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Abstract

This paper studies binary hypothesis testing based on measurements from a set of sensors, a subset

of which can be compromised by an attacker. The measurements from a compromised sensor can be

manipulated arbitrarily by the adversary. The asymptotic exponential rate, with which the probability

of error goes to zero, is adopted to indicate the detection performance of a detector. In practice, we

expect the attack on sensors to be sporadic, and therefore the system may operate with all the sensors

being benign for an extended period of time. This motivates us to consider the trade-off between the

detection performance of a detector, i.e., the probability of error, when the attacker is absent (defined as

efficiency) and the worst-case detection performance when the attacker is present (defined as security).

We first provide the fundamental limits of this trade-off, and then propose a detection strategy that

achieves these limits. We then consider a special case, where there is no trade-off between security and

efficiency. In other words, our detection strategy can achieve the maximal efficiency and the maximal

security simultaneously. Two extensions of the secure hypothesis testing problem are also studied and

fundamental limits and achievability results are provided: 1) a subset of sensors, namely “secure” sensors,

are assumed to be equipped with better security countermeasures and hence are guaranteed to be benign;

2) detection performance with unknown number of compromised sensors. Numerical examples are given

to illustrate the main results.
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I. INTRODUCTION

Background and Motivations: Network embedded sensors, which are pervasively used to

monitor the system, are vulnerable to malicious attacks due to their limited capacity and sparsely

spatial deployment. An attacker may get access to the sensors and send arbitrary messages, or

break the communication channels between the sensors and the system operator to tamper with

the transmitted data. Such integrity attacks have motivated many researches on how to infer

useful information from corrupted sensory data in a secure manner [1]–[3]. In this paper, we

follow this direction but with the focus on the trade-off between the performance of the inference

algorithm when the attacker is absent and the “worst-case” performance when the attacker, which

has the knowledge of the inference algorithm, is present. We define two metrics, efficiency and

security, to characterize the performance of the hypothesis testing algorithm (or detector) under

the two scenarios respectively and analyze the trade-off between security and efficiency.

Our Work and its Contributions: We consider the sequential binary hypothesis testing based

on the measurements from m sensors. It is assumed that n out of these m sensors may be

compromised by an attacker, the set of which is chosen by the attacker and fixed over time.

The adversary can manipulate the measurements sent by the compromised sensors arbitrarily.

According to Kerckhoffs’s principle [4], i.e., the security of a system should not rely on its

obscurity, we assume that the adversary knows exactly the hypothesis testing algorithm used by

the fusion center. On the other hand, the fusion center (i.e., the system operator) only knows the

number of malicious sensors n, but does not know the exact set of the compromised sensors.

At each time k, the fusion center needs to make a decision about the underlying hypothesis

based on the possibly corrupted measurements collected from all sensors until time k. Given a

hypothesis testing algorithm at the fusion center (i.e., a measurements fusion rule), the worst-case

probability of error is investigated, and the asymptotic exponential decay rate of the error, which

we denote as the “security” of the system, is adopted to indicate the detection performance. On

the other hand, when the attacker is absent, the detection performance of a hypothesis testing

algorithm, i.e., the asymptotic exponential decay rate of the error probability, is denoted by the

“efficiency”.

We focus on the trade-off between efficiency and security. In particular, we are interested in

characterizing the fundamental limits of the trade-offs between efficiency and security and the

detectors that achieve these limits.

January 22, 2018 DRAFT



3

The main contributions of this work are summarized as follows:

1) To the best of our knowledge, this is the first work that studies the trade-off between the

efficiency and security of any inference algorithm.

2) With mild assumptions on the probability distributions of the measurements, we provide the

fundamental limits of the trade-off between the efficiency and security (Corollaries 1 and 2).

Furthermore, we present detectors, with low computational complexity, that achieve these

limits (Theorem 4). Therefore, the system operator can easily adopt the detectors we

proposed to obtain the best trade-off between efficiency and security. Interestingly, in

some cases, e.g., Gaussian random variables with same variance and different mean, the

maximal efficiency and the maximal security can be achieved simultaneously (Theorem 5).

3) Similar results, i.e., the fundamental limits of the trade-off and the detectors that possess

these limits, are established with several different problem settings (Section V). This shows

that our analysis techniques are insightful and may be helpful for the future related studies.

Related Literature: A sensor is referred to as a Byzantine sensor if its messages to the fusion

center are fully controlled by an adversary1. Recently, detection with Byzantine sensors has

been studied extensively in [5]–[14], among which [5]–[7] took the perspective of an attacker

and aimed to find the most effective attack strategy, [8]–[11] focused on designs of resilient

detectors, and [12]–[14] formulated the problem in a game-theoretic way. The main results

of [5] are the critical fraction of Byzantine sensors that blinds the fusion center, which is

just the counterpart of the breakdown point in robust statistics [15], and the most effective

attack strategy that minimizes the asymptotic error exponent in the Neyman-Pearson setting, i.e.,

the Kullback–Leibler (K–L) divergence. Since the Byzantine sensors are assumed to generate

independent and identical distributed (i.i.d.) data, the resulting measurements with minimum

K–L divergence and the corresponding robust detector coincide with those in [16]. Similar

results were obtained in [6], [7] by considering non-asymptotic probability of error in Bayesian

setting and asymptotic Bayesian performance metric, i.e., Chernoff information, respectively.

The authors in [8] focused on computation efficient algorithms to determine optimal parameters

of the q-out-of-m procedure [17] in large scale networks for different fractions of Byzantine

sensors. More than two types of sensors were assumed in [9], [10]. The authors thereof proposed

1In practice, to manipulate the data of a sensor, an adversary may attack the sensor node itself or break the communication

channel between the sensor and the fusion center. In this paper, we do not distinguish these two approaches.
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a maximum likelihood procedure, which is based on the iterative expectation maximization

(EM) algorithm [18], simultaneously classifying the sensor nodes and performing the hypothesis

testing. The authors in [11] showed that the optimal detector is of a threshold structure when

the fraction of Byzantine sensors is less than 0.5. A zero-sum game was formulated in each

of [12]–[14], among which a closed-form equilibrium point of attack strategy and detector was

obtained in [14], computation efficient and nearly optimal equilibrium point (exact equilibrium

point only in certain cases) was obtained in [12], and numerical simulations were used to study

the equilibrium point in [13].

While in [5]–[10], [13] the Byzantine sensors are assumed to generate malicious data inde-

pendently, this work, as in [11], [12], [14], assumes that the Byzantine sensors may collude

with each other. The collusion model is more reasonable since the attacker is malicious and

will arbitrarily change the messages of the sensors it controlls. Notice also that compared to the

independence model, the collusion model complicates the analysis significantly. Unlike [6]–[10],

[12], [13], where the sensors only send binary messages, this work, as in [5], [11], [14], assumes

that the measurements of a benign sensor can take any value. Since the binary message model

simplifies the structure of corrupted measurements, and, hence, implicitly limits the capability of

an attacker, it is easier to be dealt with. This work differs from [11], [14] as follows. The authors

in [11] focused on one time step scenario. The analysis is thus fundamentally different and more

challenging. On the contrary, in this work the hypothesis testing is performed sequentially and

an asymptotic regime performance metric, i.e., the Chernoff information, is concerned. A similar

setting as in this work was considered in our recent work [14]. However, [14] focused on the

equilibrium point. The performance (i.e., the security and efficiency) of the obtained equilibrium

detection rule is merely one point of the admissible set that will be characterized in this paper.

Finally, we should remark that the aforementioned literature mainly focuses on designing

algorithms in adversarial environment. However, those algorithms may perform poorly in the

absence of the adversary comparing to the classic Neyman-Pearson detector or Naive Bayes

detector. A fundamental question, which we seek to answer in this paper, is that how to design

a detection strategy which performs “optimally” regardless of whether the attacker is present.

Organization: In Section II, we formulate the problem of binary hypothesis testing in adver-

sarial environments, in which the attack model, the performance indices and the notion of the

efficiency and security are defined. For the sake of completeness, we give a brief introduction

the large deviation theory in Section III, which is a key supporting technique for the later
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analysis. The main results are presented in Section IV. We first provide the fundamental limits

of the trade-off between the efficiency and security. We then propose detectors that achieve these

limits. At last, we show that the maximal efficiency and the maximal security can be achieved

simultaneously in some cases. Two extensions are investigated in Section V. After providing

numerical examples in Section VI, we conclude the paper in Section VII.

Notations: R (R+) is the set of (nonnegative) real numbers. Z+ is the set of positive integers.

The cardinality of a finite set I is denoted as |I|. For a set A ∈ R
n, int(A) denotes its interior.

For any sequence {x(k)}∞k=1, we denote its average at time k as x̄(k) ,
∑k

t=1 x(t)/k. For a

vector x ∈ R
n, the support of x, denoted by supp(x), is the set of indices of nonzero elements:

supp(x) , {i ∈ {1, 2, . . . , n} : xi 6= 0}.

II. PROBLEM FORMULATION

Consider the problem of detecting a binary state θ ∈ {0, 1} using m sensors’ measurements.

Define the measurement y(k) at time k to be a row vector:

y(k) ,
[

y1(k) y2(k) · · · ym(k)
]

∈ R
m, (1)

where yi(k) is the scalar measurement from sensor i at time k. For simplicity, we define Y(k)

as a vector of all measurements from time 1 to time k:

Y(k) ,
[

y(1) y(2) · · · y(k)
]

∈ R
mk. (2)

Given θ, we assume that all measurements {yi(k)}i=1,...,m, k=1,2,... are independent and identically

distributed (i.i.d.). The probability measure generated by yi(k) is denoted as ν when θ = 0 and it

is denoted as µ when θ = 1. In other words, for any Borel-measurable set A ⊆ R, the probability

that yi(k) ∈ A equals ν(A) when θ = 0 and equals µ(A) when θ = 1. We denote the probability

space generated by all measurements y(1), y(2), . . . as (Ωy, Fy, P
o
θ)

2, where for any l ≥ 1

P
o
θ(yi1(k1) ∈ A1, . . . , yil(kl) ∈ Al)

=







ν(A1)ν(A2) . . . ν(Al) if θ = 0

µ(A1)µ(A2) . . . µ(Al) if θ = 1
,

2The superscript “o” stands for original, which is contrasted with corrupted measurements.
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when (ij , kj) 6= (ij′, kj′) for all j 6= j′. The expectation taken with respect to P
o
θ is denoted by

E
o
θ. We further assume that ν and µ are absolutely continuous with respect to each other. Hence,

the log-likelihood ratio λ : R → R of yi(k) is well defined as

λ(yi) , log

(
dµ

dν
(yi)

)

, (3)

where dµ/dν is the Radon-Nikodym derivative.

We define fk : Rmk → [0, 1], the detector at time k, as a mapping from the measurement

space Y(k) to the interval [0, 1]. When fk(Y(k)) = 0, the system makes a decision θ̂ = 0, and

when fk(Y(k)) = 1, θ̂ = 1. When fk(Y(k)) = γ ∈ (0, 1), the system then “flips a biased coin”

to choose θ̂ = 1 with probability γ and θ̂ = 0 with probability 1 − γ. The system’s strategy

f , (f1, f2, · · · ) is defined as an infinite sequence of detectors from time 1 to ∞.

A. Attack Model

Let the (manipulated) measurements received by the fusion center at time k be

y′(k) = y(k) + ya(k), (4)

where ya(k) ∈ R
m is the bias vector injected by the attacker at time k. In the following,

Assumptions 1–3 are made on the attacker, among which Assumption 1 is in essence the only

limitation we pose.

Assumption 1 (Spare Attack). There exists an index set I ⊂ M , {1, 2, . . . , m} with |I| = n

such that
⋃∞

k=1 supp(y
a(k)) = I. Furthermore, the system knows the number n, but it does not

know the set I.

We should remark that the above assumption does not pose any restrictions on the value of

yai (k) if sensor i is compromised at time k, i.e., the bias injected into the data of a compromised

sensor can be arbitrary.

Assumption 1 says that the attacker can compromise up to n out of m sensors at each time. It is

practical to assume that the attacker possesses limited resources, i.e., the number of compromised

sensors is (non-trivially) upper bounded, since otherwise it would be too pessimistic and the

problem becomes trivial. The quantity n might be determined by the a priori knowledge about

the quality of each sensor. Alternatively, the quantity n may be viewed as a design parameter,

which indicates the resilience level that the system is willing to introduce; the details of which are
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in Remark 1. Notice also that since the worst-case attacks (over the set of compromised sensors

and the attack strategy) are concerned (the performance metric will be introduced shortly), it is

equivalent to replace the cardinality requirement |I| = n by |I| ≤ n. We should note that in [6],

[8], [12], it was also assumed that the number/fraction of malicious sensor nodes is known to

the system operator.

Moreover, the set of compromised sensors is assumed to be fixed over time. Notice that if

we assume that the set of compromised sensors has a fixed cardinality but is time-varying, i.e.,

there exists no a set like I to bound the compromised sensors, the attacker would be required

to abandon the sensor nodes it has compromised, which is not sensible. Notice that in [8]–

[10], it was assumed the set of malicious/misbehaving sensors is fixed as well. We should also

note that though this work is concerned with asymptotic performances (i.e., the security and

efficiency introduced later), the numerical simulations in Section VI show that our algorithm

indeed perform quite well in an non-asymptotic setup. Actually, if a finite-time horizon problem

is considered and the time required for an attacker to control a benign sensor is large enough,

then it is reasonable to assume that the set of compromised sensors is fixed.

In fact, the exactly same sparse attack model as in Assumption 1 has been widely adopted by

literature dealing with Byzantine sensors, e.g., state estimation [19], [20], and quickest change

detection [21].

Finally, we should note that we do not assume any pattern of the bias yai (k) for i ∈ I, i.e., the

malicious bias injected may be correlated across the compromised sensors and correlated over

time. Compared to the independence assumption in [5]–[10], [13], our assumption improves the

effectiveness of the attacker and is more realistic in the sense that the attacker is malicious and

will do whatever it wants.

Remark 1. The parameter n can also be interpreted as how many bad sensors the system

can and is willing to tolerate, which is a design parameter for the system operator. In general,

increasing n will increase the resilience of the detector under attack. However, as is shown in

the rest of the paper, a larger n may result in more conservative design and is likely to cause

a performance degradation during normal operation when no sensor is compromised.

Assumption 2 (Model Knowledge). The attacker knows the probability measure µ and ν and

the true state θ.
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By the knowledge about the sensor, the attacker can develop the probability measure µ and

ν. To obtain the true state, the attacker may deploy its own sensor network. Though it might

be difficult to satisfy in practice, this assumption is in fact conventional in literature concerning

the worst-case attacks, e.g., [5], [21]. Nevertheless, this assumption is in accordance with the

Kerckhoffs’s principle.

Assumption 3 (Measurement Knowledge). At time k, the attacker knows the current and all the

historical measurements available at the compromised sensors.

Since the attacker knows the true measurement of a compromised sensor i, yi(k), it may set

the fake measurement arrived at the fusion center y′i(k) to any value it wants by injecting yai (k).

One may also verify that all the results in this paper remain even if the attacker is “strong”

enough where at time k, it knows measurements from all the sensors Y(k).

An admissible attack strategy is any causal mapping from the attacker’s available information

to a bias vector that satisfies Assumption 1. This is formalized as follows. Let I = {i1, i2, . . . , in}.

Define the true measurements of the compromised sensors from time 1 to k as

YI(k) ,
[

yI(1) yI(2) · · · yI(k)
]

∈ R
|I|k

with

yI(k) ,
[

yi1(k) yi2(k) · · · yin(k)
]

∈ R
|I|.

Similar to Y(k), Y′(k) (Ya(k)) is defined as all the manipulated (bias vector) from time 1 to

k. The bias ya(k) is chosen as a function of the attacker’s available information at time k:

ya(k) , g(YI(k),Y
a(k − 1), I, θ, k), (5)

where g is a function3 of YI(k),Y
a(k − 1), I, θ, k such that ya(k) satisfies Assumption 1. We

denote g as an admissible attacker’s strategy. Notice that since time k is an input variable and the

available measurements YI(k),Y
a(k−1) are “increasing” with respect to time k, the definition

in (5) does not exclude the time-varying attack strategy. Denote the probability space generated

by all manipulated measurements y′(1), y′(2), . . . as (Ω, F , Pθ). The expectation taken with

respect to the probability measure Pθ is denoted by Eθ.

3The function g is possibly random. For example, given the available information, the adversary can flip a coin to decide

whether to change the measurement or not.
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B. Asymptotic Detection Performance

Given the strategy of the system and the attacker, the probability of error at time k can be

defined as

e(θ, I, k) ,







E0fk(Y
′(k)) when θ = 0,

1− E1fk(Y
′(k)) when θ = 1.

(6)

Notice that fk could take any value from [0, 1]. Hence, the expected value of fk is used to

compute the probability of error. In this paper, we are concerned with the worst-case scenario.

As a result, let us define

ǫ(k) , max
θ=0,1,|I|=n

e(θ, I, k). (7)

In other words, ǫ(k) indicates the worst-case probability of error considering all possible sets

of compromised sensors and the state θ given the detection rule f and attack strategy g. Notice

also that in accordance with Assumption 1, the set I in the above equation is fixed over time.

Ideally, for each time k, the system wants to design a detector fk to minimize ǫ(k). However,

such a task can hardly be accomplished analytically since the computation of the probability of

error usually involves numerical integration. Thus, in this article, we consider the asymptotic

detection performance in hope to provide more insight on the detector design. Define the rate

function as

ρ , lim inf
k→∞

−
log ǫ(k)

k
. (8)

Clearly, ρ is a function of both the system strategy f and the attacker’s strategy g. As such,

we will write ρ as ρ(f, g) to indicate such relations. Since ρ indicates the rate with which the

probability of error goes to zero, the system would like to maximize ρ in order to minimize the

detection error. On the contrary, the attacker wants to decrease ρ to increase the detection error.

C. Interested Problems

In practice, the attacker may not be present consistently. As a result, the system will operate

for an extended period of time with all sensors being benign. Thus, a natural question arises: is

there any detection rule that has “decent” performance regardless of the presence of the attacker?

Or is there a fundamental trade-off between security and efficiency? In other words, a detector

that is “good” in the presence of an adversary will be “bad” in a benign environment. This paper

is devoted to answering this question.
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Informally, the performance of a detection rule when there is no attacker at all is referred

to by “efficiency”, while the performance when the worst-case attacker (provided that the

attacker knows the detection rule used by the system) is present is referred to by “security”.

Mathematically speaking, given a system strategy f , denote by E(f) and S(f) its efficiency and

security respectively, which are formalized as follows:

E(f) ,ρ(f, g = 0), (9)

S(f) , inf
g
ρ(f, g) (10)

where 0 ∈ R
m is the zero vector.

III. PRELIMINARY: LARGE DEVIATION THEORY

In this section, we introduce the large deviation theory, which is a key supporting technique

of this paper.

To proceed, we first introduce some definitions. Let Mω(w) ,
∫

Rd e
w·Xdω(X), w ∈ R

d be the

moment generating function for the random vector X ∈ R
d that has the probability measure ω,

where w ·X is the dot product. Let domω , {w ∈ R
d|Mω(w) < ∞} be the support such that

Mω(w) is finite. Define the Fenchel–Legendre transform of the function logMω(w) as

Iω(x) = sup
w∈Rd

{x · w − logMω(w)}, x ∈ R
d. (11)

Theorem 1 (Multidimensional Cramér’s Theorem [22]). Suppose X(1), . . . , X(k), . . . be a

sequence of i.i.d. random vectors and X(k) ∈ R
d has the probability measure ω. Let X(k) ,

∑k

t=1X(t)/k, k ∈ Z+ be the empirical mean. Then if 0 ∈ int(domω), the probability P(X(k) ∈

A) with A ⊆ R
d satisfies the large deviation principle, i.e.,

1) if A is closed,

lim sup
k→∞

1

k
log P(X(k) ∈ A) ≤ − inf

x∈A
Iω(x).

2) if A is open,

lim inf
k→∞

1

k
logP(X(k) ∈ A) ≥ − inf

x∈A
Iω(x).
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IV. MAIN RESULTS

A. Technical Preliminaries

Denote the moment generating function of the log-likelihood ratio λ under each hypothesis

as:

M0(w) ,

∫ ∞

y=−∞

exp(wλ(y))dν(y), (12)

M1(w) ,

∫ ∞

y=−∞

exp(wλ(y))dµ(y). (13)

Furthermore, define dom0 as the region where M0(w) is finite and I0(x) as the Fenchel–Legendre

transform of logM0(w). The quantities M1(w), dom1 and I1(x) are defined similarly.

Denote the the Kullback-Leibler (K–L) divergences by

D(1‖0) ,

∫ ∞

y=−∞

λ(y)dµ, D(0‖1) , −

∫ ∞

y=−∞

λ(y)dν.

To apply the multidimensional Cramér’s Theorem and avoid degenerate problems, we adopt the

following assumptions:

Assumption 4. 0 ∈ int(dom0) and 0 ∈ int(dom1).

Assumption 5. The K–L divergences are well-defined, i.e., 0 < D(1‖0), D(0‖1) <∞.

With the above assumptions, we have the following properties of I0(x) and I1(x). the proof

of which is provided in Appendix A.

Theorem 2. Under Assumptions 4 and 5, the followings hold:

1) I0(x) (I1(x)) is twice differentiable, strictly convex and strictly increasing (strictly decreas-

ing) on [−D(0‖1), D(1‖0)].

2) The following equalities hold:

I1(D(1‖0)) = 0, (14)

I0(D(1‖0)) = D(1‖0), (15)

I0(−D(0‖1)) = 0, (16)

I1(−D(0‖1)) = D(0‖1). (17)

I0(0) = I1(0). (18)
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I0(D(1||0)) = D(1||0)

I1(−D(0||1)) = D(0||1)
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I0(x)
I1(x)

Fig. 1: Illustration of I0(x) and I1(x). The figure is plotted by assuming y1(1) to be Bernoulli

distributed under both hypotheses with P
o
0(y1(1) = 1) = 0.02 and P

o
1(y1(1) = 1) = 0.6.

Since I0(0) = I1(0), let us define

C , I0(0). (19)

To make the presentation clear, we illustrate I0(x) and I1(x) in Fig. 1.

The “inverse functions” of I0(x) and I1(x) are defined as follows: for z ≥ 0,

I−1
0 (z) =max{x ∈ R : I0(x) = z},

I−1
1 (z) =min{x ∈ R : I1(x) = z}.

Let Dmin , min{D(0‖1), D(1‖0)}. We further define h(z) : (0, (m− n)Dmin) 7→ (0, (m− n)Dmin)

as

h(z)

,(m− n)min{I0(I
−1
1 (z/(m− n)), I1(I

−1
0 (z/(m− n))}. (20)
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B. Fundamental Limits

We are ready to provide the fundamental limitations between efficiency and security. The

proof is provided in Appendix B.

Theorem 3. For any detection rule f , the following statements on E(f) and S(f) are true:

1) E(f) ≤ mC,

2) S(f) ≤ (m− 2n)+C, where (m− 2n)+ = max{0, m− 2n}.

3) S(f) ≤ E(f),

4) Let E(f) = z, we have

S(f) ≤

{
h(z) if 0 < z < (m− n)Dmin (21a)

0 if z ≥ (m− n)Dmin. (21b)

Remark 2. Theorem 3 indicates that mC is the maximum efficiency that can be achieved by

any detector, while (m − 2n)+C is the maximum security that can be achieved. Therefore, if

m ≤ 2n, i.e., no less that half of the sensors are compromised, then S(f) = 0 for any f , which

implies that all detectors will have zero security. In that case, the naive Bayes detector will be

the optimal choice since it has the optimal efficiency and the analysis becomes trivial. Therefore,

without any further notice, we assume m > 2n for the rest of the paper.

Notice that fourth constraint in Theorem 3 indicates a trade-off between security and efficiency.

For general cases, the maximum security and efficiency may not be achieved simultaneously.

However, in Section IV-D, we will prove that for a special case, there exist detectors that can

achieve the maximum security and efficiency at the same time.

Notice that I0(x) (I1(x)) is strictly increasing (decreasing) on [−D(0‖1), D(1‖0)]. Therefore,

combining (15) and (17), one obtains that h(z) is strictly decreasing. Then the dual version

of (21a) is obtained as follows. Let S(f) = z we have that if 0 < z ≤ (m− 2n)C,

E(f) ≤ h−1(z) = h(z), (22)

where h−1(z) is the inverse function of h(z), and the equality holds because h(z) is an involutory

function, i.e., h(h(z)) = z for every z ∈ (0, (m− n)Dmin).

We then have the following two corollaries. The results follow straightforwardly from Theo-

rem 3 and (22), we thus omit the proofs.
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Corollary 1. Suppose the security of a detector f satisfies

S(f) = z ∈ [0, (m− 2n)C],

then the maximum efficiency of f satisfies the following inequality:

max
f∈{f :S(f)=z}

E(f) ≤







mC if z = 0

he(z) if z > 0
,

where he(z) , min{mC, h(z)}.

Corollary 2. Suppose the efficiency of a detector f satisfies

E(f) = z ∈ [0, mC],

then the maximum security of f satisfies the following inequality:

max
f∈{f :E(f)=z}

S(f) ≤







hs(z) if 0 < z < z′,

0 if z ≥ z′ or z = 0,

where hs(z) = min{z, (m− 2n)C, h(z)}, and z′ = (m− n)Dmin.

C. Achievability

In this section, we propose a detector that achieves the upper bounds in Corollaries 1 and 2.

Let zs ≤ (m−2n)C. At time k ≥ 1, the algorithm, denoted by f ∗
zs

, is implemented as follows.

Remark 3. We here discuss about the computational complexity of the detection rule f ∗
zs

. The

computational complexity for the step 1 is O(m). Notice that the quantity λ̄i(k) is computed in a

recursive fashion. The complexity for the step 2 is O(m logm). To compute δ(0, k) and δ(1, k),

we can first sort I0(λ̄i(k)) and I1(λ̄i(k)) in ascending order, respectively, and then sum the first

m− 2n elements of each. The computational complexity for the step 3 and step 4 is fixed, and

the step 5 has computational complexity O(m). Therefore, the total computational complexity

for each time step is O(m logm).

We now show the performance of f ∗
zs

and the proof is provided in Appendix C.
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Algorithm 1 Hypothesis testing algorithm f ∗
zs

1: Compute the empirical mean of the likelihood ratio from time 1 to time k for each sensor i:

λ̄i(k) ,

k∑

t=1

λ(y′i(t))/k

=
k − 1

k
λ̄i(k − 1) +

1

k
λ(y′i(k)) (23)

with λ̄i(0) = 0.

2: Compute I0(λ̄i(k)) and I1(λ̄i(k)) for each i. Compute the following sum:

δ(0, k) , min
|O|=m−n,O⊂M

∑

i∈O

I0(λ̄i(k)),

δ(1, k) , min
|O|=m−n,O⊂M

∑

i∈O

I1(λ̄i(k)).

3: If δ(0, k) < zs, make a decision θ̂ = 0; go to the next step otherwise.

4: If δ(1, k) < zs, make a decision θ̂ = 1; go to the next step otherwise.

5: If
∑m

i=1 λ̄i(k) < 0, make a decision θ̂ = 0; make a decision θ̂ = 1 otherwise.

Definition 1. (ze, zs) are called an admissible pair if the following inequalities holds:

0 ≤zs ≤ (m− 2n)C,

ze ≤







mC if zs = 0

he(zs) if zs > 0
,

where he(zs) is defined in Corollary 1.

Theorem 4. Let (ze, zs) be any admissible pair of efficiency and security. Then there holds

E(f ∗
zs
) ≥ ze, S(f ∗

zs
) ≥ zs.

The above theorem means that the upper bounds in Corollaries 1 and 2 are achieved by

f ∗
zs

. Hence, we provide a tight characterization on admissible efficiency and security pair. We

illustrate the shape of admissible region in Fig 2.

Remark 4. The optimal detector may not be necessarily unique, in the sense that there may exist

other detectors, other than the one defined by Algorithm 1, that can achieve the same efficiency
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Fig. 2: Achievable efficiency and security region for any detector. The figure is plotted by

assuming y1(1) to be Bernoulli distributed under both hypotheses with P
o
0(y1(1) = 1) = 0.02

and P
o
1(y1(1) = 1) = 0.6. The shaded area is the admissible pair (E(f), S(f)) for any detector

f . The red dashed line is the function (m − n)I0(I
−1
1 (z/(m − n))), while the blue dotted line

the function (m− n)I1(I
−1
0 (z/(m− n))).

and security limits. By definition, the detectors achieving the limits have the same asymptotic

performance. However, the finite-time performance (in terms of detection error) may be different

and we are planning to investigate this in the future work.

D. Special Case: Symmetric Distribution

In this subsection, we discuss a case where the maximum security and efficiency can be

achieved simultaneously by a detector.

Notice that by the definition of admissible pair, if we have

h((m− 2n)C) ≥ mC, (24)

then we know that (ze = mC, zs = (m − 2n)C) is an admissible pair and hence the detector

f ∗
(m−2n)C defined in Section IV-C can achieve maximum security (m − 2n)C and efficiency
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mC simultaneously. In other words, adding security will not deteriorate the performance of the

system in the absence of the adversary.

The following theorem provides a sufficient condition for (24), which is based on the first

order derivative of I0(·) and I1(·). The proof is presented in Appendix D for the sake of legibility.

Theorem 5. If I
(1)
0 (x)|x=0 = −I(1)1 (x)|x=0, then h((m−2n)C) ≥ mC holds. Therefore, f ∗

(m−2n)C

possesses not only the maximal security but also the maximal efficiency.

Notice that whether or not the above sufficient condition is satisfied merely depends on the

probability distribution of the original observations, which is independent of the number of the

compromised sensors.

If there exists “symmetry” between distribution µ and ν, then the sufficient condition can be

satisfied. To be specific, if there exists a constant a such that for any Borel measurable set A,

we have

µ(a+A) = ν(a−A),

then one can prove that

M0(w) =M0(−w),

which further implies that

I0(x) = I1(−x) ⇒ I
(1)
0 (x)|x=0 = −I(1)1 (x)|x=0.

We provide two examples of pairs of “symmetric” distributions as follows:

1) Each yi(k) is i.i.d. Bernoulli distributed and

yi(k) =







θ with probability p0

1− θ with probability 1− p0

2) Each yi(k) satisfies the following equation:

yi(k) = aθ + vi(k),

where a 6= 0 and vi(k) ∼ N (v̄, σ2) is i.i.d. Gaussian distributed.

V. EXTENSION

In this section, we consider two extensions to the problem settings discussed in Section IV.
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A. Secure Sensors

Consider that there is a subset of “secure” sensors that are well protected and cannot be

compromised by the attacker. We would like to study the trade-off between security and efficiency

when those “secure” sensors are deployed.

Let ms out of the total m sensors be “secure” and the remaining m−ms sensors are “normal”

ones that can be compromised by an adversary. In this subsection, n can take any value in

{0, 1, . . . , m−ms} and does not necessarily satisfy 2n < m. The other settings are the same as

in Section II. Denote by Es(f) and Ss(f) the efficiency and security of a detection rule f under

such case.

Then one obtains the following results as in Theorem 3.

Theorem 6. For any detection rule f , the following statements on Es(f) and Ss(f) are true:

1) Es(f) ≤ mC,

2) Ss(f) ≤ max((m− 2n)C,msC),

3) Ss(f) ≤ Es(f),

4) Let Es(f) = z, we have

Ss(f) ≤







h(z) if 0 < z < (m− n)Dmin

0 if z ≥ (m− n)Dmin

.

The above theorem is proved in the same manner as in Appendix B. Notice that the essential

difference is the range of Ss(f), i.e., the statement in the second bullet. This is due to the fact

that the ms secure sensors cannot be compromised.

Remark 5. From the above theorem, one sees that replacing ms normal sensors with secure

sensors does not change the fundamental trade-off between the security and efficiency. However,

the benefit of these ms secure sensors are that the security itself is improved when 2n > m−ms.

Also, one notice that when m − ms ≥ 2n, there are no gains of deploying secure sensors.

Intuitively, in such case the redundancy of the m−ms normal sensors is enough.

Furthermore, the detector f s
zs

in Algorithm 2, which is a slight variation of f ∗
zs

and treats the

ms secure sensors separately, achieves the limits. This is stated in the following theorem, which

is proved in the same manner as in Appendix C.
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Theorem 7. If the pair (ze, zs) satisfies

0 ≤zs ≤ max((m− 2n)C,msC),

ze ≤







mC if zs = 0

he(zs) if zs > 0
,

then there holds

Es(f
s
zs
) ≥ ze, Ss(f

s
zs
) ≥ zs.

Algorithm 2 Hypothesis testing algorithm f s
zs

when there are secure sensors

1: Compute λ̄i(k) for each sensor.

2: Compute I0(λ̄i(k)) and I1(λ̄i(k)) for each sensor. Compute the minimum sum from the

“normal” sensors:

δ(0, k) = min
|O|=m−ms−n,O⊂{1,...,m−ms}

∑

i∈O

I0(λ̄i(k)),

δ(1, k) = min
|O|=m−ms−n,O⊂{1,...,m−ms}

∑

i∈O

I1(λ̄i(k)).

3: If δ(0, k) +
∑i=m

m−ms+1 I0(λ̄i(k)) < zs, make a decision θ̂ = 0; go to the next step otherwise.

4: If δ(1, k) +
∑i=m

m−ms+1 I1(λ̄i(k)) < zs, make a decision θ̂ = 1; go to the next step otherwise.

5: If
∑m

i=1 λ̄i(k) < 0, make a decision θ̂ = 0; make a decision θ̂ = 1 otherwise.

B. Unknown Number of Compromised Sensors

In the previous section, we assume that if the system is being attacked, then n sensors are

compromised. However, in practice, the exact number of compromised sensors is likely to

be unknown. In this subsection, we assume that we know an estimated upper bound on the

compromised sensors, denoted by n. Let na denote the number of the sensors that are actually

compromised. Therefore, na may take value in Na , {0, 1, 2, . . . n}4.

4In Section II-A, we remark that the requirement |I| = n can be equivalently replaced by |I| ≤ n. The implicit assumption

is that the estimated upper bound n is tight and the worst-case number of compromised sensors is in indeed n. Therefore, na

in this section may also be interpreted as the tight upper bound of the number of actually compromised senors.
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Given a detector f , denote by Dna
(f) the detection performance when the number of com-

promised sensor is na. Then, one has D0(f) = E(f) and Dn(f) = S(f). In the following, we

present the pairwise trade-off between Dna
(f) and Dn′

a
(f) for any 0 ≤ na, n

′
a ≤ n, and propose

an algorithm to achieve these performance limits. A similar argument as in Section IV can be

adopted to obtain these results, the details of which are omitted.

We define h̃ : Na ×Na × (0,∞) 7→ (0,∞) as

h̃(na, n
′
a, z)

,(m− ña)min
{

h̃0(z/(m− ña)), h̃1(z/(m− ña))
}

,

where ña = na + n′
a, and

h̃0(z) =







I0(I
−1
1 (z)) if 0 < z < D(0||1)

0 if z ≥ D(0||1)
,

h̃1(z) =







I1(I
−1
0 (z)) if 0 < z < D(1||0)

0 if z ≥ D(1||0)
.

Then one obtains that for any detector f and na, n
′
a ∈ N, there hold

Dna
(f) ≤ (m− 2na)C, (25)

Dna
(f) ≤ h̃

(
na, n

′
a,Dn′

a
(f)
)
. (26)

Let z , (z0, z1, . . . , zn) be a n-tuplet of admissible detection performance, i.e.,

zna
≤ (m− 2na)C,

zna
≤ h̃(na, n

′
a, zn′

a
).

Then the detector in Algorithm 3, which is a variation of f ∗
zs

in Section IV-C and is denoted by

f ∗
z

, can achieve these performance, i.e., Dna
(f ∗

z
) ≥ zna

for any na ∈ N.

VI. NUMERICAL EXAMPLES

A. Asymptotic Performance

We simulate the performance of the detector f ∗
zs

proposed in Section IV-C (i.e., its efficiency

and security) and compare the empirical results to the theoretical ones shown in Fig. 2.

The same parameters as in Fig. 2 are used, i.e., Po
0(y1(1) = 1) = 0.02, Po

1(y1(1) = 1) = 0.6,

m = 9 and n = 2. To simulate the security, it is assumed that the following attack strategy is
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Algorithm 3 Hypothesis testing algorithm f ∗
z

initialization: na = n.

1: Compute λ̄i(k), I0(λ̄i(k)), I1(λ̄i(k)) for each sensor i.

2: While na ≥ 1

1) Compute these two minima:

δ̃(0, k, na) , min
|O|=m−na,O⊂M

∑

i∈O

I0(λ̄i(k)),

δ̃(1, k, na) , min
|O|=m−na,O⊂M

∑

i∈O

I1(λ̄i(k)).

2) If δ̃(0, k, na) < zna
, make a decision θ̂ = 0 and stop.

3) If δ̃(1, k, na) < zna
, make a decision θ̂ = 1 and stop.

4) Replace na with na − 1.

3: If
∑m

i=1 λ̄i(k) < 0, make a decision θ̂ = 0; make a decision θ̂ = 1 otherwise.

adopted. If θ = 0, the attacker modifies the observations of the compromised sensors such that

for every i ∈ I and k ≥ 1

I0(λ̄i(k)) ≥ zs.

On the other hand, if θ = 1, the attack strategy is such that I1(λ̄i(k)) ≥ zs holds for every i ∈ I

and k ≥ 1.

To simulate the performance with high accuracy, we adopt the importance sampling ap-

proach [23]. To plot Fig. 3, we let zs be in [0, (m− 2n)C = 1.5987]. Notice that the theoretical

performance of f ∗
zs

coincides exactly with the fundamental limits in Fig. 2. Therefore, Fig. 3

verifies that our algorithm f ∗
zs

indeed achieves the fundamental limits.

B. Non-asymptotic Performance

We have proved that our algorithm is optimal in the sense that it achieves the fundamental

trade-off between the security and efficiency. However, notice that both the security and efficiency

are asymptotic performance metrics. In this example, we show that our algorithm possesses quite

“nice” finite-time performance as well by comparing it to the naive Bayes detector. We should

remark that while the Bayes detector is strictly optimal (i.e., optimal for any time horizon) in

the absence of attackers, its security is zero. The results are in Fig. 4, where zs is chosen to
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Fig. 3: Comparison between the empirical and theoretical performance of the detector f ∗
zs

when

zs ∈ [0, (m− 2n)C].

be 1.4282. Fig. 4 illustrates that the algorithm f ∗
zs

with zs = 1.4282 has a finite-time detection

performance comparable to that of naive Bayes detector when the attacker is absent. The finite-

time performance metric ǫ(k) is defined in (7), where the attacker is absent, i.e., g = 0, and the

detector is f ∗
zs=1.4282 or the naive Bayes. One should note that the security of f ∗

zs
is 1.4282. As

a result, adopting the secure detector f ∗
zs

increases the security of the system while introducing

minimum performance loss in the absence of the adversary.

C. Comparison with Other Detectors

To simulate the detectors introduced later, we use the same sensor network model as in

Fig. 3. The asymptotic performances, i.e., the efficiency and security, are summarized in Table I,

while the non-asymptotic performances when the attacker is absent are in Fig. 5. Table I is

consistent with the statement that our algorithm achieves the best trade-off between the security

and efficiency, while Fig. 5 shows that it is preferable to adopt our algorithm as well with respect

to the finite-time performance when the attacker is absent. In the following, we present the two

detectors to be compared to in detail.

The first detector is the equilibrium detection rule that is proposed in [14] for cases where
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1.4282

Fig. 4: Finite-time performance of f ∗
zs

in the absence of the adversary.

m > 2n. This detection rule, which shares the same spirit with the α-trimmed mean in robust

statistics [15], first removes the largest n and smallest n log-likelihood ratios, and then compares

the mean of the remaining m − 2n log-likelihood ratios to 0, just as in the classic probability

ratio test. The details of the detection rule, denoted by ftrim, are formalized as follows.

ftrim(Y
′(k)) =







0 if
∑m−n

i=n+1 λ̄[i](k) < 0,

1 if
∑m−n

i=n+1 λ̄[i](k) ≥ 0,

where λ̄[i](k) is the i-th smallest element of {λ̄1(k), λ̄2(k), . . . , λ̄m(k)} with λ̄i(k) being the

empirical mean of log-likelihood ratio from time 1 to k for senor i, which is defined in (23).

It was shown in [14] that the security and efficiency of ftrim are

S(ftrim) = (m− 2n)C, E(ftrim) = (m− n)C.

Since for any z < C, there hold

I0(I
−1
1 (z)) > C, I1(I

−1
0 (z)) > C.

Then by the definition of h(z) and Theorem 4, one obtains that if the security of our algorithm

is (m− 2n)C, its efficiency is larger than (m− n)C, i.e.,

E(f ∗
zs=(m−2n)C) > (m− n)C.
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Therefore, our algorithm is preferable since, with the same security, it achieves the larger

efficiency than the algorithm ftrim. In particular, by Theorem 5, the efficiency gain of our

algorithm in certain cases is nC.

The next detector is the q-out-of-m procedure [17], which has been studied in [8] by assuming

that the malicious sensor nodes generate fictitious data randomly and independently, and the

probability that the compromised sensor flips the binary message is known. The q-out-of-m

procedure is simple and works as follows. At time k, after receiving the mk (binary) messages,

the fusion center makes a decision

θ̂ =







1 if
∑k

t=1

∑m

i=1 y
′
i(k) ≥ qk,

0 otherwise.

(27)

Let q = [q1, . . . , qk, . . .] be a sequence of thresholds used in the above detector from time 1 to

infinity. In the sequel, we denote the above detector as fqom(q). Notice that fqom(q) is just the

naive Bayesian detector, which minimizes the weighted sum of miss detection and false alarm

at each time k (the weight is determined by qk). It is clear that if fqom(q) is used at the fusion

center, the worst-case attack is always sending 0 (1) if the true state θ is 1 (0). Therefore, at

time k, the performance (i.e., the probability of detection error) of the detector fqom(q) under

the worst-case attacks is as follows.

P1(fqom(q) = 0) =

qk∑

j=0




mk − nk

j



 pj1(1− p1)
mk−nk−j,

P0(fqom(q) = 1)

=
mk−nk∑

j=max(0,qk−nk)




mk − nk

j



 pj0(1− p0)
mk−nk−j,

where p0 , P
o
0(y1(1) = 1) = 0.02, p1 , P

o
1(y1(1) = 1) = 0.6. Then it is reasonable to set

nk < qk < mk−nk, since otherwise the worst-case (over θ) detection error will be 1. However

it is challenging to obtain the optimal qk analytically to minimize the worst-case detection error;

we do this by brute-force numerical simulations. By varying the time k from 1 to 40, we obtain

the (approximate) security and the optimal parameters q∗1, . . . , q
∗
40. Then we further simulate the

performance of the q-out-m algorithm when the optimal parameters obtained above are used and

the attacker is absent.
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TABLE I: The asymptotic performances of our algorithm f ∗
zs

with zs = 1.4282, the trimmed

mean detector in [14] ftrim, and the optimal q-out-m procedure fqom(q
∗).

f∗

zs=1.4282 ftrim fqom(q∗)

security 1.43 1.43 0.69

efficiency 2.88 2.00 1.68
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10−2

time k

ǫ(
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f ∗
1.4282

ftrim
fqom(q

∗)

Fig. 5: Finite-time performance of f ∗
zs
, ftrim, and fqom(q

∗) in the absence of the adversary.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied the trade-off between the detection performance of a detector when

the attacker is absent (termed efficiency) and the “worst-case” detection performance when

the attacker, knowing the detector, is present (termed security). The setting is that a binary

hypothesis testing is conducted based on measurements from a set of sensors, some of which

can be compromised by an attacker and their measurements can be manipulated arbitrarily. We

first provided the fundamental limits of the trade-off between the efficiency and security of

any detector. We then presented detectors that possesses the limits of the efficiency and security.

Therefore, a clear guideline on how to balance the efficiency and security has been established for

the system operator. An interesting point of the fundamental trade-off is that in some cases, the

maximal efficiency and the maximal security can be achieved simultaneously, i.e., the maximal
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efficiency (security) can be achieved without compromising any security (efficiency). In addition,

two extensions were investigated: secure sensors are assumed for the first one, and the detection

performance beyond the efficiency and security is concerned for the second one. The main results

were verified by numerical examples. Investigating the problem when the measurements from

the benign sensors are not i.i.d. is a future direction.

APPENDIX A

THE PROOF OF THEOREM 2

The following lemma is needed to prove Theorem 2:

Lemma 1. If Assumption 4 and 5 hold, then the following statement is true:

1) For any w,

M0(w + 1) =M1(w). (28)

2) There exists a small enough ǫ > 0, such that logM0(w) is well-defined on [−ǫ, 1+ ǫ], and

logM1(w) is well-defined on [−1− ǫ, ǫ].

3) logM0(w), logM1(w) are strictly convex.

4) The derivative of logM0(w) and logM1(w) satisfy

(logM0(w))
(1)|w=1 = D(1‖0). (29)

(logM0(w))
(1)|w=0 = −D(0‖1). (30)

(logM1(w))
(1)|w=0 = D(1‖0). (31)

(logM1(w))
(1)|w=−1 = −D(0‖1). (32)

Proof. By definition,

M0(w + 1) =

∫ ∞

−∞

(
dµ

dν
(y)

)w
dµ

dν
(y)dν(y)

=

∫ ∞

−∞

(
dµ

dν
(y)

)w

dµ(y) =M1(w),

which proves (28).

Assuming M0(w1), M0(w2) <∞ and w1 < w2, by the convexity of the exponential function,

we know that for any λ and 0 < α, β < 1 and α + β = 1,

0 < exp [(αw1 + βw2)λ] ≤ αew1λ + βew2λ.
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Therefore 0 < M0(αw1 + βw2) ≤ αM0(w1) + βM0(w2) is well-defined, which proves that the

domain of logM0(w) is convex.

Furthermore, by Assumption 4, 0 ∈ int(dom1) gives

1 ∈ int(dom0), (33)

Hence, [0, 1] ⊂ int(dom0), which proves that logM0(w) is well-defined on [−ǫ, 1 + ǫ] if ǫ is

small enough.

It is well known that logM0(w) is infinitely differentiable on int(dom0) (see [22, Exercise

2.2.24]). Basic calculations give that

(logM0(w))
(2) (34)

=

∫

R

(
dµ

dν
(y)

)w (

log

(
dµ

dν
(y)

))2

dν(y) > 0 (35)

always holds, where (logM0(w))
(2) is the second derivative. The above quantity is strictly

positive since the KL divergence between probability measure µ and ν are strictly positive

by Assumption 5. Therefore, logM0(w) is strictly convex.

The domain and the strict convexity of logM1(w) can be proved similarly.

Take the derivative of logM0(w) at w = 1 yields

(logM0(w))
(1)|w=1 =

∫

R

λ(y)
dµ

dν
(y)dν(y)

=

∫

R

λ(y)dµ(y) = D(1‖0).

Equation (30), (31) and (32) can be proved similarly.

We are now ready to prove Theorem 2:

Proof of Theorem 2. Define the derivative of logM0(w) to be ψ(w). Since logM0(w) is strictly

convex, we know that ψ(w) is strictly increasing and therefore, its inverse function is well defined

on [−D(0‖1), D(1‖0)]. Denote the inverse function as ϕ(x). By the convexity of logM0(w), we

have that

logM0(w) ≥ logM0(w∗) + ψ(w∗)(w − w∗). (36)

Hence, for any x ∈ [−D(0‖1), D(1‖0)], suppose that ψ(w∗) = x, we have

wx− logM0(w) = [w∗ψ(w∗)− logM0(w∗)]

+ [(w − w∗)ψ(w∗) + logM0(w∗)− logM0(w)] .
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Notice the last term on the RHS of the equation is non-positive. Hence, we can prove that

I0(x) = w∗ψ(w∗)− logM0(w∗) = ϕ(x)x− logM0(ϕ(x)). (37)

Take the derivative and second order derivative of I0(x) we have

dI0(x)

dx
= ϕ(x),

d2I0(x)

dx2
=

1

ψ(1)(ϕ(x))
> 0,

where the last inequality is due to the fact that logM0(w) is strictly convex, and thus its second

derivative ψ(1) is strictly positive. Hence we prove that I0(x) is twice differentiable and strictly

convex on [−D(0‖1), D(1‖0)]. Notice that

dI0(x)

dx

∣
∣
∣
∣
x=−D(0‖1)

= ϕ(−D(0‖1)) = 0,

we can prove that I0(x) is also strictly increasing. Similarly we can prove the properties for

I1(x).

Combining (37), (29) and (30), we can prove (14) and (15). Equation (16) and (17) can be

proved similarly.

Since

I0(0) = sup
w

0 · w − logM0(w) = sup
w

− logM0(w),

I1(0) = sup
w

0 · w − logM1(w) = sup
w

− logM1(w),

and

M0(w + 1) =M1(w),

We can conclude I0(0) = I1(0).

APPENDIX B

THE PROOF OF THEOREM 3

The proof is divided into four parts, each of which is devoted to one of the statements in

Theorem 3.

Part I. For any index set O ⊂ M and χ ∈ R, define the following Bayesian like detector:

fk,χ,O(Y
′(k)) =







0 if
∑

i∈O λ̄i(k) < χ,

1 if
∑

i∈O λ̄i(k) ≥ χ,
(38)
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where λ̄i(k) is the empirical mean of the log-likelihood ratio from time 1 to k for sensor i,

which is defined in (23). Denote

fχ,O = (f1,χ,O(Y
′(1)), · · · , fk,χ,O(Y

′(k)), · · · )

and

f ∗
O , f0,O. (39)

It is well known that f ∗
M minimize the average error probability [24]: e(θ = 0,O = ∅, k)+e(θ =

1,O = ∅, k), where, recall, e(θ,O, k) is defined in (6). Notice that

lim inf
k→∞

−
log(e(θ = 0,O = ∅, k) + e(θ = 1,O = ∅, k))

k

= lim inf
k→∞

−
logmaxθ e(θ,O = ∅, k)

k
.

Hence, when the attacker is absent, f ∗
M is optimal in the sense that the rate ρ defined in (8)

is maximized. Furthermore, Cramér’s Theorem gives that E(f ∗
M) = mI0(0) = mC. Therefore,

E(f) ≤ mC holds for any detector f .

Part II. In this part, we show S(f) ≤ (m−2n)+C. The proof is by construction: we construct

a attack strategy g∗ such that, for any detection rule f , the following inequality holds:

ρ(f, g∗) ≤ (m− 2n)+C. (40)

Let O′ = {1, . . . , n} and O′′ = {m− n+ 1, . . . , m}. The attack strategy g∗ is as follows.

(i). When θ = 0, sensors in O′ are compromised and the distributions are flipped, i.e., the

measurements of sensors in O′ are i.i.d. as µ.

(ii). When θ = 1, sensors in O′′ \ O′ are compromised and the distributions are flipped.

Thus, under attack g∗, for either θ = 1 or θ = 0, sensors in O′ will follow distribution µ and

sensors in O′′ \ O′ will follow distribution ν. In other words, only sensors in M \ (O′ ∪ O′′)

have different distributions under different θ. Notice that when m ≤ 2n, M \ (O′ ∪ O′′) = ∅,

which means that ρ(f, g∗) = 0. If m > 2n, by the optimality of the detection rule f ∗
M\(O′∪O′′)

defined in (39), one obtains ρ(f, g∗) ≤ (m− 2n)C. Equation (40) is thus obtained.

Part III. It is clear from the definitions of E(f) and S(f) that S(f) ≤ E(f) holds.

Part IV. Consider the following product measures:

µa = µ× µ . . .× µ
︸ ︷︷ ︸

m−n

× ν × ν . . .× ν
︸ ︷︷ ︸

n

,

µk
a = µa × µa . . .× µa

︸ ︷︷ ︸

k
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and

ν∗ = ν × ν . . .× ν
︸ ︷︷ ︸

m

,

νk∗ = ν∗ × ν∗ . . .× ν∗
︸ ︷︷ ︸

k

.

The measure µa is generated by an attack that flips the distribution on the last n sensors, when

the true hypothesis is θ = 1. The measure ν∗ is generated by benign sensors when the true

hypothesis is θ = 0.

Now let us consider the following problem: given φ > 0, find the detection rule f such that

Eνk
∗

fk + φk
Eµk

a
(1− fk) (41)

is minimized for every k ≥ 1. Let fφ = (fφ,1, . . . , fφ,k, . . .) with fk,φ given by

fk,φ(Y
′(k)) = fk,− log φ,{1,2,...,m−n}(Y

′(k)), (42)

where, recall, the function fk,χ,O(Y
′(k)) is defined in (38). Then by the Bayesian decision-

theoretic detection theory, fφ is a solution to the above problem. Let

Eφ , lim inf
k→∞

−
logEνk

∗

fφ,k

k

and

Sφ , lim inf
k→∞

−
logEµk

a
(1− fφ,k)

k
.

Then from the optimality of fφ, for any φ > 0 and any detector f = (f1, . . . , fk, . . .), the

following hold for any k:

If Eνk
∗

fk ≤ Eνk
∗

fφ,k, then Eµk
a
(1− fk) ≥ Eµk

a
(1− fφ,k).

This implies that

If lim inf
k→∞

−
logEνk

∗

fk

k
≥ Eφ,

then lim inf
k→∞

−
logEµk

a
(1− fk)

k
≤ Sφ.

Furthermore, the definitions of E(f) and S(f) yield

E(f) ≤ lim inf
k→∞

−
logEνk

∗

fk

k
,

S(f) ≤ lim inf
k→∞

−
logEµk

a
(1− fk)

k
.
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Therefore, for any φ > 0 and any detector f , the following hold:

If E(f) ≥ Eφ, then S(f) ≤ Sφ.

Now let us evaluate Eφ and Sφ. Let φ̃ = − log φ/(m− n), then Cramér’s theorem yields

Eφ =







0 if φ̃ ≤ −D(0‖1),

(m− n)I0(φ̃) if φ̃ > −D(0‖1),

and

Sφ =







0 if φ̃ ≥ D(1‖0),

(m− n)I1(φ̃) if φ̃ < D(1‖0).

Notice that the monotonicity of I0(·) on [−D(0‖1),∞) implies that if 0 < Eφ < (m −

n)I0(D(1‖0)) = (m − n)D(1‖0), φ̃ ∈ (−D(0‖1), D(1‖0)) holds. Therefore, if 0 < Eφ <

(m− n)D(1‖0), there holds

Sφ = (m− n)I1(I
−1
0 (Eφ/(m− n))).

One thus obtains that for any detector f , if 0 < E(f) < (m− n)D(1‖0)

S(f) ≤ (m− n)I1(I
−1
0 (E(f)/(m− n))). (43)

Also, it is easy to see that if Eφ ≥ (m− n)D(1‖0), Sφ = 0 holds. Thus,

S(f) = 0 if E(f) ≥ (m− n)D(1‖0). (44)

Similarly, one considers the detection problem for the measures µk
∗ and νka and obtains that

for any detector f , if 0 < E(f) < (m− n)D(0‖1)

S(f) ≤ (m− n)I0(I
−1
1 (E(f)/(m− n))) (45)

and

S(f) = 0 if E(f) ≥ (m− n)D(0‖1). (46)

Then equation (21a) follows from (43) and (45), and equation (21b) from (44) and (46).
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APPENDIX C

THE PROOF OF THEOREM 4

This theorem is proved by showing that f ∗
zs
= 0 (or 1) if certain conditions are satisfied (i.e.,

Lemma 4). Furthermore, the special structure of these conditions can ensure that, under any

attacks, f ∗
zs

= 0 (or 1) if the measurements of sensors in an attack free environment belong to

a certain set, to which the Cramér’s Theorem is applied.

Before proceeding, we need to define the following subsets of Rm:

Definition 2. Define B−, B+ ⊂ R
m as

B− ,

{

λ ∈ R
m :

m∑

i=1

λi < 0

}

,B+ ,

{

λ ∈ R
m :

m∑

i=1

λi ≥ 0

}

.

Definition 3. Let O ⊂ M, j ∈ {0, 1} and z ∈ R+, define a ball as

Bal(O, j, z) =
{

λ ∈ R
m :
∑

i∈O

Ij(λi) < z
}

.

Definition 4. Let j ∈ {0, 1} and z ∈ R+, define an extended ball as

EBal(j, z, n) ,
⋃

|O|=m−n

Bal(O, j, z).

From the definition of extended balls, it is clear that

[

λ1 . . . λm

]

∈ EBal(j, z, n)

if and only if the following inequality holds:

min
|O|=m−n

∑

i∈O

Ij(λi) < z.

Combining with the definition of f ∗
zs

, we know that at time k, the output of f ∗
zs

is 0 if and

only if

λ̄(k) ,
[

λ̄1(k) · · · λ̄m(k)
]

∈ Λ−(zs),

where Λ−(zs) is defined as

Λ−(zs) , EBal(0, zs, n)
⋃(

B−\EBal(1, zs, n)
)
.

The output is 1 if λ̄(k) ∈ Λ+(zs), where

Λ+(zs) , R
m\Λ−(zs)

=
(

B+
⋃

EBal(1, zs, n)
)

\EBal(0, zs, n)
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We first need the following supporting lemma.

Lemma 2. Given O1, O2 ⊂ M , {1, 2, . . . , m} with |O1

⋂
O2| = p > 0, z ≤ pD(1‖0), the

optimal value of the following optimization problem is given by pI1(I
−1
0 (z/p)):

inf
x∈Rm

∑

i∈O1

I1(xi)

s.t.
∑

i∈O2

I0(xi) < z.
(47)

Proof. Since I1(·) is nonnegative, I1(D(1‖0)) = 0 and xi can take any value when i /∈ O2, one

can equivalently rewrite (47) as

inf
x∈Rm

∑

i∈O1∩O2

I1(xi)

s.t.
∑

i∈O2

I0(xi) < z,

xi = D(1‖0), i ∈ O1 \ O2.

By the nonnegativity of I0(·), the above equation is equivalent to

inf
x∈Rm,0<z′≤z

∑

i∈O1∩O2

I1(xi)

s.t.
∑

i∈O1∩O2

I0(xi) < z′,

∑

i∈O2\O1

I0(xi) ≤ z − z′,

xi = D(1‖0), i ∈ O1 \ O2.

(48)

To obtain the solution to the above equation, let us fist focus on the following optimization

problem:

min
x∈Rm

∑

i∈O

I1(xi)

s.t.
∑

i∈O

I0(xi) = z′,
(49)

where O = O1 ∩ O2. Denotes its optimal value by ψ(z′). In the following, we show that

ψ(z′) = pI1(I
−1
0 (z′/p)). (50)

We claim that a solution to (49) is

xi =

{
I−1
0 (z′/p) if i ∈ O, (51a)

whatever if i /∈ O. (51b)
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With this claim, (50) clearly holds. In the following we show that this claim is correct.

Equation (51b) is trivial. We then focus on (51a). Due to the convexity of the functions I0(·)

and I1(·), one obtains that for any x ∈ R
m,

pI0

(
∑

i∈O

xi/p

)

≤
∑

i∈O

I0(xi),

pI1

(
∑

i∈O

xi/p

)

≤
∑

i∈O

I1(xi)

Therefore, without any performance loss, one may restrict the solution to the set X∗ as follows:

X
∗ , {x ∈ R

m : x1 = x2 = · · · = xp}.

Then it is clear from the monotonicity of I0 and I1 that (51a) holds. This thus proves (50).

Notice that ψ(z′) in (50) is decreasing with respect to z′. Then the fact that I0(−D(0‖1)) = 0

yields that (48) is equivalent to

min
x∈Rm

∑

i∈O1∩O2

I1(xi)

s.t.
∑

i∈O1∩O2

I0(xi) = z,

xi = −D(0‖1), i ∈ O2 \ O1,

xi = D(1‖0), i ∈ O1 \ O2,

which concludes Lemma 2 by (50).

Lemma 3. Assume that (ze, zs) are an admissible pair, then the following statements are true:

1) Bal(M, 0, ze) ⊆ B−.

2) Bal(M, 1, ze) ⊆ B+.

3) EBal(0, zs, n)
⋂
EBal(1, zs, n) = ∅.

4) EBal(1, zs, n)
⋂
Bal(M, 0, ze) = ∅.

5) EBal(0, zs, n)
⋂
Bal(M, 1, ze) = ∅.

Proof. 1): It suffices to prove that given any x ∈ R
m, if x ∈ B+, then x 6∈ Bal(M, 0, ze). By

the convexity of I0(x), one obtains that

∑

i∈M

I0(xi) ≥ mI0(1/m
∑

i∈M

xi) ≥ mI0(0) = mC,
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where the second inequality follows from x ∈ B+ and the fact that I0(x) is increasing when

x ≥ 0. Notice that by its definition, ze ≤ mC holds. The proof is done.

2): This can be proved similarly to 1).

3): By the definition of EBal, we need to prove that for any O1,O2 with |O1| = |O2| = m−n,

Bal(O1, 0, zs) ∩ Bal(O2, 1, zs) = ∅ holds. Notice that when z ≤ pD(1‖0), pI1(I
−1
0 (z/p)) is

increasing with respect to p. Thus by Lemma 2, it suffices to prove that (m−2n)I1(I
−1
0 (zs/(m−

2n))) ≥ zs, which is true because 0 ≤ zs ≤ (m−2n)C, pI1(I
−1
0 (z/p)) is decreasing with respect

to z when z ≤ pD(1‖0), and (m− 2n)I1(I
−1
0 (0)) = (m− 2n)C.

4): Similar to 3), it suffices to prove that for any O1 with |O1| = m − n, Bal(O1, 0, zs) ∩

Bal(M, 0, ze) = ∅ holds. By Lemma 2, it suffices to prove that (m−n)I1(I
−1
0 (ze/(m−n))) ≥ zs.

Then it is equivalent to prove that (m− n)I1(I
−1
0 (he(zs)/(m− n))) ≥ zs, which follows from

the definition of he(z) and the fact that pI1(I
−1
0 (z/p)) is decreasing with respect to z when

z ≤ pD(1‖0).

5): This can be proved similarly to 4).

From Lemma 3, one obtains straightforwardly the following lemma.

Lemma 4. Assume that (ze, zs) are an admissible pair, then the following set inclusions are

true:

1) EBal(0, zs, n) ⊆ Λ−(zs).

2) EBal(1, zs, n) ⊆ Λ+(zs).

3) Bal(M, 0, ze) ⊆ Λ−(zs).

4) Bal(M, 1, ze) ⊆ Λ+(zs).

We are now ready to prove Theorem 4.

Proof of Theorem 4. We focus on the proof of S(f ∗
zs
) ≥ zs, and a similar (and simpler) approach

can be used to prove E(f ∗
zs
) ≥ ze. Notice that EBal(0, zs, n) ⊆ Λ−(zs) in Lemma 4 gives that,
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under any attacks, there holds Bal(M, 0, zs) ⊆ Λ−(zs). Therefore,

lim sup
k→∞

1

k
logP0(f

∗
zs,k

= 1)

≤ lim sup
k→∞

1

k
log Po

0(λ̄(k) ∈ R
m \ Bal(M, 0, zs))

≤ − inf
x∈Rm\Bal(M,0,zs)

m∑

i=1

I0(xi)

= −zs, (52)

where the second inequality holds because of the Cramér’s Theorem and the fact that R
m \

Bal(M, 0, zs) is closed.

Similarly, by EBal(1, zs, n) ⊆ Λ+(zs) in Lemma 4, one obtains

lim sup
k→∞

1

k
logP1(f

∗
zs,k

= 0) ≤ −zs. (53)

It follows from (52) and (53) that S(f ∗
zs
) ≥ zs. The proof is thus complete.

APPENDIX D

THE PROOF OF THEOREM 5

Define the following two functions h0(z), h1(z) : (0, Dmin) 7→ (0, Dmin):

h0(z) = I0(I
−1
1 (z)),

h1(z) = I1(I
−1
0 (z)).

Then we have the following two lemmas on h0(z) and h1(z).

Lemma 5. Both h0(z) and h1(z) are convex. Furthermore, the following equality holds:

h0(C) = h1(C) = C. (54)

Proof. The equation (54) follows directly from (18) and (19). To prove the convexity of h0(z)

and h1(z), we first need to prove that I−1
0 (x) is convex and I−1

1 (x) is concave on [0, Dmin].

Notice that if ψ is the inverse function of φ and φ are twice differentiable, then by chain rule

ψ(2)(x) = −
φ(2)(ψ(x))

[φ(1)(ψ(x))]
3 .

Therefore, since I0(x) (I1(x)) is strictly convex and strictly decreasing (increasing) on [−D(0‖1), D(1‖0)],

I−1
0 (x) (I−1

1 (x)) is convex (concave) on [0, Dmin].
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The convexity of h0(z) and h1(z) then follows the fact that the composition of a convex and

increasing (decreasing) function with a convex (concave) function is convex [25].

We are now ready to prove Theorem 5

Proof. By chain rule, we know that

dh0(z)

dz
|z=C = I

(1)
0 (x)|x=0 ×

1

I
(1)
1 (x)|x=0

= −1.

Therefore, by the convexity of h0(z), we know that

h0(z) ≥ h0(C)− (z − C)×
dh0(z)

dz
|z=C = 2C − z.

Similarly, one can prove that

h1(z) ≥ 2C − z.

Hence, by the definition of h(z),

h(z) ≥ 2(m− n)C − z,

which implies that h((m − 2n)C) ≥ mC holds and f ∗
(m−2n)C achieves maximum security and

efficiency simultaneously.
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