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Abstract—Detection with high dimensional multimodal data
is a challenging problem when there are complex inter- and
intra- modal dependencies. While several approaches have been
proposed for dependent data fusion (e.g., based on copula theory),
their advantages come at a high price in terms of computational
complexity. In this paper, we treat the detection problem with
compressive sensing (CS) where compression at each sensor
is achieved via low dimensional random projections. CS has
recently been exploited to solve detection problems under various
assumptions on the signals of interest, however, its potential for
dependent data fusion has not been explored adequately. We
exploit the capability of CS to capture statistical properties of
uncompressed data in order to compute decision statistics for de-
tection in the compressed domain. First, a Gaussian approxima-
tion is employed to perform likelihood ratio (LR) based detection
with compressed data. In this approach, inter-modal dependence
is captured via a compressed version of the covariance matrix of
the concatenated (temporally and spatially) uncompressed data
vector. We show that, under certain conditions, this approach
with a small number of compressed measurements per node
leads to enhanced performance compared to detection with un-
compressed data using widely considered suboptimal approaches.
Second, we develop a nonparametric approach where a decision
statistic based on the second order statistics of uncompressed data
is computed in the compressed domain. The second approach is
promising over other related nonparametric approaches and the
first approach when multimodal data is highly correlated at the
expense of slightly increased computational complexity.

Keywords: Information fusion, multi-modal data, compres-

sive sensing, detection theory, statistical dependence, copula

theory

I. INTRODUCTION

Multimodal data represents multiple aspects of a phe-

nomenon of interest (PoI) observed using different acquisi-

tion methods or different types of sensors [2]. Due to the

diversity of information, multimodal data enhances inference

performance compared to that with unimodal data. Multimodal

data fusion has attracted much attention in different application

scenarios such as biometric score fusion [3], [4], multi-media

analysis [5], automatic target recognition [6], and footstep

detection [7] to name a few. To obtain a unified picture of

the PoI to perform a given inference task, multimodal data

needs to be fused in an efficient manner. This is a challenging

problem in many applications due to complex inter- and intra-

modal dependencies and high dimensionality of data.

When the goal is to solve a detection problem in a paramet-

ric framework, performing likelihood ratio (LR) based fusion

1This work was supported in part by ARO grant no. W911NF-14-1-0339. A
part of this work was presented at ICASSP, New Orleans, LA in March 2017
[1]. The authors are with the Dept. EECS, Syracuse University, Syracuse, NY.
Email: {twwewelw,varshney}@syr.edu

is challenging since the computation of the joint likelihood

functions is difficult in the presence of many unknown parame-

ters and complex inter- and intra- modal dependencies. Differ-

ent techniques have been proposed to estimate the probability

density functions (pdfs) such as histograms, and kernel based

methods [3]. In addition to LR based methods, some feature

based techniques for multimodal data fusion are discussed in

[2]. When the marginal pdfs of data of each modality are

available (or can be estimated), which can be disparate due

to the heterogeneous nature of multimodal data, copula theory

has been used to model inter-modal complex dependencies

in [8]–[14]. While there are several copula density functions

developed in the literature, finding the best copula function that

fits a given set of data is computationally challenging. This is

because different copula functions may characterize different

types of dependence behaviors among random variables [15],

[16]. Finding multivariate copula density functions with more

than two modalities is another challenge since most of the

existing copula functions are derived considering the bivariate

case. Thus, the benefits of the use of copula theory for

likelihood ratio based fusion with multimodal dependent data

come at a higher computational price. One of the commonly

used suboptimal methods is to neglect inter-modal dependence

and compute the likelihood functions based on the disparate

marginal pdfs of each modality; we call this ’the product

approach’ in the rest of the paper. The product approach

leads to poor performance when the first order statistics of

uncompressed data under two hypotheses are not significantly

different from each other and/or the inter-modal dependence

is strong.

In this paper, we treat the detection problem with heteroge-

neous dependent data in a compressed domain. In the proposed

framework, each node compresses its time samples via low

dimensional random projections as proposed in compressive

sensing (CS) [17]–[20] and transmits the compressed obser-

vation vector to the fusion center. Thus, the communication

cost is greatly reduced compared to transmitting all the high

dimensional observation vectors to the fusion center. While

CS theory has mostly been exploited for sparse signal recon-

struction, its potential for solving detection problems has also

been investigated in several recent works [21]–[32]. Some of

the works, such as [21], [22], [25], [28], [29], [32] focused

on constructing decision statistics in the compressed domain

exploiting the sparsity prior, some other works [23], [24],

[26], [27], [30], [31] considered the detection problem when

the signals are not necessarily sparse. When the signal to be

detected is known and deterministic, a performance loss is

expected in terms of the probabilities of detection and false

http://arxiv.org/abs/1701.01352v2
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alarm when performing likelihood ratio based detection in the

compressed domain compared to that with uncompressed data

[23]. However, when the signal-to-noise ratio (SNR) is suffi-

ciently large, this loss is not significant and the compressed

detector is capable of providing a similar performance as the

uncompressed detector. In [31], the authors have extended

the known signal detection problem with CS to the multiple

sensor case considering Gaussian measurements. While intra-

signal (temporal) dependence was considered with Gaussian

measurements, inter-sensor (spatial) dependence was ignored

in [31]. As mentioned before, with heterogeneous multimodal

data, handling inter-modal dependence is one of the key issues

in developing efficient fusion strategies. To the best of authors’

knowledge, the ability of CS in capturing the dependence

properties of uncompressed data to solve detection problems

has not been well investigated in the literature.

In this paper, our goal is to exploit the potential of CS to

capture dependence structures of high dimensional data focus-

ing on detection problems. We propose a parametric as well

as a nonparametric approach for detection with compressed

data. In the first approach, we treat the detection problem

completely in the compressed domain. With arbitrary disparate

marginal pdfs for (temporally independent) uncompressed data

of each modality, we employ a Gaussian approximation in

the compressed domain and the joint likelihood function of

spatially dependent (over modalities) is computed based on

multivariate Gaussian pdfs. With this approach, dependence is

captured via a compressed version of the covariance matrix

of the concatenated (over all the modalities) uncompressed

data vector. We show that, under certain conditions, using a

small number of compressive measurements (compared to the

original signal dimension), better or similar performance can

be achieved in the compressed domain compared to perform-

ing fusion (i). using the product approach with uncompressed

data where inter-modal dependence is completely ignored

and (ii). when widely available copula functions are used to

model dependence of highly dependent uncompressed data.

We further discuss as to how to decide when it is beneficial to

perform compressed detection over suboptimal detection with

uncompressed dependent data in terms of the Bhattacharya

distance measure.

In the second approach, we exploit the potential of CS

to capture statistical information of uncompressed data in

the compressed domain to compute a test statistic for de-

tection. When uncompressed data is dependent and highly

correlated 1 in the presence of the random phenomenon

being observed (alternate hypothesis), the covariance matrix

of the concatenated data vector (over modalities) is likely

to have a different structure compared to the case where

the phenomenon is absent (null hypothesis). Thus, a decision

statistic can be computed based on the covariance information.

Estimation of the covariance matrix of uncompressed data

is computationally expensive when the signal dimension is

large. Compressive covariance sensing has been discussed in

1Throughout the paper, by ’dependent and correlated’, we mean that the
data is dependent and has a non-diagonal covariance matrix. When the data
is dependent but uncorrelated, i.e., when the dependent data has a diagonal
covariance matrix, we use the term ’dependent and uncorrelated’.

[33] in which the covariance matrix of uncompressed data is

estimated using compressed samples. It is noted that estimation

of the complete covariance matrix is not necessary to construct

a reliable test statistic for detection. Covariance based test

statistics have been proposed for spectrum sensing in [34], [35]

without considering any compression. In this paper, depending

on the structure of the covariance matrix of uncompressed

data, efficient test statistics for detection are computed in

the compressed domain, in contrast to the work in [34],

[35]. When the difference in second order statistics under

two hypotheses is more significant than that with the first

order statistics, this approach provides better performance than

the first approach with some extra computational complexity.

Further, under the same conditions, this approach outperforms

the energy detector with compressed as well as with uncom-

pressed data, which is the widely considered nonparametric

detector. Moreover, in contrast to the energy detector, the

proposed approach is robust, with respect to the threshold

setting, against the uncertainties of the signal parameters under

the null hypothesis.

The paper is organized as follows. In Section II, background

on the detection problem with uncompressed dependent data

is discussed. LR based detection with compressed dependent

data is considered in Section III. We also discuss when it

is beneficial to perform LR based detection with compressed

data compared to detection using suboptimal techniques with

uncompressed data considering numerical examples. In Sec-

tion IV, we discuss how to exploit the CS measurement

scheme to construct a decision statistic based on the covariance

information of uncompressed data. In Section V, CS based

detection performance is investigated with real experimental

data. Section VI concludes the paper.

Notation

The following notation and terminology are used throughout

the paper. Scalars are denoted by lower case letters; e.g., x.

Lower (upper) case boldface letters are used to denote vectors

(matrices); e.g., x (A). Matrix transpose is denoted by AT .

The n-th element of the vector xj is denoted by both xj [n] and

xnj while the (m,n)-th element of the matrix A is denoted

by A[m,n]. The j-th column vector and the i-th row vector of

A are denoted by aj , and ai, respectively. The trace operator

is denoted by tr(·). The lp norm of a vector x is denoted by

||x||p while the Frobenius norm of a matrix A is denoted by

||A||F . Calligraphic letters are used to denote sets; e.g., U . We

use the notation |.| to denote the absolute value of a scalar,

and determinant of a matrix. We use IN to denote the identity

matrix of dimension N (we avoid using subscript when there

is no ambiguity). The vectors of all zeros and ones with an

appropriate dimension are denoted by 0 and 1, respectively.

The notation x ∼ N (µ,Σ) denotes that the random vector

x has a multivariate Gaussian pdf with mean vector µ and

covariance matrix Σ.

II. PROBLEM FORMULATION AND BACKGROUND

Let there be L sensor nodes in a network deployed to solve

a binary hypothesis testing problem where the two hypotheses
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are denoted by H1 and H0, respectively. The observation

vector at each node is denoted by xj ∈ R
N for j = 1, · · · , L.

The goal is to decide as to which hypothesis is true based on

x = [xT
1 , · · · ,x

T
L ]

T .

A. Likelihood Ratio Based Detection

Consider the detection problem in a parametric framework

where the marginal pdf of xj is available under both hypothe-

ses. Let xj be distributed under H1 and H0 as

H1 : xj ∼ f1(xj)

H0 : xj ∼ f0(xj), j = 1, · · · , L (1)

respectively, where fi(xj) denotes the joint pdf of xj under

Hi for i = 0, 1 and j = 1, · · · , L. The optimal test which

minimizes the average probability of error based on (1) is the

LR test [36] which is given by

δ =

{

1 if f1(x)
f0(x)

> τ

0 otherwise
(2)

where τ is the threshold. To perform the test in (2), it is

required to compute the joint pdfs f1(x) and f0(x). The opti-

mality of the LR test is guaranteed only when the underlying

joint pdfs are known. When x1, · · · ,xL are independent under

Hi for i = 0, 1, fi(x) can be written as fi(x) =
∏L

j=1 fi(xj)
for i = 0, 1. However, this assumption may not be realistic in

practical applications. For example, consider the problem of

detection of the presence of a common random phenomenon

in a heterogenous signal processing application where there

are multiple sensors of different modalities. The data at

different nodes may follow disparate marginal pdfs due to

the differences in the physics that govern each modality. The

presence of the common random phenomenon can change the

statistics of the heterogeneous data and make the observations

at different modalities dependent [9]. Thus, to detect the

presence of the random phenomenon in the LR framework,

computation of the joint pdf of data collected at the multiple

nodes in the presence of inter-modal dependencies is required.

There are several approaches proposed in the literature

to perform LR based detection when the exact pdf of x is

not available. These techniques are commonly categorized as

parametric, nonparametric, and semi-parametric approaches.

B. Copula Theory

In a parametric framework, copulas are used to construct

a valid joint distribution describing an arbitrary and possibly

nonlinear dependence structure [8]–[15]. According to copula

theory, the pdf of x under Hi can be written as [15],

fi(x) =

N
∏

n=1

L
∏

l=1

fi(xl[n])cni(u
i
n1, · · · , u

i
nL)

for i = 0, 1 where cni(·) denotes the copula density function,

ui
nl = F (xl[n]|Hi) with F (x|Hi) denoting the marginal cdf

of x under Hi. Then, the log LR (LLR) can be written in the

following form:

ΛLLR(x) = log
f1(x)

f0(x)
=

L
∑

l=1

N
∑

n=1

log
f1(xl[n])

f0(xl[n])

+

N
∑

n=1

log
cn1(u

1
n1, · · · , u

1
nL|φn1)

cn0(u0
n1, · · · , u

0
nL|φn0)

(3)

where φn1 and φn0 are copula parameters under H1 and H0,

respectively, for n = 1, · · · , N . In this case, in general, N
copulas where each one is L-variate are selected to model

dependence. Readers may refer to [8]–[15] to learn more

about copula theory as applicable for binary hypothesis testing

problems.

One of the fundamental challenges in copula theory is to

find the copula density function that will best fit the given data

set. Further, most of the copula density functions proposed in

the literature consider the bivariate case. In order to model the

dependence of multimodal data with more than two modalities,

several approaches have been proposed in the literature [13],

which are in general computationally complex. Thus, in order

to better utilize copula theory for multimodal data fusion, these

challenges need to be overcome. In the following, we consider

an alternate computationally efficient approach for multimodal

data fusion in which dependence among data is modeled in a

low dimensional transformed domain obtained via CS. We also

discuss the advantages/disadvantages of modeling dependence

in the compressed domain via Gaussian approximation over

the copula based approach with uncompressed data.

III. FUSION OF SPATIALLY DEPENDENT DATA IN THE

COMPRESSED DOMAIN VIA LIKELIHOOD RATIO TEST

Let Aj be specified by a set of unique sampling vectors

{amj }Mm=1 with M < N for j = 1, · · · , L. We assume that

the j-th node compresses its observations using Aj so that the

compressed measurement vector is given by,

yj = Ajxj (4)

for j = 1, · · · , L where the m-th element of the vector Ajxj

is given by 〈amj ,xj〉 for m = 1, · · · ,M where 〈., .〉 denotes

the inner product. In CS theory, the mapping Aj is usually

selected to be a random matrix. In the rest of the paper, we

make the following assumptions: (i) yj ’s are available at the

fusion center without an error, (ii). Aj is an orthoprojector so

that AjA
T
j = I, and (iii) the elements of xj are independent

of each other for given j under both hypotheses while there is

(spatial) dependence among x1, · · · ,xL under H1 (i.e., there

is spatial and temporal independence under H0 and temporal

independence and spatial dependence under H1).

A. Likelihood Ratio Based Fusion With Compressed Data

In order to perform LR based fusion based on (4), the

computation of the joint pdf of {y1, · · · ,yL} is required.

When the marginal pdf of each xj is available, the marginal
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pdf of each element in yj can be computed as in the following.

The m-th element of yj , yj [m], can be written as,

yj [m] =

N
∑

n=1

Aj [m,n]xj [n] (5)

for j = 1, · · · , L. Having the marginal pdfs of xj [n] and using

the independence assumption of xj [n] for n = 1, · · · , N ,

the pdf of z = yj [m] can be found after computing the

characteristic function of z. Once the marginal pdfs of the

elements in yj for j = 1, · · · , L are found, copula theory

can be used in order to find the joint pdf of the compressive

measurement vectors y1, · · · ,yL. Letting uj = Fj(yp[q]) for

j = M(p − 1) + q where p = 1, · · · , L, q = 1, · · · ,M , the

LLR based on copula functions can be expressed as,

TLLR(y)

=

L
∑

l=1

M
∑

k=1

log
f1(yl[k])

f0(yl[k])
+ log

c1(u1, · · · , uML|φ∗
1)

c0(u1, · · · , uML|φ∗
0)
.(6)

The second term on the right hand side of (6) requires

one to find copula density functions of ML variables which

is computationally very difficult. Since we assume that the

elements in xj are independent under any given hypothesis,

each element in yj can be approximated by a Gaussian random

variable (via Lindeberg-Feller central limit theorem assuming

that the required conditions are satisfied [37], [38]) when N
is sufficiently large.

B. Likelihood Ratio Based Fusion with Compressed Data via

Gaussian Approximation

Assume that first and second order statistics of the concate-

nated data vector x = [xT
1 , . . . ,x

T
L]

T are available. We define

additional notation here. Let

βi = [βi
1
T
· · ·βi

L
T
]T (7)

and

Di =









Di
1 Di

12 · · · Di
1L

Di
21 Di

2 · · · Di
2L

· · · · · · · · · · · ·
Di

L1 Di
L2 · · · Di

L.









(8)

denote the NL×1 mean vector and the NL×NL covariance

matrix of x under Hi for i = 0, 1 where βi
j = E{xj |Hi},

Di
j = E{(xj − βi

j)(xj − βi
j)

T |Hi} and Di
jk = E{(xj −

βi
j)(xk−βi

k)
T |Hi} for j 6= k k = 1, · · · , L and j = 1, · · · , L.

With Gaussian approximation, the joint pdf of y =
[yT

1 · · ·yT
L ]

T is given by y|Hi ∼ N (µi,Ci) where µi

and Ci are the notations used to define the mean vector

and the covariance matrix of y which are analogous to the

definitions in (7) and (8), respectively, with µi
j = E{yj |Hi},

Ci
j = E{(yj − E{yj})(yj − E{yj})

T |Hi}, Ci
jk = E{(yj −

E{yj})(yk − E{yk})T |Hi} with j 6= k, k = 1, · · · , L and

j = 1, · · · , L for i = 0, 1. We further denote by Dx (Cy)

the covariance matrix of x (y) where Dx = D1 (Cy = C1

) under H1 and Dx = D0 (Cy = C0 ) under H0. First and

second order statistics of the compressed data are related to

that of uncompressed data via

µi
j = Ajβ

i
j ,C

i
j = AjD

i
jA

T
j , and Ci

jk = AjD
i
jkA

T
k

for j, k = 1, · · · , L and i = 0, 1. Then, we can write,

µi = Aβi and Ci = ADiAT

where

A =









A1 0 · · 0

0 A2 · · 0

· · · · ·
0 0 · · AL









(9)

is a ML × NL matrix. With the assumption that AjA
T
j =

IM for j = 1, · · · , L, the decision statistic of the LLR based

detector is given by [36],

ΛLLR(y) =
1

2
yT (C0−1

−C1−1
)y

+ (µ1TC1−1
− µ0TC0−1

)y + τ0 (10)

where τ0 = 1
2

(

log
(

|C0|
|C1|

)

+ µ0TC0−1
µ0 − µ1TC1−1

µ1
)

.

To compute the threshold so that the probability of false

alarm is kept under a desired value, computation of the pdf of

ΛLLR under H0 is required. This is in general computationally

intractable, but is possible under certain assumptions on x.

For example, when βi = 0 for i = 0, 1 and the elements of

x are identical under H0 (in addition to independence), we

have µi = 0 and C0 = σ2
0I where σ2

0 denotes the variance of

x under H0. In this case, the threshold can be computed as

considered in [36] (pages 73-75). When such assumptions on

x cannot be made, we propose to compute the threshold via

simulations.

1) Impact of compression on inter-modal dependence: With

the Gaussian approximation after compression, the inter-modal

dependence is captured only through the covariance matrix.

Higher order dependencies of data are not taken into account

in the compressed domain. In particular, Dx is compressed

via Cy = ADxA
T . To quantify the distortion of Dx due to

compression, one measure is to consider the Frobenius norm

of the covariance matrix. We have

||Cy||
2
F = ||ADxA

T ||2F = tr(ADT
xA

TADxA
T )

= tr(ATADT
xA

TADx) ≈
M2

N2
||Dx||

2
F (11)

where the last approximation is due to ATA ≈ M
N I. Thus, the

Frobenius norm of the covariance matrix after compression is

reduced by a factor of cr = M
N compared to that with un-

compressed data. In other words, the Gaussian approximation

in the compressed domain can capture a compressed version

of the covariance matrix of uncompressed data. Compared

to other approaches with uncompressed data, the product ap-

proach does not capture any form of dependence. With respect

to copula based approaches, it is not very clear how much

dependence can be captured with a given copula function.

Since the covariance matrix is not a direct measure of detection

performance, in the following subsection we compare the

detection performance of different approaches in terms of the

average probability of error.
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C. Detection Performance Comparison Between Compressed

and Uncompressed Data via Average Probability of Error

In order to quantify the detection performance of different

approaches with both uncompressed and compressed data, we

consider the Bhattacharya bound (which is a special case of the

Chernoff bound) which bounds the average probability of error

of LR based detectors. We use the notation ’u:product’, and

’u:copula-name’ for the product approach and the copula based

approach with a given copula function stated under ’name’,

respectively, with uncompressed data. The notation ’c:GA’ is

used to represent the LR based approach with compressed data

using the Gaussian approximation.

The Bhattacharya distance between the two hypotheses with

the copula based approach with uncompressed data is given

by,

Du:copula
B (f1||f0) = − log

∫

f
1/2
1 (x)f

1/2
0 (x)dx

= − logEf0

{

N
∏

n=1

L
∏

l=1

(

fm
1 (xl[n])

fm
0 (xl[n])

)1/2

c
1/2
n1 (u1

n1, · · · , u
1
nL|φn1)

}

(12)

where fm
i denotes the marginal pdf under Hi and we have

f0(x) =
∏

l,n

fm
0 (xl[n]) since we assume x1, · · · ,xL to be in-

dependent of each other under H0. With the product approach,

we have cn1(·) = 1 and (12) reduces to,

Du:product
B ((f1||f0)

= − logEf0

{

N
∏

n=1

L
∏

l=1

(

fm
1 (xl[n])

fm
0 (xl[n])

)1/2
}

. (13)

On the other hand, the Bhattacharya distance between the two

hypotheses with compressed data under Gaussian approxima-

tion can be computed as [39]

Dc:GA
B (f1||f0) =

1

8
(β1 − β0)

TΓ†β1 − β0)

+
1

2
log{|Γ||AD1AT |−1/2|AD0AT |−1/2}(14)

where Γ† = ATΓ−1A and Γ = 1
2 (AD1AT + AD0AT ).

Using the Bhattacharya distance, the average probability of

error with compressed data, P c
e , is upper bounded by [36],

P c
e ≤

1

2
e−Dc:GA

B , P c:GA
ub .

Let Du:gvn
B , and P u:gvn

ub be the Bhattacharya distance, and

the upper bound namely the Bhattacharya bound on the proba-

bility of error, respectively, with uncompressed data computed

using a given suboptimal approach (e.g., product or copula

with a given copula function). Then, we have

P c:GA
ub ≤ P u:gvn

ub if Dc:GA
B ≥ Du:gvn

B (15)

where Du:gvn
B and Dc:GA

B are computed as in (12) and (14),

respectively. In the case where uncompressed data is dependent

and uncorrelated, (15) can be further simplified as stated in

Proposition 1.

Proposition 1. Let uncompressed data be dependent and

uncorrelated so that D1 is diagonal. Further, let Di
j = σ2

j,iI

and βi
j = βj,i1 for i = 0, 1 and j = 1, · · · , L. Then, we have

P c:GA
ub ≤ P u:gvn

ub if Du:gvn
B ≤ crρB and

(16)

where

ρB =
N

2







L
∑

j=1

log(σ2
j,1 + σ2

j,0)− log(σ2
j,1σ

2
j,0)

+
(βj,1 − βj,0)

2

2(σ2
j,1 + σ2

j,0)

}

(17)

which is determined by the statistics of the uncompressed data

and cr = M
N is the compression ratio.

Proof: The proof follows from the fact that when uncom-

pressed data is uncorrelated under H1, Dc,G
B in (14) reduces

to,

Dc,G
B (f0||f1) =

M

N
ρB (18)

where ρB , are as defined in (17).

Thus, whenever Dc:GA
B > Du:gvn

B ‘c:GA’ performs better

than any given suboptimal approach with uncompressed data.

Even though Dc:GA
B < Du:gvn

B , ‘c:GA’ can still be promising if

the desired performance level in terms of the upper bound on

the probability of error is reached. Let ǫB be the desired upper

bound on the probability of error. When Dc:GA
B ≥ − log(2ǫB),

‘c:GA’ provides the desired performance even if Dc:GA
B <

Du:gvn
B .

D. Illustrative Examples

In the following, we consider example scenarios to illustrate

the detection performance with ‘c:GA’ compared to that with

uncompressed data using different suboptimal approaches.

In the two examples, two types of detection problems are

considered. In the first example, we consider a problem of

detection of changes in statistics of data collected at heteroge-

neous sensors. In the second example, detection of a random

source by heterogeneous sensors in the presence of noise is

considered.

1) Example 1: In the first example, we consider L = 3
and a common random phenomenon causes a change in the

statistics of heterogeneous data at the three sensors. The

uncompressed data at the three nodes have the following

marginal pdfs: [9]:

xn1|Hi ∼ N (0, σ2
i ), xn2|Hi ∼ Exp(λi)

and xn3|Hi ∼ Beta(ai, bi = 1) (19)

for i = 0, 1. It is noted that x ∼ Exp(λ) denotes that x has

an exponential distribution with f(x) = λe−λx for x ≥ 0
and 0 otherwise, and x ∼ Beta(a, b) denotes that x has a

beta distribution with pdf f(x) = 1
B(a,b)x

a−1(1 − x)b−1 and

B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the beta function. The data under H1 is

assumed to be dependent and the following operations are used

to generate dependent data. For the data at the second node, we
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use xn2 = x2
n1 +w2 for n = 1, · · · , N where w ∼ N (0, σ2

1).
Then, we have xn2 ∼ Exp(λ1) with λ1 = 1

2σ2
1

. For the third

node, the data under H1 is generated as

xn3 =
u

u+ xn2

for n = 1, · · · , N where u ∼ Gamma(α1, β1 = 1/λ1). Then

xn3|H1 ∼ Beta(a1, b1 = 1) with a1 = α1. It is noted that x ∼
Gamma(α, β) denotes that x has Gamma pdf with f(x) =

1
βαΓ(α)x

α−1e−x/β for x ≥ 0 and α, β > 0. Under H0, xn1,

xn2 and xn3 are generated independently using the assumed

marginal pdfs. In this example, we consider three cases.

Case I: In Case I, the data at the first and second sensors are

fused. In this case, the covariance matrices of x = [xT
1 xT

2 ]
T

under the two hypotheses, D0 and D1, are composed of

D0
1 = σ2

0I, D0
12 = D0

21 = 0, D0
2 = 1

λ2
0

I under H0 and

D1
1 = σ2

1I, D1
12 = D1

21 = 0, D1
2 = 1

λ2
1

I under H1,

respectively. It is worth noting that D1 is diagonal in this

case. Thus, although x1 are x2 are spatially dependent under

H1 (by construction), they are uncorrelated, , i. e., higher-

order statistics exhibit dependence while the second-order

correlation is zero.

Case II : For Case II, we consider the fusion of data

at the second and third sensors where x = [xT
2 xT

3 ]
T .

In this case, we have D0
2 = 1

λ2
0

I, D0
23 = D0

32 = 0,

D0
3 = a0

(a0+1)2(a0+2)I under H0 and D1
2 = 1

λ2
1

I, D1
23 = D1

32 =
(

Exn1u{
xn1u
u+xn1

} − a1

λ1(a1+1)

)

I, D1
3 = a1

(a1+1)2(a1+2)I under

H1, respectively. It is noted that D1 is not diagonal in this

case.

Case III : In Case III, we consider the fusion of data at all

three senors. Also D1 is not diagonal in this case as well.
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Fig. 1: Scatter plots of uncompressed and compressed data

under H1 in Example 1; N = 1000, M = 200, L = 2

Scatter plots of uncompressed and compressed data: First,

we illustrate how the dependence structure of data changes

going from the uncompressed domain to the compressed do-

main. In Fig. 1, we show the scatter plots for both compressed

and uncompressed data at the two sensors under H1 for Cases

I and II. In Fig. 1, the top and bottom subplots are for Case I

and Case II, respectively while the left and right subplots are

for uncompressed and compressed data, respectively. It can

be observed that while uncompressed data at the two sensors

are strongly dependent, compressed data appears to be weakly

dependent. This change of the dependence structure due to

compression was addressed in Section III-B1. In this example,

the scatter plots of compressed data look more circular (Case I)

or elliptical (Case II). In Case 1, even though xn1 and xn2 for

given n are dependent under H1, they are uncorrelated. This

leads to a circular and independent scatter plot for compressed

data for Case I.
Detection With uncompressed data vs. detection with com-

pressed data via Gaussian approximation : We compare the

detection performance of LR based detection with compressed

and uncompressed data. The compressed detector with Gaus-

sian approximation, ‘c:GA’ is compared with the product

approach (where dependence is ignored), ‘u:product’, and the

copula based approach, ‘u:copula-name’, with uncompressed

data. For the copula based approach, we consider Gaussian,

t, Gumbel and Clayton copula functions as described in [9],

[14] for the bivariate case (Cases I and II) and Gaussian

and t copula for the tri-variate case (Case III). Fig. 2 shows

the performance in terms of the ROC curves for the three

cases considered in the example. The parameter values are

provided in figure titles. To obtain the ROC curves, 103

Monte Carlo runs were performed throughout unless otherwise

specified. With the considered parameter values under the two

hypotheses, ‘u:product’ does not provide perfect detection. We

make several important observations here.

• For Case I where uncompressed data at the first two

sensors are dependent and uncorrelated (D1 is diagonal),

‘u:product’, ‘u:copula-t’, and ‘u:copula-Gumbel’ perform

much better than ‘c:GA’ even with cr = 1 as can be

seen in Fig. 2(a). In this case, with diagonal D1, existing

higher-order dependence is not taken into account in the

compressed domain.

• For Case II where D1 is not diagonal, as can be seen in

Fig. 2(b), ‘c:GA’ shows a significant performance gain

over ‘u:product’ after cr exceeds a certain threshold.

Fusion with ‘u:copula-Gaussian’ and ‘u:copula-t’ leads

to perfect detection while the fusion performance with

‘c:GA’ with fairly small value of cr is also capable

of providing perfect detection for the parameter values

considered.

• For Case III, similar results are seen as in Case II

when ‘c:GA’ is compared with ‘u:product’, ‘u:copula-

Gaussian’, and ‘u:copula-t’.

• In Cases II and III, dependence is taken into account

via the covariance matrix in the compressed domain as

discussed in Section III-B1. Thus, irrespective of the

dimensionality reduction, due to the capability to capture

a certain amount of dependence in the compressed do-

main,‘c:GA’ is capable of providing a significant perfor-

mance gain over ‘u:product’ and comparable performance

compared to ‘u:copula-Gaussian’, and ‘u:copula-t’.

• When going from Case II to Case III (i.e., from two

sensors to three sensors), ‘c:GA’ does not show a signif-

icant performance improvement for a given value of cr.

This is because, only x2 and x3 are spatially correlated,
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Fig. 2: Performance of dependent data fusion for detection in

Example 1: product/copula based approach with uncompressed

data vs Gaussian approximation with compressed data: N =
1000

and x1 is uncorrelated with the rest. Thus, the covariance

information accounted for in the compressed domain is

the same for both cases.

We further illustrate the behavior of the upper bound on

the probability of error for Case II. In Fig. 3, we plot the

Bhattacharya distance and the upper bound on the probability

of error on the left and right subplots, respectively, for the same

parameter values as in Fig. 2(b). It is seen that Dc:GA
B is much
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Fig. 3: Bhattacharya distance and the upper on Pe vs cr with

compressed and uncompressed data for Case II in Example 1:

N = 1000, 1/λ0 = 10, 1/λ1 = 10.2, a0 = 9.8, a1 = 10

larger than Du:product
B for almost all the values of cr. Based on

the distance measures shown in the left subplot, it is expected

for ‘u:copula-Gaussian’, and ‘u:copula-t’ to perform better

than CS based detection for smaller values of cr. However,

as can be seen in the right subplot in Fig 3, the upper bound

on the probability of error with ‘c:GA’ coincides (→ 0) that

with ‘u:copula-Gaussian’, and ‘u:copula-t’ when cr exceeds a

certain value. This observation is intuitive since these distance

measures are not linearly related to the probability of error.

Thus, even though Dc:GA
B < Du:gvn

B with a given suboptimal

approach, compressed detection via ‘c:GA’ can be promising,

as discussed in Subsection III-C.

Since the difference in performance among different ap-

proaches varies as the parameter values of the statistics under

two hypotheses change, in Fig. 4, we show the ROC curves

with another set of parameter values considering Case III for

N = 100. It can be seen that when the statistics of the

data under the two hypotheses are such that ‘u:product’ does

not provide perfect detection, ‘c:GA’ outperforms ‘u:product’

when cr exceeds a certain threshold. Further, as cr increases,

‘c:GA’ shows similar performance as with ‘u:copula-t’ and

‘u:copula-Gaussian’. Results in Fig. 4 again verify that the

amount of dependence captured in the compressed domain via

Gaussian approximation leads to better detection performance

than ‘u:product’ and similar performance as with the copula

based approaches.

2) Example 2: In the second example, we consider the

detection of a signal in the presence of noise with L = 2
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Fig. 4: Performance of dependent data fusion for detection in

Example 1: product/copula based approach with uncompressed

data vs Gaussian approximation with compressed data; N =
100

where the signals of interest at the two nodes are (spatially)

dependent of each other under H1. The model for heteroge-

neous uncompressed sensor data is given by

H1 : xj = sj + vj

H0 : xj = vj (20)

for j = 1, 2. The noise vector vj is assumed to be Gaussian

with mean vector 0 and covariance matrix σ2
vI. We assume that

the n-th elements of s1 and s2, respectively, are governed by a

common random phenomenon so that they are dependent. For

illustration purposes, we assume that the dependence model

is given by: sn1 = s2n + w2
n1, sn2 = s2n + u2

n1 + u2
n2, where

the random variables sn, wn1, un1, un2 are iid Gaussian with

mean zero and variance σ2
s . With this model, sn1 ∼ exp(λ1)

with λ1 = 1
2σ2

s

and sn2

σ2
s

∼ X 2
3 where x ∼ X 2

ν denotes that x
has a chi-squared pdf with degree of freedom ν. Then, it can

be shown that the marginal pdfs of xn1 and xn2 are given by

f1(xn1|H1) = λ1e
−λ1xn1e

σ
2
v
λ
2
1

2

(

1−Q
(

xn1−σ2

v
λ1

σv

))

where

Q(·) denotes the Gaussian Q function and f1(xn2|H1) =
√
σv

2πσ3
s

e
1

8σ2
v
σ4
s e

− 1

4σ2
v

(

xn2+
σ
2
v

2σ2
s

)

2

G−3/2

(

σ2

v
−2σ2

s
xn2

2σ2
s
σv

)

where

Gp(z) = e−
z
2

4

Γ(−p)

∫∞
0

e−xz−x
2

2 x−p−1dx with p < 0. Under

H0, xn1 and xn2 have Gaussian pdfs with mean zero and

variance σ2
v . In this example, we have non-diagonal D1 with

D1
1 = (σ2

v+
1
λ2
1

)I, D1
12 = D1

12 = 2σ4
sI and D1

2 = (σ2
v+6σ4

s)I.
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Fig. 5: Performance of dependent data fusion for detection

in Example 2: Product approach with uncompressed data vs

Gaussian approximation with compressed data

In Figs. 5(a) and 5(b), we plot the ROC curves for N = 100
and N = 1000, respectively. The considered values for σ2

v ,

σ2
s (and 1

λ1
= 2σ2

s ) are stated in the figure captions. We

compare the performance of ‘c:GA’ with that of ‘u:product’.

With the considered parameter values, the performance of

‘u:product’ with N = 100 is not very good. However, ‘c:GA’

performs significantly better than ‘u:product’ as cr increases.

With N = 1000, ‘u:product’ shows almost close to prefect

detection while similar or better performance is achieved with

‘c:GA’ with a very small value for cr. As shown in Table II,

‘u:product’ in this example consumes a significant amount of

computational power compared to ‘c:GA’. Fig. 5 and Table

II verify the applicability of the proposed approach in the

presence of spatially dependent and correlated data in terms

of both performance and computational complexity.

Remark 1. In Examples 1 and 2, the parameter values are

selected such that the mean parameters of uncompressed data

under the two hypotheses at a given node are not significantly

different from each other. Otherwise, ‘u:product’ can work

well since then the second or higher order statistics are not

significant to distinguish between the two hypotheses. In such
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scenarios, efforts to model dependence do not carry additional

benefits to the fusion problem, thus such scenarios are not of

interest in this paper.

Remark 2. Covariance matrices, which measure the degree of

linear dependence, partially describe the dependence structure

of multivariate data (when the variables are multivariate

Gaussian, this description is complete). In particular, when

the uncompressed data is non-Gaussian, dependent, and un-

correlated, the covariance information is not capable of char-

acterizing the true dependence. Thus, when such data is com-

pressed via random projections, the dependence information is

unaccounted for in the compressed domain while performing

‘c:GA’.

Remark 3. When the uncompressed data is non-Gaussian,

dependent and correlated, the covariance information partially

characterizes the true dependence. In this case, when the

data is compressed via random projections, the dependence

information characterized by the covariance matrix (with a

certain distortion/change) is partially accounted for in the

compressed domain while performing ‘c:GA’.

E. Computational and Communication Complexity

With ‘c:GA’, the computational complexity of computing

the decision statistic (10) is dominated by the computation of

C1−1
(computation of C0−1

is straight forward since C0 is

diagonal due to spatial and temporal independence assumption

under H0). Computation of C1−1
is also straight-forward

when the elements of x are uncorrelated (as considered in

Case I in Example 1) since then C1 becomes diagonal. With

spatially correlated uncompressed data, computation of the

inverse of a ML × ML matrix is required. For L = 2, C1

can be partitioned into 4 blocks of each of size M × M ,

and the matrix inversion Lemma in block form can be ex-

ploited. This way, it is necessary to compute the inverse of a

M ×M matrix. For L > 2, the block inversion Lemma can

be still used with nested partitions to compute C1−1
. With

‘u:product’, the likelihood ratio is computed using the given

marginal pdfs. For the copula based approaches, computation

of the parameters corresponding to a given copula function is

required in addition to the computation of the joint marginal

pdfs. The parameters that need to be computed for different

copula functions considered above are summarized in Table I

in [14].

For illustration, we provide in the following, the average run

time (in seconds) required to compute the decision statistic

for Examples 1 and 2 considered above with different ap-

proaches. For Example 1, Cases II and III are considered with

N = 100, 1000 in Table. I. For Example 2, run times with

N = 100 and N = 1000 are shown in Table II. The run time

is computed with MATLAB in a Intel(R) Core(TM) i7-3770

CPU@ 3.40GHzz processor with 12 GB RAM. To estimate

the parameters for each copula function, we use the ’copulafit’

function and copula density was computed using the function

’copulapdf’ in Matlab.

It can be seen that, ‘c:GA’ with even fairly large cr (<≈ 0.5)

consumes less time than all the approaches considered with

TABLE I: Average run time (in seconds) required to compute

decision statistics in Example 1

Approach N = 100 N = 1000

Case II Case III Case II Case III

(L = 2) (L = 3) (L = 2) (L = 3)

‘u:product’ 0.0080 0.0281 0.0107 0.0322

‘u:copula-Gaussian’ 0.0105 0.0314 0.0138 0.0359

‘u:copula-t’ 0.0664 0.0948 0.2730 0.3634

‘c:GA’, cr = 0.1 1.2239e-04 1.2334e-04 7.3375e-04 0.0016

‘c:GA’, cr = 0.2 1.4958e-04 1.5876e-04 0.0016 0.0029

‘c:GA’, cr = 0.5 2.4795e-04 2.5894e-04 0.0091 0.0097

‘c:GA’, cr = 0.9 3.0501e-04 3.5743e-04 0.0293 0.0294

TABLE II: Average run time (in seconds) required to compute

decision statistics in Example 2

Approach N = 100 N = 1000

‘u:product’ 0.1425 1.4520

‘c:GA’, cr = 0.1 4.5356e-04 0.0092

‘c:GA’, cr = 0.2 6.8284e-04 0.0436

‘c:GA’, cr = 0.5 0.0027 0.4786

uncompressed data for both examples. In Example 2 where the

marginal pdfs are not readily available to compute the decision

statistic for ‘u:product’, this gap in run times becomes more

significant.

In terms of the communication overhead, to perform all the

suboptimal approaches considered with uncompressed data,

each node is required to transmit its length-N observation

vector to the fusion center. On the other hand, with ‘c:GA’,

each node is required to transmit only a length-M ( M < N )

vector. Thus, the communication overhead, in terms of the

total number of messages to be transmitted by each node, is

reduced by a factor of cr = M
N with ‘c:GA’ compared to all

the approaches with uncompressed data.

In summary, from Examples 1 and 2, we can conclude the

following:

• The computational complexity of ‘c:GA’ with small cr
is significantly less than that with the other approaches

with uncompressed data.

• The communication overhead of ‘c:GA’ is reduced by

a factor cr compared to all the other approaches with

uncompressed data.

• ‘c:GA’ performs significantly better than ‘u:product’ and

shows similar/comparable performance as that with the

copula based approach when the covariance matrix of

uncompressed data under H1 is non-diagonal given that

the mean parameters of data under the two hypotheses

are not significantly different from each other.

• With dependent but uncorrelated uncompressed data,

‘c:GA’ can still be advantageous in terms of the com-

putational/communication complexity at the expense of a

small loss of performance compared to ‘u:product’ and

quite significant performance loss compared to the copula

based approaches.



10

IV. DETECTION WITH COMPRESSED DEPENDENT DATA

BASED ON SECOND ORDER STATISTICS OF

UNCOMPRESSED DATA

In Section III, the detection problem was solved in the

compressed domain assuming that the marginal pdfs and the

first and second order statistics of the uncompressed data under

each hypothesis are known (or can be accurately estimated).

However, these assumptions may be too restrictive in prac-

tical settings. In the following, we consider a nonparametric

approach where the goal is to compute a decision statistic

for detection based on the statistics of uncompressed data

where such statistics are estimated from compressed mea-

surements. Consider that each node (modality) has access

to a stream of data xj(t) for t = 1, · · · , T . Further let

x(t) = [x1(t)
T , · · · ,xL(t)

T ]T and redefine Dx to be the

covariance matrix of x(t). We consider a decision statistic

of the form

Λcov = f(Dx).

Under H0, Dx is diagonal with the assumption that the data is

independent across time and space. Under H1, Dx can have

off-diagonal elements in the presence of spatially correlated

multimodal data. Since the covariance matrix has different

structures under the two hypotheses, a decision statistic based

on uncompressed covariance matrix can be computed. There

are several covariance based decision statistics computed in

[34], [35]. Covariance absolute value (CAV) detection is

considered in [34], [35]. With CAV, the decision statistic

becomes

Λcov =

∑

i

∑

j

|Dx[i, j]|

∑

i

|Dx[i, i]|
. (21)

With this statistic, when there are off-diagonal elements in

the covariance matrix, we have Λcov > 1 while Λcov = 1
when the off diagonal elements are zeros. The goal is to get

an approximation to Λcov based on compressed data y(t) =
Ax(t) for t = 1, · · · , T where A is as defined in (9).

The covariance matrix of y(t), Cy, can be expressed as

Cy = ADxA
T .

Note that,
∑

i

Dx[i, i] = tr(Dx). We have

tr(Cy) = tr(ADxA
T ) = tr(ATADx).

When Aj is selected as an orthoprojector for j = 1, · · · , L,

we may approximate ATA ≈ M
N I. Then, we have

tr(Cy) ≈
M

N
tr(Dx),

and, thus, tr(Dx) =
N
M tr(Cy). Here we approximate Cy by

the sample covariance matrix computed as

C̃y =
1

T

T
∑

t=1

[y(t) − E(y(t))][y(t) − E(y(t))]T . (22)

Then, the decision statistic (21) reduces to

Λcov =
η + 2

∑NL−1
i=1

∑NL
j=i+1 |Dx[i, j]|

η
(23)

where η = N
M tr(C̃y).

The goal is to estimate the off-diagonal elements of Dx

based on C̃y . It is noted that estimation of the complete

covariance matrix, Dx, is not necessary to construct Λcov in

(23). In the case where only spatial samples are dependent

and the time samples of each modality are independent, the

covariance matrix has only a 2(L−1) diagonals (in addition to

the main diagonal) with nonzero elements. In the following,

we describe a procedure to compute Λcov in (23) based on

C̃y when there is spatial dependence of data so that Dx has

a known structure. Note that we may write C̃y as

C̃y =
∑

i,j

Dx[i, j]aia
T
j . (24)

Let U be a set consisting of (i, j) pairs corresponding to the

desired off-diagonal elements in the upper (or lower) triangle

of Dx. The m-th pair in U is denoted by, (U(m, 1),U(m, 2))
and Ñ = |U|.

Proposition 2. Let dU be the vector containing elements

Dx[i, j] for (i, j) ∈ U . The least squares solution of dU is

given by

d̂U = B−1b (25)

where B is a Ñ × Ñ matrix whose (m, r)-th element is given

by

B[m, r] = aTU(r,2)aU(m,2)a
T
U(m,1)aU(r,1) (26)

and b is a Ñ × 1 vector with

b = [aTU(1,2)C̃
T
y aU(1,1), · · · , a

T
U(Ñ,2)

C̃T
y aU(Ñ,1)]

T . (27)

Proof: Let R = C̃y −
∑

(i,j)∈U
Dx[i, j](aia

T
j + aja

T
i ) =

C̃y −
∑Ñ

m=1 dU [m]Ãm where Ãm = aU(m,1)a
T
U(m,2) +

aU(m,2)a
T
U(m,1). The LS solution of dU is found by solving

d̂U = argmin
dU

||R||2F = argmin
dU

tr(RRT ). (28)

We can express tr(RRT ) as,

tr(RRT ) = tr(C̃yC̃
T
y )− 2b̃TdU + dT

U B̃dU (29)

where b̃[m] = tr(C̃yÃ
T
m) for m = 1, · · · , Ñ and B̃[m, r] =

tr(ÃmÃT
m) for m, r = 1, · · · , Ñ . Taking the derivative of

(29) with respect to dU , d̂U is found as

d̂U = B̃−1b̃. (30)

It can be easily shown that B̃ = 2B and b̃ = 2b where B

and b are as defined in (26) and (27), respectively, resulting

in (25) which completes the proof.

Then, Λcov in (23) reduces to

Λcov =
η + 2||d̂U ||1

η
. (31)
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A. Illustrative Example

To illustrate the detection performance with the test statistic

Λcov in (31), we consider Example 1 given in Section III-D

with Case II, in which the goal is to detect the change of the

statistical parameters due to a common random phenomenon.

Uncompressed data is generated based on the considered

marginal pdfs under the two hypotheses and the dependence

model under H1 the as considered in Case II in Example 1.

Detection using (31) is performed assuming that the second

order statistics of uncompressed data are not known under

any hypothesis and estimating them with compressed measure-

ments. For this case, there are only two nonzero off diagonals

of Dx in which the values are the same (say dU ). To compute

Λcov, estimation of only dU is required which is given by

d̂U = b
T
1

1TB1
where B and b are as defined in (26) and (27),

respectively.
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Fig. 6: Detection performance with the test statistic (31); N =
1000

In Fig. 6, we plot ROC curves with the test statistic (31) for

different values for cr and T where T , as defined earlier, is

the number of sample vectors available for each modality. The

detector with the test statistic (31) is denoted as ‘c:Cov’. The

parameters used to generate data under the two hypotheses are

the same as were used in Fig. 2 (b). ROC curves are generated

using 1000 Monte Carlo runs. In Fig. 6 (a), the performance of

‘c:Cov’ is shown for different values of cr keeping T = 10.

We compare the results obtained using the energy detector

with compressed as well as uncompressed data, denoted by

‘c:Energy’, and ‘u:Energy’, respectively, which is a widely

used nonparametric detector. The test statistic of ‘u:Energy’

and ‘c:Energy’ is given by Λu:Energy =
∑T

t=1 ||x(t)||
2
2, and

Λc:Energy =
∑T

t=1 ||y(t)||
2
2, respectively. Further the detection

performance with Gaussian approximation, ‘c:GA’, is also

shown which assumes that the statistics of uncompressed data

are known. With the parameter values considered, for given

cr and T , it is seen from Fig. 6 (a) that ‘c:Cov’ significantly

outperforms ‘c:Energy’ and ‘c:Cov’. Compared to ‘u:Energy’,

‘c:Cov’ outperforms ‘u:Energy’ after cr exceeds a certain

value (which is very small). In Fig. 6 (b), the detection

performance is shown as T varies for cr = 0.04 so that

M = 40. As can be seen in Fig. 6 (b), detection performance

improves as T increases for all the detectors. For ‘c:Cov’,

the estimate of d̂U becomes more accurate as T increases.

However, the value of T that is capable of providing almost

perfect detection with ‘c:Cov’ is not very large compared to

M . As can be seen in Fig. 6 (b), almost perfect detection is

achieved when T = 20 for the parameter values considered

which is less than M . Further, ‘c:Cov’ outperforms ‘u:Energy’

and ‘c:Energy’ for all the values of T considered while the

performance gain achieved by ‘c:Cov’ is significant compared

to ‘c:Energy’.

Next, we illustrate the robustness of ‘c:Cov’. A CAV based

test statistic as in (21) has been used to detect a signal in

the presence of Gaussian noise in [34], [35] without any

compression. It has been shown that the threshold required

to keep the probability of false alarm, Pf , under a desired

value, α0, is independent of the noise power making the

CAV based detector more robust than the energy detector

against the uncertainties of the noise power. With the CAV

based test statistic computed in this paper based on the

compressed data as in (31), the computation of the threshold,

τC , in closed-form so that Pf ≤ α0 is computationally

intractable. In the above example, uncompressed data under

H0 is non-Gaussian and the marginal pdfs of data at the

two sensors are parameterized by λ0 and a0, respectively.

In Fig. 7, we plot the threshold vs λ0 and a0 to ensure

Pf ≤ α0 keeping N are T are fixed. With ‘u:Energy’,

Λu:Energy|H0 can be approximated by a Gaussian random

variable with mean µu,E and variance σ2
u,E as NT is suf-

ficiently large where µu,E = NT
(

2
λ2
0

+ a0

a0+2

)

and σ2
u,E =

NT
(

20
λ2
0

+ 4a0

(a0+4)(a0+2)2

)

. Then, the threshold, τu,E , so that

Pf ≤ α0 can be obtained as τu,E = NT
(

2
λ2

0

+ a0

a0+2

)

+

Q−1(α0)

√

NT
(

20
λ2
0

+ 4a0

(a0+4)(a0+2)2

)

where Q−1(·) denotes

the inverse Gaussian Q function. Similarly with ‘c:Energy’, the

threshold τc,E can be found as τc,E = MT
(

2
λ2
0

+ a0

a0+2

)

+

Q−1(α0)

√

MT
(

20
λ2
0

+ 4a0

(a0+4)(a0+2)2

)

.

In Fig. 7, the threshold required to keep Pf ≤ α0 with

‘c:Cov’‘ and ‘u:Energy’ vs a0 and λ0 is shown for given

N and T . It can be observed that the variation of τC with

respect to a0 and λ0 is fairly small (negligible). However, τu:E
varies significantly as a0 and λ0 vary (similar observations are
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seen for τc:E while the figures are not included for brevity).

Thus, in addition to the performance gain achieved over

‘u:Energy’ (and ‘c:Energy’), ‘c:Cov’ is more robust against

the uncertainties of the signal parameters under H0 than the

energy detector.
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Fig. 7: Threshold of ‘c:Cov’ and ‘u:Energy’ vs a0 and λ0

B. Computational Complexity

For Λcov, the computation of B−1 and b as in (26) and

(27), respectively is required in addition to computing the

sample covariance matrix C̃y . Computation of Λu:Energy and

Λc:Energy is straight forward from x(t) and y(t) = Ax(t),
respectively, for t = 1, · · · , L. The run times required to com-

pute the decision statistics for the four approaches considered

in Fig. 6(a) are listed in Table III when the input is given as

x(t) for t = 1, · · · , L. The statistic of ‘c:GA’ is independent of

T since we assume perfect knowledge of the covariance matrix

of uncompressed data for the Gaussian approximation based

approach. It is noted that, the decision statistic was computed

over 103 trials to get the average run time. From Table III, it

can be observed that a relatively large run time is required for

‘c:Cov’ compared to the other approaches. This is the price

to pay for the performance gain achieved as depicted in Fig.

6 (a) and the robustness in threshold setting against the signal

parameters under H0 as depicted in Fig. 7. Further, in ‘c:Cov’,

the run time does not significantly increase when T increases

(going from T = 10 to T = 40) although this increase in T
can improve the performance as can be seen in Fig. 6 (b).

TABLE III: Average run time (in seconds) required to com-

pute decision statistics for ‘c:Cov’, ‘c:GA’, ‘c:Energy’ and

‘u:Energy’ for Case II in Example 2

Approach N = 1000 N = 1000

T = 10 T = 40

‘u:Energy’ 6.1529e-04 0.0027

‘c:Energy’ cr = 0.02 3.4280e-04 7.7378e-04

‘c:Energy’ cr = 0.04 4.5460e-04 0.0011

‘c:Energy’ cr = 0.06 5.3973e-04 0.0014

‘c:GA’ cr = 0.02 4.0746e-04 4.0746e-04

‘c:GA’ cr = 0.04 4.9580e-04 4.9580e-04

‘c:GA’ cr = 0.06 5.5683e-04 5.5683e-04

‘c:Cov’ cr = 0.02 0.0137 0.0148

‘c:Cov’ cr = 0.04 0.0163 0.0178

‘c:Cov’ cr = 0.06 0.0258 0.0277

V. EXPERIMENTAL RESULTS WITH REAL DATA

To further validate the detection performance with mul-

timodal data in the compressed domain with the proposed

approaches, in this section, we consider real experimental data.

We use the footstep data, made available by the US Army

Research Laboratory (ARL), collected at the US southwest

border. The dataset consists of raw observations from several

acoustic, seismic and PIR sensors that were deployed in an

outdoor space to record human and animal activity that is

typical in perimeter and border surveillance scenarios. The

participants in the data collection exercise walked/ran along a

predetermined path with sensors laid out along either side of

the path.

In the following experiments, we consider two cases; de-

tection of one man walking and a man leading a horse

based on data at two sensors (one acoustic and one seismic).

Each seismic/acoustic time series contains a leading 60s of

background data. For the detection problem, we use this as H0

data. The data are sampled at 10kHz, and are mean centered

and oscillatory in nature. The time series data at each sensor

was split into non-overlapping frames of size N . Further,

Ntr frames were used for training under each hypothesis and

Nmont frames were used for test.

In Fig. 8, we show the performance when detection is

performed with ‘c:GA’ (it is noted that we show the detection

performance only with the Gaussian approximation due to

the limited number of samples to implement the covariance

based approach). The mean and the covariance matrices of

compressed data under each hypotheses are estimated using

the training data. The values used for N , Ntr and Nmont for

the two cases are shown in figure titles. We further plot the

detection performance with ‘u:product’. To obtain the marginal

pdfs of uncompressed data under H1, a kernel based density

estimate is computed using the training data with the Gaussian

kernel. Under H0, the data is assumed to be iid Gaussian where

the mean and the variance were estimated using the training

data.
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Fig. 8: Detection performance with compressed and uncom-

pressed data; L = 2 (one seismic and one acoustic sensor)

For both cases, it is observed that ‘c:GA’ with a small

compression ratio, (e.g., cr = 0.05), outperforms detection

with ‘u:product’. Another observation is that, when cr in-

creases beyond a certain threshold, the performance does not

monotonically improve (e.g., performance with cr = 0.2 is

better than that with cr = 0.4 in Fig. 8). This is because, when

cr (thus M ) increases, more training samples are needed to

estimate C0 and C1 accurately as required in (10). When the

amount of training data available is limited, the estimates of

C0 and C1 become less accurate as M increases leading to

degraded detection performance. However, with the available

(limited) number of samples, detection with ‘c:GA’ provides

better performance with small cr values than detection using

the product approach with uncompressed data.

VI. CONCLUSION

Optimal decision fusion with high dimensional multimodal

dependent data is a challenging problem. In this paper, we

explored the potential of CS in capturing the dependence struc-

tures of spatially dependent data to develop efficient decision

statistics for detection in the compressed domain. In addition

to the inherent benefits of CS in terms of low computational

and communication overhead compared to processing and

transmitting high dimensional data, we showed that the per-

formance of CS based detection with dependent data using LR

can be better than or similar to several suboptimal detection

techniques with uncompressed data under certain conditions.

We discussed conditions under which modeling dependence

in the compressed domain using Gaussian approximation is

more efficient and effective than modeling dependence with

uncompressed data which is computationally expensive most

of the time. We further discussed a nonparametric approach

for detection where a decision statistic is computed based on

the covariance matrix of uncompressed data and the statistic is

estimated in the compressed domain. This approach can pro-

vide better performance when the non-Gaussian uncompressed

data is highly correlated with an additional computational cost

compared to that is required for the Gaussian approximation

based approach. Further, the proposed compressed covariance

based detector is more robust than the widely considered

nonparametric detector; the energy detector.
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