonal matrix containing the eigenvalues of Ψ(α, β). Hence,

equation (53b) can be reformulated as

Y⋆ =
WE⋆

b

ln(2)

(
UΨΨ̂(α, β)U†

Ψ

)−1

− InSN
= UΨŶ

⋆U
†
Ψ,

(57)

where Ŷ⋆ =
WE⋆

b

ln(2) Ψ̂(α, β)−1− InSN
is a diagonal matrix with

elements, y⋆i , as defined in (19). Note that the operator [.]+ is

used in (19) since both Y � 0 and R � 0.

E. Proof of the Strict Positivity and Concavity of (26a)

Proof: On the one hand, let RΣ(Z) be defined as in (26a),

it then implies that RΣ(Z) > 0 since R0 > 0 when R � 0,

R 6= 0. Moreover, by relying on matrix calculus [37], it also

implies that 〈∇ZRΣ(Z),E〉F =

W/ ln(2) tr
{[(

Υ−1 + Z
)−1

− ( InRN
+ Z)−1

]
E
}
. (58)

Note that
(
Υ−1 + Z

)−1
� ( InRN

+ Z)
−1

given that Υ � I.

On the other hand,

RΣ(Z+E)−RΣ(Z) =W log2

∣∣∣∣∣
InRN

+
(
Υ−1 + Z

)−1
E

InRN
+ ( InRN

+ Z)
−1

E

∣∣∣∣∣ .

(59)

Knowing that for any square matrix X, tr{X} =
ln
∣∣eX

∣∣, and by using the change of variables X1 =[(
Υ−1 + Z

)−1
− ( InRN

+ Z)
−1

]
E � 0 and X2 =

( InRN
+ Z)

−1
E ≻ 0 (when assuming that E 6=

0), (58) and (59) can be re-expressed as W log2
∣∣eX1

∣∣
and W log2

∣∣∣ InRN
+X1+X2

InRN
+X2

∣∣∣, respectively. Since
∣∣eX1

∣∣ ≥

| InRN
+X1| for any square matrix X1 � 0 and∣∣∣ InRN
+X1+X2

InRN
+X2

∣∣∣ =
∣∣∣ InRN

+ X1

InRN
+X2

∣∣∣ < | InRN
+X1|, RΣ in

(26a) verifies (43) and, in turn, is a strictly positive and

concave function of Z.

F. Proof for Proposition 5

Proof: By inserting G in (27) into (23), the denom-

inator and numerator of the latter can be re-expressed as

RΣ(Ĝ,VG,UG) =

R0+W log2

∣∣∣∣InRN
+
σ2
1

σ2
2

Υ
1
2UGĜ

1
2V

†
G
H

†
2H2VGĜ

1
2U

†
G
Υ

1
2

∣∣∣∣

−W log2

∣∣∣∣InRN
+
σ2
1

σ2
2

Ĝ
1
2V

†
G
H

†
2H2VGĜ

1
2

∣∣∣∣ and (60a)

PΣ(Ĝ,UG) = P ′
c +

σ2
1

σ2
2

tr
{
ĜU

†
G
ΫUG

}
. (60b)

Consequently, the following inequalities hold

RΣ(Ĝ,VG,UG) ≤ max
VG,UG

RΣ(Ĝ,VG,UG) and (61a)

min
UG

PΣ(Ĝ,UG) ≤ PΣ(Ĝ,UG). (61b)

On the one hand, based on the work of [14] (which relies on

Hadamard determinant inequality), we know that the function

of the form as described in (60a) are maximized when the

arguments of both determinant operators become diagonal

matrices (when assuming that the eigenvalues of all the

matrices are sorted in the same order). This can easily be

achieved by setting VG = V2 and UG = UΥ in (60a).

Hence, maxVG,UG
RΣ(Ĝ,VG,UG) = RΣ(Ĝ,V2,UΥ) =

R0 +W log2

∣∣∣∣InRN
+
σ2
1

σ2
2

ĜΛ̂Υ̂

∣∣∣∣−W log2

∣∣∣∣InRN
+
σ2
1

σ2
2

ĜΛ̂

∣∣∣∣ ,
(62)

which is equivalent to equation (29) when Ẑ =
σ2
1

σ2
2
ĜΛ̂. On

the other hand, the matrix UG that minimizes PΣ(Ĝ,UG),

or equivalently tr
{
ĜU

†
G
ΫUG

}
according to (60b), is sim-

ply the matrix matching the largest values of Ĝ with the

smallest values of U
†
G
ΫUG. This can easily be achieved

by setting UG = U
↑

Ϋ
, where U

↑

Ϋ
is unitary matrix that

contains a column permutation of the eigenvectors of U
Ϋ

,

i.e.
(
U

↑

Ϋ

)†

ΫU
↑

Ϋ
=

̂̈
Υ

↑

. Hence,
̂̈
Υ

↑

is a diagonal matrix

containing the eigenvalues of Ϋ sorted in ascending order.

Therefore, minUG
PΣ(Ĝ,UG) = PΣ(Ĝ,U

↑

Ϋ
) =

P ′
c +

σ2
1

σ2
2

tr

{
Ĝ

̂̈
Υ

↑
}
, (63)

which is equivalent to P ′
c + ∆RNPRN(Ẑ), with PRN(Ẑ) as in

(28) when Ẑ =
σ2
1

σ2
2
ĜΛ̂.

G. Proof of Proposition 7

Proof: The Lagrangian associated with the lower and

upper bounds of the original problem in (23) can be expressed

as in (30). Given that, according to Corollary 2, this function

is strictly pseudo-convex or convex, it implies that the global

optimum of L
(
Ẑ, µ

)
occurs at a stationary point, such that

∇
Ẑ
L
(
Ẑ = Ẑ•, µ•

)
= 0, (64)

where µ• =
P ′

c
+∆RNP

max
RN

µ(RΣ(Ẑ•))
2 .
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1) Unconstrained Optimization: According to the first

equation of (30), (64) is equivalent to

∇
Ẑ
PRN(Ẑ = Ẑ•)− E•

b∇Ẑ
RΣ(Ẑ = Ẑ•) = 0, (65)

in the unconstrained case, where E•
b = PΣ(Ẑ•)

RΣ(Ẑ•)
. Based on the

definitions of RΣ(Ẑ) in (29) and PRN(Ẑ) in (28) or (32), it

then implies, by relying on matrix calculus [37], that

∇
Ẑ
PRN(Ẑ) = diag{u•} and

∇
Ẑ
RΣ(Ẑ) =

W

ln(2)

[(
Υ−1 + Ẑ

)−1

−
(
InRN

+ Ẑ
)−1

]
,

(66)

respectively, where u• is a vector containing either the ele-

ments of Λ̂−1 ̂̈Υ
↑

(for PRN(Ẑ) in (28)) or the diagonal ele-

ments of Λ̂−1Ϋ (for PRN(Ẑ) in (32)). Given that ∇
Ẑ
PRN(Ẑ)

and ∇
Ẑ
RΣ(Ẑ) are both diagonal matrices, by inserting the

results in (66) into (65), the latter can be re-expressed as

u•i =
WE•

b

ln(2)

[
1

1
υi

+ z•i
−

1

1 + z•i

]
(67a)

⇔ (z•i )
2 υi + z•i (1 + υi) + 1−

Wγ(υi − 1)

ln(2)u•i
= 0, (67b)

∀i ∈ {1, . . . , nRN}, where γ = E•
b .

2) Power Constrained Optimization: According to the sec-

ond equation of (30), (64) is equivalent to

∇
Ẑ
PRN(Ẑ = Ẑ•)− µ•∇

Ẑ
RΣ(Ẑ = Ẑ•) = 0, (68)

in the power constrained case. In turn, equality (67b) holds,

but where γ = µ•.

Equation (33) can then be obtained by solving the quadratic

equation in (67b). Note that the operator [.]+ is used in (33)

to reflect the fact that both Ẑ � 0 and G � 0.

H. Proof for Proposition 8

Proof: Knowing that Eb in (23), which is a continuous

function, is lower and upper bounded by continuous functions

having a global minimum, it implies that Eb has also a global

minimum, E⋆
b (note that Eb can also have local extrema or

saddle points), such that

E−
b ≤ E⋆

b ≤ E+
b . (69)

Furthermore, we know from (p.194 of [38]) that any extrema

of a differentiable function can only occur at stationary points.

Hence, the global minimum of Eb must occur at a stationary

point such that ∇GEb(G = G⋆) = 0. According to the ex-

pression of Eb(G) in (23) and matrix calculus [37], ∇GEb(G)
is equivalent to (37), where

∇GPΣ(G) =
2σ2

1

σ2
2

GΫ and ∇GRΣ(G) =
2σ2

1W

σ2
2 ln(2)

H
†
2

×

[
Ω
(
GΥ1/2

)−1

H2GΥ−Ω(G)−1H2G

]
.

(70)

Given that E−
b ≤ E⋆

b , as it is mentioned in (69), it implies

that there exists a unique real nonnegative number ε⋆ such that

E⋆
b = E−

b +ε⋆ and E−
b +ε⋆ verifies equation (36). In addition,

it exists a matrix G⋆ = G(E−
b + ε⋆) that verifies equation

(37) when E⋆
b is known. In other words, if E⋆

b is the global

minimum of Eb occurring at G⋆, then G(E−
b +ε) with ε < ε⋆

can verify (37) when E⋆
b is known, but Eb(G(E−

b +ε)) > E⋆
b .

Thus, if ε is a nonnegative real number that increases in an

infinitesimal manner from 0 to infinity, the first value of ε for

which (36) is verified can only be the global minimum of Eb.
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