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Stochastic L-BFGS: Improved Convergence Rates
and Practical Acceleration Strategies

Renbo Zhao, Student Member, William B. Haskell, and Vincent Y. F. Tan, Senior Member

Abstract—We revisit the stochastic limited-memory BFGS (L-
BFGS) algorithm. By proposing a new coordinate transformation
framework for the convergence analysis, we prove improved con-
vergence rates and computational complexities of the stochastic
L-BFGS algorithms compared to previous works. In addition,
we propose several practical acceleration strategies to speed up
the empirical performance of such algorithms. We also provide
theoretical analyses for most of the strategies. Experiments on
large-scale logistic and ridge regression problems demonstrate
that our proposed strategies yield significant improvements vis-
à-vis competing state-of-the-art algorithms.

Index Terms—Stochastic optimization, L-BFGS algorithm,
Large-scale data, Linear Convergence, Acceleration strategies

I. INTRODUCTION

We are interested in the following (unconstrained) convex
finite-sum minimization problem

min
x∈Rd

[
f(x) ,

1

n

n∑
i=1

fi(x)

]
, (1)

where d and n denote the ambient dimension of the decision
vector and the number of component functions respectively.
Problems in the form of (1) play important roles in machine
learning and signal processing. One important class of such
problems is the empirical risk minimization (ERM) problem,
where each fi assumes the form

fi(x) , `(aTi x, bi) + λR(x). (2)

In (2), ` : R × R → R+ denotes a smooth loss function,
R : Rd → R+ a smooth convex regularizer (e.g., Tikhonov),
λ ≥ 0 the regularization weight and {(ai, bi)}ni=1 ⊆ Rd+1

the set of feature-response pairs. Depending on the form of `
and R, many important machine learning problems—such as
logistic regression, ridge regression and soft-margin support
vector machines—are special cases of ERM.

We focus on the case where both n and d are large, and f
is ill-conditioned (i.e., the condition number of f is large).1

In the context of ERM, this means the dataset {(ai, bi)}ni=1

that defines (1) is large and the feature vectors ai have high
ambient dimension. However, the points typically belong to a
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1In this work, the condition number of a (strongly) convex function refers
to that of its Hessian.

low-dimensional manifold. Such a setting is particularly rele-
vant in the big-data era, due to unprecedented data acquisition
abilities.

When n is large, the computational costs incurred by the
batch optimization methods (both first- and second-order)
are prohibitive, since in such methods the gradients of all
the component functions {fi}ni=1 need to be computed at
each iteration. Therefore, stochastic (randomized) optimization
methods have become very popular. At each iteration, only a
subset of component functions, rather than all of them, are
processed. In this way, for a given time budget, much more
progress can be made towards global optima compared to a
single-step taken for batch methods. When d is large, Newton-
or quasi-Newton-based methods (both batch and stochastic)
incur both high computational and storage complexities. Con-
sequently only first-order and limited-memory quasi-Newton
methods (e.g., L-BFGS [2]) are practical in this setting.

A. Related Works

When both n and d are large, as in our setting, most of
research efforts have been devoted to stochastic first-order
methods, which include stochastic gradient descent (SGD) [3],
[4] and its variance-reduced modifications [5]–[8]. However,
these methods do not make use of the curvature information.
This limits their abilities to find highly accurate solutions for
ill-conditioned problems. In order to incorporate the curvature
information in the limited-memory setting, recently much
progress have been made toward developing stochastic L-
BFGS algorithm. A partial list of such works includes [9]–[17].
In particular, the first convergent algorithm was proposed by
Mokhtari and Ribeiro [12]. Later, the algorithm in [15] makes
use of the subsampled Hessian-vector products to form the
correction pairs (as opposed to using difference of stochastic
gradients) and achieves better results than previous methods.
However, the convergence rate is sublinear (in the strongly-
convex case), similar to that of SGD. Later, Moritz et al. [16]
combines this method with stochastic variance-reduced gra-
dient (SVRG) and proves linear convergence of the resulting
algorithm. The algorithm in [17] maintains the structure of
this algorithm but incorporates the block BFGS update to
collect more curvature information in the optimization process.
Although the convergence rate of this new method is similar
to that in [16], experimental results demonstrate practical
speedups introduced by the block BFGS update. Finally, there
also exist a large volume of works on decentralized second-
order methods [18]–[24] that aim to coordinate multiple
distributed agents (with computational and storage abilities)
in the optimization task. Since we are not concerned with
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decentralized optimization algorithms in this paper, we do not
discuss these works in details here.

B. Motivations and Main Contributions

Our work can be motivated from both theory and practice.
In terms of theory, although linear convergence (in expecta-
tion) has been shown for both algorithms in [16] and [17],
the convergence rates (and hence computational complexities)
therein can be potentially further improved. (The analysis
method in [17] mainly follows that in [16], so we treat the
analyses in both works in a unified manner.) In addition, these
results may be strengthened in a probabilistic sense, e.g., from
convergence in expectation to convergence in probability or
almost surely. In terms of practice, in addition to block BFGS
update, there may exist several other practical strategies that
can potentially further accelerate2 the algorithm in [16]. Based
on these two aspects, our work consists of the following main
contributions.

1) We propose a coordinate transformation framework to
analyze stochastic L-BFGS-type algorithms in [16] and [17].
Our analysis framework yields a much improved (linear)
convergence rate (both in expectation and almost surely) and
computational complexity. The essential idea of our method is
to unify the analysis of stochastic first-order and second-order
methods; as a result, it opens new avenues of designing and
analyzing other variants of stochastic second-order algorithms
based on their first-order counterparts.

2) We conduct a computational complexity analysis for the
stochastic L-BFGS algorithms, which is the first of its kind.

3) We propose several practical acceleration strategies to
speed up the convergence of the stochastic L-BFGS algorithm
in [16]. We demonstrate the efficacy of our strategies through
numerical experiments on logistic and ridge regression prob-
lems. We also prove linear convergence for most of these
strategies.

II. PRELIMINARIES

A. Notations

We use lowercase, bold lowercase and bold uppercase letters
to denote scalars, vectors and matrices respectively. For a
matrix U ∈ Rm1×m0 , we denotes its (p, q)-th entry as upq .
For a function f : Rm1 → Rm2 , define the function f ◦U as
the composition (f ◦ U)(z) , f(Uz), for any z ∈ Rm0 . A
continuously differentiable function g : Rd → R is L-smooth
(L>0) if and only if ∇g is L-Lipschitz on Rd. We use N to
denote the set of natural numbers. For any n ∈ N, we define
[n] , {1, . . . , n} and (n] , {0, 1, . . . , n}. Accordingly, for
a sequence of sets {An}n≥0, define A(n] , {A0, . . . ,An},
for any n ∈ N. As usual, lim infn→∞An , ∪n≥0 ∩j≥n Aj
and lim supn→∞An , ∩n≥0 ∪j≥n Aj . For a set A, denote
its complement as Ac. For any sequence {xi}i≥0, we define∑q
i=p xi , 0 if p > q. We use ‖·‖ to denote both the `2

norm of a vector and the spectral norm of a matrix. We
use B and H (with subscripts and superscripts) to denote

2In this work, we refer “acceleration” to general strategies that speed up
the algorithm, not necessarily the ones based on momentum methods.

the approximate Hessian and approximate inverse Hessian
in L-BFGS algorithms respectively, following the convention
in [25]. H is also known as the metric matrix [26]. In this
work, technical lemmas (whose indices begin with ‘T’) will
appear in Appendix E.

B. Assumptions on Component Functions fi
Assumption 1. For each i ∈ [n], fi is convex and twice
differentiable on Rd. For ERM problems (2), we assume these
two properties are satisfied by the loss function ` in its first
argument on R and by the regularizer R on Rd.

Assumption 2. For each i ∈ [n], fi is µi-strongly convex and
Li-smooth on Rd, where 0 < µi ≤ Li.

Remark 1. Assumptions 1 and 2 are standard in the analysis
of both deterministic and stochastic second-order optimization
methods. The strong convexity of fi in Assumption 2 ensures
positive curvature at any point in Rd, which in turn guarantees
the well-definedness of the BFGS update. As a common
practice in the literature [15], [16], this condition can typically
be enforced by adding a strongly convex regularizer (e.g.,
Tikhonov) to fi. Due to the strong convexity, (1) has a unique
solution, denoted as x∗.

III. ALGORITHM

We will provide a refined analysis of the optimization
algorithm (with some modifications) suggested in [16] and
so we recapitulate it in Algorithm 1. This algorithm can be
regarded as a judicious combination of SVRG and L-BFGS
algorithms. We use s and t to denote the outer and inner
iteration indices respectively and r to denote the index of
metric matrices {Hr}r≥0. We also use xs,t and xs to denote
an inner iterate and outer iterate respectively.

Each outer iteration s consists of m inner iterations. Before
the inner iterations, we first compute a full gradient gs ,
∇f(xs). In each inner iteration (s, t), the only modification
that we make with respect to (w.r.t.) the original algorithm
in [16] is that in computing the stochastic gradient vs,t, the
index set Bs,t ⊆ [n] of size b is sampled with replacement
nonuniformly [27], [28]. Specifically, the elements in Bs,t are
sampled i.i.d. from a discrete distribution P , (p1, . . . , pn),
such that for any i ∈ [n], pi = Li/

∑n
j=1 Lj . As will be

seen in Lemma 3, compared to uniform sampling, nonuniform
sampling leads to a better variance bound on the stochastic
gradient vs,t. Using Bs,t and ∇f(xs), we then compute vs,t
according to (7) in Algorithm 1, where

∇fBs,t
(x) ,

1

b

∑
i∈Bs,t

1

npi
∇fi(x), ∀x ∈ Rd. (3)

This specific way to construct vs,t reduces the variance of vs,t
to zero as s→∞ (see Lemma 3), and serves as a crucial step
in the SVRG framework.

Then we compute the search direction Hrvs,t. The metric
matrix Hr serves as an approximate of the inverse Hessian
matrix and therefore contains the local curvature information
at the recent iterates. Consequently, Hrvs,t may act as a better
descent direction than vs,t. Since storing Hr may incur high
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storage cost (indeed, Θ(d2) space) for large d, (stochastic) L-
BFGS-type methods compute Hrvs,t each time from a set of
recent correction pairsHr (that only occupies Θ(d) space) and
vs,t. In this way, the limitation on memory can be overcome.

Denote M ∈ N as the memory parameter. We next describe
the construction of the set of recent correction pairs Hr ,
{(sj ,yj)}rj=r−M ′+1, where M ′,min{r,M}. Together with
vs,t, this set will be used to compute the matrix-vector product
Hrvs,t. Before doing so, in line 13, we first compute the
averaged past iterates {xr}r≥0 from {xs,t}s≥0,t∈(m] for every
Υ inner iterates, where Υ∈ [m]. Based on xr−1 and xr, we
compute the most recent correction pair (sr,yr) in line 15.
Following [15], in computing yr, we first sample an index set
Tr ⊆ [n] of size bH uniformly without replacement, and then
let yr = ∇2fTr (xr)sr, where

∇2fTr (xr) ,
1

bH

∑
i∈Tr

∇2fi(xr), (4)

denotes the sub-sampled Hessian at xr. Finally, we update
Hr−1 to Hr by inserting (sr,yr) into Hr−1 and deleting
(sr−M ′ ,yr−M ′) from it.

Based on Hr, a direct approach to compute Hrvs,t would
be computing Hr first and then forming the product with vs,t.
Computing Hr involves applying M ′ BFGS updates to

H(r−M ′)
r ,

sTr yr

‖yr‖2
I (5)

using {(sj ,yj)}rj=r−M ′+1. For each k ∈ {r−M ′+1, . . . , r},
the update is

H(k)
r =

(
I− yksk

T

ykT sk

)
H(k−1)
r

(
I− skyk

T

ykT sk

)
+

sksk
T

ykT sk
. (6)

Finally we set Hr = H
(r)
r . Instead of using this direct

approach, we adopt the two-loop recursion algorithm [25,
Algorithm 7.4] to compute Hrvs,t as a whole. This method
serves the same purpose as the direct one, but, as we shall see,
with much reduced computation.

At the end of each outer iteration s, the starting point of next
outer iteration, xs+1 is either uniformly sampled (option I) or
averaged (option II) from all the past inner iterates {xs,t}t∈[m].
As shown in Theorem 1, these two options can be analyzed
in a unified manner.

Remark 2. Under many scenarios (e.g., the ridge and logistic
regression problems in Section VII), the smoothness parame-
ters {Li}ni=1 can be accurately estimated. (For ERM problems,
these parameters are typically data-dependent.) If in some
cases, accurate estimates of these parameters are not available,
we can simply employ uniform sampling, which is a special
case of our weighted sampling technique.

IV. CONVERGENCE ANALYSIS

A. Definitions

Let {ij}j∈[n] and {ij}j∈[n] be permutations of [n] such that
µmin , µi1 ≤ · · · ≤ µin and Li1 ≤ · · · ≤ Lin , Lmax. Given

Algorithm 1 Stochastic L-BFGS Algorithm with Nonuniform
Mini-batch Sampling

1: Input: Initial decision vector x0, mini-batch sizes b and
bH, parameters m, M and Υ, step-size η, termination
threshold ε

2: Initialize s := 0, r := 0, x0 = 0, H0 := I, H0 := ∅
3: Repeat
4: Compute a full gradient gs , ∇f(xs)
5: xs,0 := xs

6: for t = 0, 1, . . . ,m− 1
7: Sample a set Bs,t with size b
8: Compute a variance-reduced gradient

vs,t := ∇fBs,t(xs,t)−∇fBs,t(x
s) + gs (7)

9: Compute Hrvs,t from Hr and vs,t
10: xs,t+1 := xs,t − ηHrvs,t
11: if sm+ t > 0 and (sm+ t) ≡ 0 mod Υ
12: r := r + 1
13: xr := 1

Υ

(∑t
l=max{0,t−Υ+1} xs,l

+
∑m
l=min{m+1,t−Υ+m+2} xs−1,l

)
14: Sample a set Tr with size bH
15: sr := xr − xr−1, yr := ∇2fTr (xr)sr
16: Update Hr := {(sj ,yj)}rj=r−M ′+1

17: end if
18: end for
19: Option I: Sample τs uniformly randomly from [m] and

set xs+1 := xs,τs
20: Option II: xs+1 := 1

m

∑m
t=1 xs,t

21: s := s+ 1
22: Until

∣∣f(xs)− f(xs−1)
∣∣ < ε

23: Output: xs

any ñ ∈ [n], define

µñ ,
1

ñ

ñ∑
j=1

µij and Lñ ,
1

ñ

n∑
j=n−ñ+1

Lij . (8)

Accordingly, define

κmax ,
Lmax

µmin
and κñ ,

Lñ
µñ

. (9)

In particular, define µ , µn, L , Ln and κ , L/µ. Denote
the probability space on which the sequence of (random)
iterates {xs,t}s≥0,t∈(m] in Algorithm 1 is defined as (Ω,Σ,P),
where Σ is the Borel σ-algebra of Ω. We also define a filtration
{Fs,t}s≥0,t∈(m−1] such that Fs,t contains all the informa-
tion up to the time (s, t). Formally, Fs,t , σ({τj}s−1

j=0 ∪
{Bi,j}i∈(s−1],j∈(m−1] ∪ {Bs,j}t−1

j=0 ∪ {Tj}
b(sm+t)/Lc
j=0 ), where

σ
(
{xj}nj=1

)
denotes the σ-algebra generated by random vari-

ables {xj}nj=1. Define Fs , Fs,0.

To introduce our coordinate transformation framework, we
define some transforms of variables appearing in Algorithm 1.
Specifically, for any s, t, r ≥ 0, define x̃s,t,r , H

−1/2
r xs,t,
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x̃s,r , H
−1/2
r xs, x̃∗r , H

−1/2
r x∗ and ṽs,t,r , H

1/2
r vs,t.3

We also define transformed functions f̃i,r , fi ◦ H1/2
r and

f̃r , 1
n

∑n
i=1 f̃i,r, for any i ∈ [n] and r ≥ 0.

To state our convergence results, we define the notions of
linear convergence and R-linear convergence.

Definition 1. A sequence {xn}n≥0⊆Rd is said to converge
to x ∈ Rd linearly (or more precisely, Q-linearly) with rate
ι ∈ (0, 1) if

lim sup
n→∞

‖xn+1 − x‖
‖xn − x‖

≤ ι. (10)

We say xn → x R-linearly with rate ι′ ∈ (0, 1) if there exists
a nonnegative sequence {εn}n≥0 such that ‖xn−x‖ ≤ εn for
sufficiently large n and εn → 0 linearly with rate ι′.

B. Preliminary Lemmas

From the definitions of transformed variables and functions
in Section IV-A, we immediately have the following lemmas.

Lemma 1. For any s, t, r ≥ 0 and i ∈ [n], we have

f̃i,r(x̃s,t,r) = fi(xs,t), (11)

∇f̃i,r(x̃s,t,r) = H1/2
r ∇fi(xs,t), (12)

∇2f̃i,r(x̃s,t,r) = H1/2
r ∇2fi(xs,t)H

1/2
r . (13)

Lemma 2. If there exist 0 < γ′ ≤ Γ′ such that γ′I � Hr �
Γ′I for all r ≥ 0, then for any i ∈ [n] and r ≥ 0, f̃i,r is
twice differentiable, (µiγ

′)-strongly convex and (LiΓ
′)-smooth

on Rd. Consequently, f̃r is twice differentiable, (γ′µ)-strongly
convex and (Γ′L)-smooth on Rd.

Next we derive two other lemmas that will not only be
used in the analysis later, but have the potential to be applied
to more general problem settings. Specifically, Lemma 3 can
be applied to any stochastic optimization algorithms based
on SVRG and Lemma 4 can be applied to any finite-sum
minimization algorithms based on L-BFGS methods (not nec-
essarily stochastic in nature). The proofs of Lemmas 3 and 4
are deferred to Appendices A and B respectively.

Lemma 3 (Variance bound of vs,t). In Algorithm 1, we have
EBs,t

[vs,t|Fs,t] = ∇f(xs,t) and

EBs,t

[
‖vs,t −∇f(xs,t)‖2 |Fs,t

]
≤ 4L

b
(f(xs,t)− f(x∗) + f(xs)− f(x∗)) . (14)

Remark 3. In previous works [16], [17], a uniform mini-batch
sampling of Bs,t was employed, and different variance bounds
of vs,t were derived. In [16, Lemma 6], the bound was

4Lmax (f(xs,t)− f(x∗) + f(xs)− f(x∗)) . (15)

In [17, Lemma 2], this bound was slightly improved to

4Lmax((f(xs,t)− f(x∗))

+ (1− 1/κmax) (f(xs)− f(x∗))). (16)

3As will be shown in Lemma 4, for any r ≥ 0, Hr � γI for some γ > 0.
Therefore, H1/2

r (and H
−1/2
r ) are well-defined.

However, both of these bounds fail to capture the dependence
on the mini-batch size b. In contrast, in this work we consider
a nonuniform mini-batch sampling (with replacement). Due
to division by b and L ≤ Lmax (indeed in many cases, L �
Lmax), our bound in (14) is superior to (15) and (16). As will
be seen in Theorem 1, our better bound (14) leads to a faster
(linear) convergence rate of Algorithm 1.

Lemma 4 (Uniform Spectral Bound of {Hr}r≥0). The spectra
of {Hr}r≥0 are uniformly bounded, i.e., for each r ≥ 0, γI �
Hr � ΓI, where4

γ ,
1

(M + 1)LbH
and Γ ,

κM+1
bH

µbH(κbH − 1)
. (17)

Remark 4. In [13], [15], [16], the authors make use of a
classical technique in [2] to derive a different uniform spectral
bound of {Hr}r≥0. Their technique involves applying tr(·)
and det(·) recursively to the BFGS update rule

B(k)
r = B(k−1)

r − B
(k−1)
r sksk

TB
(k−1)
r

skTB
(k−1)
r sk

+
yky

T
k

sTk yk
, (18)

where B
(k)
r , (H

(k)
r )−1 denotes the approximate Hessian

matrix at step k in the reconstruction of Br , (Hr)
−1. The

lower and upper bounds derived by this technique are

γ̃ =
1

(d+M)Lmax
and Γ̃ = (d+M)d+M−1κ

d+M−1
max

µmin

respectively. As will be seen in Proposition 1, the overall
computational complexity of Algorithm 1 heavily depends
on the estimated (uniform) condition number of {Hr}r≥0.
Therefore, it is instructive to compute this quantity for both
(γ,Γ) and (γ̃, Γ̃) as

κH ,
Γ

γ
= (M + 1)

κM+2
bH

κbH − 1
≈ (M + 1)κM+1

bH
, (19)

κ̃H ,
Γ̃

γ̃
= (M + d)M+dκM+d

max , (20)

where the approximation in (19) follows from κbH � 1
(see Footnote 4). By comparing (19) and (20), we notice our
estimate for the condition number of {Hr}r≥0, namely κH,
is smaller than those in [15] and [16], namely κ̃H, in several
aspects. First, κH does not grow (exponentially) with the data
dimension d. Second, κH depends on κbH , which is usually
much smaller than κmax. Third, even if we set d = 1 in
(20), the factor M + 1 in (19) is much smaller than the factor
(M + 1)M+1 in (20). As a result, our improved estimate of
the condition number of {Hr}r≥0 will lead to a much better
computational complexity estimate (see Proposition 1).

C. Main Results

Our main convergence results consist of Theorem 1 and
Corollary 1, which provide linear convergence guarantees of
f(xs) to f(x∗) in expectation and almost surely, respectively.

4We assume κbH > 1 for any bH ∈ [n] since we focus on the setting where
f is ill-conditioned, i.e., κbH ≥ κ� 1. If κbH = 1 for some bH ∈ [n], then
Γ = (κMbH

+M)/µbH and γ remains the same. The proof for this case can
be straightforwardly adapted from that in Section B.
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Theorem 1. In Algorithm 1, choose η <min{b/12, 1}/(ΓL)
and m sufficiently large. With either option I or II, we have

E [f(xs)− f(x∗)] ≤ ρs
(
f(x0)− f(x∗)

)
, where (21)

ρ =
b

γµmη(b− 4ηΓL)
+

4ηΓL

b− 4ηΓL

(
1 +

1

m

)
< 1. (22)

Proof. Fix an outer iteration s and consider an inner iteration
t. Define r , b(sm+ t)/Lc. For brevity, we omit the depen-
dence of r on s and t. The iteration in line 10 of Algorithm 1
becomes

x̃s,t+1,r = x̃s,t,r − ηṽs,t,r. (23)

Define δ̃s,t,r, ṽs,t,r−∇f̃r(x̃s,t,r). From Lemmas 1 and 3,

EBs,t
[ṽs,t,r| Fs,t] = H1/2

r ∇f(xs,t) = ∇f̃r(x̃s,t,r) and (24)

EBs,t

[
‖δ̃s,t,r‖2

∣∣∣Fs,t] ≤ ∥∥∥H1/2
∥∥∥2 4L

b
(f(xs,t)− f(x∗)

+ f(xs)− f(x∗))

≤ 4ΓL

b

(
f̃r(x̃s,t,r)− f̃r(x̃∗r) + f̃r′(x̃

s,r′)− f̃r′(x̃∗r′)
)
, (25)

where r′ , bsm/Lc. Using (23), we can express the distance
between x̃s,t+1,r and x̃∗r as

‖x̃s,t+1,r − x̃∗r‖
2

= ‖x̃s,t,r − x̃∗r‖
2

+ 2η
(η

2
‖ṽs,t,r‖2 − 〈ṽs,t,r, x̃s,t,r − x̃∗r〉

)
. (26)

We can show
η

2
‖ṽs,t,r‖2−〈ṽs,t,r, x̃s,t,r−x̃∗r〉 ≤−

(
f̃r(x̃s,t+1,r)−f̃r(x̃∗r)

)
−
〈
δ̃s,t,r, x̃s,t+1,r − x̃∗r

〉
− γµ

2
‖x̃s,t,r − x̃∗r‖

2 (27)

from steps (28) to (32) on the next page. In (30), we use the
condition η ≤ 1/(ΓL). In (32), we use the (ΓL)-smoothness
of f̃r and the (γµ)-strong convexity of f̃r in Lemma 2
respectively.
Now, substituting (27) into (26), we have

‖x̃s,t+1,r − x̃∗r‖
2 ≤ (1− ηγµ) ‖x̃s,t,r − x̃∗r‖

2

− 2η
(
f̃r(x̃s,t+1,r)− f̃r(x̃∗r)

)
− 2η

〈
δ̃s,t,r, x̃s,t+1,r − x̃∗r

〉
= (1− ηγµ) ‖x̃s,t,r − x̃∗r‖

2 − 2η
(
f̃r(x̃s,t+1,r)− f̃r(x̃∗r)

)
+ 2η2‖δ̃s,t,r‖2 − 2η

〈
δ̃s,t,r, x̃s,t,r − x̃∗r

〉
. (33)

Taking expectation w.r.t. Bs,t and using (24) and (25), we have

EBs,t

[
‖x̃s,t+1,r − x̃∗r‖

2
+2η(f̃r(x̃s,t+1,r)− f̃r(x̃∗r))

∣∣∣Fs,t]
≤ (1− ηγµ) ‖x̃s,t,r − x̃∗r‖

2
+

8

b
ΓLη2(f̃r(x̃s,t,r)− f̃r(x̃∗r)

+ f̃r′(x̃
s,r′)− f̃r′(x̃∗r′)). (34)

By bounding the factor 1− ηγµ by 1, we can telescope (34)
over t = 0, . . . ,m− 1 and obtain

EBs,(m−1]

[
‖x̃s,m,r − x̃∗r‖

2
∣∣∣Fs]+ 2mη

(
1− 4

b
ΓLη

)
×
{ 1

m

m∑
t=1

EBs,(t−1]

[
f̃r(x̃s,t,r)− f̃r(x̃∗r)

∣∣∣Fs,t−1

]}

≤ ‖x̃s,r
′
− x̃∗r′‖2 +

8

b
ΓLη2(1 +m)

(
f̃r′(x̃

s,r′)− f̃r′(x̃∗r′)
)
.

(35)

If we use option II to choose xs+1 (in line 20), we have
x̃s+1,r′′ = 1/m

∑m
i=1 x̃s,t,r′′ , where r′′ , b(s+ 1)m/Lc.

Using (11) and Jensen’s inequality, we have

1

m

m∑
t=1

EBs,(t−1]

[
f̃r(x̃s,t,r)− f̃r(x̃∗r)

∣∣∣Fs,t−1

]
≥ EBs,(m−1]

[
f̃r′′(x̃

s+1,r′′)− f̃r′′(x̃∗r′′)
∣∣∣Fs] . (36)

Alternatively, if we use option I to determine xs+1 (in line 19),
we still have (36) (with inequality replaced by equality). If we
further use Lemma T-1 to upper bound the term ‖x̃s,r′−x̃∗r′‖2
in (35), we have

2mη

(
1− 4

b
ΓLη

)
EBs,(m−1]

[
f̃r′′(x̃

s+1,r′′)− f̃r′′(x̃∗r′′)
∣∣∣Fs]

≤
(

8

b
ΓLη2(1 +m) +

2

γµ

)(
f̃r′(x̃

s,r′)− f̃r′(x̃∗r′)
)
. (37)

Using (11) again and rearranging, we have

E
[
f(xs+1)− f(x∗)

∣∣Fs] ≤ ρ(f(xs)− f(x∗)). (38)

We take expectation on both sides to complete the proof. �

Remark 5. We compare our linear convergence rate ρ in (22)
with those in [16] and [17]. Since the convergence rates in
these two works are almost the same, we use the rate in [16]
for comparison. The linear rate ρ̃ in [16] equals

1

2γ̃µminmη(1− ηΓ̃Lmaxκmaxκ̃H)
+

ηΓ̃Lmaxκmaxκ̃H

1− ηΓ̃Lmaxκmaxκ̃H

.

For simplicity, if we let b = 1, µmin = µ, Lmax = L,
γ̃ = γ, Γ̃ = Γ and ignore other constant factors,5 we
notice that there is an additional multiplicative factor κκH

associated with ηΓL in ρ̃. As a result ρ̃ > ρ. A more
direct way to observe the detrimental effects of this additional
κκH is to compare the computational complexities resulting
from ρ and ρ̃. See Remark 9 for details. The reason that
we manage to avoid this factor in our rate ρ is precisely
because we adopt the coordinate transformation framework
in our analysis (see proof above). Specifically, by absorbing
the sequence of metric matrices {Hr}r≥0 into decision vectors
and functions, we are able to proceed through bounding the
(expected squared Euclidean) distance between x̃s,t+1,r and
x̃∗r , instead of directly bounding f(xs,t+1) via the smoothness
property of f (cf. proof of Theorem 7 in [16]). Thus in our
analysis, we avoid the additional appearance of L and Γ (which
leads to the additional factor κκH).

Corollary 1. In Algorithm 1, {f(xs)}s≥0 converges to f(x∗)
R-linearly almost surely with rate ρ.

Proof. Our proof is inspired by [29, Corollary 2] and mainly
leverages the Borel-Cantelli lemma [30]. For any ε′ > 0 and

5However, bear in mind that by doing all these substitutions, ρ̃ has already
been much improved.
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f̃r(x̃s,t+1,r) +
η

2
‖ṽs,t,r‖2 − 〈ṽs,t,r, x̃s,t,r − x̃∗r〉+

〈
δ̃s,t,r, x̃s,t+1,r − x̃∗r

〉
+
γµ

2
‖x̃s,t,r − x̃∗r‖

2 (28)

= f̃r(x̃s,t+1,r)−
〈
ṽs,t,r, x̃s,t+1,r +

η

2
ṽs,t,r − x̃∗r

〉
+
〈
δ̃s,t,r, x̃s,t+1,r − x̃∗r

〉
+
γµ

2
‖x̃s,t,r − x̃∗r‖

2 (29)

≤ f̃r(x̃s,t+1,r)−
ΓL

2
η2 ‖ṽs,t,r‖2 −

〈
ṽs,t,r − δ̃s,t,r, x̃s,t+1,r − x̃∗r

〉
+
γµ

2
‖x̃s,t,r − x̃∗r‖

2 (30)

= f̃r(x̃s,t+1,r)−
〈
∇f̃r(x̃s,t,r), x̃s,t+1,r − x̃s,t,r

〉
− ΓL

2
‖ηṽs,t,r‖2 −

〈
∇f̃r(x̃s,t,r), x̃s,t,r − x̃∗r

〉
+
γµ

2
‖x̃s,t,r − x̃∗r‖

2 (31)

≤ f̃r(x̃s,t,r) +
〈
∇f̃r(x̃s,t,r), x̃∗r − x̃s,t,r

〉
+
γµ

2
‖x̃∗r − x̃s,t,r‖2 ≤ f̃r(x̃

∗
r). (32)

0<δ< 1 − ρ, consider the sequence of events {Es}s∈N such
that

Es ,
{
ω ∈ Ω :

f(xs(ω))− f(x∗)

(ρ+ 1/
√
s)s

> ε′
}
, ∀ s ∈ N. (39)

Therefore,
∞∑
s=1

P(Es)
(a)

≤
∞∑
s=1

E[f(xs)− f(x∗)]

ε′(ρ+ 1/
√
s)s

(b)

≤ f(x0)− f(x∗)

ε′

∞∑
s=1

(
ρ

ρ+ 1/
√
s

)s
(c)

≤ f(x0)− f(x∗)

ε′

∞∑
s=1

exp

(
−

√
s

ρ+ 1/
√
s

)
(d)

≤ f(x0)− f(x∗)

ε′

∞∑
s=1

exp

(
−
√
s

ρ+ 1

)
<∞, (40)

where in (a) we use Markov’s inequality, in (b) we use (21)
in Theorem 1, in (c) we use

(1 + x)s ≤ esx,∀ s ∈ N ∪ {0},∀x > −1, (41)

and in (d) we use the fact that s ≥ 1. Thus by the Borel-
Cantelli lemma, P(lim sups→∞Es)=0, or equivalently,

P
(

lim inf
s→∞

Ec
s

)
= 1. (42)

The definition of Es in (39) implies that

lim inf
s→∞

Ec
s =

{
ω ∈ Ω : lim sup

s→∞

f(xs(ω))− f(x∗)

(ρ+ 1/
√
s)s

≤ ε′
}
.

Since ε′ > 0 is arbitrary, we have

P
(

lim
s→∞

f(xs)− f(x∗)

(ρ+ 1/
√
s)s

= 0

)
= 1 (43)

or equivalently, f(xs)−f(x∗) = o((ρ+1/
√
s)s) almost surely,

for any s ≥ 0. For convenience, define a sequence {$s}s≥0

such that $s , (ρ+ 1/
√
s)s, for any s ≥ 0. By applying (41)

to $s, we have $s = ρs−Θ(
√
s) (the implied constant in the

Θ(·) notation is positive). Since ρ−Θ(
√
s+1)/ρ−Θ(

√
s) → 1 as

s→∞, lims→∞$s+1/$s = ρ as desired. �

Remark 6. Note that the analysis techniques in Corollary 1 can
be applied to any stochastic algorithm with linear convergence
in expectation, therefore are of independent interest. Although
a similar result was proved in [29, Corollary 2], it is weaker
than Corollary 1. Specifically, the almost sure linear conver-

gence rate therein is strictly worse than the corresponding
linear rate in expectation. In contrast, by leveraging refined
analysis techniques, we show that such a degradation can
indeed be avoided.

Remark 7. By the µ-strong convexity of f (see Assumption 2),
we have ‖x− x∗‖2≤ (2/µ)(f(x) − f(x∗)), for any x∈Rd.
Therefore, the linear convergence of {f(xs)}s≥0 to f(x∗) in
expectation (in Theorem 1) also implies the R-linear conver-
gences of {xs}s≥0 to x∗ in expectation. Similarly, we can also
derive the almost sure R-linear convergence of {xs}s≥0 to x∗

from Corollary 1.

V. COMPLEXITY ANALYSIS

In this section we provide a framework for analyzing the
computational complexity of the stochastic L-BFGS algorithm
in Algorithm 1. Our framework can be easily generalized to
other stochastic second-order algorithms, e.g., SQN algorithm
in [15]. To begin with, we make two additional assumptions.

Assumption 3. For any x ∈ Rd and i ∈ [n], the gradient
∇fi(x) can be computed in O(d) operations.6

Assumption 4. For any x,y ∈ Rd and i ∈ [n], the Hessian-
vector product∇2fi(x)y can be computed in O(d) operations.

Remark 8. These two assumptions are naturally satisfied for
ERM problems (2) with Tikhonov regularization. For these
problems, R(x) = 1

2 ‖x‖
2 and

∇`(aTi x, bi) = `′(aTi x, bi)ai + λx, (44)

∇2`(aTi x, bi)y = `′′(aTi x, bi)(a
T
i y)ai + λy, (45)

where `′(·, ·) and `′′(·, ·) are first and second derivatives of
`(·, ·) w.r.t. the first argument. We easily see that the right-
hand sides of both (44) and (45) can be computed in O(d)
operations.

From Algorithm 1, we observe that its total computational
cost C can be split into three parts. The first part C1 in-
volves computing the variance-reduced gradient vs,t in (7),
the second part C2 involves computing Hrvs,t (via two-loop
recursion) in line 9, and the third part C3 involves computing
the correction pair (sr,yr) in line 15.

6An operation refers to evaluation of an elementary function, such as
addition, multiplication and logarithm.
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Proposition 1. Let Assumptions 1 to 4 hold. In Algorithm 1,

C1 = O ((n+ κκH)d log (1/ε)) , (46)
C2 = O (κκHd log (1/ε)) , (47)
C3 = O (d log (1/ε)) . (48)

Thus the total computational cost C ,
∑3
i=1 Ci equals

O ((n+ κκH) d log (1/ε)) . (49)

Proof. We leverage techniques that have become standard in
the SVRG literature (e.g., [27]). In (22), if we choose η =
θb/(ΓL) for some 0 < θ < 1/12, m = θ′κκH/b for some
large enough positive constant θ′, and use 1 + 1/m ≤ 2, then

ρ =
1

θ′θ(1− 4θ)
+

8θ

1− 4θ
< 1. (50)

As a result, the required number of outer iterations to achieve
ε-suboptimality is O(log(1/ε)). Thus (46) follows from As-
sumption 3 and that 2mb gradients (of component functions)
are computed in each inner iteration. If we further choose
M = Θ(b), then (47) follows from the fact that two-loop
recursion can be done in O(Md) time [25, Chapter 7].
Lastly, if we choose bH = Θ(Υ), then we obtain (48) using
Assumption 4. �

Remark 9. Following a similar argument, we can deduce the
total complexity estimate C̃ based on the linear rate ρ̃ (see
Remark 5) derived in [16] as

C̃ = O
((
n+ b(κmaxκ̃H)2

)
d log (1/ε)

)
. (51)

Compared with C̃, we observe that our complexity estimate C
in (49) is much better, in several aspects. First, the dependence
of C on the condition number κκH is linear, rather than
quadratic. The quadratic dependence of κmaxκ̃H in C̃ is
precisely caused by the additional κmaxκ̃H in ρ̃ (see Remark
5). Second, C is independent of the mini-batch size b. The
appearance of b in C̃ is a result of the loose bound on variance
of vs,t (cf. (15) and (16)). Third, the condition number κκH in
C is much more smaller than κmaxκ̃H in C̃ for ill-conditioned
problems. This is a result of the non-uniform sampling of Bs,t
and our improved bound on the spectra of {Hr}r≥0.

Remark 10. As our coordinate transformation framework uni-
fies the design and analysis of stochastic first- and second-
order algorithms, we believe that momentum-based acceler-
ation techniques for stochastic first-order methods [31], [32]
can be applied to Algorithm 1 as well. (Details are left to
future work.) In this case, the dependence on κκH in C may
be further improved to

√
κκH [32].

VI. ACCELERATION STRATEGIES

In this section, we propose three practical acceleration
strategies. We follow the notations in Section III and Algo-
rithm 1. As will be shown in Section VII-B, all of these strate-
gies result in faster convergence in practice. For the first and
second strategies, we also provide their theoretical analyses in
Propositions 2 and 3, respectively. See Appendices C and D
for the proofs of these two propositions.

A. Geometric Sampling/Averaging Scheme

Instead of choosing xs+1 according to option I or II in
Algorithm 1, inspired by [33], we can introduce a “forgetting”
effect by considering two other schemes:
option III: Sample τs randomly from [m] from the distribution
Q , (βm−1/c, βm−2/c, . . . , 1/c) and set xs+1 := xs,τs ,
option IV: xs+1 := 1

c

∑m
t=1 β

m−txs,t,
where 0 < β ≤ 1 − ηγµ < 1 and the normalization constant
c ,

∑m
t=1 β

m−t. Since β ∈ (0, 1), we observe that in both
options III and IV, more recent iterates (i.e., iterates xs,t
with larger indices t) will have larger contributions to xs+1.
Theoretically, these two schemes can be analyzed in a unified
manner, as shown in the following proposition.

Proposition 2. In Algorithm 1, choose η<min{b/12,1}/(ΓL)
and m sufficiently large. With either option III or IV, we have

E [f(xs)− f(x∗)] ≤ ρs
(
f(x0)− f(x∗)

)
, where (52)

ρ ,
b

γµc′η
(
b− 4ηΓL/(1− ηγµ)

)
+

4ηΓL

b− 4ηΓL/(1− ηγµ)

(
1 +

1

c′

)
< 1 (53)

and c′ , c/(1− ηγµ)m.

Remark 11. In the literature [16], [17], usually option I or II
(in Algorithm 1) is analyzed to prove that the stochastic
L-BFGS algorithms therein converge linearly. However, for
faster convergence in practice, xs+1 is chosen to be the
last inner iterate xs,m. However, the latter strategy is not
amenable to linear convergence analysis. This gap between
theory and practice is filled in by our geometric sampling or
averaging scheme, i.e., option III or IV. Specifically, as shown
in Figure 2, our scheme not only yields linear convergence
in theory, but also performs as well as the “last inner iterate”
scheme in practice.

B. Subsampled Gradient Stabilization

In Algorithm 1, at the beginning of each outer iteration
indexed by s, we compute a full gradient gs to stabilize
the subsequent (inner) iterations. Inspired by [7], we pro-
pose a strategy that only computes a subsampled gradient
g̃s at the start of each outer iteration s. Specifically, we
uniformly sample a subset B̃s of [n] with size b̃s without
replacement and then form g̃s , (1/b̃s)

∑
i∈B̃s
∇fi(xs). The

size of B̃s, namely b̃s, increases with the index s until it
reaches n. By judiciously choosing b̃s, we can show that
the resulting algorithm still enjoys linear convergence with
rate ρ, when integrated with the geometric sampling/averaging
scheme in Section VI-A. Before we formally state this result
in Proposition 3, we first make an assumption in addition to
Assumptions 1 and 2.

Assumption 5. The inner iterates {xs,t}s≥0,t∈[m] generated
by the modified algorithm in Section VI-B are bounded almost
surely, i.e., there exists B < ∞ such that for any s ≥ 0 and
t ∈ [m], ‖xs,t − x∗‖ ≤ B.
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Proposition 3. Let Assumptions 1, 2 and 5 hold. For any
ξ > 0 and S ∈ N, and for any s ∈ (S], if we choose
b̃s ≥ b̃s , nS2αs/(S

2αs + (n − 1)ξ2ρ2s), where αs ,
1/n

∑n
i=1 ‖∇fi(xs)‖

2, we have

E [f(xs)− f(x∗)] ≤ ρs
{(

f(x0)− f(x∗)
)

+

(
1 +

1

c′

)
ξb

b− 4ΓLη/(1− ηγµ)

(
κ

1/2
H B + ηΓξ

)}
. (54)

Remark 12. Several remarks are in order. First, we remark
that assumptions involving almost sure boundedness of iter-
ates (e.g., Assumption 5) are commonplace in the stochastic
optimization literature [7], [34], [35] and are always observed
to hold in experiments. Second, under this assumption, we
can show that {αs}s≥0 are bounded almost surely using the
Lipschitz continuity of ∇fi, for any i ∈ [n] in Assumption 2.
Consequently, there exists B′ <∞ such that αs ≤ B′ for any
s ≥ 0 and hence

b̃s ≤
nS2B′

S2B′ + (n− 1)ξ2ρ2s (55)

≤ nS2B′

(n− 1)ξ2

(
ρ−2

)s
. (56)

As a sanity check, we observe that (55) increases to n as
s→∞. By further upper bounding (55) by (56), we obtain a
practical rule to select b̃s. Namely, it suffices to choose b̃s =
min{ζυs, n}, for some constants ζ > 0 and υ > 1. As shown
in Section VII, this rule works well in practice. Third, for any
ε > 0, we can choose S ∈ N such that our algorithm achieves
ε-suboptimality, i.e., E

[
f(xS)− f(x∗)

]
< ε.

C. Low-dimensional Approximate Hessians

In additional to high dimensionality and large size, spar-
sity is also a typical attribute for modern data, i.e., many
feature vectors only have a few nonzero entries. For ERM
problems (2) (with Tikhonov regularization), this implies that
the Hessian of f in (1),

∇2f(x) =
1

n

n∑
i=1

`′′(aTi x, bi)(aia
T
i ) + λI, (57)

tends to be sparse. Based on this observation, we propose a
strategy that aims to approximate ∇2f(x) by several smaller
Hessian matrices and update them efficiently. For sparse data,
collecting curvature information via smaller dense Hessians
can be more effective than directly manipulating the high-
dimensional sparse Hessian [25]. As a result, the algorithm
converges faster in practice (see Figure 4).

Before describing our strategy, we first introduce some
notations. We partition [n] into K groups, and denote the set of
partitions as P , {P1, . . . ,PK}. For any i ∈ [K], we define
Si , ∪j∈Pi

supp(aj), where supp(aj) denotes the support of
the vector aj . We define di , |Si| and denote the elements in
Si as {si,1, . . . , si,di}. We also define Fi =

∑
j∈Pi

fj so that
f = 1

n

∑K
i=1 Fi. We define a projection matrix Ui ∈ Rdi×d

such that for any p ∈ [di] and q ∈ [d], upq = 1 if q = si,p
and 0 otherwise. Accordingly, for any l ∈ Pi, define a

function φi,l : Rdi → R such that fl , φi,l ◦ Ui. Note
that φi,l is uniquely defined by the definition Ui. Also define
φi ,

∑
l∈Pi

φi,l. Therefore,

∇2f(x) =
1

n

K∑
i=1

UT
i ∇2φi(Uix)Ui, ∀x ∈ Rd. (58)

We now describe our strategy. In Algorithm 1, for any i ∈ [K]
and any j ∈ {r − M ′ + 1, . . . , r}, define correction pairs
sj,i , Ui(xj − xj−1) and yj,i ,

∑
l∈Tr,i∇

2φi,l(Uixj)sj,i,
where Tr,i with size bH/K is uniformly sampled from Pi.
Accordingly, define Sr,i , [sr−M ′+1,i, . . . , sr,i], Yr,i ,
[yr−M ′+1,i, . . . ,yr,i]. Instead of storing Hr, we only store
matrices {(Sr,i,Yr,i)}Ki=1. To reconstruct approximation Br,i

for each ∇2φi at Uixr, as usual, we apply M ′ BFGS
updates (18) (using the correction pairs stored in Sr,i and
Yr,i) to B

(0)
r,i , δr,iI, where δr,i , ‖yr,i‖2/sTr,iyr,i. This

procedure can be implemented efficiently via the method of
compact representation [25], i.e.,

Br,i = δr,iI−Wr,iM
−1
r,iW

T
r,i, (59)

Mr,i ,

[
δr,iSr,i

TSr,i Lr,i
Lr,i

T −Dr,i

]
, (60)

where Wr,i, [δ
(i)
r S

(i)
r ,Y

(i)
r ] and Lr,i and Dr,i are the lower

triangular matrix (excluding diagonal) and diagonal matrix
of STr,iYr,i respectively. Analogous to (58), we define the
approximation of ∇2f at Uixr, denoted as Br, as

Br ,
1

n

K∑
i=1

UT
i Br,iUi. (61)

We remark that the strong convexity of each function fi (see
Assumption 2), together with the full-row-rank property of
Ui, ensures ∇2φi�0 on Rdi . This implies positive curvature
sTr,iyr,i > 0 and hence the positive definiteness of Br,i, for
any r≥0 and i∈ [K]. As a result, Br�0 on Rd. This suggests
the usage of the conjugate gradient (CG) method to compute
the search direction at time (s, t), namely ps,t , −B−1

r vs,t,
via solving the positive definite system Brps,t = −vs,t. In
particular, for any z ∈ Rd, Brz and zTBrz in CG can be
computed very efficiently using (59) and (61). For example,

zTBrz =
1

n

K∑
i=1

δr,i ‖zi‖2 − (WT
r,izi)

TM−1
r,i (WT

r,izi), (62)

where zi , Uiz. We observe that the total computational
cost in (62) is O(M ′(M ′

2
+ d′)), where d′ ,

∑K
i=1 di. For

sparse data, usually d′ = O(d), so this cost is still linear
in d. In addition, we can compute (62) in parallel across
i ∈ [K]. (Intuitively, this amounts to collecting curvature from
each function φi in parallel.) In this case, the computational
time will be greatly reduced to O(M ′(M ′

2
+ maxi di)).

Since typically maxi di � d, the computational savings from
parallel curvature collection can be significant.7

7The memory parameter M (note that M ′ ≤M ) is usually set to a small
constant, e.g., 5 or 10. Thus it has less effect on the computational complexity
compared to d or maxi di.
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Remark 13. Note that if we interpret the matrices {UT
i }i∈[K]

as sketching matrices [36], then the acceleration technique in
Section VI-C can be regarded as a way of performing (approx-
imate) Hessian sketching. However, most existing methods in
the literature [17], [37]–[39] either use random sketching ma-
trices or the (deterministic) frequent directions approach [40],
which is based on the singular value decomposition. A certain
amount of information contained in the Hessian is lost or
modified in these sketching processes. In contrast, by using
the sparse binary matrices {UT

i }i∈[K], our approach merely
(deterministically) compresses the large sparse Hessian matrix
into K small dense Hessians, without changing any informa-
tion contained therein.

Remark 14. In [17], the authors proposed another acceleration
strategy called the block BFGS update [41], [42]. We remark
that this strategy can be straightforwardly combined with all
the other acceleration strategies proposed above, and may re-
sult in further acceleration of the convergence of Algorithm 1.

VII. NUMERICAL EXPERIMENTS

A. Experimental Setup

We consider two ERM problems, including logistic regres-
sion (with Tikhonov regularization) and ridge regression. For
logistic regression, bi ∈ {−1, 1} and

f log
i (x) , log

(
1 + e−bi(a

T
i x)
)

+
λ

2
‖x‖2 , ∀ i ∈ [n]. (63)

For ridge regression, bi ∈ R and

f rid
i (x) ,

(
aTi x− bi

)2
+
λ

2
‖x‖2 , ∀ i ∈ [n]. (64)

Accordingly, define f log, 1
n

∑n
i=1 f

log
i and f rid, 1

n

∑n
i=1 f

rid
i .

Simple calculations reveal that the smoothness parameters Li
of f log

i and f rid
i are given by ‖ai‖2/4+λ and 2 ‖ai‖2+λ, respec-

tively. Define the data matrix A , [a1, . . . ,an]. The condition
numbers κ of f log and f rid are given by ( 1

4nσ
2
max(A) +λ)/λ

and (2σ2
max(A)+nλ)/(2σ2

min(A) + nλ) respectively, where
σmax(A) and σmin(A) denote the largest and smallest singular
values of A respectively. In both (63) and (64), we choose
λ = 1/n, following the convention in the literature (e.g., [17]).

We tested logistic and ridge regression problems
on rcv1.binary and E2006-tfidf datasets
respectively [43]. (In the sequel we abbreviate them as
rcv1 and E2006-tf.) From (57), we defined a sparsity
estimate of ∇2f at any x ∈ Rd as % ,

∣∣supp(AAT + I)
∣∣ /d2.

The statistics of both datasets, including the (ambient) data
dimension d, number of data samples n, sparsity parameter
% and condition number κ (of f log or f rid defined by the
datasets), are summarized in Table I.8 From it, we observe
that both datasets are large-scale and sparse, but with
different d-to-n ratios and condition numbers. Through these
differences, we are able to infer the reasons for the different
performances of some acceleration strategies on different
ERM problems (shown in Section VII-B).

8The data dimension d for the original E2006-tf dataset is 150360. Due
to memory issues, we randomly subsampled its features so that d = 15036.

TABLE I
STATISTICS OF rcv1 AND E2006-tf DATASETS.

Datasets d n d/n % κ
rcv1 47236 20242 2.33 0.0154 113.17

E2006-tf 15036 16087 0.93 0.0404 1.70

For both datasets, the norms of all feature vectors {ai}ni=1

have been normalized to unit. Since the smoothness parameters
Li for both ERM problems are only dependent on ‖ai‖ and λ,
we have Li = Lj for any i, j ∈ [n]. Therefore the nonuniform
distribution P in Section III becomes uniform, and the merit
of nonuniform sampling of Bs,t cannot be observed.

To estimate the global optimum x∗ as ground truth, we
used batch L-BFGS-B algorithm [44]. We randomly initialized
x0 according to a scaled standard normal distribution. (The
performance of our algorithms were observed to be insensitive
to the initialization of x0.) We used the number of data passes
(i.e., number of data points accessed divided by n), rather
than running time, to measure the convergence rates of all the
algorithms under comparison. This has been a well-established
convention in the literature on both stochastic first-order [5]–
[7] and second-order methods [15]–[17] to make convergence
results agnostic to the actual implementation of the algorithms,
e.g., programming languages.9

Finally we describe the parameter setting. We set the mini-
batch size b =

√
n, Hessian update period Υ = 10 and the

memory parameter M = 10. We set bH = bΥ so that the
computation for yr can be amortized to each inner iteration.
We set the number of inner iterations m = n/b, so that each
outer iteration will access 2n data points. Lastly, we set η =
1 × 10−2. From Figure 1, we observe that when η is too
large, e.g., η = 0.1, Algorithm 1 only converges sublinearly;
whereas when η is too small, e.g., η = 1×10−3, Algorithm 1
converges linearly but slowly. This corresponds well to our
theoretical analysis in Theorem 1, which indicates that when
η falls below a threshold, ρ increases as η decreases. For both
ERM problems, we see that η = 1 × 10−2 yields fast linear
convergence.

B. Performance of Acceleration Strategies

We first examine the performance of Algorithm 1 with
different schemes of choosing xs+1. We consider five schemes
in total, including (a) uniform sampling (option I), (b) uniform
averaging (option II), (c) geometric sampling (option III), (d)
geometric averaging (option IV) and (e) last inner iterate (in
Remark 11). For options III and IV, we set β = 1/2. From
Figure 2, we observe that options III and IV perform as well
as the “last inner iterate” scheme, on both ERM problems, and
outperform the schemes based on uniform sampling/averaging
significantly. For all the subsequent experiments, we use
option IV to select xs+1.

9Specifically, our algorithm (Algorithm 1) was implemented in Matlab®.
However, some benchmarking algorithms (see Section VII-C) were imple-
mented in other languages, e.g., the SVRG algorithm [5] and the stochastic
L-BFGS algorithm [16] were implemented in C++ and Julia respectively. The
differences in programming language typically have a significant impact on
the actual running time of algorithms.
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We next compare the performance of Algorithm 1 with and
without using the subsampled gradient stabilization strategy
in Section VI-B. As suggested by Remark 12, we chose
b̃s = min{ζυs, n}, where ζ = n/υq , υ = 3 and q = 8. That
is, the number of component gradients in g̃s exponentially
increases in the first p = 8 outer iterations and then remains
at n. From Figure 3, we observe that this simple parameter
selection method works well on both ERM problems, espe-
cially in the initial phase (when s is small). In addition, we
also observe when s is large, both algorithms have almost the
same (linear) convergence rates. This corroborates our analysis
in Proposition 3.

We finally compare the performance of Algorithm 1 with
and without using the low-dimensional approximate Hessian
strategy in Section VI-C. We set the number of partitions
K = 5 and partition [n] evenly and randomly. From Figure 4,
we observe that our strategy leads to improvements of con-
vergence on both logistic and ridge regression problems, and
the improvement on the latter is very significant. It could be
possible that the smaller condition number of the E2006-tf
dataset enables more effective curvature collection by low-
dimensional Hessians. Nevertheless, for the rcv1 dataset,
which has a large condition number, our strategy is still effi-
cacious. Additionally, we observe that our strategy preserves
the linear convergence of Algorithm 1 on both problems. (A
theoretical analysis of this linear convergence is left to future
work.) Figure 4 shows the performance of our strategy in
a single-threaded mode; as discussed in Section VI-C, our
strategy can be much more efficient under scenarios where
parallel computational resources are available.

C. Comparison to Other Algorithms

We combined all of our acceleration strategies in Section VI
and compared the resulting algorithm with three benchmarking
algorithms, including SVRG in [5] (with mini-batch sampling
of Bs,t) and two state-of-the-art stochastic L-BFGS algorithms
in [16] and [17]. For the algorithm in [17], we focused
on its variant (b), since it consistently outperformed other
variants in experiments. We tested all the three benchmarking
algorithms on both ERM problems with different step sizes
η ∈ {10−4, 10−3, . . . , 1} and selected the best η for each
algorithm. The outer iterate xs+1 in all these algorithms were
selected via “the last inner iterate” scheme. From Figure 5,
we observe that on both ERM problems, our algorithm yields
faster convergence compared to all the benchmarking algo-
rithms. This is due to the incorporation of the acceleration
strategies in Sections VI-B and VI-C. The improvement of
convergence is particularly significant on the ridge regression
problem. This observation is consistent with our observations
in Section VII-B. In addition, we indeed observe that with
the aid of curvature information, all the stochastic L-BFGS
methods outperform the stochastic first-order method SVRG.

VIII. FUTURE WORK AND AN OPEN PROBLEM

We propose to pursue future work in the following two
directions. First, we aim to develop and analyze proximal and
momentum-based accelerated stochastic L-BFGS algorithms,

based on our coordinate transformation framework. The prox-
imal variant enables our algorithm to be applied to composite
nonsmooth (convex) objective function. The accelerated vari-
ant can potentially improve the linear convergence rate of our
algorithm, and thus reduce the total computational complexity.
Second, we aim to analyze the convergence of the strategy in
Section VI-C. In particular, Figure 4 suggests that Algorithm 1
may still converge linearly under this strategy.

Besides future work, there is also an open problem we
hope to resolve. Although we have improved the linear con-
vergence rate and computational complexity of Algorithm 1
as compared to those in [16] and [17], it seems our im-
proved complexity in (49) is still inferior to that of SVRG.
In SVRG, the complexity is O((n + κ)d log(1/ε)) [27], so
our complexity (49) has an additional multiplicative factor
κH. This contradicts the experimental results in [16], [17]
and Section VII-C, where stochastic L-BFGS-type algorithms
have been repeatedly shown to outperform their first-order
counterparts. Therefore, an interesting problem consists in
obtaining a (computational) complexity bound of the stochastic
L-BFGS algorithm that is better (or at least as good as)
that of SVRG. Indeed, a careful analysis reveals that the
additional κH arises from the uniform spectral bound of the
metric matrices {Hr}r≥0. This uniform bound is effectively
a worst-case bound, and does not reflect the local curvature
information contained in recent iterates at any time (s, t).
Since the judicious use of curvature information serves as a
very important reason for the fast convergence of the stochastic
quasi-Newton algorithms, such information should also be
reflected in theoretical analysis as well (possibly in an adaptive
spectral bound for {Hr}r≥0). We believe an effective adaptive
bound is critical for improving the complexity result in (49).

Interestingly, an incremental quasi-Newton (IQN) method
was proposed by Mokhtari et al. [14] recently. The proposed
algorithm makes use of the aggregated optimization variables,
as well as the aggregated gradients and approximate Hessians
of all the component functions to reduce the noise of gradient
and Hessian approximations. As a result, it achieves the local
superlinear convergence rate, but requires Θ(nd2) storage
space. (Note that most of the stochastic L-BFGS methods, such
as [15], [16] and Algorithm 1, only require Θ(d) memory.) The
key idea in [14] is to show the descent direction in the IQN
algorithm asympotically converges to that of the Newton’s
method. If this condition holds, then the additional factor κH in
the complexity estimate (49) may be removed. Therefore, how
to design a stochastic quasi-Newton algorithm that satisfies
this condition in the momeory-limited setting would also be
an interesting problem to pursue in the future.

APPENDIX A
PROOF OF LEMMA 3

The proof of Lemma 3 is shown in (65) to (71) on page 13.
In (67), we use the independence of ij and ij′ for j 6= j′

and (95) in Lemma T-2. In (68), we use (95) and the fact that
E
[
‖a− E[a]‖2

∣∣G] ≤ E
[
‖a‖2

∣∣G] almost surely, for any σ-
algebra G. In addition, the inequalities in (70) and (71) follow
from ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2 and (96) respectively.
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Fig. 1. Log suboptimality versus number of passes through data of Algo-
rithm 1 with different step sizes η.

0 20 40
Number of data passes

-20

-10

0

10

lo
g
(f
(x

s
)
−

f
(x

∗
)) a b c d e

(a) logistic regression (rcv1)

0 20 40
Number of data passes

-20

-10

0

10

(b) ridge regression (E2006-tf)

Fig. 2. Comparison of Algorithm 1 with different selection schemes for xs+1.

APPENDIX B
PROOF OF LEMMA 4

Our proof is inspired by [17]. For any x ∈ Rd and T ⊆ [n]
with cardinality bH, we have

µbHI � ∇
2fT (x) � LbHI. (72)

Define Vk , I−yksk
T /(yk

T sk) and Qk , sksk
T /(yk

T sk),
then (6) becomes

H(k)
r = VkH

(k−1)
r VT

k + Qk. (73)

Fix any r ∈ N. Since yk = ∇2fTr (xr)sk, we have

Vk = I− ∇
2fTr (xr)sksk

T

skT∇2fTr (xr)sk

= ∇2fTr (xr)
1/2

(
I− s̃ks̃

T
k

s̃Tk s̃k

)
∇2fTr (xr)

−1/2,

where s̃k , ∇2fTr (xr)
1/2sk. Hence

‖Vk‖ ≤
∥∥∥∇2fTr (xr)

1/2
∥∥∥∥∥∥∥∥I− s̃ks̃

T
k

‖s̃k‖2

∥∥∥∥∥ ∥∥∥∇2fTr (xr)
−1/2

∥∥∥
≤ L1/2

bH µ
−1/2
bH

= κ
1/2
bH
.

Similarly, ‖Qk‖ = ‖sk‖2/(skT∇2fTr (xr)sk) ≤ 1/µbH .
By (73), ∥∥∥H(k)

r

∥∥∥ ≤ ‖Vk‖2
∥∥∥H(k−1)

r

∥∥∥+ ‖Qk‖

≤ κbH
∥∥∥H(k−1)

r

∥∥∥+
1

µbH
. (74)
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Fig. 3. Comparison of Algorithm 1 without (Full) and with (Exp.) using the
partial gradient statblization strategy in Section VI-B.
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Fig. 4. Comparison of Algorithm 1 without (Large) and with (Small) using
the low-dimensional Hessian strategy in Section VI-C.

We apply (74) repeatedly over k=r −M ′ + 1, . . . , r, then

‖Hr‖ =
∥∥∥H(r)

r

∥∥∥ ≤ κM ′bH

∥∥∥H(r−M ′)
r

∥∥∥+
1

µbH

M ′−1∑
i=0

κibH

(a)

≤ 1

µbH

(
κM

′

bH +
κM

′

bH
− 1

κbH − 1

)

≤ 1

µbH
κM

′

bH

(
1 +

1

κbH − 1

)
(b)

≤
κM+1
bH

µbH(κbH − 1)
,

where (a) follows from the definition of H(r−M ′)
r in (5) and

sr
Tyr

yrTyr
=

s̃Tr s̃r
s̃Tr ∇2fTr (xr)s̃r

≤ 1

µbH
, (75)

and (b) follows from κbH ≥ 1 and M ′ ≤ M . To show γ =
1/(M + 1)LbH , it suffices to show ‖Br‖ ≤ (M + 1)LbH . We
derive this bound using (18). Since∥∥∥∥∥B(k−1)

r − B
(k−1)
r sksk

TB
(k−1)
r

skTB
(k−1)
r sk

∥∥∥∥∥
≤
∥∥∥∥(B(k−1)

r

)1/2
∥∥∥∥2
∥∥∥∥∥I− ŝkŝ

T
k

‖ŝk‖2

∥∥∥∥∥ =
∥∥∥B(k−1)

r

∥∥∥ ,
and ∥∥∥∥ykyTksTk yk

∥∥∥∥ =
‖yk‖2

sTk yk
=

s̃Tk∇2fTr (xr)s̃k
s̃Tk s̃k

≤ LbH , (76)
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Fig. 5. Comparison of our algorithm (Ours) with benchmarking algorithms
(SVRG, Moritz and Gower) on the rcv1 and E2006-tf datasets.

we have from (18) that∥∥∥B(k)
r

∥∥∥ ≤ ∥∥∥B(k−1)
r

∥∥∥+

∥∥∥∥ykyTksTk yk

∥∥∥∥ ≤ ∥∥∥B(k−1)
r

∥∥∥+ LbH .

Therefore,

‖Br‖ =
∥∥∥B(r)

r

∥∥∥ ≤ ∥∥∥B(r−M ′)
r

∥∥∥+M ′LbH
(a)

≤ (M + 1)LbH ,

where (a) follows from (76).

APPENDIX C
PROOF OF PROPOSITION 2

Our proof is modified from that of Theorem 1. Specifically,
our proof leverages a refined telescoping of (34). (The steps
up to (34) are unchanged.) For each t ∈ [m], we multiply both
sides of (34) by (1− ηγµ)m−t and obtain

(1− ηγµ)m−t
(
EBs,t

[
‖x̃s,t,r − x̃∗r‖

2
∣∣∣Fs,t]

+2ηEBs,t

[
f̃r(x̃s,t,r)− f̃r(x̃∗r)

∣∣∣Fs,t])
≤ (1− ηγµ)m−t

(
(1− ηγµ) ‖x̃s,t−1,r − x̃∗r‖

2

+
8

b
ΓLη2(f̃r(x̃s,t−1,r)−f̃r(x̃∗r)+f̃r′(x̃

s,r′)−f̃r′(x̃∗r′))
)
. (77)

Telescope (77) over t = 1, . . . ,m and we have

2cη

(
1− 4

b

ΓLη

1− ηγµ

)
· 1

c

m∑
t=1

(1− ηγµ)m−tEBs,(t]

[
f̃r(x̃s,t,r)− f̃r(x̃∗r)

∣∣∣Fs]
≤ (1− ηγµ)m

∥∥∥x̃s,r′ − x∗r′
∥∥∥2

+
8

b
ΓLη2 ((1− ηγµ)m + c)

(
f̃r′(x̃

s,r′)− f̃r′(x̃∗r′)
)
. (78)

Now we consider using option IV to choose xs+1. Since 0 <
β ≤ 1− ηγµ, using (11) and Jensen’s inequality, we have

1

c

m∑
t=1

(1− ηγµ)m−tEBs,(t]

[
f̃r(x̃s,t,r)− f̃r(x̃∗r)

∣∣∣Fs]
≥ EBs,(m]

[
f̃r′′(x̃

s+1,r′′)− f̃(x̃∗r′′)
∣∣∣Fs] . (79)

Alternatively, if xs+1 is determined using option III, the
definition of distribution Q still yields (79). Finally, using (93)

in Lemma T-1 to bound ‖x̃s,r′ − x̃∗r′‖2 in (78), we have

2c′η

(
1− 4

b

ΓLη

1− ηγµ

)
EBs,(m]

[
f̃r′′(x̃

s+1,r′′)− f̃(x̃∗r′′)
∣∣∣Fs]

≤
(

8

b
ΓLη2(1 + c′) +

2

γµ

)(
f̃r′(x̃

s,r′)− f̃r′(x̃∗r′)
)
. (80)

Taking expectation on both sides and using (11), we arrive
at (52).

APPENDIX D
PROOF OF PROPOSITION 3

The subsampled gradient strategy essentially introduces
errors in {gs}s≥0. Therefore, we explicit model this error by
es , g̃s−gs. We first bound the second moment of es. Since
gs = ∇f(xs), by Lemma T-3 and b̃s ≥ nS2αs/(S

2αs+(n−
1)ξ2ρ2s), we have for any s ∈ (S],

EB̃s

[
‖es‖2

]
≤ n− b̃s
b̃s(n− 1)

αs ≤
ξ2

S2
ρ2s. (81)

As a result,

EB̃s
[‖es‖] ≤

√
EB̃s

[
‖es‖2

]
≤ ξ

S
ρs. (82)

The introduction of random sets {B̃s}s≥0 requires us to
redefine the filtration {Fs,t}s≥0,t∈(m−1] as

Fs,t , σ
(
{τj}s−1

j=0 ∪ {B̃j}j∈(s] ∪ {Bi,j}i∈(s−1],j∈(m−1]

∪ {Bs,j}t−1
j=0 ∪ {Tj}

b(sm+t)/Lc
j=0

)
. (83)

As usual, we define Fs , Fs,0. In the sequel, we follow the
naming convention in coordinate transformation framework as
in Section IV-A. In particular, we define ẽs,r′ , H

1/2
r′ es. Now,

define ṽ′s,t,r , ṽs,t,r+ ẽs,r′ , then from (24) and (25), we have

EBs,t

[
ṽ′s,t,r

∣∣Fs,t] = ∇f̃r(x̃s,t,r) + ẽs,r′ , (84)

EBs,t

[∥∥∥ṽ′s,t,r −∇f̃r(x̃s,t,r)∥∥∥2
∣∣∣∣Fs,t] ≤ 4ΓL

b
(f̃r(x̃s,t,r)

− f̃r(x̃∗r) + f̃r′(x̃
s,r′)− f̃r′(x̃∗r′)) + ‖ẽs,r′‖2 . (85)

Define δ̃′s,t,r , ṽ′s,t,r − ∇f̃r(x̃s,t,r). We can derive an
inequality similar to (33) in the proof of Theorem 1, i.e.,

‖x̃s,t+1,r − x̃∗r‖
2≤(1− ηγµ) ‖x̃s,t,r−x̃∗r‖

2−2η(f̃r(x̃s,t+1,r)

− f̃r(x̃∗r)) + 2η2‖δ̃′s,t,r‖2 − 2η
〈
δ̃′s,t,r, x̃s,t,r − x̃∗r

〉
,

Taking expectation w.r.t. Bs,t and using (84) and (85), we have

EBs,t

[
‖x̃s,t+1,r − x̃∗r‖

2
+ 2η(f̃r(x̃s,t+1,r)− f̃r(x̃∗r))

∣∣∣Fs,t]
≤ (1− ηγµ) ‖x̃s,t,r − x̃∗r‖

2
+

8

b
ΓLη2(f̃r(x̃s,t,r)− f̃r(x̃∗r)

+f̃r′(x̃
s,r′)−f̃r′(x̃∗r′))+2η2 ‖ẽs,r′‖2−2η 〈ẽs,r′ , x̃s,t,r−x̃∗r〉 .

(86)

Using Cauchy-Schwartz inequality, we have

− 2η 〈ẽs,r′ , x̃s,t,r − x̃∗r〉 ≤ 2η ‖ẽs,r′‖ ‖x̃s,t,r − x̃∗r‖
≤ 2η ‖ẽs,r′‖ ‖H−1/2

r ‖ ‖xs,t − x∗‖ ≤ 2ηBγ−1/2 ‖ẽs,r′‖ . (87)
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EBs,t

[
‖vs,t −∇f(xs,t)‖2 |Fs,t

]
(65)

= EBs,t

[∥∥∥1

b

b∑
j=1

(
1/(npij )

(
∇fij (xs,t)−∇fij (xs)

)
+∇f(xs)−∇f(xs,t)

) ∥∥∥2∣∣∣Fs,t] (66)

=
1

b2

b∑
j=1

Eij
[∥∥1/(npij )

(
∇fij (xs,t)−∇fij (xs)

)
+∇f(xs)−∇f(xs,t)

∥∥2
∣∣∣Fs,t] (67)

≤ 1

b2

b∑
j=1

Eij
[∥∥1/(npij )

(
∇fij (xs,t)−∇fij (xs)

)∥∥2
∣∣∣Fs,t] (68)

=
1

b2

b∑
j=1

Eij
[∥∥1/(npij )

(
∇fij (xs,t)−∇fij (x∗)

)
+ 1/(npij )

(
∇fij (x∗)−∇fij (xs)

)∥∥2
∣∣∣Fs,t] (69)

≤ 2

b2

b∑
j=1

Eij
[∥∥1/(npij )

(
∇fij (xs,t)−∇fij (x∗)

)∥∥2
∣∣∣Fs,t]+ Eij

[∥∥1/(npij )
(
∇fij (xs)−∇fij (x∗)

)∥∥2
∣∣∣Fs,t] (70)

≤ 2

b2

b∑
j=1

2L(f(xs,t)− f(x∗)) + 2L(f(xs)− f(x∗)) =
4L

b
(f(xs,t)− f(x∗) + f(xs)− f(x∗)) . (71)

Substituting (87) into (86), and using the telescoping tech-
niques in Appendix C, we have

2cη

(
1− 4

b

ΓLη

1− ηγµ

)
1

c

m∑
t=1

(1− ηγµ)m−t

· EBs,(t]

[
f̃r(x̃s,t,r)− f̃r(x̃∗r)

∣∣∣Fs]≤(1− ηγµ)m‖x̃s,r
′
−x∗r′‖2

+
8

b
ΓLη2 ((1− ηγµ)m + c)

(
f̃r′(x̃

s,r′)− f̃r′(x̃∗r′)
)

+ 2η ((1− ηγµ)m + c)
(
Bγ−1/2 ‖ẽs,r′‖+ η ‖ẽs,r′‖2

)
.

With either option III or IV and (93) in Lemma T-1, we have

2c′η

(
1− 4

b

ΓLη

1− ηγµ

)
EBs,(m]

[
f̃r′′(x̃

s+1,r′′)− f̃(x̃∗r′′)
∣∣∣Fs]

≤
(

8

b
ΓLη2(1 + c′) +

2

γµ

)(
f̃r′(x̃

s,r′)− f̃r′(x̃∗r′)
)

+ 2η (1 + c′)
(
Bγ−1/2 ‖ẽs,r′‖+ η ‖ẽs,r′‖2

)
. (88)

Taking expectation on both sides and using (11), we have

E
[
f(xs+1)− f(x∗)

]
≤ ρE [f(xs)− f(x∗)] + (1 + 1/c′)

· b

b− 4ΓLη/(1− ηγµ)

(
Bγ−1/2E[‖ẽs,r′‖] + ηE[‖ẽs,r′‖2]

)
.

(89)

From (81) and (82), we have

E [‖ẽs,r′‖] ≤ E
[
‖H1/2

r′ ‖ ‖es‖
]
≤ Γ1/2ξ

S
ρs, (90)

E
[
‖ẽs,r′‖2

]
≤ E

[
‖H1/2

r′ ‖
2 ‖es‖2

]
≤ Γξ2

S2
ρ2s. (91)

Substituting (90) and (91) into (89), we have

E
[
f(xs+1)− f(x∗)

]
≤ ρE [f(xs)− f(x∗)]

+

(
1+

1

c′

)
b

b− 4ΓLη/(1− ηγµ)

(
κ

1/2
H B + ηΓξ

) ξ
S
ρs. (92)

Applying (92) recursively and we reach (54).

APPENDIX E
TECHNICAL LEMMAS

Lemmas T-1. T-2, and T-3 can be found in [45, Chapter 9],
[27], and [46] respectively.

Lemma T-1. If a function f : Rd → R is µ-strongly convex
and L-smooth, then for any x ∈ Rd,

µ

2
‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ 1

2µ
‖∇f(x)‖2 , (93)

1

2L
‖∇f(x)‖2 ≤ f(x)− f(x∗) ≤ L

2
‖x− x∗‖2 , (94)

where x∗ denotes the unique minimizer of f on Rd.

Lemma T-2. Let f be defined as in (1) and satisfies As-
sumption 2. Define a distribution p with support [n] such that
pi = Li/(nL), for any i ∈ [n]. Then for any x ∈ Rd,

Ei∼p
[

1

npi
∇fi(x)

]
= ∇f(x), (95)

Ei∼p

[∥∥∥∥ 1

npi
(∇fi(x)−∇fi(x∗))

∥∥∥∥2
]
≤ 2L(f(x)− f(x∗)),

(96)

where x∗ denotes the unique minimizer of f on Rd.

Lemma T-3. Let {zi}ni=1 ⊆ Rd and define z , 1/n
∑n
i=1 zi.

Uniformly sample a random subset S of [n] with size b without
replacement. Then

ES

∥∥∥∥∥1

b

∑
i∈S

zi − z

∥∥∥∥∥
2
 ≤ n− b

b(n− 1)

(
1

n

n∑
i=1

‖zi‖2
)
. (97)
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