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Blind Source Separation Algorithms Using
Hyperbolic and Givens Rotations for High-Order

QAM Constellations
Syed A. W. Shah, Karim Abed-Meraim, Senior Member, IEEE, and Tareq Y. Al-Naffouri∗, Member, IEEE,

Abstract—This paper addresses the problem of blind demixing
of instantaneous mixtures in a multiple-input multiple-output
communication system. The main objective is to present efficient
blind source separation (BSS) algorithms dedicated to moderate
or high-order QAM constellations. Four new iterative batch BSS
algorithms are presented dealing with the multimodulus (MM)
and alphabet matched (AM) criteria. For the optimization of
these cost functions, iterative methods of Givens and hyperbolic
rotations are used. A pre-whitening operation is also utilized to
reduce the complexity of design problem. It is noticed that the
designed algorithms using Givens rotations gives satisfactory per-
formance only for large number of samples. However, for small
number of samples, the algorithms designed by combining both
Givens and hyperbolic rotations compensate for the ill-whitening
that occurs in this case and thus improves the performance.
Two algorithms dealing with the MM criterion are presented for
moderate order QAM signals such as 16-QAM. The other two
dealing with the AM criterion are presented for high-order QAM
signals. These methods are finally compared with the state of art
batch BSS algorithms in terms of signal-to-interference and noise
ratio, symbol error rate and convergence rate. Simulation results
show that the proposed methods outperform the contemporary
batch BSS algorithms.

Index Terms—blind source separation, constant modulus al-
gorithm, multimodulus algorithm, constellation matched error,
alphabet matched algorithm, Givens and hyperbolic rotations

I. INTRODUCTION

BLIND source separation (BSS) is a fundamental signal
processing technology that has been intensively used

in many systems including biomedical, audio and industrial
applications [1]. In the context of overdetermined multiple-
input multiple-output (MIMO) systems, BSS aims to find
a separation matrix using the received signals and a priori
information about the statistics or the nature of transmitted
source signals. Usually, in a communication system, the mod-
ulation technique being used is known a priori. One can
utilize such information to recover the same properties in
the output signal and thus estimate the source signal blindly.
Various BSS cost functions can be found in literature [1],
[2] depending upon the types of source signals. For general
non-Gaussian sources, efficient separation methods based on
high order cumulant optimization have been introduced as
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Joint Approximate Diagonalization of Eigenmatrices (JADE)
[3] and many others in [4]–[7]. However, when considering
communication signals, more appropriate dedicated criteria
and methods can be used instead. Among them, the constant
modulus (CM) criterion for phase/frequency modulated signals
such as PSK/FSK and multimodulus (MM) criterion for QAM
signals have attracted great interest.

The CM criterion [8] restricts the squared modulus of the
output to be a constant, but such algorithms even work for
non CM signals. They lead to a number of constant modulus
algorithms (CMA) used for blind equalization [9], [10], blind
beamforming [11], [12] and BSS [13], [14]. On the other hand,
the MM criterion [15] takes into account the knowledge of
square QAM constellation. Its respective cost function deals
with the real and imaginary parts of the signal separately and
leads to numerous multimodulus algorithms (MMA) used for
the application of blind equalization [15] and BSS [16]–[18].
MMA outperforms the CMA for the case of square QAM,
which is used in many modern communication systems such
as LTE [19] and WiMAX [20]. For such advanced systems
requiring high data rate, high-order modulations having better
spectral efficiency are used such as 64-QAM. For these high-
order modulations, MMA leads to considerable amount of
residual errors and does not ensure low symbol error rate
(SER). Thus, in order to improve the performance of BSS
algorithms for high-order QAM signals, a number of alphabet
matched (AM) penalty terms [21]–[23] were suggested. All
of these AM cost functions were found to have good local
convergence properties and therefore require a good initializa-
tion [23]. Thus, alphabet matched algorithms (AMA) should
be used along with either CMA or MMA, as both of them
have good global convergence properties.

Out of numerous CMA solutions, the algebraic one named
Analytical Constant Modulus Algorithm (ACMA) [13] pro-
vides an exact separation in the noise-free case. To overcome
the drawback of numerical complexity of ACMA, two batch1

BSS algorithms namely Givens CMA (G-CMA) and Hyper-
bolic G-CMA (HG-CMA) were presented in [14], which out-
perform ACMA. The adaptive versions of ACMA and G-CMA
were presented in [24] and [25], respectively. Similarly, for the
MM criterion, an adaptive MMA algorithm using stochastic
gradient minimization technique was presented in [16], which
outperforms the Multi-User Kurtosis (MUK) algorithm [26].

1Batch refers to the algorithms which act on the collection of samples of
a signal, as opposed to the adaptive algorithms which update the parameter
estimate with the arrival of every sample.
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Seeing the popularity of ACMA, the same analytical approach
was used for MM signals and thus an Analytical Multimodulus
Algorithm (AMMA) was presented in [17], which outperforms
the MMA algorithm in [16]. In terms of blind equalization
considering a single source, a number of AMA were presented
using a combination of CM/MM and AM cost functions either
in hybrid (i.e., with combined cost functions) [23] or dual
mode (i.e., CM/MM for initialization followed by AM for the
estimation refining) [27]. It is shown in [28] that hybrid and
dual mode have nearly the same performance. An adaptive
blind equalization algorithm by combining CM and AM cost
functions was presented in [29] that separates all the sources
using multi-stage cascaded equalizers, where the number of
equalizers were equal to the number of sources.

A. Contributions

In this paper, we propose four new batch BSS algorithms
utilizing the MM and AM criteria for MIMO systems. The
major contribution includes the optimization of MM/AM cri-
terion using Givens and hyperbolic rotation parameters for
the case of multiple sources. Two algorithms are designed by
minimization of MM and AM cost functions using Givens
rotations and named as Givens MMA (G-MMA) and Givens
AMA (G-AMA), respectively. The other two algorithms are
designed using both Givens and hyperbolic rotations and thus
named as Hyperbolic G-MMA (HG-MMA) and Hyperbolic G-
AMA (HG-AMA). To overcome the difficulties encountered
for the optimization of parameters of complex Givens and
hyperbolic rotations (see section II-C), we have considered
real representations of these complex matrices (i.e., real Givens
and hyperbolic matrices) that lead to closed form formulas for
the optimal rotation parameters. To the best of our knowledge,
this is the first paper which presents batch BSS algorithms for
MM and AM criteria.

Previously, stochastic gradient techniques were used for
the minimization of MM and AM criteria [16], [21]–[23],
[29], thus all of these algorithms are adaptive and slow in
convergence. Therefore, we compare our algorithms with batch
BSS algorithms designed for CM signals and general non-
Gaussian sources such as ACMA, G-CMA, HG-CMA and
JADE, in terms of signal to interference and noise ratio
(SINR), SER, and convergence rate.

B. Paper Organization and Notations

This paper is organized as follows. In section II, the data
model and a brief overview of BSS principle are presented.
Then, the used criteria as well as Givens and hyperbolic
rotations are defined. The derivation of proposed algorithms
G-MMA, HG-MMA, G-AMA and HG-AMA is presented
in sections III, IV, V, and VI, respectively. Section VII
includes some comments to highlight the important features
of the proposed algorithms. Simulation results are presented
in section VIII and section IX concludes the paper.

Following are the notations used in this paper. x denotes a
column vector where its ith entry is denoted by xi. The real
and imaginary parts of x are denoted by xR and xI . The matrix
and its (i, j)-th entry are denoted by X and xij , respectively. If

the matrix consists of only real elements, then it is represented
as X́. I represents the identity matrix. (.)T and (.)H are used
to represent matrix/vector transpose and complex conjugate
transpose, respectively. x denotes the pre-filtered variables. ι
is used to denote

√
−1. E[.] is the mathematical expectation

operator and |.| denotes the modulus function.

II. PROBLEM FORMULATION

Consider a MIMO system consisting of Nt sources, each
having a single antenna element and a receiver equipped
with an array of Nr antennas2. All sources transmit their
signals over the same band of frequencies. Each trans-
mitted source signal s(i) = sR(i) + ιsI(i) is drawn
from a known L-ary square QAM constellation where
sR(i), sI(i) ∈

{
±1,±3, . . . ,±(

√
L− 1)

}
. The unknown

source signal s(i) =
[
s1(i) · · · sNt

(i)
]T

is passed through
a flat fading channel represented by an unknown mixing matrix
A ∈ CNr×Nt whose elements amn denotes the channel path
between transmitter n and receiver m. The received signal
with the added noise can be mathematically represented as

y(i) = As(i) + n(i) (1)

where n(i) =
[
n1(i) · · · nNr

(i)
]T

is the white noise
vector of covariance σ2

nINr
. Here, we assume that the mixing

matrix A is of full column rank which implies that Nr ≥ Nt.
The objective is to recover the source signals s(i) without

prior knowledge of the channel or without the use of training
sequences (pilots). This is accomplished using BSS which
relies on the observation vector y(i) only and also uses some
source’s structural information. In order to recover the source
signals (up to a permutation and scaling factors [14]), we apply
a (Nt ×Nr) separation matrix W according to

z(i) = Wy(i) = WAs(i) + Wn(i) = Gs(i) + n̄(i) (2)

where z(i) =
[
z1(i) · · · zNt

(i)
]T

is the estimated source
signal vector, G = WA is the (Nt×Nt) global system matrix
and n̄(i) = Wn(i) is the filtered noise vector.

In this paper, we consider batch BSS algorithms in which
Ns samples of the received signal are collected and then a
separation matrix is applied on the received data packet Y =[
y(1) · · · y(Ns)

]
, so that (1) and (2) can be rewritten as

Y = AS + N, Z = WY (3)

where Z, S and N are defined in a way similar to the definition
of Y. In what follows, we seek a separation matrix in the form
W = VB, where B is a (Nt×Nr) pre-whitening matrix that
can be computed from a covariance matrix as in [12], or simply
a (Nt×Nr) projection matrix onto the signal subspace (since
pre-whitening is needed only for the G-MMA/G-AMA but not
for the HG-MMA/HG-AMA methods). Our main contribution
lies in designing efficient methods for the computation of the
matrix V in order to minimize cost functions suitable for high-
order QAM signals.

2In fact, Nr may represent the number of physical channels in the case Nr
sensors are used at the receiver, or ‘virtual’ channels if fractional sampling
(i.e., oversampling of the known symbol period) is used to exploit the
communication signal’s cyclostationarity as shown in [30].
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The first step of algorithm design is the selection of a
suitable cost function. Various cost functions can be found
in the literature depending upon the properties/types of source
signals. The latter can be classified into two categories: (i)
cost functions and methods using explicitly some signal’s
statistics (e.g., higher order cumulants) such as JADE [3]
and many others in [4]–[7], and (ii) contrast functions and
methods involving non-linear criteria which implicitly rely on
the signal’s higher order statistics like CMA [8], MMA [15]
and in [31]. In the considered case of square QAM signals,
this work deals with the second class of methods by using the
following cost functions.

A. Cost Functions

For low order square QAM signals, we design MMA
using MM cost function, however for high-order square QAM
signals, we design AMA using AM cost function as shown
next.

1) Multimodulus (MM) Cost Function: For multimodulus
signals e.g., square QAM, one proposes to estimate the matrix
V by minimizing the MM criterion defined in [15] as

JMMA(V)=

Nt∑
j=1

E
[(
z2j,R(i)−RR

)2
+
(
z2j,I(i)−RI

)2]
(4)

where RR = RI = E[|sR(i)|4]/E[|sR(i)|2] are dispersion
constants of the real and the imaginary parts, respectively. This
cost function was designed such that its minimization can be
interpreted as fitting the signal into a square shaped signal.
Thus, it contains structural information of QAM signals and
also has an inherent ability to restore the phase of the signal.
Moreover, the MM cost function has several advantages over
the CM one [32] and leads to: i) faster convergence algorithms
[33], [34], ii) carrier phase recovery [35], iii) less undesirable
minima [36] and iv) ease in hardware implementation [37].

2) Alphabet Matched (AM) Cost Function: The AM cost
function is used to enhance local convergence property. Similar
to MM cost functions, it deals with the real and imaginary
parts of the signal separately, where the information of the
square QAM signal is embedded in the constellation matched
error (CME) term. A variety of AM cost functions were
available in the literature [21], [22], [38], [39]. Due to the
reasons presented in section V, we have selected the one
presented in [40] as

JAMA(V) =

Nt∑
j=1

E [g(zj,R(i)) + g(zj,I(i))] (5)

where g(x) is the CME term defined as

g(x) = 1− sin2n(x
π

2d
) (6)

where n ∈ N and 2d is the minimum distance between
alphabet points. The choice of the CME term is not unique, and
many other smooth functions with minima at the constellation
points can be used. However, the CME in (6) satisfies a number
of properties that shape the high-order square QAM signals
including: i) it does not favor alphabet members over others,
thus it has a uniform behavior, ii) it is locally symmetric

around each alphabet point, and iii) it places the highest
penalty at the maximum deviation i.e., the midpoint between
two alphabet points and does not place any penalty for zero
errors i.e., at the alphabet points.

Remark: For simplicity, we have considered in this work
the case where all sources belong to the same square QAM
constellation. However, the proposed algorithms can be used
in the non-square QAM case as well as in the case of
mixed QAM constellations (i.e. the source signals belong to
different QAM alphabets). In the latter case, we just need to
use different non-linear functions (i.e. function g(.) in (5))
corresponding to the considered constellations.

In the sequel, instead of considering a hybrid function with
MM and AM, it is proposed here to optimize the MM cost
function at first to get an initial estimate of the separation
matrix, then to refine this estimate by optimizing the AM
criterion in (5). The next step is to devise an efficient method
for the optimization of the aforementioned cost functions.

To guarantee a fast convergence with relatively easy imple-
mentation, we propose to decompose the separation matrix V
into a product of elementary rotations, similar to Jacobi-like
algorithms [41], [42], used for matrix diagonalization. Hence,
V is derived using a sequence of Givens and hyperbolic
rotations, whose parameters are computed by minimizing the
MM/AM criteria.

B. Review of Givens and Hyperbolic (Shear) Rotations

1) Givens Rotations: The unitary Givens rotation
Gp,q(θ, α) is an (m ×m) identity matrix except for the four
entries Gpp,Gqq,Gpq and Gqp given by[

Gpp Gpq
Gqp Gqq

]
=

[
cos(θ) eια sin(θ)

−e−ια sin(θ) cos(θ)

]
(7)

where θ ∈ [−π/2, π/2] and α ∈ [−π/2, π/2] are angle
parameters with α = 0 for the real case.

2) Hyperbolic Rotations: The non-unitary Hyperbolic rota-
tion Hp,q(γ, β) is an (m×m) identity matrix, except for the
four elements Hpp,Hqq,Hpq and Hqp given by[

Hpp Hpq
Hqp Hqq

]
=

[
cosh(γ) eιβ sinh(γ)

e−ιβ sinh(γ) cosh(γ)

]
(8)

where γ ∈ [−Γ,Γ] ,Γ > 0 and β ∈ [−π/2, π/2]. Similar to
Givens rotations, in the real case, β = 0.

C. Motivation for using Real Givens and Hyperbolic Rotations

For large number of sources Nt, the difficulty to estimate
V increases. Thus, to simplify the estimation process, similar
to Jacobi-like algorithms [41], [42], we propose to decompose
V into a product of Nt(Nt − 1) elementary Givens rotations
as

V =
∏
NSweeps

∏
1≤p,q≤Nt

Gp,q(θ, α) (9)

where NSweeps denotes the number of iterations. Parameters θ
and α are computed in order to minimize the MM criterion
(4). Consider a unitary transformation Z = Gp,qY, which
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according to (7) only changes the rows ‘j = p’ and ‘j = q’
of Y so that

zji = y
ji

for j 6= p, q

zpi = cos(θ)y
pi

+ eια sin(θ)y
qi

zqi = −e−ια sin(θ)y
pi

+ cos(θ)y
qi

(10)

By omitting the constant terms of Z independent of (θ, α), (4)
can be approximated by

JMMA(Gpq) =

Ns∑
i=1

[(
z2pi,R −RR

)2
+
(
z2qi,R −RR

)2
+
(
z2pi,I −RI

)2
+
(
z2qi,I −RI

)2]
(11)

where each term z2pi,R, z2qi,R, z2pi,I , and z2qi,I equals to
g1i cos(2θ) + g2i cos(2θ) cos(2α) + g3i cos(2θ) sin(2α) +
g4i sin(2θ) cos(α) + g5i sin(2θ) sin(α) + g6i cos(2α) +
g7i sin(2α) + g8i and gji , j = 1, · · · , 8 are constant terms
depending upon the entries of Y. As we can see, further
analytical simplification and thus the solution of (11) is quite
complicated. Similar is the case with hyperbolic rotations.
These difficulties motivated us to come up with a different
solution explained below3.

III. GIVENS MMA (G-MMA)

Until now, we have been working in the complex domain
and to deal with the previously mentioned challenges, we will
now work in the real domain. Hence, matrix Y is converted
into a real matrix Ý containing real and imaginary parts in
separate rows as defined in (12). Moreover, a special structure
of matrix V is introduced and maintained while applying
the rotations. The transformed real received signal and output
signal can now be written as Ý and Ź = V́Ý, respectively,
where

Ý=

[
YR

YI

]
(2Nt×Ns), V́=

[
VR −VI

VI VR

]
(2Nt×2Nt) (12)

Similarly, Ś and Ź are now (2Nt ×Ns) real matrices, which
can be represented in a way similar to the definition of Ý
in (12). In order to find the required matrix V́, considering
Lemma 1 of [43], the following sequence of real Givens
rotations are used as a counterpart of (9)

V́ =
∏
NSweeps

∏
1≤p,q≤Nt

p6=q

Gp,q(θ)Gp+Nt,q+Nt
(θ)Gp,q+Nt

(θ̇)

Gq,p+Nt(θ̇)
∏

1≤p≤Nt

Gp,p+Nt(θ̈) (13)

The rotations Gp,q(θ) and Gp+Nt,q+Nt(θ) are applied suc-
cessively using the same angle parameter (θ). Similarly, the
rotations Gp,q+Nt

(θ̇) and Gq,p+Nt
(θ̇) are applied with another

angle parameter (θ̇). Note that, these rotations are paired in
this way to preserve the structure of V́ given in (12) [43].
The rotation Gp,p+Nt

(θ̈) is applied to deal with the phase
shift introduced by the diagonal entries of the mixing matrix

3We have presented this work partly in [18].

A. The angle parameters (θ) , (θ̇) and (θ̈) are computed in
such a way to minimize the MM criterion (11), using above
explained iterative method. For that, we express the MM cost
function in terms of the angle parameter (θ). Now, consider
a unitary transformation Ź = Gp,qÝ, which according to (7)
only changes the rows ‘p’ and ‘q’ of Ý so that

źji = ý
ji

for j 6= p, q

źpi = cos(θ)ý
pi

+ sin(θ)ý
qi

źqi = − sin(θ)ý
pi

+ cos(θ)ý
qi

(14)

Similarly, the rotation4 Gp+Nt,q+Nt with the same angle
parameter (θ) modifies the rows ‘p + Nt’ and ‘q + Nt’ in
a similar way as shown in (14). Now, (11) can be rewritten in
terms of (θ) as (omitting the terms of Ź that are independent
of (θ) and assuming for simplicity that RR = RI = R)

JMMA(θ) =

Ns∑
i=1

[(
ź2pi −R

)2
+
(
ź2qi −R

)2
+
(
ź2p+Nt,i −R

)2
+
(
ź2q+Nt,i −R

)2]
(15)

Using (14) and double angle identities we can write

ź2pi = tTi v +
1

2

(
ý2
pi

+ ý2
qi

)
ź2qi = −tTi v +

1

2

(
ý2
pi

+ ý2
qi

) (16)

where
v =

[
cos(2θ) sin(2θ)

]T
ti =

[
1
2 (ý2

pi
− ý2

qi
) ý

pi
ý
qi

]T (17)

This allows us to express the first two terms in (15) as

(
ź2pi−R

)2
+
(
ź2qi−R

)2
= 2vTtit

T
i v+2

(
ý2
pi

+ ý2
qi

2
−R

)2

(18)

Similarly, the terms z2p+Nt,i
and z2q+Nt,i

are obtained by
replacing ti with t́i corresponding to indices ‘p + Nt’ and
‘q +Nt’ in (17). Disregarding the constant terms in (18), we
can express JMMA(θ) as a quadratic form

JMMA(θ) = vT
Ns∑
i=1

[
tit

T
i + t́it́

T
i

]
v = vTTv (19)

The solution v◦ =
[
v◦1 v◦2

]T
that minimizes (19) is given by

the unit norm eigenvector of T corresponding to its smallest
eigenvalue, so using (17), we can write

cos(θ) =

√
1 + v◦1

2
and sin(θ) =

v◦2√
2(1 + v◦1)

(20)

Using (20), the computation of Gp,q and Gp+Nt,q+Nt
follows

directly from (7). Givens rotations Gp,q+Nt
(θ̇) and Gq,p+Nt

(θ̇)
are found similarly and applied successively on Ý to compute
the filtered separation matrix V́ according to (13). The Givens
rotation Gp,p+Nt

(θ̈) for ‘p = q’ can be similarly found by

4For simplicity, we keep the notation Ý unchanged even though the matrix
is modified after each rotation.



1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2777392, IEEE
Transactions on Signal Processing

5

TABLE I: Givens MMA (G-MMA) Algorithm

Initialization: V́ = I2Nt

1. Pre-whitening: Y = BY O(NsN2
r )

2. Construct real matrix Ý using (12)
3. Givens Rotations: (20NsN2

t ) +O(NsNt)/Sweep
for n = 1, . . . , NSweeps do

for p = 1, . . . , Nt do
for q = p, . . . , Nt do

if p = q then
a) Compute Gp,p+Nt using (21), (20) and (7) for θ̈ (6Ns)
b) Ý := Gp,p+NtÝ (4Ns)
c) V́ := Gp,p+NtV́

else
d) Compute Gp,q &Gp+Nt,q+Nt using (19), (20) and (7)
for same (θ) (12Ns)
e) Ý := Gp,q Gp+Nt,q+NtÝ (8Ns)
f) V́ := Gp,q Gp+Nt,q+NtV́
repeat (d to f) for (p, q + Nt) & (q, p + Nt) using same
(θ̇) (20Ns)

end if
end for

end for
end for
4. Estimate the complex sources from Ý using (3) and (12).

following the above explained method. By replacing ‘q’ with
‘p + Nt’ in (17) and (18), the cost function (4) (with the
constant terms omitted) can be written as

JMMA(θ̈) = vT
Ns∑
i=1

[
tit

T
i

]
v = vTT́v (21)

Hence, the solution v◦ is the least unit norm eigenvector of
T́ and Gp,p+Nt

(θ̈) is computed using (20) and (7). Matrix
V́ is initialized as V́ = I2Nt

and the overall algorithm is
summarized in Table I.

IV. HYPERBOLIC G-MMA (HG-MMA)

For a small number of samples Ns, the pre-whitening
operation is not effective and thus the transformed mixing
matrix A may be far from unitary. In this case, the perfor-
mance of G-MMA deteriorates and thus the J-unitary real
hyperbolic rotations are applied alternatively along with the
Givens rotations to overcome this limitation. This results in
an algorithm named Hyperbolic Givens MMA (HG-MMA).
So, now the matrix V́ can be decomposed into a product of
elementary hyperbolic rotations Hp,q , Givens rotations Gp,q ,
and normalization transformation N p,q as follows

V́ =
∏
NSweeps

∏
1≤p,q≤Nt

p6=q

Γp,q(θ, γ)Γp+Nt,q+Nt(θ, γ)

Γp,q+Nt
(θ̇, γ̇)Γq,p+Nt

(θ̇,−γ̇)
∏

1≤p≤Nt

Gp,p+Nt
(θ̈) (22)

where Γp,q = N p,qGp,qHp,q . Similar to the Givens rotations,
the hyperbolic rotations Hp,q and Hp+Nt,q+Nt

are applied
using the same parameter (γ) while Hp,q+Nt

and Hq,p+Nt

are applied using another same but opposite parameter (γ̇) and
(−γ̇), respectively. We will consider dispersion parameters RR
and RI be equal to 1 and use N p,q for normalization. Below
we give a brief of finding the hyperbolic and the normalization
transformation parameters to minimize the MM criterion (4).

A. Computation of Hyperbolic and Givens rotations

Let us consider one hyperbolic transformation Ź = Hp,qÝ,
which modifies Ý according to

źji = ý
ji

for j 6= p, q

źpi = cosh(γ)ý
pi

+ sinh(γ)ý
qi

źqi = sinh(γ)ý
pi

+ cosh(γ)ý
qi

(23)

Now, using hyperbolic double angle identities we obtain

ź2pi = rTi u +
1

2

(
ý2
pi
− ý2

qi

)
ź2qi = rTi u− 1

2

(
ý2
pi
− ý2

qi

) (24)

where
u =

[
cosh(2γ) sinh(2γ)

]T
ri =

[
1
2 (ý2

pi
+ ý2

qi
) ý

pi
ý
qi

]T (25)

Similar expressions can be derived for z2p+Nt,i
and z2q+Nt,i

.
Substituting these expressions in (15) and omitting the terms
that are independent of (γ) yields

JMMA(γ)=uT

[
Ns∑
i=1

rir
T
i + ŕiŕ

T
i

]
u− 2uT

[
Ns∑
i=1

ri + ŕi

]
= uTRu− 2uTr

(26)

where ŕi =
[
1
2 (ý2

p+Nt,i
+ ý2

q+Nt,i
) ý

p+Nt,i
ý
q+Nt,i

]T
. The

optimization problem in (26) can be solved using either
Lagrange multiplier method (exact solution) or by taking
linear approximation of hyperbolic sine and cosine around zero
(approximate solution). Both methods are discussed below.

1) Exact Solution: We consider the constrained optimiza-
tion

min
u
F(u) = uTRu− 2rTu s.t. uTJ2u = 1 (27)

where J2 = diag
([

1 −1
])

corresponding to cosh2(2γ) −
sinh2(2γ) = 1. The Lagrangian of (27) can be written as

L(u, λ) = uTRu− 2rTu + λ
(
uTJ2u− 1

)
(28)

The solution of this Lagrangian is given by

u = (R + λJ2)−1r (29)

Using (29), the constraint equation results in a 4th order
polynomial equation

rT(R + λJ2)−1J2(R + λJ2)−1r = 1 (30)

Of the four roots of (30), we use the real value5 of λ that
results in the minimum value of L(u, λ) with a vector u
satisfying u1 > 0. We then solve for u◦ = [u◦1, u

◦
2]T from

(29) and solve for the hyperbolic sine and cosine of (γ) as

cosh(γ) =

√
1 + u◦1

2
and sinh(γ) =

u◦2√
2(1 + u◦1)

(31)

which allows us to construct the hyperbolic rotations Hp,q and
Hp+Nt,q+Nt

defined in (8).

5In the case, when the set of solutions is empty, we set by default λ = 0.
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For the remaining hyperbolic rotations Hp,q+Nt

and Hq,p+Nt , the optimization problem in (26) is
conducted for the other hyperbolic parameter (γ̇),

where ri =
[
1
2 (ý2

pi
+ ý2

q+Nt,i
) ý

pi
ý
q+Nt,i

]T
and

ŕi =
[
1
2 (ý2

qi
+ ý2

p+Nt,i
) −ý

qi
ý
p+Nt,i

]T
. Then, the modified

optimization problem is minimized using the same method as
explained above. This provides the solution ú◦ = [ú◦1, ú

◦
2]T

and the hyperbolic angles are obtained using (31) for
hyperbolic parameter (γ̇). The computation of the hyperbolic
rotations Hp,q+Nt

(γ̇) and Hq,p+Nt
(−γ̇) follows directly

from (31) and (8). Note that these rotations are applied using
same but opposite hyperbolic angle parameter γ̇.

2) Approximate Solution: In this approach, we will con-
sider the linear approximation of hyperbolic sine and cosine
around zero given by sinh(2γ) ≈ 2 sinh(γ) and cosh(2γ) ≈
cosh(γ). This approximation is valid in the vicinity of the
desired solution (i.e., optimal separation matrix) in which case,
one can demonstrate that the expression of parameter γ given
below is close to zero. Now, let us define the elements of
symmetric matrix R and vector r used in (26) as

R =

[
r11 r12
r21 r22

]
and r =

[
r1
r2

]
(32)

Using (25), (32) and neglecting the terms independent of γ,
the cost function (26) can be rewritten as

JMMA(γ) = cosh(4γ)
r11 + r22

2
+ sinh(4γ)r12

− 2 cosh(2γ)r1 − 2 sinh(2γ)r2 (33)

Setting the derivative of (33) w.r.t γ to zero and using the
previous approximation, we obtain

sinh(2γ) (r11 + r22 − r1)− cosh(2γ) (r2 − r12) = 0 (34)

and thus the solution γ is

γ =
1

2
arctanh

(
r2 − r12

r11 + r22 − r1

)
(35)

In a similar way, the hyperbolic rotation parameter γ̇ can be
found by using appropriate R and r as explained in section
IV-A1. The hyperbolic rotations are computed using (35) and
(8) and applied accordingly as explained in section IV-A1.
After applying the hyperbolic rotations, Givens rotations are
applied in a similar way as explained in section III and then
normalization rotations are applied as explained below.

B. Calculating the normalization transformations

The normalization is applied to compensate for the dis-
persion parameters RR and RI . Let us consider that we
have transformed only one row ‘p’ of matrix Y, which
corresponds to the transformation of rows ‘p’ and ‘p + Nt’
for matrix Ý. In this case, the normalization transformation
N p is an identity matrix except for the two diagonal elements
Npp = Np+Nt,p+Nt

= λp and the approximated MM cost
function (11) (with the constant terms omitted) becomes

JMMA(λp)=

Ns∑
i=1

[((
λpýpi

)2
− 1

)2

+

((
λpýp+Nt,i

)2
− 1

)2
]
(36)

TABLE II: Hyperbolic Givens MMA (HG-MMA) Algorithm

Initialization: V́ = I2Nt

Subspace projection or approximate pre-whitening if Nr > Nt
O(NsN2

r )
1. Create real matrix Ý using (12)
2. Hyperbolic, Givens & Normalization Rotations: (40NsN2

t ) +
O(NsNt)
for n = 1, . . . , NSweeps do

for p = 1, . . . , Nt do
for q = p, . . . , Nt do

if p = q then
a) Apply Givens rotation using (a to c) of Table I (10Ns)

else
b) Compute Hp,q & Hp+Nt,q+Nt using (31) and (8) for
(γ) (12Ns)
c) Ý := Hp,qHp+Nt,q+NtÝ (8Ns)
d) V́ := Hp,qHp+Nt,q+NtV́
e) Apply Givens rotation using (d to f) of Table I (20Ns)
repeat steps (b to e) for (p, q + Nt) & (q, p + Nt) using
(θ̇, γ̇) & (θ̇,−γ̇), respectively (40Ns)

end if
end for

end for
f) Compute N using (37) (6NsNt)
g) Ý := N Ý (2NsNt)
h) V́ := N V́

end for

Taking the derivative of (36) w.r.t λp and setting the result to
zero gives optimal normalization parameter

λp =

√√√√∑Ns

i=1 ý
2

pi
+ ý2

p+Nt,i∑Ns

i=1 ý
4

pi
+ ý4

p+Nt,i

, ∀ p (37)

In our simulations, we observed that the normalization
rotation is not necessary at each step and can be performed
only once per sweep. In this case, the diagonal entries of
matrix N are Npp = Np+Nt,p+Nt

= λp given as in (37)
where 1 ≤ p ≤ Nt. HG-MMA is presented in Table II.

V. GIVENS AMA (G-AMA)

For the design of AM algorithms, the AM cost function (5)
is selected because of the following reasons: i) it satisfies all
three properties presented in section II-A2, which are sufficient
conditions to shape the cost function for high-order square
QAM signals, ii) it is the simplest among all other AM cost
functions and computationally less expensive. Note that, the
number of computations in this one is independent of the
number of alphabet points as opposed to AM cost functions
in [22], [38], iii) it deals with the real and imaginary parts
of the output signal, separately. Thus, it is relatively easier
to optimize using real Givens and hyperbolic rotations. In
this section, G-MMA is used as an initialization followed
by optimization of AM cost function (with n = 1 for CME
term in (6)) using real Givens and hyperbolic rotations, which
results in algorithms G-AMA and HG-AMA. The combination
of MMA and AMA is not new and recently used by Labed et
al. [44] for the problem of blind equalization.
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After using G-MMA for the initialization, the matrix V́ is
updated using the following Givens rotations

V́n =
∏

1≤p,q≤Nt
p6=q

Gp,q+Nt
(θ̇)Gq,p+Nt

(θ̇)Gp,q(θ)

Gp+Nt,q+Nt
(θ)V́n−1 (38)

where n = n0+1, . . . , NSweeps, where NSweeps is the number of
iterations of G-AMA until convergence and n0 is the number
of iterations of G-MMA for initialization6. Let us express the
AM cost function in terms of the angle parameter θ which
is computed such that JAMA(θ) is minimized. Using similar
derivations as before, one can write

JAMA=

Ns∑
i=1

[g (źpi) + g (źqi) + g (źp+Nt,i) + g (źq+Nt,i)] (39)

where the first two terms in (39) can be defined with n = 1
in (6) as

g (źpi) = 1− sin2
{(

cos(θ)ý
pi

+ sin(θ)ý
qi

)( π
2d

)}
g (źqi) = 1− sin2

{(
− sin(θ)ý

pi
+ cos(θ)ý

qi

)( π
2d

)} (40)

and the last two terms are obtained by replacing ‘p’ and ‘q’
with ‘p+Nt’ and ‘q+Nt’ in (40), respectively. The bounded
non-linear optimization problem can now be stated as

min
θ
JAMA s.t. θ ∈ [−π/4, π/4] (41)

The optimization problem in (41) can be solved either by using
Nelder–Mead simplex algorithm [45] that can be termed as
‘exact solution’ in the sense, with a line search, one can get
the optimal solution up to some chosen accuracy, or by using
Taylor series approximation of trigonometric functions around
zero, which will be referred to as ‘approximate solution’. This
approximation can be justified using Figure 1, which plots the
values of AMA cost function JAMA in (39) vs. θ for some
random received pre-whitened signal Ý after 5 sweeps of G-
MMA with Nt = 3, Nr = 5, Ns = 300, SNR = 30dB and
normalized 64-QAM constellation. Note that the optimum θ◦

is very close to zero. Thus, in the following section, we show
that for a certain range of θ close to zero, the approximation
fits very well with the original values of the AMA cost
function.

A. Exact Solution

For the exact solution, the objective function in (39) is
passed to the Nelder–Mead simplex algorithm7 along with
θ0 = 0.001 as a starting point and bounds θ ∈ [−π/4, π/4],
in order to find optimum θ◦ for the minimization of (41).
Givens rotation matrices Gp,q(θ◦) and Gp+Nt,q+Nt(θ

◦) are
then applied to update V́ according to (38). The remaining
Givens rotations Gp,q+Nt(θ̇) and Gq,p+Nt(θ̇) can be found

6As per observations from the rate of convergence for G-MMA, it converges
in n0 = 5 for the considered cases. However, one can choose the number of
sweeps as the one corresponding to an almost flat variation of JMMA.

7In this work, MATLAB optimization toolbox ‘fminsearch’ and ‘fmin-
searchbnd’ is used which is an implementation of Nelder–Mead simplex
algorithm.

θ = −0.0102

JAMA = 181.1101
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Fig. 1: JAMA vs. θ for random received pre-whitened signal
after 5 sweeps of G-MMA with Nt = 3, Nr = 5, Ns = 300,
SNR = 30dB and normalized 64-QAM constellation.

similarly by replacing subscripts accordingly in (39) and (40)
and then computing optimum θ̇◦. Then, the separation matrix
V́ is updated again according to (38). This process is repeated
until convergence.

B. Approximate Solution

As observed from Figure 1, the optimum θ◦ is very close to
zero, thus the Taylor series approximation around zero can be
applied. Here, we will consider the approximation up to the
4th order using the following approximate identities

sin(θ) ≈ θ − θ3

6
, cos(θ) ≈ 1− θ2

2
+
θ4

24
(42)

Now, using the approximation in (42) to ‘cos(θ)’ and ‘sin(θ)’
in (40) and expanding the terms, results in

g (źpi) ≈
1

48d4
cpi4 θ

4 +
1

12d3
cpi3 θ

3 +
1

4d2
cpi2 θ

2

− 1

2d
cpi1 θ +

1

2
cpi0

(43)

where

cpi4 = 4π2d2ý2
qi

cos

(
πý

pi

d

)
+ π4ý4

qi
cos

(
πý

pi

d

)

− 3π2d2ý2
pi

cos

(
πý

pi

d

)
− πd3ý

pi
sin

(
πý

pi

d

)

− 6π3dý
pi
ý2
qi

sin

(
πý

pi

d

)

cpi3 = πd2ý
qi

sin

(
πý

pi

d

)
+ π3ý3

qi
sin

(
πý

pi

d

)

+ 3π2dý
pi
ý
qi

cos

(
πý

pi

d

)

cpi2 = πdý
pi

sin

(
πý

pi

d

)
− π2ý2

qi
cos

(
πý

pi

d

)

cpi1 = πý
qi

sin

(
πý

pi

d

)

cpi0 = 1 + cos

(
πý

pi

d

)

(44)
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Fig. 2: Comparison of exact and approximated G-AMA cost
functions after 5 sweeps of G-MMA with Nt = 3, Nr =
5, Ns = 300, SNR = 30dB and normalized 64-QAM con-
stellation

Similarly g (źqi) can be approximated by

g (źqi) ≈
1

48d4
cqi4 θ

4 − 1

12d3
cqi3 θ

3 +
1

4d2
cqi2 θ

2

+
1

2d
cqi1 θ +

1

2
cqi0

(45)

where all the coefficients are obtained by replacing ‘p’ with ‘q’
and ‘q’ with ‘p’ in (44). The 3rd term g (źp+Nt,i) of (39) has
the same approximation as given in (43), where the coefficients
are obtained by replacing ‘p’ with ‘p+Nt’ and ‘q’ with ‘q+Nt’
in (44). The last term g (źq+Nt,i) of (39) is approximated as
(45), where the coefficients are obtained by replacing ‘p’ with
‘q +Nt’ and ‘q’ with ‘p+Nt’ in (44).

Now, using (43) and (45) in cost function (39) results in the
4th order polynomial equation

JAMA≈
1

48d4
C4θ

4+
1

12d3
C3θ

3+
1

4d2
C2θ

2+
1

2d
C1θ+

1

2
C0 (46)

where the coefficients in (46) are given by

Cl=

Ns∑
i=1

(
cpil + cqil + cp+Nt,i

l + cq+Nt,i
l

)
, l ∈ {0, 2, 4}

C3 =

Ns∑
i=1

(
cpi3 − c

qi
3 + cp+Nt,i

3 − cq+Nt,i
3

)
C1 =

Ns∑
i=1

(
−cpi1 + cqi1 − c

p+Nt,i
1 + cq+Nt,i

1

) (47)

Taking the gradient of (46) w.r.t. θ yields

∂JAMA(θ)

∂θ
≈ 1

12d4
C4θ

3+
1

4d3
C3θ

2+
1

2d2
C2θ+

1

2d
C1 (48)

where the coefficients are the same as defined in (47). Out
of the three possible roots of (48), the optimum θ◦ is selected
which is real-valued and results in minimum value of JAMA(θ)
in (39).

To illustrate that the approximation in (46) is good enough,
we have compared the original cost function and approximated
one for a certain range of θ around zero in Figure 2.

Rotations Gp,q+Nt
(θ̇) and Gq,p+Nt

(θ̇) are similarly found
by replacing subscripts accordingly and computing optimum
θ̇◦. Then, the rotations are applied successively on Ý.

In summary, matrix V́ is initialized as identity matrix, then
G-MMA is applied for n0 = 5 followed by the update of
matrix V́ according to (38) by applying Givens rotations on

TABLE III: Givens AMA (G-AMA) Algorithm

Initialization: V́ = I2Nt

1. Pre-whitening: Y = BY
2. Construct real matrix Ý using (12)
3. Givens Rotations:
for n = 1, . . . , NSweeps do

if n ≤ n0 then
a) Apply G-MMA as given in Table I

else
for p = 1, . . . , Nt − 1 do

for q = p+ 1, . . . , Nt do
b) Find optimum (θ◦) using roots of (48) which gives
minimum value of (39)
c) Compute Gp,q &Gp+Nt,q+Nt using (7) for same (θ◦)
d) Ý := Gp,q Gp+Nt,q+NtÝ

e) V́ := Gp,q Gp+Nt,q+NtV́
repeat (b to e) for (p, q + Nt) & (q, p + Nt) using same
(θ̇◦)

end for
end for

end if
end for

Ý using the above method, until convergence. The overall
algorithm is summarized in Table III.

VI. HYPERBOLIC G-AMA (HG-AMA)

As stated earlier, for a small number of samples Ns, J-
unitary real hyperbolic rotations are applied alternatively along
with the Givens rotations to overcome the limitation of ill-
whitening. This results in an algorithm named as Hyperbolic
Givens AMA (HG-AMA).

For HG-AMA, first of all G-MMA is used for initialization8.
Then, matrix V is updated iteratively until convergence using
following hyperbolic Hp,q and Givens Gp,q rotations

V́n =
∏

1≤p,q≤Nt
p6=q

Γp,q+Nt(θ̇, γ̇)Γq,p+Nt(θ̇,−γ̇)

Γp,q(θ, γ)Γp+Nt,q+Nt(θ, γ)V́n−1 (49)

where Γp,q = Gp,qHp,q . Let us express the AM cost function
in terms of parameter γ which is computed such that JAMA(γ)
is minimized. Now, using similar derivations as before, one can
write

JAMA=

Ns∑
i=1

[g (źpi) + g (źqi) + g (źp+Nt,i) + g (źq+Nt,i)] (50)

where the first two terms in (50) can be defined as

g (źpi) = 1− sin2
{(

cosh(γ)ý
pi

+ sinh(γ)ý
qi

)( π
2d

)}
g (źqi) = 1− sin2

{(
sinh(γ)ý

pi
+ cosh(γ)ý

qi

)( π
2d

)} (51)

and the last two terms are obtained by replacing ‘p’ and ‘q’
with ‘p+Nt’ and ‘q +Nt’ in (51), respectively.

Figure 3 represents JAMA in (50) vs. γ after 5 sweeps of
G-MMA with Nt = 3, Nr = 5, Ns = 300, SNR = 30dB
and normalized 64-QAM constellation. It can be noticed
that optimum γ◦ is very close to zero. Thus, we can apply

8HG-MMA can be used here as well in order to avoid the pre-whitening
step.
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Fig. 3: JAMA vs. γ for random received pre-whitened signal
after NSweeps = 5 of G-MMA with Nt = 3, Nr = 5, Ns =
300, SNR = 30dB and normalized 64-QAM constellation.

Taylor series approximation of hyperbolic and trigonometric
functions around zero, in order to find the solution of the
optimization problem in (50). Next, two possible ways are
detailed to solve this optimization problem.

A. Exact Solution

For the exact solution, the objective function (50) is passed
to the Nelder–Mead simplex algorithm with γ0 = 0.001
as starting point which minimizes (50) and returns the
optimum hyperbolic rotation parameter γ◦. Hp,q(γ

◦) and
Hp+Nt,q+Nt(γ

◦) are then computed and applied to update
V́ according to (49).

For rotations Hp,q+Nt
(γ̇) and Hq,p+Nt

(−γ̇), 1st and 4th

terms of the objective function in (50) are defined as

g (źpi)=cos2
{(

cosh(γ̇)ý
pi

+ sinh(γ̇)ý
q+Nt,i

)( π
2d

)}
g (źq+Nt,i)=cos2

{(
sinh(γ̇)ý

pi
+ cosh(γ̇)ý

q+Nt,i

)( π
2d

)}(52)

and the 2nd and 3rd terms of (50) are obtained by replacing (γ̇)
with (−γ̇) and indices ‘p’ and ‘q+Nt’ with ‘q’ and ‘p+Nt’ in
(52), respectively. Now, the modified objective function is used
to find the optimum γ̇◦. Matrices Hp,q+Nt

and Hq,p+Nt
are

then computed using the above explained method and applied
successively on Ý. The process is repeated until convergence.

B. Approximate Solution

Again, we will use here the Taylor series approximation
of trigonometric angles given in (42) and hyperbolic angles
around zero up to 4th order, which can be written as

sinh(γ) ≈ γ +
γ3

6
, cosh(γ) ≈ 1 +

γ2

2
+
γ4

24
(53)

Let us consider the first term of (50) given in (51) as

g (źpi) = 1−sin2
{(

cosh(γ)ý
pi

+ sinh(γ)ý
qi

)( π
2d

)}
(54)

Now, applying the hyperbolic angle approximation given in
(53) to ‘cosh(γ)’ and ‘sinh(γ)’ in the argument of sine in
(54) and expanding the terms, we get

g (źpi) ≈ 1− sin2
{(

24ý
pi

+ 24ý
qi
γ + 12ý

pi
γ2

+4ý
qi
γ3 + ý

pi
γ4
)( π

12d

)}
(55)

Finally, the approximation in (42) is used leading to

g (źpi) ≈
1

48d4
cpi4 γ

4 +
1

12d3
cpi3 γ

3 − 1

4d2
cpi2 γ

2

− 1

2d
cpi1 γ +

1

2
cpi0

(56)

where

cpi4 = π4ý4
qi

cos

(
πý

pi

d

)
+ 6π3dý

pi
ý2
qi

sin

(
πý

pi

d

)

− 4π2d2ý2
qi

cos

(
πý

pi

d

)
− 3π2d2ý2

pi
cos

(
πý

pi

d

)

− πd3ý
pi

sin

(
πý

pi

d

)

cpi3 = π3ý3
qi

sin

(
πý

pi

d

)
− πd2ý

qi
sin

(
πý

pi

d

)

− 3π2dý
pi
ý
qi

cos

(
πý

pi

d

)

cpi2 = π2ý2
qi

cos

(
πý

pi

d

)
+ πdý

pi
sin

(
πý

pi

d

)

cpi1 = πý
qi

sin

(
πý

pi

d

)

cpi0 = 1 + cos

(
πý

pi

d

)

(57)

Similarly, the other terms g (źqi), g (źp+Nt,i) and g (źq+Nt,i)
of (50) can be approximated as (56), where the coefficients
are obtained by replacing indices accordingly in (57).

Now, using (56) in (50) leads to

JAMA≈
1

48d4
C4γ

4+
1

12d3
C3γ

3− 1

4d2
C2γ

2− 1

2d
C1γ

1+
1

2
C0 (58)

where the coefficients in (58) are given by

Cl =

Ns∑
i=1

(
cpil + cqil + cp+Nt,i

l + cq+Nt,i
l

)
(59)

where l ∈ {0, . . . , 4}. Taking the gradient with respect to γ of
AMA cost function in (58), we get

∂JAMA(γ)

∂γ
≈ 1

12d4
C4γ

3+
1

4d3
C3γ

2− 1

2d2
C2γ−

1

2d
C1 (60)

Out of the three possible real roots of (60), the optimum (γ◦)
is selected such that JAMA(γ) is minimum.

To illustrate that the approximation in (58) is good enough,
we have compared the original cost function and approximated
one for a certain range of γ around zero in Figure 4.

For the remaining matrices Hp,q+Nt
(γ̇) and Hq,p+Nt

(−γ̇),
the AM cost function can be written as (50) and all the
terms have the same approximation as given in (56) with the
replacement of γ with γ̇ and indices accordingly. Also, for the
2nd and 3rd terms, the sign of coefficients c1 and c3 are opposite
to the one shown in (56). Now, using (56) the optimization
problem in (50) can be written as

JAMA≈
1

48d4
C4γ̇

4+
1

12d3
C3γ̇

3− 1

4d2
C2γ̇

2+
1

2d
C1γ̇

1+
1

2
C0 (61)
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Fig. 4: Comparison of exact and approximated HG-AMA cost
functions after n0 = 5 of G-MMA with Nt = 3, Nr =
5, Ns = 300, SNR= 30dB and normalized 64-QAM constel-
lation.

with

Cl=

Ns∑
i=1

(
cpil + cq+Nt,i

l + cqil + cp+Nt,i
l

)
l ∈ {0, 2, 4}

C3 =

Ns∑
i=1

(
cpi3 + cq+Nt,i

3 − cqi3 − c
p+Nt,i
3

)
C1 =

Ns∑
i=1

(
−cpi1 − c

q+Nt,i
1 + cqi1 + cp+Nt,i

1

) (62)

The final solution is obtained by zeroing the gradient of (61).
Once we obtain the solution γ̇◦, matrices Hp,q+Nt(γ̇

◦) and
Hq,p+Nt(−γ̇◦) are computed using (8). The separation matrix
V́ is then updated according to (49).

Note that the normalization transformation used to compen-
sate for the dispersion parameters in HG-MMA, is not con-
sidered here since the dispersion parameters are not involved
in the AM cost function.

In summary, matrix V́ is initialized as identity matrix then
after applying 5 sweeps of G-MMA, matrix V́ is updated
according to (49) by applying Givens and hyperbolic rotations
successively on Ý using the above explained method, until
convergence. The overall algorithm is summarized in Table
IV.

VII. PRACTICAL CONSIDERATIONS

We provide here some insight into the proposed algorithms.

A. Numerical Cost

Taking into account the structure of the rotation matrices,
the numerical cost of the proposed algorithms are compared
with other CMA-like BSS algorithms in terms of the number
of flops per sweep in Table V. As can be seen from Table V,
the proposed algorithms are much cheaper than ACMA and of
the same cost order as G-CMA and HG-CMA. Moreover, the
proposed algorithms have very fast convergence (typically less
than 10 sweeps) as shown next in the simulation experiments.
Also, HG-AMA is more expensive but has better performance
than all the other algorithms as can be observed from the
simulation results.

All considered BSS algorithms except G-CMA and
G-MMA requires a pre-whitening operation which costs

TABLE IV: Hyperbolic Givens AMA (HG-AMA) Algorithm

Initialization: V́ = I2Nt

Subspace projection or approximate pre-whitening if Nr > Nt
1. Construct real matrix Ý using (12)
2. Hyperbolic & Givens Rotations:
for n = 1, . . . , NSweeps do

if n ≤ n0 then
a) Apply G-MMA as given in Table I

else
for p = 1, . . . , Nt − 1 do

for q = p+ 1, . . . , Nt do
b) Find optimum (γ◦) using roots of (60) which gives
minimum value of (50)
c) Compute Hp,q &Hp+Nt,q+Nt using (8) for same (γ◦)
d) Ý := Hp,qHp+Nt,q+NtÝ

e) V́ := Hp,qHp+Nt,q+NtV́
f) Apply Givens rotations using (b to e) of Table III
repeat steps (b to f) for (p, q + Nt) & (q, p + Nt) using
(θ̇◦, γ̇◦) & (θ̇◦,−γ̇◦), respectively

end for
end for

end if
end for

TABLE V: Numerical complexity of different BSS algorithms

BSS Algorithm Complexity Order
HG-AMA 140NsN2

t +O(NsNt)

G-AMA 70NsN2
t +O(NsNt)

HG-MMA 40NsN2
t +O(NsNt)

G-MMA 20NsN2
t +O(NsNt)

HG-CMA 30NsN2
t +O(NsNt)

G-CMA 15NsN2
t +O(NsNt)

ACMA O(NsN4
t )

O(NsN
2
r ) flops. Moreover, the numerical cost of every al-

gorithm except ACMA in Table V has to be multiplied by the
number of sweeps to obtain the overall cost.

B. Adaptive implementation

The numerical cost of the designed batch algorithms in-
creases linearly with the sample size Ns. Furthermore, in real
life environments, systems are time varying and hence the
separation matrix W has to be re-estimated or updated along
the time axis. Thus, for slowly time varying systems, this
update can be obtained by using adaptive estimation methods.
Utilizing a sliding window technique as in [14], one can
achieve such source separation in an adaptive manner with
a numerical cost proportional to O(ŃsN

2
t ) where Ńs is the

window size (instead of total sample size Ns).

C. Complex implementation

As shown in section II-C, the real matrix representation
has been introduced to overcome the difficulties encountered
for the optimization of parameters of complex Givens and
hyperbolic rotations. However, we can observe that the ob-
tained results can be cast into complex matrix forms using the
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following straightforward relations:

Gp,q(θ)Gp+Nt,q+Nt
(θ) Ý ⇐⇒ Gp,q(θ, 0)Y

Hp,q(γ)Hp+Nt,q+Nt(γ) Ý ⇐⇒ Hp,q(γ, 0)Y

Gp,q+Nt
(θ̇)Gq,p+Nt

(θ̇) Ý ⇐⇒ Gp,q(θ,−
π

2
)Y

Hp,q+Nt
(γ́)Hq,p+Nt

(γ́) Ý ⇐⇒ Hp,q(γ,−
π

2
)Y

(63)

where all matrices on the left side of (63) are real and the
right ones are complex. Somehow, we have replaced the two
degrees of freedom of Gp,q(θ, α) (resp. Hp,q(γ, β)) by the
two free parameters θ and θ̇ (resp. γ and γ́). This way we
have avoided the non-linear optimization discussed in section
II-C.

D. Performance

The main advantage of the proposed algorithms resides
in their fast convergence in terms of the number of sweeps
(typically less than 10 sweeps are needed for convergence)
and also in terms of sample size (typically Ns = O(10Nt)
is sufficient for the algorithm’s convergence). Comparatively,
the ACMA method requires Ns = O(10N2

t ) samples for its
convergence and standard CMA-like methods need even more
samples to converge to their steady state.

Another important issue is the robustness of the proposed
algorithms to the presence of an interference source which
would not be a QAM source. Our conjecture is that, for the
MMA part, the separation occurs (because the sources are
sub-Gaussian [46]) but the quality would be degraded. For
the AMA part, the degradation might be more significant
depending on the interference signal nature. The thorough
investigation of the robustness will be considered in future
works.

VIII. SIMULATION RESULTS

In order to evaluate the performance of the proposed
algorithms, simulation results are presented in this section.
Due to the lack of any batch BSS algorithm dealing with
the MM criterion, we do the comparison with batch BSS
algorithms dealing with the CM criterion and general non-
Gaussian signals such as ACMA, G-CMA, HG-CMA and
JADE w.r.t. convergence rate, SER and SINR defined by

SINR =
1

Nt

Nt∑
j=1

SINRj (64)

with

SINRj =
|gjjsj |2/Ns∑

l,l 6=j |gjlsl|2/Ns + wjRnwH
j

(65)

where SINRj is the signal to interference and noise ratio at the
jth output, defined similarly in [47], with gij = wiaj , where
wi and aj are the ith row vector and jth column vector of
separation matrix W and mixing matrix A, respectively. Rn

is the noise covariance matrix and sj is the (1 × Ns) source
vector at jth input.

We consider a MIMO system consisting of 5 transmitters
and 7 receivers (Nt = 5, Nr = 7) with the data model
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Fig. 5: Average SINR of exact and approximate solution of
HG-MMA vs. SNR for Nt = 5, Nr = 7, Ns = 100 and
NSweeps = 10 considering both 16-QAM and 64-QAM.
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Fig. 6: Average SINR of HG-MMA and G-MMA vs. SNR for
different NSweeps considering Nt = 5, Nr = 7, Ns = 150 and
16-QAM constellation.

given in section II. Every uncoded data symbol transmitted by
each source is drawn from 16-QAM, 64-QAM and 256-QAM
constellations. The resulting signals are then passed through
matrix A, generated randomly at each Monte Carlo run
with controlled conditioning and with i.i.d complex Gaussian
variable entries of zero mean and unity variance. The noise
variance is adjusted according to specified signal to noise ratio
(SNR). The results are averaged over 1000 Monte Carlo runs.

A. Experiment 1: Exact vs. Approximate Solution of HG-MMA

In Figure 5, we compare the exact and approximate solution
of HG-MMA in terms of SINR vs. SNR for 16-QAM and
64-QAM constellations. The number of sweeps NSweeps and
samples Ns are set equal to 10 and 100, respectively (in
a more general context, one can use instead a stopping
criterion to finish the iterative process). We notice that both the
exact and approximate solutions have the same performance
for the considered constellations. Therefore, in the following
simulations for the HG-MMA, we will use the approximate
solution, as it is cheaper and easier to implement.

B. Experiment 2: Finding Optimum Number of Sweeps for G-
MMA and HG-MMA

In Figure 6, we examine the effect of the number of sweeps
on the SINR of the G-MMA and HG-MMA for the case of
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Fig. 7: Average SINR of exact and approximate solution of
HG-AMA and G-AMA vs. SNR for Nt = 5, Nr = 7,
NSweeps = 10.

Ns = 150 and 16-QAM. We notice that the performance of
proposed algorithms increases with the number of sweeps and
remains almost unchanged after 5 sweeps. So, in the following
simulations we will fix the number of sweeps to 5.

C. Experiment 3: Exact vs. Approximate Solution of G-AMA
and HG-AMA

Now, we compare the performance of exact and approxi-
mate solutions presented for G-AMA and HG-AMA in terms
of SINR vs. SNR. Figure 7a and 7b shows the plots for
Ns = 200, 64-QAM and Ns = 500, 256-QAM constellations,
respectively. The number of sweeps NSweeps is fixed at 10,
where we used 5 sweeps of G-MMA followed by 5 sweeps
of AMAs. From Figure 7, we notice that both the exact and
approximate solutions have the same performance. Therefore,
in the following simulations for the G-AMA and HG-AMA,
we will use the approximate solution, as it is cheaper and
easier to implement.

D. Experiment 4: Finding Optimum Number of Sweeps for
G-AMA and HG-AMA

In Figure 8, we examine the effect of the number of sweeps
NSweeps on the SINR of the G-AMA and HG-AMA for the case
of Ns = 200 and 64-QAM. We notice that the performance
of proposed algorithms increases with the number of sweeps

20 25 30 35 40

20

30

40

SNR (dB)

A
ve

ra
ge

SI
N

R
(d

B
)

HG-AMA
G-AMA
15 sweeps
8 sweeps
6 sweeps

Fig. 8: Average SINR of HG-AMA and G-AMA vs. SNR for
different NSweeps considering Nt = 5, Nr = 7, Ns = 200 and
64-QAM constellation.

and remains almost unchanged after 8 sweeps (5 G-MMA +
3 AMA sweeps). So, in the following simulations we will fix
the number of sweeps to 8.

E. Experiment 5: Comparison of Rate of Convergence

In Figure 9, we have compared the convergence rate of the
proposed and benchmarked algorithms. The SNR is fixed at
30 dB and Ns is selected as 200 and 500 for 64-QAM and
256-QAM, respectively. It can be noticed that G-AMA and
HG-AMA converge in 8 sweeps, while all other algorithms
converge in 5 sweeps. Even though the proposed algorithms G-
AMA and HG-AMA require 3 extra sweeps, the performance
is much better than all the other algorithms. Moreover, the
performance of HG-MMA and G-MMA is better than the HG-
CMA and G-CMA.

By combining the numerical complexity of the batch BSS
algorithms presented in Table V and the SINR comparison
of the algorithms in Figure 9, one can clearly measure the
separation quality as a function of the number of flops.

F. Experiment 6: Effect of the Number of Samples

Figure 10a and 10b, show the SINR of our proposed
algorithms vs. the number of samples Ns for 64-QAM and
256-QAM constellations, respectively. The SNR and the total
number of sweeps NSweeps are fixed at 30 dB, and 8, respec-
tively. We notice that as expected, the larger the number of
samples the better the performance is. However, we observe
a threshold point after which the gain is not significant as
the SINR will be essentially limited by the SNR value. It
can be seen that the performance of designed AM and MM
algorithms are better than CM and JADE algorithms. Also,
HG-AMA takes the lead among all other algorithms.

G. Experiment 7: Comparison based on SER

Figure 11a and 11b depict the SER of AM, MM, CM
and JADE algorithms vs. SNR for the case of 64-QAM and
256-QAM constellations, respectively. The number of samples
Ns = 300 and Ns = 900 are considered for the case of
64-QAM and 256-QAM, respectively. As noticed previously,
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Fig. 9: Average SINR of iterative batch BSS algorithms vs.
NSweeps for Nt = 5, Nr = 7 and SNR = 30dB.

the performance of the HG-AMA is significantly better than
all the other algorithms. Further, JADE algorithm which is
applicable for general non-Gaussian sources works better than
ACMA and close to G-CMA for QAM signals. Similar to
other figures, same pattern of performance is observed i.e.,
the HG-AMA takes the lead followed by the HG-MMA, G-
AMA, G-MMA and then by the HG-CMA, G-CMA, JADE
and ACMA. By observing these figures, we can say that HG-
AMA is the only algorithm which works well for high-order
QAM constellations.

Note also, that the flat behaviour observed at high SNR is
related to the ‘occasional ill’ convergence of the algorithms
due probably to bad initializations in some of the simulation
runs (we recall that we used only few iterations of MMA for
the initialization). Fortunately, this convergence problems are
‘rare’ and in most cases the algorithms converge properly as
illustrated by their good averaged performance results.

IX. CONCLUSION

In this paper, fundamental problems with the physical layer
for MIMO systems are addressed. The targeted problems
include channel estimation and blind demixing. Mainly, the
problem focussed here is to design algorithms for high-order
QAM signals without using pilot symbols. Four new iterative
batch BSS algorithms are presented; two of them dealing with
the MM criterion namely G-MMA and HG-MMA and the
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Fig. 10: Average SINR of batch BSS algorithms vs. Ns for
Nt = 5, Nr = 7, SNR = 30dB and NSweeps = 8.

other two dealing with the AM criterion namely G-AMA and
HG-AMA. The proposed algorithms are designed using a pre-
whitening operation to reduce the complexity of optimization
problem, followed by a recursive separation method of unitary
Givens and J-unitary hyperbolic rotations for the minimization
of MM/AM criteria. Instead of using complex matrices, a real
transformation is considered where a special structure of the
separation matrix in the whitened domain is suggested and
maintained throughout all transformations.

The proposed algorithms are mainly designed for the blind
demixing of MIMO systems involving high-order QAM sig-
nals. Simulation results demonstrate their favorable perfor-
mance as compared to the state of the art algorithms dealing
with the CM criterion such as G-CMA, HG-CMA and ACMA.
It is noticed that the G-MMA and G-AMA are cheaper
and more suitable for large number of samples but in the
case of small number of samples the HG-MMA and HG-
AMA should be used. Moreover, out of all the currently
available batch BSS algorithms and the presented ones, the
alphabet matched algorithm designed by combining Givens
and hyperbolic rotations (HG-AMA) is the most efficient one
for high-order QAM signals such as 64-QAM and 256-QAM.
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