
ar
X

iv
:1

70
3.

08
13

1v
2

 [
cs

.L
G

]
 2

4
M

ar
 2

01
7

1

Online Distributed Learning Over Networks in

RKH Spaces Using Random Fourier Features
Pantelis Bouboulis, Member, IEEE, Symeon Chouvardas, Member, IEEE, and Sergios Theodoridis, Fellow, IEEE

Abstract—We present a novel diffusion scheme for online
kernel-based learning over networks. So far, a major drawback of
any online learning algorithm, operating in a reproducing kernel
Hilbert space (RKHS), is the need for updating a growing number
of parameters as time iterations evolve. Besides complexity, this
leads to an increased need of communication resources, in a dis-
tributed setting. In contrast, the proposed method approximates
the solution as a fixed-size vector (of larger dimension than the
input space) using Random Fourier Features. This paves the way
to use standard linear combine-then-adapt techniques. To the best
of our knowledge, this is the first time that a complete protocol for
distributed online learning in RKHS is presented. Conditions for
asymptotic convergence and boundness of the networkwise regret
are also provided. The simulated tests illustrate the performance
of the proposed scheme.

Index Terms—Diffusion, KLMS, Distributed, RKHS, online
learning.

I. INTRODUCTION

THE topic of distributed learning, has grown rapidly over

the last years. This is mainly due to the exponentially

increasing volume of data, that leads, in turn, to increased

requirements for memory and computational resources. Typ-

ical applications include sensor networks, social networks,

imaging, databases, medical platforms, e.t.c., [1]. In most of

those, the data cannot be processed on a single processing

unit (due to memory and/or computational power constrains)

and the respective learning/inference problem has to be split

into subproblems. Hence, one has to resort to distributed

algorithms, which operate on data that are not available on

a single location but are instead spread out over multiple

locations, e.g., [2], [3], [4].

In this paper, we focus on the topic of distributed online

learning and in particular to non linear parameter estimation

and classification tasks. More specifically, we consider a

decentralized network which comprises of nodes, that observe

data generated by a non linear model in a sequential fashion.

Each node communicates its own estimates of the unknown

parameters to its neighbors and exploits simultaneously a) the

information that it receives and b) the observed datum, at each

time instant, in order to update the associated with it estimates.

Furthermore, no assumptions are made regarding the presence

of a central node, which could perform all the necessary

operations. Thus, the nodes act as independent learners and

P. Bouboulis and S. Theodoridis are with the Department of Informat-
ics and Telecommunications, University of Athens, Greece, e-mails: pan-
bouboulis@gmail.com, stheodor@di.uoa.gr.

S. Chouvardas is with the Mathematical and Algorithmic Sciences
Lab France Research Center, Huawei Technologies Co., Ltd., e-mail:
symeon.chouvardas@huawei.com

perform the computations by themselves. Finally, the task of

interest is considered to be common across the nodes and, thus,

cooperation among each other is meaningful and beneficial,

[5], [6].

The problem of linear online estimation has been considered

in several works. These include diffusion-based algorithms,

e.g., [7], [8], [9], ADMM-based schemes, e.g., [10], [11],

as well as consencus-based ones, e.g., [12], [13]. The mul-

titask learning problem, in which there are more than one

parameter vectors to be estimated, has also been treated, e.g.,

[14], [15]. The literature on online distributed classification is

more limited; in [16], a batch distributed SVM algorithm is

presented, whereas in [17], a diffusion based scheme suitable

for classification is proposed. In the latter, the authors study the

problem of distributed online learning focusing on strongly-

convex risk functions, such as the logistic regression loss,

which is suitable to tackle classification tasks. The nodes of

the network cooperate via the diffusion rationale. In contrast

to the vast majority of works on the topic of distributed online

learning, which assume a linear relationship between input and

output measurements, in this paper we tackle the more general

problem, i.e., the distributed online non–linear learning task.

To be more specific, we assume that the data are generated

by a model y = f(x), where f is a non-linear function that

lies in a Reproducing Kernel Hilbert Space (RKHS). These

are inner-product function spaces, generated by a specific

kernel function, that have become popular models for non-

linear tasks, since the introduction of the celebrated Support

Vectors Machines (SVM) [18], [19], [20], [6].

Although there have been methods that attempt to generalize

linear online distributed strategies to the non-linear domain

using RKHS, mainly in the context of the Kernel LMS e.g.,

[21], [22], [23], these have major drawbacks. In [21] and [23],

the estimation of f , at each node, is given as an increasingly

growing sum of kernel functions centered at the observed

data. Thus, a) each node has to transmit the entire sum at

each time instant to its neighbors and b) the node has to fuse

together all sums received by its neighbors to compute the new

estimation. Hence, both the communications load of the entire

network as well as the computational burden at each node

grow linearly with time. Clearly, this is impractical for real

life applications. In contrast, the method of [22] assumes that

these growing sums are limited by a sparsification strategy;

how this can be achieved is left for the future. Moreover, the

aforementioned methods offer no theoretical results regarding

the consensus of the network. In this work, we present a

complete protocol for distributed online non-linear learning

for both regression and classification tasks, overcoming the

http://arxiv.org/abs/1703.08131v2

2

aforementioned problems. Moreover, we present theoretical

results regarding network-wise consensus and regret bounds.

The proposed framework offers fixed-size communication and

computational load as time evolves. This is achieved through

an efficient approximation of the growing sum using the

random Fourier features rationale [24]. To the best of our

knowledge, this is the first time that such a method appears

in the literature.

Section II presents a brief background on kernel online

methods and summarizes the main tools and notions used

in this manuscript. The main contributions of the paper are

presented in section III. The proposed method, the related

theoretical results and extensive experiments can be found

there. Section IV presents a special case of the proposed

framework for the case of a single node. In this case, we

demonstrate how the proposed scheme can be seen as a fixed-

budget alternative for online kernel based learning (solving the

problem of the growing sum). Finally, section V offers some

concluding remarks. In the rest of the paper, boldface symbols

denote vectors, while capital letters are reserved for matrices.

The symbol ⊗ denotes the Kronecker product of matrices and

the symbol ·T the transpose of the respective matrix or vector.

Finally, the symbol ‖ · ‖ refers to the respective ℓ2 matrix or

vector norm.

II. PRELIMINARIES

A. RKHS

Reproducing Kernel Hilbert Spaces (RKHS) are inner prod-

uct spaces of functions defined on X , whose respective point

evaluation functional, i.e., Tx : H → X : Tx(f) = f(x),
is linear and continuous for every x ∈ X . This is usually

portrayed by the reproducing property [18], [6], [25], which

links inner products in H with a specific (semi-)positive defi-

nite kernel function κ defined on X ×X (associated with the

space H). As κ(·, x) lies in H for all x ∈ X , the reproducing

property declares that 〈κ(·, y), κ(·, x)〉H = κ(x, y), for all

x, y ∈ X . Hence, linear tasks, defined on the high dimensional

space, H, (whose dimensionality can also be infinite) can

be equivalently viewed as non-linear ones on the, usually,

much lower dimensional space, X , and vice versa. This is the

essence of the so called kernel trick: Any kernel-based learning

method can be seen as a two step procedure, where firstly the

original data are transformed from X to H, via an implicit

map, Φ(x) = κ(·, x), and then linear algorithms are applied

to the transformed data. There exist a plethora of different

kernels to choose from in the respective literature. In this

paper, we mostly focus on the popular Gaussian kernel, i.e.,

κ(x,y) = e‖x−y‖2/(2σ2), although any other shift invariant

kernel can be adopted too.

Another important feature of RKHS is that any regularized

ridge regression task, defined on H, has a unique solution,

which can written in terms of a finite expansion of kernel

functions centered at the training points. Specifically, given the

set of training points {(xn, yn), n = 1, . . . , N, xn ∈ X, yn ∈
R}, the representer theorem [26], [18], states that the unique

minimizer, f∗ ∈ H, of
∑N

n=1 l(f(xn), yn)+λ‖f‖2H, admits a

representation of the form f∗ =
∑N

n=1 anκ(·, xn), where l is

any convex loss function that measures the error between the

actual system’s outputs, yn, and the estimated ones, f(xn),
and ‖ · ‖H is the norm induced by the inner product.

B. Kernel Online Learning

The aforementioned properties have rendered RKHS a pop-

ular tool for addressing non linear tasks both in batch and

online settings. Besides the widely adopted application on

SVMs, in recent years there has been an increased interest on

non linear online tasks around the squared error loss function.

Hence, there have been kernel-based implementations of LMS

[27], [28], RLS [29], [30], APSM [31], [32] and other related

methods [33], as well as online implementations of SVMs

[34], focusing on the primal formulation of the task. Hence-

forth, we will consider online learning tasks based on the

training sequences of the form D = {(xn, yn), n = 1, 2, . . . },
where xn ∈ R

d and yn ∈ R. The goal of the assumed

learning tasks is to learn a non-linear input-output dependence,

y = f(x), f ∈ H, so that to minimize a preselected cost.

Note that these types of tasks include both classification

(where yn = ±1) and regression problems (where yn ∈ R).

Moreover, in the online setting, the data are assumed to arrive

sequentially.

As a typical example of these tasks, we consider the KLMS,

which is one of the simplest and most representative methods

of this kind. Its goal is to learn f , so that to minimize the MSE,

i.e., L(f) = E[(y−f(x))2]. Computing the gradient of L and

estimating it via the current set of observations (in line with

the stochastic approximation rationale, e.g., [6]), the estimate

at the next iteration, employing the gradient descent method,

becomes fn = fn−1+µǫnκ(xn, ·), where ǫn = yn−fn−1(xn)
and µ is the step-size (see, e.g., [6], [35], [36] for more).

Assuming that the initial estimate is zero, the solution after

n− 1 steps turns out to be

fn−1 =
n−1
∑

i=1

αiκ(·,xi), (1)

where αi = µǫi. Observe that this is in line with the represen-

ter theorem. Similarly, the system’s output can be estimated as

fn−1(xn) =
∑n−1

i=1 αiκ(xn,xi). Clearly, this linear expansion

grows indefinitely as n increases; hence the original form

of KLMS is impractical. Typically, a sparsification strategy

is adopted to bound the size of the expansion [37], [38],

[39]. In these methods, a specific criterion is employed to

decide whether a particular point, xn, is to be included to the

expansion, or (if that point is discarded) how its respective

output yn can be exploited to update the remaining weights of

the expansion. There are also methods that can remove specific

points from the expansion, if their information becomes obso-

lete, in order to increase the tracking ability of the algorithm

[40].

C. Approximating the Kernel with random Fourier Features

Usually, kernel-based learning methods involve a large

number of kernel evaluations between training samples. In

the batch mode of operation, for example, this means that

3

a large kernel matrix has to be computed, increasing the

computational cost of the method significantly. Hence, to

alleviate the computational burden, one common approach is

to use some sort of approximation of the kernel evaluation.

The most popular techniques of this category are the Nyström

method [41], [42] and the random Fourier features approach

[24], [43]; the latter fits naturally to the online setting. Instead

of relying on the implicit lifting, Φ, provided by the kernel

trick, Rahimi and Recht in [24] proposed to map the input data

to a finite-dimensional Euclidean space (with dimension lower

than H but larger than the input space) using a randomized

feature map zΩ : Rd → R
D, so that the kernel evaluations

can be approximated as κ(xn,xm) ≈ zΩ(xn)
T zΩ(xm). The

following theorem plays a key role in this procedure.

Theorem 1. Consider a shift-invariant positive definite kernel

κ(x − y) defined on R
d and its Fourier transform p(ω) =

1
(2π)d

∫

Rd κ(δ)e
−iωT δdδ, which (according to Bochner’s the-

orem) it can be regarded as a probability density function.

Then, defining zω,b(x) =
√
2 cos(ωTx+ b), it turns out that

κ(x− y) = Eω,b[zω,b(x)zω,b(y)], (2)

where ω is drawn from p and b from the uniform distribution

on [0, 2π].

Following Theorem 1, we choose to approximate κ(xn −
xm) using D random Fourier features, ω1,ω2, . . . ,ωD,

(drawn from p) and D random numbers, b1, b2, . . . , bD (drawn

uniformly from [0, 2π]) that define a sample average:

κ(xn − xm) ≈ 1

D

D
∑

i=1

zωi,bi(xm)zωi,bi(xn). (3)

Evidently, the larger D is, the better this approximation

becomes (up to a certain point). Details on the quality of this

approximation can be found in [24], [43], [44], [45]. We note

that for the Gaussian kernel, which is employed throughout

the paper, the respective Fourier transform is

p(ω) =
(

σ/
√
2π
)D

e−
σ2‖ω‖2

2 , (4)

which is actually the multivariate Gaussian distribution with

mean 0D and covariance matrix 1
σ2 ID .

We will demonstrate how this method can be applied using

the KLMS paradigm. To this end, we define the map zΩ :
R

d → R
D as follows:

zΩ(u) =

√

2

D

cos(ωT
1 u+ b1)

...

cos(ωT
Du+ bD)

, (5)

where Ω is the (d+1)×D matrix defining the random Fourier

features of the respective kernel, i.e.,

Ω =

(

ω1 ω2 ... ωD

b1 b2 ... bD

)

, (6)

provided that ω’s and b’s are drawn as described in theorem

1. Employing this notation, it is straightforward to see that (3)

can be recast as κ(xn−xm) ≈ zΩ(xm)T zΩ(xn). Hence, the

output associated with observation xn can be approximated as

fn−1(xn) ≈
(

n−1
∑

i=1

αizΩ(xi)

)T

zΩ(xn). (7)

It is a matter of elementary algebra to see that (7) can be

equivalently derived by approximating the system’s output

as f(x) ≈ θTzΩ(x), initializing θ0 to 0D and iteratively

applying the following gradient descent type update: θn =
θn−1 + µenzΩ(xn).

Clearly, the procedure described here, for the case of the

KLMS, can be applied to any other gradient-type kernel based

method. It has the advantage of modeling the solution as

a fixed size vector, instead of a growing sum, a property

that is quite helpful in distributed environments, as it will be

discussed in section III.

III. DISTRIBUTED KERNEL-BASED LEARNING

In this section, we discuss the problem of online learning

in RKHS over distributed networks. Specifically, we consider

K connected nodes, labeled k ∈ N = {1, 2, . . .K}, which

operate in cooperation with their neighbors to solve a specific

task. Let Nk ⊆ N denote the neighbors of node k. The

network topology is represented as an undirected connected

graph, consisting of K vertices (representing the nodes) and a

set of edges connecting the nodes to each other (i.e., each node

is connected to its neighbors). We assign a nonnegative weight

ak,l to the edge connecting node k to l. This weight is used by

k to scale the data transmitted from l and vice versa. This can

be interpreted as a measure of the confidence level that node k
assigns to its interaction with node l. We collect all coefficients

into a K × K symmetric matrix A = (ak,l), such that the

entries of the k-th row of A contain the coefficients used by

node k to scale the data arriving from its neighbors. We make

the additional assumption that A is doubly stochastic, so that

the weights of all incoming and outgoing “transmissions” sum

to 1. A common choice, among others, for choosing these

coefficients, is the Metropolis rule, in which the weights equal

to:

ak,l =

1
max{|Nk|,|Nl|} , if l ∈ Nk, and l 6= k

1−∑i∈Nk\k ak,i, if l = k

0, otherwise.

Finally, we assume that each node, k, receives streaming

data {(xk,n, yk,n), n = 1, 2, . . . }, that are generated from an

input-output relationship of the form yk,n = f(xk,n) + ηk,n,

where xk,n ∈ R
d, yk,n belongs to R and ηk,n represents

the respective noise, for the regression task. The goal is to

obtain an estimate of f . For classification, yn,k = φ(f(xk,n)),
where, φ is a thresholding function; here we assume that

yn,k ∈ {−1, 1}. Once more, the goal is to optimally estimate

the classifier function f .

Each one of the nodes aims to estimate f ∈ H by

minimizing a specific convex cost function, L(x, y, f), us-

ing a (sub)gradient descent approach. We employ a simple

Combine-Then-Adapt (CTA) rationale, where at each time in-

stant, n, each node, k, a) receives the current estimates, fl,n−1,

4

from all neighbors (i.e., from all nodes l ∈ Nk), b) combines

them to a single solution, ψk,n−1 =
∑

l∈Nk
ak,lfl,n−1 and c)

apply a step update procedure:

fn = ψk,n−1 − µn∇fL(xn, yn, ψk,n−1).

The implementation of such an approach in the context of

RKHS presents significant challenges. Keep in mind that, the

estimation of the solution at each node is not a simple vector,

but instead it is a function, which is expressed as a growing

sum of kernel evaluations centered at the points observed by

the specific node, as in (1). Hence, the implementation of a

straightforward CTA strategy would require from each node

to transmit its entire growing sum (i.e., the coefficients ai as

well as the respective centers xi) to all neighbors. This would

significantly increase both the communication load among the

nodes, as well as the computational cost at each node, since the

size of each one of the expansions would become increasingly

larger as time evolves (as for every time instant, they gather

the centers transmitted by all neighbors). This is the rationale

adopted in [21], [22], [23] for the case of KLMS. Clearly,

this is far from a practical approach. Alternatively, one could

devise an efficient method to sparsify the solution at each

node and then merge the sums transmitted by its neighbors.

This would require (for example) to search all the dictionaries,

transmitted by the neighboring nodes, for similar centers and

treat them as a single one, or adopting a single pre-arranged

dictionary (i.e., a specific set of centers) for all nodes and

then fuse each observed point with the best-suited center.

However, no such strategy has appeared in the respective

literature, perhaps due to its increased complexity and lack

of a theoretical elegance.

In this paper, inspired by the random Fourier features

approximation technique, we approximate the desired input-

output relationship as y = θTzΩ(x) and propose a two step

procedure: a) we map each observed point (xk,n, yk,n) to

(zΩ(xk,n), yk,n) and then b) we adopt a simple linear CTA

diffusion strategy on the transformed points. Note that in

the proposed scheme, each node aims to estimate a vector

θ ∈ R
D by minimizing a specific (convex) cost function,

L(x, y, θ). Here, we imply that the model can be closely

approximated by yk,n ≈ θTzΩ(xk,n) + ηk,n, for regression,

and yk,n ∼ φ(θT zΩ(xk,n)) for classification, for all k, n,

for some θ. We emphasize that L need not be differentiable.

Hence, a large family of loss functions can be adopted. For

example:

• Squared error loss: L(x, y, θ) = (y − θTx)2.

• Hinge loss: L(x, y, θ) = max(0, 1− yθTx).
We end up with the following generic update rule:

ψk,n =
∑

l∈Nk

ak,lθl,n−1, (8)

θk,n = ψk,n − µk,n∇θL(zΩ(xk,n), yk,n,ψk,n), (9)

where ∇θL(zΩ(xk,n), yk,n,ψk,n) is the gradient, or any

subgradient of L(x, y, θ) (with respect to θ), if the loss

function is not differentiable. Algorithm 1 summarizes the

aforementioned procedure. The advantage of the proposed

scheme is that each node transmits a single vector (i.e., its

Algorithm 1 Random Fourier Features Distributed Online

Kernel-based Learning (RFF-DOKL).

D = {(xk,n, yk,n), k = 1, 2 . . . ,K, n = 1, 2, . . . } ⊲ Input

Select a specific shift invariant (semi)positive definite ker-

nel, a specific loss function L and a sequence of possible

variable learning rates µn. Each node generates the same

matrix Ω as in (6).

θk,0 ← 0D, for all k. ⊲ Initialization

for n = 1, 2, 3, ... do

for each node k do

ψk,n =
∑

l∈Nk
ak,lθl,n−1.

θk,n = ψk,n − µk,n∇θL(zΩ(xk,n), yk,n,ψk,n).

current estimate, θk,n) to its neighbors, while the merging of

the solutions requires only a straightforward summation.

A. Consensus and regret bound

In the sequel, we will show that, under certain assumptions,

the proposed scheme achieves asymptotic consensus and that

the corresponding regret bound grows sublinearly with the

time. It can readily be seen that (8)-(9) can be written more

compactly (for the whole network) as follows:

θn = Aθn−1 −MnGn, (10)

where θn := (θT1,n, . . . , θ
T
K,n)

T ∈ R
KD, Mn :=

diag{µ1,n, . . . , µK,n} ⊗ ID, Gn := [(uT
1,n, . . . ,u

T
K,n]

T ∈
R

KD, where uk,n = ∇L(zΩ(xk,n), yk,n,ψk,n), and A :=
A⊗ ID. The necessary assumptions are the following:

Assumption 1. The step size is time decaying and is bounded

by the inverse square root of time, i.e., µk,n = µn ≤ µn−1/2.

Assumption 2. The norm of the transformed input is bounded,

i.e., ∃U1 such that ‖zΩ(xk,n)‖ ≤ U1, ∀k ∈ N , ∀n ∈ N.

Furthermore, yk,n is bounded, i.e., |yk,n| ≤ V ∀k ∈ N , ∀n ∈
N for some V > 0.

Assumption 3. The estimates are bounded, i.e., ∃U2 s.t.

‖θk,n‖ ≤ U2, ∀k ∈ N , ∀n ∈ N.

Assumption 4. The matrix comprising the combination

weights, i.e., A, is doubly stochastic (if the weights are chosen

with respect to the Metropolis rule, this condition is met).

Note that assumptions 2 and 3 are valid for most of the popular

cost functions. As an example, we can study the squared error

loss, i.e., L(x, y, θ) = 1/2(y − θTx)2, where:

‖∇L(zΩ(x), y, θ)‖ ≤ |y|‖zΩ(x)‖+ ‖θ‖‖zΩ(x)‖2

≤ V U1 + U2
1U2.

Following similar arguments, we can also prove that many

other popular cost functions (e.g., the hinge loss, the logistic

loss, e.t.c.) have bounded gradients too.

Proposition 1 (Asymptotic Consensus). All nodes converge

to the same solution.

Proof. Consider a KD×KD consensus matrix A as in (10).

As A is doubly stochastic, we have the following [9]:

5

• ‖A‖ = 1.

• Any consensus matrix A can be decomposed as

A =X +BBT , (11)

where B = [b1, . . . , bD] is an KD × D matrix, and

bk = 1/
√
K(1⊗ ek), where ek, k = 1, . . . , D represent

the standard basis of RD and X is a KD×KD matrix

for which it holds that ‖X‖ < 1.

• Aθ̆ = θ̆, for all θ̆ ∈ O := {θ ∈ R
KD : θ =

[θT , . . . , θT]T , θ ∈ R
D}. The subspace O is the so

called consensus subspace of dimension D, and bk, k =
1, . . . , D, constitute a basis for this space. Hence, the

orthogonal projection of a vector, θ, onto this linear

subspace is given by PO(θ) := BBTθ, for all θ ∈ R
KD.

In [9], it has been proved that, the algorithmic scheme

achieves asymptotic consensus, i.e., ‖θk,n − θl,n‖ → 0, as

n → ∞, for all k, l ∈ N , if and only if limn→∞ ‖θn −
PO(θn)‖ = 0. We can easily check that the quantity

rn := θn+1 −Aθn = −Mn+1Gn+1. (12)

approaches 0, as n → ∞, since limn→∞Mn = OKD

(assumption 1) and the matrix Gn is bounded for all n.

Rearranging the terms of (12) and iterating over n, we have:

θn+1 = Aθn + rn = AAθn−1 +Arn−1 + rn = . . .

= An+1θ0 +

n
∑

j=0

An−jrj .

If we left-multiply the previous equation by (IKD −BBT)
and follow similar steps as in [9, Lemma 2], it can be verified

that lim
n→∞

‖
(

IKm −BBT
)

θn+1‖ = 0, which completes our

proof.

Proposition 2. Under assumptions 1-4 (and a cost function

with bounded gradients) the networkwise regret is bounded by

N
∑

i=1

∑

k∈N
(L(xk,i, yk,i,ψk,i)− L(xk,i, yk,i, g)) ≤ γ

√
N + δ,

for all g ∈ B[0D,U2], where γ, δ are positive constants and

B[0D,U2] is the closed ball with center 0D and radius U2.

Proof. See appendix A.

Remark 1. It is worth pointing out that the theoretical

properties, which were stated before, are complementary. In

particular, the consensus property (Proposition 1) indicates

that the nodes converge to the same solution and the sub-

linearity of the regret implies that on average the algorithm

performs as well as the best fixed strategy. In fact, without

the regret related proof we cannot characterize the solution in

which the nodes converge.

B. Diffusion SVM (Pegasos) Algorithm

The case of the regularized hinge loss function, i.e.,

L(x, y, θ) = λ
2 ‖θ‖2 +max{0, 1− yθTzΩ(x)}, for a specific

value of the regularization parameter λ > 0, generates the

Distributed Pegasos (see [34]). Note that the Pegasos solves

the SVM task in the primal domain. In this case, the gradient

becomes ∇θL(x, y, θ) = λθ − I+(1 − yθTzΩ(x))yzΩ(x),
where I+ is the indicator function of (0,+∞), which takes

a value of 1, if its argument belongs in (0,+∞), and zero

otherwise. Hence the step-update equation of algorithm 1

becomes:

θk,n = (1− 1
n)ψk,n−1

+I+(1− ynψT
k,n−1zΩ(xk,n))

yk,n

λn zΩ(xk,n),
(13)

where, following [34], we have used a decreasing step size,

µn = 1
λn . This scheme satisfies the required assumptions,

hence consensus is guaranteed.

We have tested the performance of Distributed-Pegasos ver-

sus the non-cooperative Pegasus on four datasets downloaded

from Leon Bottou’s LASVM web page [46]. The chosen

datasets are: a) the Adult dataset, b) the Banana dataset (where

we have used the first 4000 points as training data and the

remaining 1300 as testing data), c) the Waveform dataset

(where we have used the first 4000 points as training data and

the remaining 1000 as testing data) and d) the MNIST dataset

(for the task of classifying the digit 8 versus the rest). The

sizes of the datasets are given in Table I. In all experiments, we

generate random graphs (using MIT’s random graph routine,

see [47]) and compare the proposed diffusion method versus a

noncooperative strategy (where each node works independent

of the rest). For each realization of the experiments, a different

random connected graph with M = 5 or M = 20 nodes

was generated, with probability of attachment per node equal

to 0.2 (i.e, there is a 20% probability that a specific node k
is connected to any other node l). The adjacency matrix, A,

of each graph was generated using the Metropolis rule. For

the non-cooperative strategies, we used a graph that connects

each node to itself, i.e., A = I5 or A = I20 respectively. The

latter, implies that no information is exchanged between the

nodes, thus each node is working alone. Moreover, for each

realization, the corresponding dataset was randomly split into

M subsets of equal size (one for every node).

We note that the value of D affects significantly the quality

of the approximation via the Fourier features rationale and

thus it also affects the performance of the experiments. The

value of D must be large enough so that the approximation

is good, but not too large so that to the communicational

and computational load become affordable. In practice, we

can find a value for D so that any further increase results

to almost negligible performance variation (see also section

IV). All other parameters were optimized (after trials) to give

the lowest number of test errors. Their values are reported

on Table IV. The algorithms were implemented in MatLab

and the experiments were performed on a i7-3770 machine

running at 3.4GHz with 32 Mb of RAM. Tables II and III

report the mean test errors obtained by both procedures. For

M = 5, the mean algebraic complexity of the generated graphs

lies between 0.61 and 0.76 (different for each experiment),

while the corresponding mean algebraic degree lies around

1.8. For M = 20, the mean algebraic complexity of the

generated graphs lies around 0.70, while the corresponding

mean algebraic degree lies around 3.9. The number inside the

parentheses indicates the times of data reuse (i.e., running the

algorithm again over the same data, albeit with a continuously

6

TABLE I
DATASET INFORMATION.

Method Adult Banana Waveform MNIST

Training size 32562 4000 4000 60000

Testing size 16282 1300 1000 10000

dimensions 123 2 21 784

TABLE II
COMPARING THE PERFORMANCES OF THE DISTRIBUTED PEGASOS

VERSUS THE NON-COOPERATIVE PEGASOS FOR GRAPHS WITH M = 5

NODES.

Method Adult Banana Waveform MNIST

Distributed-Pegasos (1) 19% 11.80% 11.82% 0.79%

Distributed-Pegasos (2) 17.43% 10.84% 10.49% 0.68%

Distributed-Pegasos (5) 15.87% 10.34% 9.56% 0.59%

Non-cooperative-Pegasos (1) 19.11% 14.52% 13.75% 1.42%

Non-cooperative-Pegasos (2) 18.31% 12.52% 12.59% 1.19%

Non-cooperative-Pegasos (5) 17.29% 11.32% 11.86% 1.01%

decreasing step-size µn), which has been suggested that im-

proves the classification accuracy of Pegasos (see [34]). For

example, the number 2 indicates that the algorithm runs over a

dataset of double size, that contains the same data pairs twice.

For the three first datasets (Adult, Banana, Waveform) we have

run 100 realizations of the experiment, while for the fourth

(MNIST) we have run only 10 (to save time). Besides the

ADULT dataset, all other simulations show that the distributed

implementation significantly outperforms the non-cooperative

one. For that particular dataset, we observe that for a single run

the non-cooperative strategy behaves better (for M = 20), but

as data reuse increases the distributed implementation reaches

lower error floors.

C. Diffusion KLMS

Adopting the squared error in place of L, i.e., L(x, y, θ) =
(y − θTzΩ(x))2, and estimating the gradient by its current

measurement, we take the Random Fourier Features Diffusion

KLMS (RFF-DKLMS) and the step update becomes:

θk,n = ψk,n−1 + µεk,nzΩ(xk,n), (14)

where εk,n = yn − ψT
k,n−1zΩ(xk,n). Although proposition 1

cannot be applied here (as it requires a decreasing step-size),

we can derive sufficient conditions for consensus following

the results of the standard Diffusion LMS [8]. Henceforth, we

will assume that the data pairs are generated by

yk,n =

M
∑

m=1

amκ(cm,xk,n) + ηk,n, (15)

where c1, . . . , cM are fixed centers, xk,n are zero-mean i.i.d,

samples drawn from the Gaussian distribution with covariance

matrix σ2
xId and ηk,n are i.i.d. noise samples drawn from

N (0, σ2
η). Following the RFF approximation rationale (for

shift invariant kernels), we can write that

yk,n =

M
∑

m=1

amEω,b[zω,b(cm)zω,b(xk,n)] + ηk,n

= aTZT
ΩzΩ(xk,n) + ǫk,n + ηk,n,

= θTo zΩ(xk,n) + ǫk,n + ηk,n,

TABLE III
COMPARING THE PERFORMANCES OF THE DISTRIBUTED PEGASOS

VERSUS THE NON-COOPERATIVE PEGASOS FOR GRAPHS WITH M = 20

NODES.

Method Adult Banana Waveform MNIST

Distributed-Pegasos (1) 24.04% 16.38% 16.26% 1.03%

Distributed-Pegasos (2) 22.34% 13.23% 13.93% 0.77%

Distributed-Pegasos (5) 18.94% 10.83% 11.20% 0.57%

Non-cooperative-Pegasos (1) 20.81% 21.74% 18.40% 2.93%

Non-cooperative-Pegasos (2) 20.52% 18.64% 16.54% 2.19%

Non-cooperative-Pegasos (5) 19.88% 15.96% 14.86% 1.87%

TABLE IV
PARAMETERS FOR EACH METHOD.

Method Adult Banana Waveform MNIST

Kernel-Pegasos
σ =

√
10

λ = 0.0000307
σ = 0.7
λ = 1

316

σ =
√
10

λ = 0.001

σ = 4
λ = 10−7

RFF-Pegasos
σ =

√
10

λ = 0.0000307
D = 2000

σ = 0.7
λ = 1

316

D = 200

σ =
√
10

λ = 0.001
D = 2000

σ = 4

λ = 10−7

D = 100000

where ZΩ = (zΩ(c1), . . . , zΩ(cM)), a = (a1, . . . , aM)T ,

θo = ZΩa and ǫk,n is the approximation error between

the noise-free component of yk,n (evaluated only by the

linear kernel expansion of (15)) and the approximation of

this component using random Fourier features, i.e., ǫk,n =
∑M

m=1 amκ(cm,xk,n)−θTo zΩ(xk,n). For the whole network

we have the following

y
n
= V T

n θo + ǫn + η
n
, (16)

where

• y
n
:= (y1,n, y2,n, . . . , yK,n)

T ,

• Vn := diag(zΩ(x1,n), zΩ(x2,n), . . . , zΩ(xK,n)), is a

DK ×K matrix,

• θo =
(

θTo , θ
T
o , . . . , θ

T
o

)T ∈ R
DK ,

• ǫn = (ǫ1,n, ǫ2,n, . . . , ǫK,n)
T ∈ R

K ,

• η
n
= (η1,n, η2,n, . . . , ηK,n)

T ∈ R
K .

Let x1, . . . ,xK ∈ R
d, y ∈ R

K , be the random variables that

generate the measurements of the nodes; it is straightforward

to prove that the corresponding Wiener solution, i.e., θ∗ =
argminθE[‖y − V Tθ‖2], becomes

θ∗ = E[V V T]−1E[V y], (17)

provided that the autocorrelation matrix R = E[V V T] is

invertible, where V = diag(zΩ(x1), zΩ(x2), . . . , zΩ(xK))
is a DK × K matrix that collects the transformed random

variables for the whole network. Assuming that the input-

output relationship of the measurements at each node follows

(16), the cross-correlation vector takes the form

E[V y] = E[V (V Tθo + ǫ+ η)]

= E[V V T]θo + E[V ǫ],

where for the last relation we have used that η is a zero

mean vector representing noise and that V and η are inde-

pendent. For large enough D, the approximation error vector

ǫ approaches 0K , hence the optimal solution becomes:

θ∗ = E[V V T]−1
(

E[V V T]θo + E[V ǫ]
)

= θo + E[V V T]−1E[V ǫ] ≈ θo.

7

Here we actually imply that (16) can be closely approxi-

mated by yn ≈ Vnθo + η
n

; hence, the RFF-DKLMS is

actually the standard diffusion LMS applied on the data

pairs {(zΩ(xk,n), yk,n), k = 1, . . . ,K, n = 1, 2 . . .}. The

difference is that the input vectors zΩ(xk,n) may have non

zero mean and do not follow, necessarily, the Gaussian distri-

bution. Hence, the available results regarding convergence and

stability of diffusion LMS (e.g., [48], [49]) cannot be applied

directly (in these works the inputs are assumed to be zero mean

Gaussian to simplify the formulas related to stability). To this

end, we will follow a slightly different approach. Regarding

the autocorrelation matrix, we have the following result:

Lemma 1. Consider a selection of samples ω1,ω2, . . . ,ωD,

drawn from (4) such that ωi 6= ωj , for any i 6= j. Then,

the matrix R = E[V V T] is strictly positive definite (hence

invertible).

Proof. Observe that the DK ×DK autocorrelation matrix is

given by R = E[V V T] = diag(Rzz, Rzz . . . , Rzz), where

Rzz = E[zΩ(xk)zΩ(xk)
T], for all k = 1, 2, . . . ,K . It suffices

to prove that the D × D matrix Rzz is strictly positive

definite. Evidently, cTRzzc = cTE
[

zΩ(xk)zΩ(xk)
T
]

c =

E
[

(

zΩ(xk)
T c
)2
]

≥ 0, for all c ∈ R
D. Now, assume

that there is a c ∈ R
D such that E

[

(

zΩ(xk)
T c
)2
]

= 0.

Then zΩ(x)
T c = 0 for all x ∈ R

D, or equivalently,
∑D

i=1 ci cos(ω
T
i x+bi) = 0, for all x ∈ R

D. Thus, c = 0.

As expected, the eigenvalues of Rzz play a pivotal role in

the convergence’s study of the algorithm. As Rzz is a strictly

positive definite matrix, its eigenvalues satisfy 0 < λ1 ≤ λ2 ≤
· · · ≤ λD.

Proposition 3. If the the step update µ satisfies: 0 < µ < 2
λD

,

where λD is the maximum eigenvalue of Rzz , then the RFF-

DKLMS achieves asymptotic consensus in the mean, i.e.,

lim
n
E[θk,n − θo] = 0D, for all k = 1, 2, . . . ,K.

Proof. See Appendix B.

Remark 2. If xk,n ∼ N (0, σXId), it is possible to evaluate

explicitly the entries of Rzz , i.e.,

ri,j =
1

2
exp

(−‖ωi − ωj‖2σ2
X

2

)

cos(bi − bj)

+
1

2
exp

(−‖ωi + ωj‖2σ2
X

2

)

cos(bi + bj).

Proposition 4. For stability in the mean-square sense, we must

ensure that both µ and A satisfy:

|ρ (ID2K2 − µ (R⊠ IDK + IDK ⊠R) (A⊠A))| < 1,

where ⊠ denotes the unbalanced block Kronecker product.

Proof. See Appendix C.

In the following, we present some experiments to illustrate

the performance of the proposed scheme. We demonstrate that

the estimation provided by the cooperative strategy is better

than having each node working alone (i.e., lower MSE). Sim-

ilar to section III-C, each realization of the experiments uses

a different random connected graph with M = 20 nodes and

probability of attachment per node equal to 0.2. The adjacency

matrix, A, of each graph was generated using the Metropolis

rule (resulting to graphs with mean algebraic connectivity

around 0.69), while for the non-cooperative strategies, we used

a graph that connects each node to itself, i.e., A = I20. All

parameters were optimized (after trials) to give the lowest

MSE. The algorithms were implemented in MatLab and the

experiments were performed on a i7-3770 machine running at

3.4GHz with 32 Mb of RAM.
1) Example 1. A Linear Expansion in terms of kernels: In

this set-up, we generate 5000 data pairs for each node using

the following model: yk,n =
∑M

m=1 amκ(cm,xk,n) + ηk,n,

where xk,n ∈ R
5 are drawn from N (0, I5) and the noise

are i.i.d. Gaussian samples with ση = 0.1. The parameters of

the expansion (i.e., a1, . . . , aM) are drawn from N (0, 25), the

kernel parameter σ is set to 5, the step update to µ = 1 and the

number of random Fourier features to D = 2500. Figure 1(a)

shows the evolution of the MSE over all network nodes for

100 realizations of the experiment. We note that the selected

value of step size satisfies the conditions of proposition 3.
2) Example 2: Next, we generate the data pairs for each

node using the following simple non-linear model: yk,n =
wT

0 xk,n +0.1 · (wT
1 xk,n)

2 + ηk,n, where ηk,n represent zero-

mean i.i.d. Gaussian noise with ση = 0.05 and the coefficients

of the vectors w0,w1 ∈ R
5 are i.i.d. samples drawn from

N (0, 1). Similarly to Example 1, the kernel parameter σ is

set to 5 and the step update to µ = 1. The number of random

Fourier coefficients for RFFKLMS was set to D = 300. Figure

3(b) shows the evolution of the MSE over all network nodes

for 1000 realizations of the experiment over 15000 samples.
3) Example 3: Here we adopt the following chaotic series

model [50]: dk,n =
dk,n−1

1+d2

k,n−1

+ u3k,n−1, yk,n = dk,n + ηk,n,

where ηn is zero-mean i.i.d. Gaussian noise with ση = 0.01
and un is also zero-mean i.i.d. Gaussian with σu = 0.15.

The kernel parameter σ is set to 0.05, the number of Fourier

features to D = 100 and the step update to µ = 1. We have

also initialized d1 to 1. Figure 1(c) shows the evolution of

the MSE over all network nodes for 1000 realizations of the

experiment over 500 samples.
4) Example 4: For the final example, we use another

chaotic series model [50]: dk,n = uk,n+0.5vk,n−0.2dk,n−1+
0.35dk,n−2, yk,n = φ(dk,n) + ηk,n,

φ(dk,n) =

{ dk,n

3(0.1+0.9d2

k,n)
1/2 dk,n ≥ 0

−d2

k,n(1−exp(0.7dk,n))

3 dk,n < 0
,

where ηk,n, vk,n are zero-mean i.i.d. Gaussian noise with

ση = 0.001 and σ2
v = 0.0156 respectively, and uk,n =

0.5vk,n + η̂k,n, where η̂n is also i.i.d. Gaussian with σ2 =
0.0156. The kernel parameter σ is set to 0.05 and the step

update to µ = 1. We have also initialized d1, d2 to 1. Figure

3(d) shows the evolution of the MSE over all network nodes

for 1000 realizations of the experiment over 1000 samples.

The number of random Fourier features was set to D = 200.

IV. REVISITING ONLINE KERNEL BASED LEARNING

In this section, we investigate the use of random Fourier

features as a general framework for online kernel-based learn-

8

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−20

−18

−16

−14

−12

−10

−8

−6

Non−cooperative KLMS
Diffusion KLMS

(a) Example 1

2000 4000 6000 8000 10000 12000 14000
−20

−18

−16

−14

−12

−10

−8

−6

−4

Non−cooperative KLMS
Diffusion KLMS

(b) Example 2

50 100 150 200 250 300 350 400 450 500

−35

−30

−25

−20

−15

−10

noncooperative
Diffusion

(c) Example 3

100 200 300 400 500 600 700 800 900 1000
−28

−26

−24

−22

−20

−18

−16

noncooperative
Diffusion

(d) Example 4

Fig. 1. Comparing the performances of RFF Diffusion KLMS versus the
non-cooperative strategy.

Algorithm 2 Random Fourier Features Online Kernel-based

Learning (RFF-OKL).

D = {(xn, yn), n = 1, 2, . . . } ⊲ Input

Select a specific (semi)positive definite kernel, a specific

loss function L and a sequence of possible variable learning

rates µn. Then generate the matrix Ω as in (6).

θ0 ← 0D ⊲ Initialization

for n = 1, 2, 3, ... do

θn = θn−1 + µn∇θL(xn, yn, θn−1). ⊲ Step update

ing. The framework presented here can be seen as a special

case of the general distributed method presented in section

III for a network with a single node. Similar to the case

of the standard KLMS, the learning algorithms considered

here adopt a gradient descent rationale to minimize a specific

loss function, L(x, y, f) for f ∈ H, so that f approximates

the relationship between x and y, where H is the RKHS

induced by a specific choice of a shift invariant (semi)positive

definite kernel, κ. Hence, in general, these algorithms can

be summarized by the following step update equation: fn =
fn−1 + µn∇fL(xn, yn, fn−1). Algorithm 2 summarizes the

proposed procedure for online kernel-based learning. The

performance of the algorithm depends on the quality of the

adopted approximation. Hence, a sufficiently large D has to

be selected.

Although algorithm 2 is given in a general setting, in the

following we focus on the fixed-budget KLMS. As it has

been discussed in section II, KLMS adopts the MSE cost

function, which in the proposed framework takes the form:

L(x, y, θ) = E[(yn − θTzΩ(xn))
2]. Hence, the respective

step update equation of algorithm 2 becomes

θn = θn−1 + µεnzΩ(xn), (18)

where εn = yn − θTn−1zΩ(xn). Observe that, contrary to the

typical implementations of KLMS, where the system’s output

is a growing expansion of kernel functions and hence special

care has to be carried out to prune the so called dictionary,

the proposed approach employs a fixed-budget rationale, which

doesn’t require any further treatment. We call this scheme the

Random Fourier Features KLMS (RFF-KLMS) [51], [52].

The study of the convergence properties of RFFKLMS is

based on those of the standard LMS. Henceforth, we will

assume that the data pairs are generated by

yn =
M
∑

m=1

amκ(cm,xn) + ηn, (19)

where c1, . . . , cM are fixed centers, xn are zero-mean i.i.d,

samples drawn from the Gaussian distribution with covariance

matrix σ2
xId and ηn are i.i.d. noise samples drawn from

N (0, σ2
η). Similar to the diffusion case, the eigenvalues of

Rzz , i.e., 0 < λ1 ≤ λ2 ≤ · · · ≤ λD , play a pivotal

role in the convergence’s study of the algorithm. Applying

similar assumptions as in the case of the standard LMS (e.g.,

independence between xn,xm, for n 6= m and between

xn, ηn), we can prove the following results.

Proposition 5. For datasets generated by (19) we have:

1) If 0 < µ < 2/λD, then RFFKLMS converges in the

mean, i.e., E[θn − θo]→ 0.

2) The optimal MSE is given by

Jopt
n = σ2

η + E[ǫn]− E[ǫnzΩ(xn)]R
−1
zz E[ǫnzΩ(xn)

T].

For large enough D, we have Jopt
n ≈ σ2

η .

3) The excess MSE is given by J ex
n = Jn − Jopt

n =
tr (RzzAn), where An = E[(θn − θo)(θn − θo)

T].
4) If 0 < µ < 1/λD, then An converges. For large

enough n and D we can approximate An’s evolution as

An+1 ≈ An − µ (RzzAn +AnRzz) + µ2σ2
ηRzz . Using

this model we can approximate the steady-state MSE

(≈ tr (RzzAn) + σ2
η).

Proof. The proofs use standard arguments as in the case of

the standard LMS. Hence we do not provide full details. The

reader is addressed to any LMS textbook.

1) See Proposition 3.

2) Replacing θn with θo in Jn = E[ε2n] gives the result. For

large enough D, ǫn is almost zero, hence we have Jopt
n ≈ σ2

η .

3) Here, we use the additional assumptions that vn is inde-

pendent of xn and that ǫn is independent of ηn. The result

follows after replacing Jn and Jopt
n and performing simple

algebra calculations.

4) Replacing θo and dropping out the terms that contain the

term ǫn, the result is obtained.

Remark 3. Observe that, while the first two results can

be regarded as special cases of the distributed case (see

proposition 3 and the related discussion in section III), the

two last ones describe more accurately the evolution of the

solution in terms of mean square stability, than the one given

in proposition 4, for the general distributed scheme (where

no formula for Bn is given). This becomes possible because

the related formulas take a much simpler form, if the graph

structure is reduced to a single node.

In order to illustrate the performance of the proposed

algorithm and compare its behavior to the other variants

9

of KLMS, we also present some related simulations. We

choose the QKLMS [39] as a reference, since this is one

of the most effective and fast KLMS pruning methods. In

all experiments, that are presented in this section (described

below), we use the same kernel parameter, i.e., σ, for both

RFFKLMS and QKLMS as well as the same step-update

parameter µ. The quantization parameter q of the QKLMS

controls the size of the dictionary. If this is too large, then

the dictionary will be small and the achieved MSE at steady

state will be large. Typically, however, there is a value for

q for which the best possible MSE (which is very close to

the MSE of the unsparsified version) is attained at steady

state, while any smaller quantization sizes provide negligible

improvements (albeit at significantly increased complexity).

In all experimental set-ups, we tuned q (using multiple trials)

so that it leads to the best performance. On the other hand,

the performance of RFFKLMS depends largely on D, which

controls the quality of the kernel approximation. Similar to the

case of QKLMS, there is a value for D so that RFFKLMS

attains its lowest steady-state MSE, while larger values provide

negligible improvements. For our experiments, the chosen

values for q and D provide results so that to trace out the

results provided by the original (unsparsified) KLMS. Table

V gives the mean training times for QKLMS and RFFKLMS

on the same i7-3770 machine using a MatLab implementation

(both algorithms were optimized for speed). We note that the

complexity of the RFFKLMS is O(Dd), while the complexity

of QKLMS is O(Md). Our experiments indicate that in order

to obtain similar error floors, the required complexity of

RFFKLMS is lower than that of QKLMS.

1) Example 5. A Linear expansion in terms of Kernels:

Similar to example 1 in section III-C, we generate 5000 data

pairs using (19) and the same parameters (for only one node).

Figure 2 shows the evolution of the MSE for 500 realizations

of the experiment over different values of D. The algorithm

reaches steady-state around n = 3000. The attained MSE

is getting closer to the approximation given in proposition

5 (dashed line in the figure) as D increases. Figure 3(a)

compares the performances of RFFKLMS and QKLMS for

this particular set-up for 500 realizations of the experiment

using 8000 data pairs. The quantization size of QKLMS was

set to q = 5 and the number of Fourier features for the

RFFKLMS was set to D = 2500.

2) Example 6: Next, we use the same non-linear model

as in example 2 of section III, i.e., yn = wT
0 xn + 0.1 ·

(wT
1 xn)

2 + ηn. The parameters of the model and the RFF-

KLMS are the same as in example 1. The quantization size of

the QKLMS was set to q = 5, leading to an average dictionary

size M = 100. Figure 3(b) shows the evolution of the MSE

for both QKLMS and RFFKLMS running 1000 realizations

of the experiment over 15000 samples.

3) Example 7: Here we adopt the same chaotic series

model as in example 3 of section III-C, with the same

parameters. Figure 3(c) shows the evolution of the MSE for

both QKLMS and RFFKLMS running 1000 realizations of

the experiment over 500 samples. The quantization parameter

q for the QKLMS was set to q = 0.01, leading to an average

dictionary size M = 7.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−20

−15

−10

−5

0

5

FouKLMS
Optimal

(a) D = 500

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−20

−15

−10

−5

0

5

FouKLMS
Optimal

(b) D = 1000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−20

−15

−10

−5

0

5

FouKLMS
Optimal

(c) D = 2000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−20

−15

−10

−5

0

5

FouKLMS
Optimal

(d) D = 5000

Fig. 2. Simulations of RFFKLMS (with various values of D) applied on data
pairs generated by (19). The results are averaged over 500 runs. The horizontal
dashed line in the figure represents the approximation of the steady-state MSE
given in theorem 5.

1000 2000 3000 4000 5000 6000 7000 8000
−20

−15

−10

−5

0

5

FouKLMS
QKLMS

(a) Example 5

2000 4000 6000 8000 10000 12000 14000

−15

−10

−5

0

5

FouKLMS
QKLMS

(b) Example 6

50 100 150 200 250 300 350 400 450 500
−30

−28

−26

−24

−22

−20

−18

−16

−14

−12

−10

FouKLMS
QKLMS

(c) Example 7

100 200 300 400 500 600 700 800 900 1000
−25

−24

−23

−22

−21

−20

−19

−18

−17

−16

−15

FouKLMS
QKLMS

(d) Example 8

Fig. 3. Comparing the performances of RFFKLMS and the QKLMS.

4) Example 8: For the final example, we use the chaotic

series model of example 4 in section III-C with the same

parameters. Figure 3(d) shows the evolution of the MSE for

both QKLMS and RFFKLMS running 1000 realizations of

the experiment over 1000 samples. The parameter q was set

to q = 0.01, leading to M = 32.

V. CONCLUSION

We have presented a complete fixed-budget framework for

non-linear online distributed learning in the context of RKHS.

The proposed scheme achieves asymptotic consensus under

some reasonable assumptions. Furthermore, we showed that

the respective regret bound grows sublinearly with time. In

the case of a network comprising only one node, the proposed

method can be regarded as a fixed budget alternative for online

kernel-based learning. The presented simulations validate the

theoretical results and demonstrate the effectiveness of the

proposed scheme.

10

TABLE V
MEAN TRAINING TIMES FOR QKLMS AND RFFKLMS.

Experiment QKLMS time RFFKLMS time QKLMS dictionary size

Example 5 0.55 sec 0.35 sec M = 1088
Example 6 0.47 sec 0.15 sec M = 104
Example 7 0.02 sec 0.0057 sec M = 7
Example 8 0.03 sec 0.008 sec M = 32

APPENDIX A

PROOF OF PROPOSITION 2

In the following, we will use the notation Lk,n(θ) :=
L(xk,n, yk,n, θ) to shorten the respective equations. Choose

any g ∈ B[0D,U2]. It holds that

‖ψk,n − g‖2 − ‖θk,n − g‖2 = −‖ψk,n − θk,n‖2

− 2〈θk,n −ψk,n,ψk,n − g〉 = −µ2
n‖∇Lk,n(ψk,n)‖2

+ 2µn〈∇Lk,n(ψk,n),ψk,n − g〉. (20)

Moreover, as Lk,n is convex, we have:

Lk,n(θ) ≥ Lk,n(θ′) + 〈h, θ − θ′〉, (21)

for all θ, θ′ ∈ dom(Lk,n) where h := ∇Lk,n(θ) is the

gradient (for a differentiable cost function) or a subgradient

(for the case of a non–differentiable cost function). From (20),

(21) and the boundness of the (sub)gradient we take

‖ψk,n − g‖2 − ‖θk,n − g‖2 ≥ −µ2
nU

2

− 2µn(Lk,n(g) − Lk,n(ψk,n)), (22)

where U is an upper bound for the (sub)gradient. Recall that

for the whole network we have: ψ
n
= Aθn−1 and that for

any doubly stochastic matrix, A, its norm equals to its largest

eigenvalue, i.e., ‖A‖ = λmax = 1. A respective eigenvector is

g = (gT . . . , gT)T ∈ R
DK , hence it holds that g = Ag and

‖ψ
n
− g‖ = ‖Aθn−1 −Ag‖ ≤ ‖A‖‖θn−1 − g‖

= ‖θn−1 − g‖ (23)

where ψ
n
= (ψT

n , . . . ,ψ
T
n)

T ∈ R
DK . Going back to (22) and

summing over all k ∈ N , we have:

∑

k∈N
(‖ψk,n − g‖2 − ‖θk,n − g‖2) ≥

−µ2
nKU

2 − 2µn

∑

k∈N
(Lk,n(g) − Lk,n(ψk,n)). (24)

However, for the left hand side of the inequality we obtain
∑

k∈N (‖ψk,n−g‖2−‖θk,n−g‖2) = ‖ψn
−g‖2−‖θn−g‖2.

If we combine the last relation with (23) and (24) we have

‖θn−1 − g‖2 − ‖θn − g‖2 ≥
−µ2

nKU
2 − 2µn

∑

k∈N
(Lk,n(g)− Lk,n(ψk,n)). (25)

The last inequality leads to

1

µn
‖θn−1 − g‖2 −

1

µn+1
‖θn − g‖2 =

+
1

µn
(‖θn−1 − g‖2 − ‖θn − g‖2)

+

(

1

µn
− 1

µn+1

)

‖θn − g‖2 ≥

− µnKU
2 − 2

∑

k∈N
(Lk,n(g)− Lk,n(ψk,n))

+ 4KU2
2

(

1

µn
− 1

µn+1

)

,

where we have taken into consideration, Assumption 3 and

the boundeness of g. Next, summing over i = 1, . . . , N + 1,

taking into consideration that
∑N

i=1 µi ≤ 2µ
√
N (Assumption

1) and noticing that some terms telescope, we have:

1

µ
‖θ0 − g‖2 −

1

µN+1
‖θN − g‖2 ≥ −KU22µ

√
N

+ 2

N
∑

i=1

∑

k∈N
(Lk,i(ψk,i)− Lk,i(g)) + 4KU2

2

(

1

µ
−
√
N + 1

µ

)

.

Rearranging the terms and omitting the negative ones com-

pletes the proof:

N
∑

i=1

∑

k∈N
(Lk,i(ψk,i)− Lk,i(g))

≤ 1

2µ
‖θ0 − g‖2 +KU2µ

√
N + 2KU2

2

√
N + 1

µ

≤ 1

2µ
‖θ0 − g‖2 +KU2µ

√
N + 2KU2

2

√
N + 1

µ
.

APPENDIX B

PROOF OF PROPOSITION 3

For the whole network, the step update of RFF-DKLMS

can be recasted as

θn = Aθn−1 + µVnεn, (26)

where εn = (ε1,n, ε2,n, . . . , εK,n)
T and εk,n = yk,n −

ψT
k,nzΩ(xk,n), or equivalently, εn = y

n
− V T

n Aθn−1. If we

define Un = θn − θo and take into account that Ag = g, for

all g ∈ R
DK , such that g = (gT , gT , . . . , gT)T for g ∈ R

D,

we obtain:

Un = Aθn−1 + µVn(yn − V
T
n Aθn−1)− θo

= A(θn−1 − θo) + µVn(V
T
n θo + ǫn + η

n
− V T

n Aθn−1)

= AUn−1 − µVnV
T
n AUn−1 + µVnǫn + µVnηn

If we take the mean values and assume that θk,n and zΩ(xk,n)
are independent for all k = 1, . . . ,K , n = 1, 2, . . . , we have

E[Un] = (IKD − µR)AE[Un−1] + µE[Vnǫn] + µE[Vnηn
].

Taking into account that ηn and Vn are independent, that

E[ηn] = 0 and that for large enoughD we have E[Vnǫn] ≈ 0,

we can take E[Un] ≈ ((IKD − µR)A)
n−1

E[U1]. Hence, if

11

all the eigenvalues of (IKD −µR)A have absolute value less

than 1, we have that E[Un] → 0. However, since A is a

doubly stochastic matrix we have ‖A‖ ≤ 1 and

‖(IKD − µR)A‖ ≤ ‖IKD − µR‖‖A‖ ≤ ‖IKD − µR‖.

Moreover, as IKD − µR is a diagonal block matrix, its

eigenvalues are identical to the eigenvalues of its blocks, i.e.,

the eigenvalues of ID − µRzz . Hence, a sufficient condition

for convergence is |1 − µλD(Rzz)| < 1, which gives the

result. �

Remark 4. Observe that |λmax ((IKD − µR)A) | ≤
|λmax ((IKD − µR)IKD) |, which means that the spectral

radius of (IKD − µR)A is generally smaller than that of

(IKD − µR)IKD (which corresponds to the non-cooperative

protocol). Hence, cooperation under the diffusion rationale

has a stabilizing effect on the network [8].

APPENDIX C

PROOF OF PROPOSITION 4

Let Bn = E[UnU
T
n], where Un = AUn−1 −

µVnV
T
n AUn−1 +µVnǫn +µVnηn

. Taking into account that

the noise is i.i.d., independent from Un and Vn and that ǫn
is close to zero (if D is sufficiently large), we can take that:

Bn =ABn−1A
T − µABn−1A

TR− µRABn−1A
T

+ µ2σ2
ηR+ µ2E[VnV

T
n AUn−1U

T
n−1A

TVnV
T
n].

For sufficiently small step-sizes, the rightmost term can be

neglected [53], [49], hence we can take the simplified form

Bn =ABn−1A
T − µABn−1A

TR− µRABn−1A
T

+ µ2σ2
ηR. (27)

Next, we observe that Bn, R and A can be regarded as block

matrices, that consist of K ×K blocks with size D×D. We

will vectorize equation (27) using the vecbr operator, as this

has been defined in [54]. Assuming a block-matrix C:

C =

C11 C12 ... C1K
C21 C22 ... C2K

.

.

.

.

.

.

.

.

.

CK1 CK2 ... CKK

,

the vecbr operator applies the following vectorization:

vecbrC = (vecCT
11, vecC

T
12, . . . , vecC

T
1K , . . . ,

vecCT
K1 vecC

T
K2, . . . , vecC

T
KK)T .

Moreover, it is closely related to the following block Kro-

necker product:

D ⊠ C =

D ⊗ C11 D ⊗ C12 ... D ⊗ C1K
D ⊗ C21 D ⊗ C22 ... D ⊗ C2K

.

.

.

.

.

.

.

.

.

D ⊗ CK1 D ⊗ CK2 ... D ⊗ CKK

.

The interested reader can delve into the details of the vecbr
operator and the unbalanced block Kronecker product in [54].

Here, we limit our interest to the following properties:

1) vecbr(DCE
T) = (E ⊠D) vecbr C.

2) (C ⊠D)(E ⊠ F) = CE ⊠DF .

Thus, applying the vecbr operator, on both sizes of (27)

we take bn = (A ⊠ A)bn−1 − µ ((RA) ⊠A) bn−1 −
µ ((A)⊠RA) bn−1 + µ2σ2

ηr, where bn = vecbrBn and

r = vecbrR. Exploiting the second property, we can take:

(RA) ⊠A = (RA) ⊠ (IDKA) = (R⊠ IDK)(A⊠A),

A⊠ (RA) = (IDKA)⊠ (RA) = (IDK ⊠R)(A ⊠A).

Hence, we finally get:

bn =(ID2K2 − µ (R⊠ IDK − IDK ⊠A)) (A⊠A)bn−1

+ µ2σ2
ηr,

which gives the result.

REFERENCES

[1] K. Slavakis, G. Giannakis, and G. Mateos, “Modeling and optimization
for big data analytics:(statistical) learning tools for our era of data
deluge,” IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 18–31,
2014.

[2] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun, “Map-reduce for machine learning on multicore,” Ad-

vances in neural information processing systems, vol. 19, p. 281, 2007.
[3] D. Agrawal, S. Das, and A. El Abbadi, “Big data and cloud computing:

current state and future opportunities,” in Proceedings of the 14th

International Conference on Extending Database Technology. ACM,
2011, pp. 530–533.

[4] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEE transactions on knowledge and data engineering, vol. 26, no. 1,
pp. 97–107, 2014.

[5] A. H. Sayed, “Diffusion adaptation over networks,” Academic Press

Library in Signal Processing, vol. 3, pp. 323–454, 2013.
[6] S. Theodoridis, Machine Learning: A Bayesian and Optimization Per-

spective. Academic Press, 2015.
[7] S. Chouvardas, K. Slavakis, and S. Theodoridis, “Adaptive robust

distributed learning in diffusion sensor networks,” IEEE Transactions

on Signal Processing, vol. 59, no. 10, pp. 4692–4707, 2011.
[8] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over

adaptive networks: Formulation and performance analysis,” IEEE Trans-

actions on Signal Processing, vol. 56, no. 7, pp. 3122–3136, July 2008.
[9] R. L. Cavalcante, I. Yamada, and B. Mulgrew, “An adaptive projected

subgradient approach to learning in diffusion networks,” IEEE Transac-

tions on Signal Processing, vol. 57, no. 7, pp. 2762–2774, 2009.
[10] I. D. Schizas, G. Mateos, and G. B. Giannakis, “Distributed LMS for

consensus-based in-network adaptive processing,” IEEE Transactions on
Signal Processing, vol. 57, no. 6, pp. 2365–2382, 2009.

[11] G. Mateos, I. D. Schizas, and G. B. Giannakis, “Distributed recursive
least-squares for consensus-based in-network adaptive estimation,” IEEE
Transactions on Signal Processing, vol. 57, no. 11, pp. 4583–4588, 2009.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:

Numerical Methods, 2nd ed. Athena-Scientific, 1999.
[13] A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione,

“Gossip algorithms for distributed signal processing,” Proceedings of

the IEEE, vol. 98, no. 11, pp. 1847–1864, 2010.
[14] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation

over networks,” IEEE Transactions on Signal Processing, vol. 62, no. 16,
pp. 4129–4144, 2014.

[15] J. Plata-Chaves, N. Bogdanovic, and K. Berberidis, “Distributed
diffusion-based LMS for node-specific adaptive parameter estimation,”
IEEE Transactions on Signal Processing, vol. 63, no. 13, pp. 3448–3460,
2015.

[16] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed support vector machines,” Journal of Machine Learning Re-

search, vol. 11, no. May, pp. 1663–1707, 2010.
[17] Z. J. Towfic, J. Chen, and A. H. Sayed, “On distributed online classi-

fication in the midst of concept drifts,” Neurocomputing, vol. 112, pp.
138–152, 2013.

[18] B. Scholkopf and A. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization and Beyond. MIT Press, 2002.
[19] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.

Cambridge UK: Cambridge University Press, 2004.
[20] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed.

Academic Press, 2009.

12

[21] R. Mitra and V. Bhatia, “The diffusion-KLMS algorithm,” in ICIT, 2014,
Dec 2014, pp. 256–259.

[22] W. Gao, J. Chen, C. Richard, and J. Huang, “Diffusion adaptation over
networks with kernel least-mean-square,” in CAMSAP, 2015.

[23] C. Symeon and D. Moez, “A diffusion kernel LMS algorithm for
nonlinear adaptive networks,” in ICASSP, 2016.

[24] A. Rahimi and B. Recht, “Random features for large scale kernel
machines,” in NIPS, vol. 20, 2007.

[25] N. Cristianini and J. Shawe-Taylor, An introduction to support vector
machines and other kernel-based learning methods. Cambridge Uni-
versity Press, 2000.

[26] G. Wahba, Spline Models for Observational Data, volume 59 of CBMS-
NSF Regional Conference Series in Applied Mathematics. Philadelphia:
SIAM, 1990.

[27] W. Liu, P. Pokharel, and J. C. Principe, “The kernel Least-Mean-Square
algorithm,” IEEE Transanctions on Signal Processing, vol. 56, no. 2,
pp. 543–554, Feb. 2008.

[28] P. Bouboulis and S. Theodoridis, “Extension of Wirtinger’s Calculus to
Reproducing Kernel Hilbert spaces and the complex kernel LMS,” IEEE

Transactions on Signal Processing, vol. 59, no. 3, pp. 964–978, 2011.

[29] S. Van Vaerenbergh, J. Via, and I. Santamana, “A sliding-window kernel
rls algorithm and its application to nonlinear channel identification,” in
ICASSP, vol. 5, may 2006, p. V.

[30] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares
algorithm,” IEEE Transanctions on Signal Processing, vol. 52, no. 8,
pp. 2275–2285, Aug. 2004.

[31] K. Slavakis and S. Theodoridis, “Sliding window generalized kernel
affine projection algorithm using projection mappings,” EURASIP Jour-

nal on Advances in Signal Processing, vol. 19, p. 183, 2008.

[32] K. Slavakis, P. Bouboulis, and S. Theodoridis, “Adaptive multiregression
in reproducing kernel Hilbert spaces: the multiaccess MIMO channel
case,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 23(2), pp. 260–276, 2012.

[33] K. Slavakis, S. Theodoridis, and I. Yamada, “On line kernel-based
classification using adaptive projection algorithms,” IEEE Transactions

on Signal Processing, vol. 56, no. 7, pp. 2781–2796, Jul. 2008.

[34] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos:
primal estimated sub-gradient solver for svm,” Mathematical

Programming, vol. 127, no. 1, pp. 3–30, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s10107-010-0420-4

[35] K. Slavakis, P. Bouboulis, and S. Theodoridis, “Online learning in
reproducing kernel Hilbert spaces,” in Signal Processing Theory and

Machine Learning, ser. Academic Press Library in Signal Processing,
R. Chellappa and S. Theodoridis, Eds. Academic Press, 2014, pp.
883–987.

[36] W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filtering.
Hoboken, NJ: Wiley, 2010.

[37] C. Richard, J. Bermudez, and P. Honeine, “Online prediction of time
series data with kernels,” IEEE Transactions on Signal Processing,
vol. 57, no. 3, pp. 1058 –1067, march 2009.

[38] W. Gao, J. Chen, C. Richard, and J. Huang, “Online dictionary learning
for kernel LMS,” IEEE Transactions on Signal Processing, vol. 62,
no. 11, pp. 2765 – 2777, 2014.

[39] B. Chen, S. Zhao, P. Zhu, and J. Principe, “Quantized kernel least mean
square algorithm,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 23, no. 1, pp. 22 –32, jan. 2012.

[40] S. Zhao, B. Chen, C. Zheng, P. Zhu, and J. Principe, “Self-organizing
kernel adaptive filtering,” EURASIP Journal on Advances in Signal

Processing, (to appear).

[41] C. Williams and M. Seeger, “Using the Nystrom method to speed up
kernel machines,” in NIPS, vol. 14, 2001, pp. 682 – 688.

[42] P. Drineas and M. W. Mahoney, “On the Nystrom method for approxi-
mating a gram matrix for improved kernel-based learning,” JMLR, vol. 6,
pp. 2153 – 2175, 2005.

[43] A. Rahimi and B. Recht, “Weighted sums of random kitchen sinks: re-
placing minimization with randomization in learning,” in NIPS, vol. 22,
2009, pp. 1313 – 1320.

[44] D. J. Sutherland and J. Schneider, “On the error of random Fourier
features,” in UAI, 2015.

[45] T. Yang, Y.-F. Li, M. Mahdavi, J. Rong, and Z.-H. Zhou, “Nyström
method vs random Fourier features: A theoretical and empirical com-
parison,” in NIPS, vol. 25, 2012, pp. 476–484.

[46] L. Bottou, “http://leon.bottou.org/projects/lasvm.”

[47] MIT, Strategic Engineering Research Group, MatLab Tools for Network
analysis, “http://strategic.mit.edu/.”

[48] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” IEEE Trans-
actions on Signal Processing, vol. 56, no. 7, pp. 3122–3136, 2008.

[49] F. S. Cattiveli and A. H. Sayed, “Diffusion LMS strategies for distributed
estimation,” IEEE Transactions on Signal Processing, vol. 58, no. 3, pp.
1035–1048, 2010.

[50] W. Parreira, J. Bermudez, C. Richard, and J.-Y. Tourneret, “Stochastic
behavior analysis of the gaussian kernel least-mean-square algorithm,”
Signal Processing, IEEE Transactions on, vol. 60, no. 5, pp. 2208–2222,
May 2012.

[51] A. Singh, N. Ahuja, and P. Moulin, “Online learning with kernels:
Overcoming the growing sum problem,” MLSP, September 2012.

[52] P. Bouboulis, S. Pougkakiotis, and S. Theodoridis, “Efficient KLMS and
KRLS algorithms: A random Fourier feature perspective,” SSP, 2016.

[53] S. C. Douglas and M. Rupp, Digital Signal Processing Fundamentals.
CRC Press, 2009, ch. Convergence Issues in the LMS Adaptive Filter,
pp. 1–21.

[54] R. H. Koning and H. Neudecker, “Block Kronecker products and the
vecb operator,” Linear Algebra and its Applications, vol. 149, pp. 165–
184, 1991.

Pantelis Bouboulis Pantelis Bouboulis received the
B.Sc. degree in Mathematics and the M.Sc. and
Ph.D. degrees in Informatics and Telecommunica-
tions from the National and Kapodistrian Univer-
sity of Athens, Greece, in 1999, 2002 and 2006,
respectively. From 2007 till 2008, he served as an
Assistant Professor in the Department of Informatics
and Telecommunications, University of Athens. In
2010, he has received the Best scientific paper award
for a work presented in the International Conference
on Pattern Recognition, Istanbul, Turkey. Currently,

he is a Research Fellow at the Signal and Image Processing laboratory of
the department of Informatics and Telecommunications of the University
of Athens and he teaches mathematics at the Zanneio Model Experimental
Lyceum of Pireas. From 2012 since 2014, he served as an Associate Editor
of the IEEE Transactions of Neural Networks and Learning Systems. His
current research interests lie in the areas of machine learning, fractals, signal
and image processing.

Symeon Chouvardas Symeon Chouvardas received
the B.Sc., M.Sc. (honors) and Ph.D. degrees from
National and Kapodistrian University of Athens,
Greece, in 2008, 2011, and 2013, respectively. He
was granted a Heracletus II Scholarship from GSRT
(Greek Secretariat for Research and Technology)
to pursue his PhD. In 2010 he was awarded with
the Best Student Paper Award for the Interna-
tional Workshop on Cognitive Information Process-
ing (CIP), Elba, Italy and in 2016 the Best Paper
Award for the International Conference on Com-

munications, ICC, Kuala Lumpur, Malaysia. His research interests include:
machine learning, signal processing, compressed sensing and online learning.

http://dx.doi.org/10.1007/s10107-010-0420-4

13

Sergios Theodoridis (F’ 08) is currently Professor
of Signal Processing and Machine Learning in the
Department of Informatics and Telecommunications
of the University of Athens. His research interests
lie in the areas of Adaptive Algorithms, Distributed
and Sparsity-Aware Learning, Machine Learning and
Pattern Recognition, Signal Processing for Audio
Processing and Retrieval. He is the author of the
book Machine Learning: A Bayesian and Optimiza-
tion Perspective, Academic Press, 2015, the co-
author of the best-selling book Pattern Recognition,

Academic Press, 4th ed. 2009, the co-author of the book Introduction to
Pattern Recognition: A MATLAB Approach, Academic Press, 2010, the co-
editor of the bookEfficient Algorithms for Signal Processing and System
Identification, Prentice Hall 1993, and the co-author of three books in Greek,
two of them for the Greek Open University. He currently serves as Editor-in-
Chief for the IEEE Transactions on Signal Processing. He is Editor-in-Chief
for the Signal Processing Book Series, Academic Press and co-Editor in Chief
for the E-Reference Signal Processing, Elsevier. He is the co-author of seven
papers that have received Best Paper Awards including the 2014 IEEE Signal
Processing Magazine best paper award and the 2009 IEEE Computational
Intelligence Society Transactions on Neural Networks Outstanding Paper
Award. He is the recipient of the 2014 IEEE Signal Processing Society
Education Award and the 2014 EURASIP Meritorious Service Award. He
has served as a Distinguished Lecturer for the IEEE SP and CAS Societies.
He was Otto Monstead Guest Professor, Technical University of Denmark,
2012, and holder of the Excellence Chair, Dept. of Signal Processing and
Communications, University Carlos III, Madrid, Spain, 2011. He has served
as President of the European Association for Signal Processing (EURASIP), as
a member of the Board of Governors for the IEEE CAS Society, as a member
of the Board of Governors (Member-at-Large) of the IEEE SP Society and
as a Chair of the Signal Processing Theory and Methods (SPTM) technical
committee of IEEE SPS. He is Fellow of IET, a Corresponding Fellow of the
Royal Society of Edinburgh (RSE), a Fellow of EURASIP and a Fellow of
IEEE.

	I Introduction
	II Preliminaries
	II-A RKHS
	II-B Kernel Online Learning
	II-C Approximating the Kernel with random Fourier Features

	III Distributed kernel-based Learning
	III-A Consensus and regret bound
	III-B Diffusion SVM (Pegasos) Algorithm
	III-C Diffusion KLMS
	III-C1 Example 1. A Linear Expansion in terms of kernels
	III-C2 Example 2
	III-C3 Example 3
	III-C4 Example 4

	IV Revisiting Online Kernel based learning
	IV-1 Example 5. A Linear expansion in terms of Kernels
	IV-2 Example 6
	IV-3 Example 7
	IV-4 Example 8

	V Conclusion
	Appendix A: Proof of Proposition ??
	Appendix B: Proof of Proposition ??
	Appendix C: Proof of Proposition ??
	References
	Biographies
	Pantelis Bouboulis
	Symeon Chouvardas
	Sergios Theodoridis

