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On Fienup Methods for Regularized Phase
Retrieval

Edouard Pauwels, Amir Beck, Yonina C. Eldar, Fellow, IEEE, Shoham Sabach

Abstract—Alternating minimization, or Fienup methods,
have a long history in phase retrieval. We provide new
insights related to the empirical and theoretical analysis
of these algorithms when used with Fourier measurements
and combined with convex priors. In particular, we show
that Fienup methods can be viewed as performing alternat-
ing minimization on a regularized nonconvex least-squares
problem with respect to amplitude measurements. We then
prove that under mild additional structural assumptions on
the prior (semi-algebraicity), the sequence of signal esti-
mates has a smooth convergent behaviour towards a critical
point of the nonconvex regularized least-squares objective.
Finally, we propose an extension to Fienup techniques, based
on a projected gradient descent interpretation and acceler-
ation using inertial terms. We demonstrate experimentally
that this modification combined with an `1 prior constitutes
a competitive approach for sparse phase retrieval.

I. INTRODUCTION

Phase retrieval is an old and fundamental problem in a
variety of areas within engineering and physics [1], [2].
Many applications of the phase retrieval problem involve
estimation of a signal from the modulus of its Fourier
measurements. This problem is ill posed in general,
so that uniqueness and recovery typically require prior
knowledge on the input, particularly in one-dimensional
problems. Here we focus on the estimation of real sparse
signals from their Fourier magnitude, a problem which
has been treated in several recent works [3], [4], [5], [6].

A longstanding line of algorithms to tackle the phase
retrieval problem involve application of the alternating
minimization method which alternate between the con-
straints in time and the Fourier magnitude constraints [7],
[8], [9]. These methods were pioneered by the work of
Gerchberg and Saxton and later extended by Fienup; see
[10] for an optimization point of view on these techniques
and a rich historical perspective. Alternating minimization
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approaches have also been recently applied to phase
retrieval from random measurements [11]. The main
advantage of this class of algorithms is their simplicity
and scalability.

A more recent approach to phase retrieval is to for-
mulate the recovery as a smooth nonconvex least-squares
estimation problem and use dedicated techniques to esti-
mate the signal using continuous optimization algorithms
that guarantee convergence to stationary points. The
GESPAR algorithm [4] is an example of this approach
which is based on the Gauss-Newton method coupled
with sparsity priors. For phase retrieval with random
measurements, gradient descent methods have been pro-
posed and analyzed such as Wirtinger flow [12] and
truncated amplitude flow [13]. Both treat least-squares
objectives where Wirtinger flow measures the loss with
respect to the squared-magnitude of the measurements
while the amplitude flow approach performs a truncated
gradient descent on an amplitude objective. Another line
of work suggests the use of matrix lifting and semidefinite
programming based relaxations [14], [15], [16], [17], [6].
These techniques are limited by the size of problems that
can be tackled using available numerical solvers.

Our main contribution is to propose a new look at alter-
nating minimization algorithms for phase retrieval in the
context of Fourier measurements and convex priors. We
refer collectively to these techniques as Fienup methods.
The use of Fourier measurements is less flexible than
general measurements and is less suited for statistical
analysis. On the other hand, the Fourier transform has
very strong structure which allows for richer algorithmic
constructions and analysis.

As a first step we provide two new interpretations
of Fienup algorithms. First we show that these tech-
niques are naturally linked to a nonsmooth noncon-
vex least-squares problem with respect to an amplitude
objective. Fienup approaches can then be understood
as majorization-minimization methods for solving this
problem. Second, we demonstrate that Fienup algorithms
can be viewed as a projected gradient descent scheme
to minimize a smooth convex objective function over
a nonconvex constraint set. This observation allows to
characterize the behaviour of the algorithm and develop
extensions based on known ideas for accelerating gradient
methods using inertial terms [18]. We then specialize
these results to the case of `0 and `1 priors, leading
to a new inertial gradient scheme, which we refer to as
FISTAPH: FISTA for PHase retrieval.
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On the theoretical side, we show that if the convex

prior is well structured (semi-algebraic or more gen-
erally representable), then the sequence of signal esti-
mates produced by Fienup has a smooth convergence
behaviour. Recall that, broadly speaking, an object is
said to be semi-algebraic if it can be represented by
systems of polynomial inequalities. The notion of smooth
convergence is a very desirable property, even more in
nonconvex settings where it is usually not possible to
obtain global convergence estimates. The convergence
analysis follows well established techniques from tame
optimization [19], [20]. These techniques build upon
the Kurdyka-Łojasiewicz (KL) property which holds for
many classes of functions [21], [22], [23], [24]. We then
provide numerical experiments based on synthetic prob-
lems to compare Fienup with `0 and `1 priors, GESPAR
[4], Wirtinger flow (or gradient) methods [12] with `0
and `1 priors and FISTAPH. Numerical results suggest
that the latter combined with an `1 prior constitutes a
very competitive alternative for sparse phase retrieval.

The rest of the paper is organized as follows. Section II
introduces our notation and states the problem of interest
more formally. We also introduce several mathematical
definitions that are required for the rest of the paper and
review the numerical algorithms that are used in subse-
quent sections. Section III describes our characterization
of Fienup methods in the context of phase retrieval from
Fourier measurements with convex priors. We detail the
relation of Fienup with a nonsmooth nonconvex least-
squares problem as well as its interpretation as projected
gradient descent. Our main convergence result and our
new FISTAPH algorithm are presented in Section IV.
Simulation results are provided in Section V.

II. PROBLEM FORMULATION AND MATHEMATICAL
BACKGROUND

A. Notation

Throughout the paper vectors are denoted by boldface
letters. For a vector x ∈ Cn, x[i] is the i-th entry of
x, i = 1, 2, . . . , n and supp(x) is the support of x,
namely, the set {i = 1, 2, . . . n; x[i] 6= 0}. Furthermore,
‖x‖0 counts the number of nonzero entries of the vector
x: ‖x‖0 = |supp(x)| and ‖x‖p denotes the `p norm of
x for p ∈ R+. The notations | · |, Re(·), Im(·) and ·̄ de-
scribe the modulus, real part, imaginary part and complex
conjugate, respectively, defined over the field of complex
numbers. If their argument is a vector, then they should be
understood component-wise. Similarly, basic operations,
e.g. powers, are taken component-wise when applied to
vectors. For x ∈ Cn and N ∈ N, F(x, N) ∈ CN is
the vector composed of the N first coefficients of the
discrete Fourier transform of x (obtained by zero padding
if n < N ). For simplicity, we use the shorthand notation
F(x) = F(x, n) to denote the standard discrete Fourier
transform of x ∈ Cn and F−1 to denote its inverse. For
a set S, δS : S → R ∪ {+∞} is the indicator function

of S (0 if its argument is in S, +∞ otherwise) and PS
denotes the Euclidean orthogonal projection onto the set
S.

B. Phase Retrieval

Given x0 ∈ Rn, we consider the data acquisition
process

c = |F(x0)|+ ε, (1)

where ε ∈ Rn is an unknown vector of errors. In the
rest of the paper, we actually assume that c has positive
entries (it is always possible to set the potential negative
entries of c to zero). The phase retrieval problem consists
of producing an estimate x̂ ∈ Rn of x0 based solely on
the knowledge of c given by (1).

As mentioned in the introduction, phase retrieval of
one-dimensional vectors from Fourier measurements re-
quires the use of prior knowledge. We focus on support
and sparsity inducing priors. For J ⊆ {1, 2, . . . , n},
we define the set XJ = {x ∈ Rn; supp(x) ⊆ J}. The
prior function that we use will be denoted by g : Rn →
R∪{+∞}. We focus on the following priors (for a given
J):
• g : x 7→ ‖x‖0+δXJ

(x), or `0-based nonconvex prior.
• g : x 7→ ‖x‖1 + δXJ

(x), or `1-based convex prior.
In the experimental section, we compare between these
two classes of priors. The algorithmic derivations in this
paper will be made under the assumption that g is proper
and lower semicontinuous, and the main convergence
result (c.f. Theorem 4.1) will require in addition convexity
of g. In order to efficiently implement the proposed
algorithm, we need to focus on priors for which the
proximity operator [25] is easy to compute. We provide
several examples of such priors in Section II-D.

In the rest of the paper, c ∈ Rn+ denotes modulus
measurements which are assumed to be given, fixed
and obtained through (1). Given c ∈ Rn+, we define
Zc = {z ∈ Cn; |F(z)| = c} as the set of values z that
could have produced c (ignoring the noise). To estimate
x0, we consider the regularized least-squares problem

min
x∈Rn,z∈Zc

1

2
‖x− z‖22 + g(x), (2)

where g encodes our prior knowledge. Our algorithmic
approach consists of employing an alternating minimiza-
tion method, or one of its variants, to solve the above
formulation.

C. Prior Algorithms for Phase Retrieval

We briefly review several existing algorithms for phase
retrieval that will be used in our experiments in Section
V.

One approach to sparse phase retrieval is the GESPAR
algorithm which is based on the damped Gauss-Newton
method in conjunction with an `0 prior [4]. Damped
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Gauss-Newton allows to solve smooth, nonlinear least-
squares problems. The work of [12] is based on the notion
of Wirtinger derivatives to treat the same smooth least-
squares problem as GESPAR. The notion of Wirtinger
derivative is needed since the objective is not differen-
tiable (holomorphic) as a function of complex variables
(see [12] for details). In the case of real valued functions
of real variables, the Wirtinger derivative reduces to a
standard gradient (up to a constant multiplicative factor).
An obvious extension of these types of methods is the
use of proximal decomposition, or forward-backward
methods which consist in alternating a gradient step on
the smooth part of the objective with a proximal step
on the nonsmooth part [18], [26]. This is the approach
that we use in the numerical experiments to treat phase
retrieval with priors.

Finally, we consider alternating minimization methods
that are the main focus of this work. This approach
consists of solving (2) by applying the alternating mini-
mization algorithm. The special structure of the problem
allows to perform each partial minimization efficiently.
In particular, the projection onto Zc is easy, as described
below in (5). These types of methods are also referred
to as Fienup algorithms. A deeper interpretation of this
approach is given in Section III.

D. Tools from Convex and Nonsmooth Analysis

Throughout the paper, our results will be based on tools
from convex and nonsmooth analysis which we review
here.

The gradient of a differentiable function f is denoted
by ∇f . This concept admits extensions to nonsmooth
analysis; the subgradient of a nonsmooth function g
is denoted by ∂g. For convex functions, subgradients
correspond to tangent affine lower bounds. This definition
no longer holds for nonconvex functions. In this case, the
proper understanding of subgradients involves much more
machinery which will not be discussed here. We only
consider the notion of a Fréchet critical point which gen-
eralizes classical first order criticality for differentiable
functions (see [27]).

Definition 1 (Fréchet critical point): Let S ⊆ Rn be
a closed set and f : Rn → R be a lower semicontinuous
function. We say that x̄ ∈ S is a Fréchet critical point of
the problem

min
x∈S

f(x)

if

lim inf
x→x̄
x 6=x̄
x∈S

f(x)− f(x̄)

‖x− x̄‖
≥ 0.

In other words, the negative variations of f in S around
x̄ are negligible at the first order.
We will also heavily use the notion of the proximity
operator of a function.

Definition 2 (Proximity operator): For a nonsmooth
function g : Rn → R ∪ {+∞}, the (potentially multival-
ued) proximity operator is denoted by proxg and defined
by

proxg(x) ≡ argmin
y∈Rn

{
1

2
‖x− y‖22 + g(y)

}
. (3)

Note that when g is proper lower semicontinuous and
convex, this operator is single valued.

We next provide a few examples of such functions with
their proximity operators; many more can be found, for
example, in [28].

Example 1 (Proximity operators):
• Support prior: If C ⊆ Rn is a closed convex set,

then proxδC is the Euclidean projection onto C. This
can be used for example to encode knowledge about
the support of the signal x0 by choosing C = XJ for
some J ⊆ {1, 2, . . . , n}. In this case, the projection
simply consists in setting the coefficients x[i] to 0
for i 6∈ J .

• Sparsity prior: If g is the `1 norm, then the proxi-
mal operator is the soft thresholding operator.1 This
can be combined with support information prior by
first setting the coefficients outside of the support to
0 and then applying the soft thresholding operator.

• Change of basis: Suppose that D is an n× n′ real
matrix such that its columns form an orthonormal
family, that is DTD is the identity in Rn′ . Suppose
that g̃ : Rn′ → R is a lower semicontinuous convex
function and let g(x) = g̃(DTx). In this case,
we have proxg(x) = x +D

(
proxg̃(D

Tx)−DTx
)

(see [28, Table 1]). This allows to express priors
in different orthonormal bases, such as wavelets for
example.

It is also worth mentioning that the proximity operator
is efficiently computable for some nonconvex priors. For
example, if g = δC where C = {x ∈ Rn; ‖x‖0 ≤ k},
then the proximity operator is obtained by setting the n−k
lowest coefficients (in absolute value) to 0. This can also
be combined with support information.

III. FIENUP, MAJORIZATION-MINIMIZATION AND
PROJECTED GRADIENT

In this section we expand on the alternating minimiza-
tion approach to (2) leading to the Fienup family of
algorithms. For this section, the prior term g in (2) is taken
to be a general proper lower semicontinuous function. We
begin by describing the algorithm and then provide two
interpretations of it.

A. Alternating Minimization Algorithm

The alternating minimization algorithm applied to
problem (2) is explicitly written below.

1 The soft thresholding operator is given by Tα(x)i =
sgn(xi)max{|xi| − α, 0}. If g(x) = λ‖x‖1 for some λ > 0, then
proxg(x) = Tλ(x).



4Alternating Minimization (Fienup)
Initialization. x0 ∈ Rn
General Step. For k ∈ N,

zk+1 ∈ argmin
z∈Zc

1

2
‖xk − z‖22,

xk+1 ∈ argmin
x∈Rn

1

2
‖x− zk+1‖22 + g(x). (4)

The main interest in this scheme is that both partial
minimization steps in (4) can be carried out efficiently
whenever g is “proximable”, meaning that its prox (or a
member in its prox) is easily computed. First consider,
in (4), the partial minimization in z with x ∈ Rn
being arbitrary but fixed. This minimization amounts to
computing PZc(xk), the orthogonal projection of xk onto
Zc. For a given x ∈ Rn, all the members in PZc(x) are
of the form z = F−1(ẑ), where for j = 1, 2, . . . , n, we
have (i =

√
−1 in the equation below)

ẑ[j] =

{
c[j] F(x)[j]

|F(x)[j]| , if |F(x)[j]| 6= 0,

c[j]eiθj , for an arbitrary θj otherwise.
(5)

Next, we treat the subproblem in (4) of minimizing with
respect to x where z ∈ Cn is arbitrary but fixed. The
partial minimization in x is given by the expression

argminx∈Rn

{
1

2
‖x− z‖22 + g(x)

}
= proxg(Re(z)),

(6)

where Re is the real part taken component-wise. We have
used the definition of the proximity operator of g given
in (3). When this operator is easy to compute, each step
of the algorithm can be carried out efficiently.

The iterations of the alternating minimization method
are summarized as follows:

zk+1 ∈ PZc(proxg(Re(zk))),

xk+1 ∈ proxg(Re(PZc(xk))). (7)

We now consider several special cases of (7):
• If g = 0, then proxg is the identity and we recover

the original algorithm from Fienup [9], or alternating
projection [10].

Fienup
Initialization. x0 ∈ Rn.
General Step. For k ∈ N,

xk+1 = Re(PZc(xk)).

The convergence result given in Theorem 4.1 also
holds in this case since constant functions are convex
and continuous.

• If g(x) = λ‖x‖1 for some λ > 0, then proxg = Tλ,
where Tλ is the soft thresholding operator (see
footnote on page 3). We refer to the resulting

algorithm as “AM L1”.

AM L1
Initialization. x0 ∈ Rn, λ > 0
General Step. For k ∈ N,

xk+1 = Tλ(Re(PZc(xk))).

• If g = δCK
, where CK is the set of all K-sparse

vectors, CK = {x ∈ Rn : ‖x‖0 ≤ K}, then
proxg = PCK

is the so-called hard thresholding
operator. This operator outputs a vector which
is all zeros except for the largest K components
(in absolute values) of its input vector which are
kept the same. The hard thresholding operator is
multivalued and the resulting algorithm, which we
term “AM L0” picks an arbitrary point in its range.

AM L0
Initialization. x0 ∈ Rn, K ∈ N
General Step. For k ∈ N,

xk+1 ∈ PCK
(Re(PZc(xk))).

B. Majorization-Minimization Interpretation

In this section, we focus on partial minimization in z.
We show that the value of this partial minimization leads
to a least-squares objective. This allows us to interpret the
Fienup algorithm as a majorization-minimization process
on this least-squares function. For the rest of this section,
for any x ∈ Rn, we denote by z(x) an arbitrary but fixed
member of PZc(x).

1) Partial Minimization in z: The following lemma
provides a connection between partial minimization in z
and the evaluation of a nonsmooth least-squares objective.

Lemma 3.1: For any x ∈ Rn, we have

min
z∈Zc

1

2
‖x− z‖22 =

1

2n
‖|F(x)| − c‖22. (8)

Proof : An optimal solution of the minimization problem
is given by z = F−1(ẑ) where ẑ has the form (5). Now,

min
z∈Zc

1

2
‖x− z‖22 =

1

2
‖x−F−1(ẑ)‖22

=
1

2
‖F−1(F(x)− ẑ))‖22

=
1

2n
‖F(x)− ẑ‖22.

Using the expression of ẑ in (5), we have for all j =
1, 2, . . . , n,

|F(x)[j]− ẑ[j]| =

{
||F(x)[j]| − c[j]|, if |F(x)[j]| 6= 0,

c[j], otherwise.
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Putting everything together,

min
z∈Zc

1

2
‖x− z‖22 =

1

2n
‖F(x)− ẑ‖22 =

1

2n
‖|F(x)| − c‖22,

(9)

which completes the proof. �

A direct consequence of Lemma 3.1 is the following
corollary that connects between problem (2) and a regu-
larized nonlinear least-squares problem.

Corollary 3.2: The pair (x, z) is an optimal solution of
problem (2) if and only if x is an optimal solution of

min

{
F (x) ≡ 1

2n
‖|F(x)| − c‖22 + g(x)

}
, (10)

and z = F−1(ẑ), where ẑ is of the form given in (5).
Note that in (10), the least-squares objective is de-
fined with respect to the amplitude |F(x)| and not the
magnitude-squared |F(x)|2. For random measurements, it
has been shown in [13] that the amplitude objective leads
to superior performance over the standard magnitude-
squared approach.

2) Fienup as Majorization-Minimization: In order to
understand further the connection with the Fienup algo-
rithm, we define the following auxiliary function:

h(x,y) ≡ 1

2
‖y − z(x)‖22 + g(y).

Now, for any x ∈ Rn, using Lemma 3.1, we have
the following properties (recalling the definition of F in
(10)):

h(x,y) =
1

2
‖y − z(x)‖22 + g(y) (11)

≥ 1

2
‖y − z(y)‖22 + g(y) = F (y), ∀y ∈ Rn,

h(x,x) =
1

2
‖x− z(x)‖22 + g(x) = F (x).

In other words, using the convexity of g, we have that
h(x, ·) is a 1-strongly convex global upper bound on
the objective F . Computing this upper bound amounts to
performing partial minimization over z in (2). Minimizing
the upper bound h(x,y) in y corresponds to partial
minimization over x in (2). The upper bound is tight in
the sense that we recover the value of the objective at
the current point, h(x,x) = F (x). Therefore the alter-
nating minimization algorithm is actually a majorization-
minimization method for the nonsmooth least-squares
problem

min
x∈Rn

1

2n
‖|F(x)| − c‖22 + g(x). (12)

The steps presented in (4) can then be summarized as
follows:

xk+1 = argmin
y

h(xk,y)

= proxg(Re(z(xk)))

= proxg(Re(PZc(xk))),

which is exactly the mapping given in (7).

C. Projected Gradient Descent Interpretation

We now provide an additional interpretation of the
alternating minimization algorithm as a projected gradient
method for an optimization problem related to (2) which
consists of a smooth convex objective and a nonconvex
constraint set. This interpretation is valid whenever g is
assumed to be proper lower semicontinuous and convex.

For any x ∈ Rn and z ∈ Cn, we can write (2) as
‖x − z‖22 = ‖x − Re(z)‖22 + ‖Im(z)‖22. To move from
complex numbers to real numbers, we set w1 = Re(z)
and w2 = Im(z). Defining a new constraint set Z̃c =
{(w1,w2) ∈ Rn × Rn : w1 + iw2 ∈ Zc}, problem (2)
can be equivalently rewritten in the form

min
x∈Rn,(w1,w2)∈Z̃c

{
1

2
‖x−w1‖22 +

1

2
‖w2‖22 + g(x)

}
.

(13)

Minimizing first w.r.t. x, (13) reduces to the following
minimization problem in w1,w2:

min
(w1,w2)∈Z̃c

{
H(w1,w2) ≡ G(w1) +

1

2
‖w2‖2

}
, (14)

where

G(w1) ≡ min
x∈Rn

{
1

2
‖w1 − x‖22 + g(x)

}
.

The following result allows us to relate the gradient of
H to the optimization primitives used in the alternating
minimization method.

Lemma 3.3: Assume that g is proper, lower semicon-
tinuous and convex. Then the function H is continuously
differentiable, its gradient is 1-Lipschitz and can be
expressed as

∇H(w1,w2) =
(
w1 − proxg(w1),w2

)
. (15)

Proof : From Moreau [25, Proposition 7.d], we know
that G is differentiable and ∇G(x) = x − proxg(x) =
proxg∗(x), where g∗ is the conjugate function of g, which
is convex. The computation of the gradient of H is then
immediate. We can use the fact that proximity operators
of convex functions are nonexpansive [25, Proposition
5.b] to verify that ∇H is 1-Lipschitz. Indeed, for any
(w1,w2) and (w̃1, w̃2), we have

‖∇H(w1,w2)−∇H(w̃1, w̃2)‖22
= ‖ proxg∗(w1)− proxg∗(w̃1)‖22 + ‖w2 − w̃2‖22
≤ ‖w1 − w̃1‖22 + ‖w2 − w̃2‖22
= ‖(w1,w2)− (w̃1, w̃2)‖22,

completing the proof. �

Consider applying projected gradient descent to solve
(14). From Lemma 3.3, we can use a step size of
magnitude 1. In this case, taking into account the form
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of the gradient given in (15), we obtain that the general
update step takes the form

(wk+1
1 ,wk+1

2 )

= PZ̃c
((wk

1 ,w
k
2)−∇H(wk

1 ,w
k
2))

= PZ̃c
((wk

1 ,w
k
2)− (wk

1 − proxg(w
k
1),wk

2))

= PZ̃c
(proxg(w

k
1), 0).

We now go back to the complex domain by setting
z = w1 + iw2. Note that projecting (w1,w2) onto
Z̃c is equivalent to projecting z onto Zc. With this
notation, the iterations of projected gradient descent can
be summarized by the following iteration mapping (on
complex numbers):

zk+1 = PZc(proxg(Re(zk))),

which is exactly the same as (7). Therefore, the Fienup
algorithm is equivalent to projected gradient descent with
unit stepsize applied to the formulation (14). Note that
from the point of view of nonsmooth analysis, problem
(14) is much better behaved than (12).

IV. CONSEQUENCES AND EXTENSIONS

The interpretations of Section III can be used to analyze
the convergence of alternating minimization applied to
problem (2) and to offer extensions of the method.

A. Convergence Analysis

Our main convergence result is given in the following
theorem. Recall that a function is semi-algebraic if its
graph can be defined by combining systems of polynomial
equalities and inequalities (for example, the `1 norm is
semi-algebraic).

Theorem 4.1: Assume that g is proper, lower semicon-
tinuous, convex and semi-algebraic. Then the sequence
{xk, zk}k∈N generated by the alternating minimization
algorithm satisfies the following:
(i) It holds that

∑
k≥0 ‖xk+1 − xk‖2 < +∞ and the

sequence {xk}k∈N converges to a point x∗ ∈ Rn.
(ii) For any accumulation point z∗ of {zk}k∈N, (x∗, z∗)

is a Fréchet critical point of problem (2) and
(w∗1,w

∗
2) = (Re(z∗), Im(z∗)) is a Fréchet critical

point of problem (14).
The proof is quite technical and is given in Appendix
A. The semi-algebraic assumption on g can be relaxed to
representability in o-minimal structures over the real field,
see [29]. Therefore, the proposed result actually applies
to much more general regularizers. For example, using
boundedness of the feasible set in (14), the same result
holds if g is analytic (see the dicussion in [30, Section
5]). The arguments build upon a nonsmooth variant of
the celebrated Kurdyka-Łojasiewicz (KL) property [21],
[22], [23], [24]. Note that direct application of the results
of [19], [20] to projected gradient descent or the results
of [30], [31] to majorization minimization is not possible
here.

The most important implication of Theorem 4.1 is that
the sequence of estimated signals converges smoothly
to a point which satisfies certain optimality conditions
related to problems (2), and (14). This is a departure
from standard convergence results that are only able to
guarantee that accumulation points of the generated se-
quence of iterates satisfy certain optimality conditions. It
is important to underline that the result is global: it holds
for any initialization of the algorithm and does not require
any regularity assumption beyond semi-algebraicity and
convexity of g. This is in contrast with local convergence
results which are typical for alternating projection meth-
ods [32], [33] that are applicable when the prior term g
is an indicator function.

B. Acceleration and Momentum Term
A benefit of the interpretation of alternating minimiza-

tion as a projected gradient method is that it allows
to propose new variants inspired by known extensions
for projected gradient algorithms. In this section we
focus on the incorporation of an inertial term that results
in an alternating minimization scheme that includes a
momentum term. This line of research has a long his-
tory in optimization, starting with the development of
the heavy-ball method [34] which inspired an optimal
first order scheme for convex optimization developed by
Nesterov [35], and its extension to convex composite
problems with the FISTA method [18]. Although this last
technique was proposed and analyzed only in the context
of convex optimization, we consider its application in
our nonconvex constrained problem since it empirically
provides interesting results. The resulting algorithm is
referred to as FISTAPH, and is described as follows.

FISTAPH: FISTA for Phase retrieval
Initialization. z0 ∈ Zc and αk ∈ [0, 1) for all
k ∈ N. Set y0 = z0 and z−1 = z0.
General Step. For k ∈ N,
• zk+1 ∈ PZc(proxg(Re(yk))).
• yk+1 = zk + αk

(
zk − zk−1

)
.

If zm is the last produced iteration, then the output of
the algorithm is x̂ = proxg(Re(zm)). A typical choice
for the weight sequence is αk = k−1

k+2 . The question of
the convergence of the iterates produced by this method
in nonconvex settings is an interesting topic to explore in
future research. We may also further consider monotone
variants of similar types of methods, see e.g. [26].

In the numerical experiments we employ FISTAPH in
the setting where g(x) = λ‖x‖1 for some λ > 0. In this
case, proxg = Tλ with Tλ being the soft thresholding
operator with parameter λ (see footnote on page 3).

V. EXPERIMENTS AND NUMERICAL RESULTS

In this section, we describe experiments and numerical
results comparing the different algorithms introduced in
Section II-C on the task of phase retrieval.



7
A. Experimental Setup

Given measurements c as in (1), our problem consists
of finding the corresponding x0. We focus on the setting
in which x0 is known to be sparse. We vary the signal size
n (with J = {1, 2, . . . , n/2}), the sparsity level K and the
signal to noise ratio (SNR). In the following discussion,
we will refer to a recovery method M which can be
seen as a black box which takes as input a vector of
measurements c ∈ Rn+, support information J , sparsity
level K, an initial estimate x and outputs an estimate
x̂ ∈ Rn with supp(x̂) ⊆ J and ‖x‖0 ≤ K. One recovery
experiment consists of the following:
• Fix a recovery method M, a signal length n, a

support information set J = {1, 2, . . . , n/2}, a
sparsity level K and an SNR.

• Generate x0 ∈ Rn by the following procedure:
– Choose K coordinates among J uniformly at

random.
– Set these coordinate values at random in

[−4,−3] ∪ [3, 4].
– Set all other coordinates to be 0.

• Generate the measurements c2 = |F(x0)|2 + ε,
where ε is white Gaussian noise according to the
chosen SNR. Set negative entries of c2 to be 0 in
order to take square root.

• Call method M 100 times with data (c, J,K) and
randomly generate initial estimates to get 100 can-
didate solutions {x̂it}it=1,2,...,100.

• Compute the best estimate x̂best with best =
argminit=1,2...,100{‖|F(x̂it)| − c‖22}.

• Compare x̂best and x0 (modulo Fourier invariances)
with the following metric (sign is understood coor-
dinatewise with sign(0) = 0):

recovery(x̂best,x0) =

{
1, sign(x̂best) = sign(x0)

0, otherwise.

This procedure was repeated 100 times. That is, for each
method, signal length, sparsity level and SNR, we have
100 signal recovery experiments, each one associated
with a support recovery status. We aggregate these re-
sults by considering the recovery probability (average of
recovery(x̂best,x0)) and the median CPU usage for a
single simulation (100 calls to the method with different
initialization estimates). We use the same initialization for
all methods by careful initialization of random seeds. All
the experiments were performed on a desk station with
two 3.2 GHz Quad Core Intel Xeon processors and 64GB
of RAM.

B. Implementation Details

In our numerical implementation, we used the follow-
ing stopping criterion.
• For alternating minimization and Wirtinger methods:

the difference in successive objective value less than
10−8.

• For GESPAR: no swap improvement.
• For FISTAPH: the norm of the gradient mapping less

than 10−8.
The tuning of these criteria allows to balance accuracy
and computational time to some extent.

The `1 penalized problem includes a prior sparsity
inducing term of the form g(·) = λ‖ · ‖1. It is necessary
to tune the λ parameter in order to obtain meaningful re-
sults. We considered the following strategies for different
methods.
• For alternating minimization, we set λ = 0.2 in all

experiments.
• For Wirtinger based method, λ is tuned

a posteriori as a function of n and
k. The experiment was conducted for
λ = 1, 2.15, 4.64, 10, 21.5, 46.4, 100, 215, 464,
and we report only the best experiment for each
setting.

An interesting feature of alternating minimization based
methods is that in our experiments, recovery performance
was very consistent for different values of λ in different
settings. As a result, we chose a single value of λ for
all experiments. The tuning of λ for Wirtinger based al-
gorithms is practically much more difficult. In particular,
we found that the best λ was a highly dependant function
of the sparsity level K.

Finally, we note that `0 based priors have the sparsity
level of the estimate, K, as a parameter. On the other
hand, `1 based priors will not necessarily produce K-
sparse estimates. We therefore use truncation and keep
the K largest entries in absolute value of the last iteration.

C. Numerical Results

The performance in terms of support recovery are
presented in Figure 1 with the corresponding algorithm
run time in Figure 2. Each point in these plots is an
average over 100 simulations of the recovery process,
each simulation consisting of 100 random initializations
of the method considered. AM corresponds to Fienup
methods with different priors, FISTA is the accelerated
variant, and WIRT stands for Wirtinger.

We make the following observations from the numeri-
cal results:
• For alternating minimization, there is a consistent

increase in recovery performance by switching from
`0 to `1 based regularization priors.

• The `1 prior degrades the performance of Wirtinger
based methods compared to the `0 prior.

• FISTAPH consistently provides the best performance
and is significantly faster than its competitors.

• Fienup with `0 prior leads to lower performance
compared to GESPAR, which was already reported
in [4].

As described in the experimental section, we added
noise on the squared measurements rather than on the
measurements themselves. This noise model is closer
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to the optimization model considered for GESPAR and
Wirtinger flow than model (2) which is related to problem
(12). We tried to change the noise model on a subset of
experiments (additive noise on the measurements rather
than squared measurements), however, the performance
of the different methods was very similar. Therefore, we
only report results related to squared-measurement noise
model.

SNR: 10 SNR: 20 SNR: 30 SNR: 40

●

●

● ● ●

●

●
● ● ●

●

● ● ● ●

●

●

● ● ●

●

●

● ● ●

●

●
● ● ●

●

●

●

● ●

●

●

● ● ●

●

●

● ● ●

●

●

●
● ●

●

●

● ● ●

●

●

● ● ●

● ●

●

●
●

●

●

●
● ●

●

●

●

● ●

● ●

●

●

●

●

●

● ● ●

● ●

●

● ●

● ● ●

●

●

●
●

●

●
●

● ●

●

●

●

● ● ●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

● ● ●

●

●

● ● ●

●

●

● ● ●

●

●

● ● ●

●

●

● ● ●

●

●

● ● ●

●
●

●

● ●

●

●

● ● ●

●

●

●

● ●

●
●

●

● ●

●

●

● ● ●

●

●

●

● ●

● ●

●

●

●

●

●

●
● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ● ●

●

●

● ●

●

●
●

● ●

●

●

●

● ● ●
●

●

● ●

●

●

●

● ● ●

●

●

●

●

●
● ●

●

●

● ● ●

●

●

● ● ●

●

●

●
● ●

●

●

● ● ●

●

●

● ● ●

●
●

●

● ●

●

●

● ● ●

●

●

●

● ●

●
●

●

● ●

●

●

●
● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●
●

●

● ●

● ●

●

●

●

● ● ●
●

●

● ●

●

●

●

● ●

●

●

●

● ● ● ●

●

● ●

●

●

●

● ● ●

●

●

●

●

●
● ●

●

●

● ● ●

●

●

● ● ●

●

●

●
● ●

●

●

● ● ●

●

●

● ● ●

●
●

●

● ●

●

●

● ● ●

●

●

●

● ●

●
●

●

● ●

●

●

●
● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●
●

●

● ●

● ●

●

●

●

● ● ●
●

●

● ●

●

●
●

● ●

●

●

●

● ● ●
●

●

● ●

●

●

●

● ● ●

●

●

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00
n
: 6

4
n
: 1

2
8

n
: 2

5
6

n
: 5

1
2

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Sparsity

R
e

co
ve

ry
 p

ro
b

a
b

ili
ty Method

●

●

●

●

●

●

AM L1

AM L0

GESPAR

FISTAPH

WIRT L1

WIRT L0

Support recovery

Figure 1. Support recovery comparison. For each point, the probability
is estimated based on 100 simulations. AM stands for alternating
minimization and WIRT for WIRTINGER. FISTAPH is described in
Section IV, and GESPAR is the method presented in [4].
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Figure 2. Timing comparison. The ordinate axis is displayed in
logarithmic scale. Each point is the median over 100 simulations, each
simulation consisting in 100 random initialization for each method.
AM stands for alternating minimization and WIRT for WIRTINGER.
FISTAPH is described in Section IV, and GESPAR is the method
presented in [4].

VI. CONCLUSION

The main theoretical contribution of this work is to
provide a strong theoretical basis to the fact that Fienup-
type methods, when used with Fourier transforms and
convex priors, lead to smoothly converging sequences of
estimates. This result holds under minimal assumptions
and in particular, it holds globally, independently of
the initialization point. Furthermore, we characterize the
properties of the limiting point as Fréchet critical points
of different optimization problems. These results shed
light on important properties of one of the most well
known algorithms used in the context of phase retrieval.
Furthermore, based on an interpretation as a projected
gradient method, we proposed a new variant of Fienup
with the incorporation of a momentum term which we
call FISTAPH.

On the practical side, we demonstrated based on nu-
merical simulations that FISTAPH with `1 regularization
constitutes a very competitive alternative to other methods
in the context of sparse phase retrieval.

APPENDIX

The proof involves many notions of nonsmooth anal-
ysis which can be found in [27]. Throughout the
proof, we only consider subgradients of subdifferen-
tially regular functions. Each subgradient can be in-
terpreted as a Fréchet subgradient and the subgradient
set valued mapping is closed. We adopt the notation
of Section III-C, letting z = w1 + iw2 for two real
vectors w1 and w2 and consider the constraint set
Z̃c = {(w1,w2) ∈ Rn × Rn; w1 + iw2 ∈ Zc}. We let
K(x,w1,w2) = 1

2‖x − w1‖22 + 1
2‖w2‖22 + g(x) be the

objective function of problem (2) which with this notation
becomes

min
x∈Rn,(w1,w2)∈Z̃c

K(x,w1,w2). (16)

We will denote by δZ̃c
, the indicator function of

the set Z̃c (0 on the set and +∞ outside). We set
K̃(x,w1,w2) = K(x,w1,w2) + δZ̃c

(w1,w2) so
that problem (16) is equivalent to the (unconstrained)
minimization of K̃.

Proof of (i): Using [27, Proposition 10.5 and Exercise
10.10], the subgradient of this nonsmooth function is of
the form

∂K̃(x,w1,w2) =

(
∂xK̃(x,w1,w2)

∂(w1,w2)K̃(x,w1,w2)

)
(17)

=

 x−w1 + ∂g(x)(
w1 − x
w2

)
+ ∂δZ̃c

(w1,w2)

 .

Partial minimization over iterations yields the following

0 ∈ xk+1 −wk
1 + ∂g(xk+1) (18)

0 ∈
(

wk
1 − xk

wk
2

)
+ ∂δZ̃c

(wk
1 ,w

k
2). (19)
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Combining these, we have 0(

wk
1 − xk+1

wk
2

)
+ ∂δZ̃c

(wk
1 ,w

k
2)

 (20)

⊂ ∂K̃(xk+1,wk
1 ,w

k
2).

Using (19), 0
xk − xk+1

0

 ∈ ∂K̃(xk+1,wk
1 ,w

k
2). (21)

Finally, from strong convexity of K̃ with respect to its
first argument, we have

K̃(xk+1,wk
1 ,w

k
2) +

1

2
‖xk+1 − xk‖22

≤ K̃(xk,wk
1 ,w

k
2)

≤ K̃(xk,wk−1
1 ,wk−1

2 ). (22)

Since g is semi-algebraic, K̃ is also semi-algebraic.
Any semi-algebraic function satisfies the nonsmooth
Kurdyka-Łojasievicz property [24]. We can now use the
now well established recipe [19, Section 2.3] [20, Section
3.2] with the two conditions (21) and (22) to obtain
that the sequence

{
‖xk+1 − xk‖2

}
k∈N is summable.

This proves statement (i) (convergence holds by Cauchy
criterion).

Proof of (ii): Using the fact that K̃ has compact sublevel
sets, the sequence

{
(xk+1,wk

1 ,w
k
2)
}
k∈N is bounded and

hence has a converging subsequence. We fix an accumu-
lation point (x∗,w∗1,w

∗
2) of the sequence (note that x∗

is given by (i)). We remark that, thanks to (20) and the
fact that ‖xk+1 − xk‖ → 0, any accumulation point of
the sequence is a critical point of K̃. Furthermore, since
xk → x∗, we have using (20) that

−
(

w∗1 − proxg(w
∗
1)

w∗2

)
∈ ∂δZ̃c

(w∗1,w
∗
2).

This is actually the criticality condition for problem (14)
which proves statement (ii).
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