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Abstract—Accurately monitoring the system’s operating point
is central to the reliable and economic operation of an electric
power grid. Power system state estimation (PSSE) aims to obtain
complete voltage magnitude and angle information at each bus
given a number of system variables at selected buses and lines.
Power flow analysis is a special case of PSSE, and amounts to
solving a set of noise-free power flow equations. Physical laws
dictate quadratic relationships between available quantities and
unknown voltages, rendering general instances of power flow and
PSSE nonconvex and NP-hard. Past approaches are largely based
on gradient-type iterative procedures or semidefinite relaxation
(SDR). Due to nonconvexity, the solution obtained via gradient-
type schemes depends on initialization, while SDR methods do
not perform as desired in challenging scenarios. This paper
puts forth novel feasible point pursuit (FPP)-based solvers for
power flow and PSSE, which iteratively seek feasible solutions for
a nonconvex quadratically constrained quadratic programming
(QCQP) reformulation of the weighted least-squares (WLS) prob-
lem. Relative to the prior art, the developed solvers offer superior
performance at the cost of higher complexity. Furthermore, they
converge to a stationary point of the WLS problem. As a baseline
for comparing different estimators, the Cramér-Rao lower bound
(CRLB) is derived for the fundamental PSSE problem in this
paper. Judicious numerical tests on several IEEE benchmark
systems showcase markedly improved performance of our FPP-
based solvers for both power flow and PSSE tasks over popular
WLS-based Gauss-Newton iterations and SDR approaches.

Index terms— Power flow analysis, state estimation, non-

convex QCQP, feasible point pursuit, CRLB.

I. INTRODUCTION

Recognized as the greatest engineering achievement of the

21st century [1], the electric power grid is a complex cyber-

physical system comprising multiple subsystems, each with a

transmission infrastructure to deliver electricity from power

generators to distribution networks to customers. Accurately

monitoring the operational condition of a power grid is cru-

cial to various system control and optimization tasks, which

include unit commitment, optimal power flow (OPF), and eco-

nomic dispatch [2], [3]. To enable such an accurate monitoring,

a set of system variables are specified (and enforced) or mea-

sured at selected buses and lines for determining or estimating

the system’s operating point, namely complex voltages at all
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buses of the grid. These two tasks correspond to the so-termed

power flow analysis and power system state estimation (PSSE),

respectively. Both are central to monitoring, control, and future

planning of electricity networks.

In power engineering, power flow analysis is a numerical

analysis of the normal steady-state flow of electric power over

the grid, that is crucial for planning future power system

expansions (e.g., designing components such as generators,

lines, transformers, and capacitors), as well as in determining

the best operation of the existing systems [3]. The goal of

power flow analysis is to obtain complete voltage magnitude

and angle information at each bus for specified or enforced

load and generator active power and voltage conditions [3].

Once this information is available, other system variables

including active and reactive power flows as well as generator

reactive power outputs can be analytically obtained.

Power flow analysis amounts to solving a set of quadratic

equations given by the nonlinear AC power flow model obey-

ing Ohm’s and Kirchhoff’s laws. Solving power flow equations

for both transmission and distribution systems is known to be

NP-hard [4]. Due to the nonlinear nature, several numerical

solvers have been developed to obtain a solution that is

within an acceptable tolerance [3], [5]. Past solvers include the

Gauss-Seidel and Newton-Raphson iterative algorithms [3],

and the semidefinite relaxation (SDR) [5], [6]. The Gauss-

Seidel method is reported as the earliest devised power flow

solver [3]. On the other hand, the Newton-Raphson algorithm

iteratively seeks improved approximations to the zeros of real-

valued functions, featuring quadratic convergence whenever

the initial point lands within a small neighborhood of the

zeros [7]. As convergence of both algorithms relies heavily

on the initial point, they may diverge if the initialization is

not reliable [6]. With a carefully designed objective function

and sufficiently small angle differences across lines, the SDR

approaches have been shown capable of recovering the true

power flow solution provided that the set of available specifi-

cations includes all voltage magnitudes, and the active power

flows over a spanning tree of the network [5], [6].

The task of PSSE can be described as estimating the voltage

magnitudes and angles at all buses across the network from a

subset of supervisory control and data acquisition (SCADA)

measurements including active and reactive power injections

and flows (at both the sending and receiving ends), as well as

squared voltage magnitudes [2]. Since its appearance in the

1970s [8], PSSE has become a prerequisite for supervisory

control, system planning, and economic dispatch [8]. Nonlin-

ear SCADA measurements however, render the PSSE problem

http://arxiv.org/abs/1705.04031v1
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nonconvex and NP-hard in general [9].

PSSE solvers so far are largely based on Gauss-Newton

iterations and SDR heuristics. The “workhorse” Gauss-Newton

method for nonconvex optimization has two limitations [10,

Sec. 1.5], i.e., sensitivity to the initial guess, and lack of

convergence guarantees. SDR-based approaches on the other

hand solve first for a matrix variable that can be computa-

tionally expensive [5], [6], [9], [11]–[13]. SDR’s performance

degrades when the data-size is relatively small, or when the

data do not include all voltage magnitudes [5], [6]. For PSSE

of large-scale networks, distributed Gauss-Newton and SDR

implementations have been reported in [9], [14], [15].

Solving power flow equations and the PSSE can be shown

equivalent to solving nonconvex QCQPs, which is generally

NP-hard [16]. Many heuristics have been put forward. A

feasible point pursuit (FPP) algorithm developed in [17] was

shown to enjoy improved performance over the SDR-based

methods. The FPP heuristic has been employed for solving the

OPF problem [18], where the resulting solver was empirically

shown more effective for multi-phase transmission networks

than popular SDR- and moment relaxation-based ones [18].

Building on our precursors [17], [19] and inspired by the

inherent nonconvex challenge, the goal of this work is to

develop power flow and PSSE solvers capable of attaining

or approximating the global optimum at manageable compu-

tational complexity. Starting with the WLS formulation, the

power flow and PSSE tasks are equivalently reformulated as

a nonconvex QCQP, which can be readily tackled by FPP.

We further show that our FPP-based solvers converge to a

stationary point of the WLS problem. As a baseline for com-

paring different SE approaches, the Cramér-Rao lower bound

(CRLB) is derived for the basic PSSE problem under additive

white Gaussian noise (AWGN). This is achieved by means

of Wirtinger’s calculus for functional analysis over complex

domains. Finally, numerical experiments using several IEEE

benchmark systems corroborate the superior performance of

our proposed solvers over existing methods for both power

flow and PSSE tasks.

Regarding notation, matrices (vectors) are denoted by upper-

(lower-) case boldface letters, and (·), (·)T , and (·)H stand

for complex conjugate, transpose, and conjugate-transpose,

respectively. Calligraphic letters are reserved for sets, e.g.,

N . Symbol ℜ{·} (ℑ{·}) takes the real (imaginary) part of

a complex-valued object, and diag(x) is a diagonal matrix

holding in order entries of x on its diagonal.

II. SYSTEM MODELING AND PROBLEM STATEMENT

An electric transmission network having N nodes (buses)

and E edges (lines) can be represented by a graph G :=
{N , E}, whose nodes N := {1, 2, . . . , N} correspond to

buses, and whose edges E := {(m,n)} ⊆ N ×N correspond

to transmission lines. For every bus n ∈ N , let Vn := |Vn|e
jθn

be the nodal complex voltage, whose magnitude and phase are

given by |Vn| and θn, respectively; likewise for the complex

current injection In := |In|ejφn . Let also Sn := Pn+ jQn be

the corresponding complex power injection, in which Pn and

Qn are the active and reactive power injection, respectively.

For every line (m,n) ∈ E , let Imn denote the complex current

flowing from bus m to n, and Sf
mn := P f

mn + jQf
mn the

complex power flow from bus m to n seen at the sending

end, where P f
mn and Qf

mn are the active and reactive power

flow, respectively; and likewise for the receiving-end (active

and reactive) power flow P t
mn and Qt

mn.

The AC power flow model dictates that system variables

{Pn}, {Qn}, {P f
mn}, {Q

f
mn}, {P

t
mn}, {Q

t
mn}, and {|Vn|2}

are quadratic functions of the state vector v. Clearly, this

holds true for the squared voltage magnitude understood as

|Vn|2 = VnV n. To specify the relationship between power

quantities and v, introduce Y ∈ CN×N to represent the bus

admittance matrix, which is in general symmetric. Ohm’s law

in conjunction with Kirchhoff’s law reads as

i = Y v. (1)

It is worth mentioning that Y is sparse, thus enabling efficient

computations in large-size power networks, and its (m,n)-th
entry is given by

Ymn :=







−ymn, (m,n) ∈ E
ygnn +

∑

k∈Nn
ynk, m = n

0, otherwise

(2)

where ymn denotes the admittance of line (m,n) ∈ E , ygnn
the admittance to the ground at bus n ∈ N , and Nn the set

of neighboring buses directly connected to bus n. For m 6= n,

let ysmn be the shunt admittance at bus m associated with

line (m,n). Recall from Ohm’s and Kirchhoff’s laws that the

current flowing from bus m to n can be expressed as

Imn = ysmnVm + ymn(Vm − Vn) (3)

whereby the reverse-direction current Inm can be given sym-

metrically. Due to ysmn 6= 0 in general, it holds Imn 6= −Inm.

The AC model also asserts Pn + jQn = VnIn, ∀n ∈ N .

Appealing again to (1) leads to the next matrix-vector form

p+ jq = diag(v)i = diag(v)Y v (4)

where both active and reactive power injections are quadrat-

ically related to v. Likewise, the sending-end active and

reactive power flow over line (m,n) ∈ E can be written as

P f
mn + jQf

mn = VmImn

= (ysmn + ysmn)VmV m − ymnVmV n (5)

where the second equality is obtained by substituting Imn in

(3) into the first. Hence, P f
mn and Qf

mn can also be expressible

as quadratic functions of v. By symmetry, this quadratic

relationship also holds for P t
mn and Qt

mn.

To perform either power flow analysis or PSSE, a total of

L system variables are specified or measured by the system

operator. The nonlinear AC networks have available the next

seven types of quantities: |Vn|2, Pn, Qn, P f
mn, Qf

mn, P t
mn,

and Qt
mn. If NV , NP , NQ, EfP (EfQ), and EtP (EtQ) denote

the selected sets of buses/lines over which actual quantities of

the corresponding type are available, the elaborated quadratic

relationships prompt us to define the L × 1 data vector z :=
[

{|Vn|2}n∈NV
, {Pn}n∈NP

, {Qn}n∈NQ
, {P f

mn}(m,n)∈Ef

P

,
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{Qf
mn}(m,n)∈Ef

Q

, {P t
mn}(m,n)∈Et

P
, {Qt

mn}(m,n)∈Et
Q

]T
∈ RL,

whose entries can be succinctly given by

zℓ = vHHℓv, 1 ≤ ℓ ≤ L (6)

where {Hℓ}Lℓ=1 are some coefficient matrices to be specified.

For this purpose, let
{

en ∈ RN
}N

n=1
be the canonical basis of

RN , and introduce also the admittance-dependent matrices

Yn := ene
T
nY , ∀n ∈ N ,

Y f
mn := (ymn + ymn)emeTm − ymnemeTn , ∀(m,n) ∈ E ,

Y t
mn := (ynm + ynm)emeTm − ynmemeTn , ∀(m,n) ∈ E .

For |Vn|2 = VnV n = vHene
T
n v, it is clear that the corre-

sponding Hn in (6) is

HV,n := ene
T
n � 0, ∀n ∈ N (7)

which are rank-1. By taking separately the real and imaginary

parts of (4) and (5), we obtain the {Hℓ} associated with the

active and reactive power injections for all buses n ∈ N

HP,n :=
1

2

(

Yn + Y H
n

)

, HQ,n :=
j

2

(

Yn − Y H
n

)

(8)

and with sending-end and receiving-end active and reactive

power flow at all lines (m,n) ∈ E

H
f
P,mn :=

1

2

(

Y f
mn +

(

Y f
mn

)H
)

(9a)

H
f
Q,mn :=

j

2

(

Y f
mn −

(

Y f
mn

)H
)

(9b)

Ht
P,mn :=

1

2

(

Y t
mn +

(

Y t
mn

)H
)

(9c)

Ht
Q,mn :=

j

2

(

Y t
mn −

(

Y t
mn

)H
)

. (9d)

It is worth stressing that all {Hℓ} in (8) and (9) are sparse,

low-rank, and Hermitian, but they are non-definite in general.

The power flow and PSSE problems are formulated in order

next.

A. Power flow analysis

Power flow analysis deals with specified power quantities,

which are enforced for optimally operating an electric power

grid. Specifically, given L perfectly known specifications

{zℓ}
L
ℓ=1 and valid network parameters {Hℓ}

L
ℓ=1 as in (6),

the goal of power flow analysis is to decide the state vector

v ∈ CN that satisfies all specifications, namely,

find v ∈ C
N (10a)

subject to vHHℓv = zℓ, 1 ≤ ℓ ≤ L. (10b)

Recall that each bus in a power system is classified as

a PQ, PV, or slack (reference) bus based on the constraints

imposed per bus. PQ buses, which often correspond to loads,

specify and enforce only active and reactive power injection

Pn and Qn on bus n. On the other hand, the PV buses, which

are typically associated with generators, enforce active power

injection Pn and voltage magnitude |Vn|. For the slack bus, its

voltage phase is fixed at θn = 0, by convention. With θn = 0,

the power flow problem in (10) is equivalent to solving for

2N − 1 real-valued unknowns from L quadratic equations.

The classical power flow problem considers the particular case

where the L = 2N − 1 specifications are enforced only at the

PV, PQ, and slack buses as opposed to a combination of buses

and lines [5].

B. Power system state estimation

PSSE on the other hand deals with noisy observations

acquired by the SCADA system adhering to

zℓ = vHHℓv + ηℓ, 1 ≤ ℓ ≤ L (11)

where ηℓ accounts for the zero-mean distributed measurement

error with known variance σ2
ℓ , henceforth assumed indepen-

dent across meters. The goal of PSSE is, given SCADA

measurements {zℓ ∈ R}Lℓ=1 and also parameters {Hℓ}Lℓ=1,

estimate the state vector v ∈ CN .

Adopting the WLS criterion, the SE task can be cast as that

of solving the following nonlinear LS problem

v̂ := arg min
v∈CN

L
∑

ℓ=1

wℓ

(

zℓ − vHHℓv
)2

(12)

where entries of the weight vector w := [w1 · · · wL]
T are

often taken as wℓ := 1/σ2
ℓ for known σ2

ℓ values. The WLS es-

timate v̂ coincides with the maximum likelihood one when the

error vector η := [η1 · · · ηL]T obeys the multivariate Gaus-

sian distribution N (0, diag(σ2)) with σ2 := [σ2
1 · · · σ

2
L]

T .

Unfortunately, due to the quadratic terms {vHHℓv} inside

the squares, the WLS SE problem is nonconvex. Minimizing

nonconvex objectives, which typically exhibit many stationary

points, is NP-hard in general [16]. Hence, solving the problem

in (12) is indeed challenging.

PSSE approaches so far can be grouped as convex and

nonconvex ones. The latter includes the “workhorse” Gauss-

Newton method, which is also typically employed in practice:

Upon linearizing the error function in the LS cost around a

given estimate, the minimizer of the norm of the resulting

linearized approximation is used to initialize the next itera-

tion [10, Sec. 1.5]. Minimizing nonconvex functions, Gauss-

Newton iterations can be problematic due to: i) its sensitivity to

the initial point; and, ii) lack of convergence guarantee to even

a stationary point [10]. Convex approaches via SDR [6], [9]

express all data {zℓ} as linear functions of the outer-product

V := vvH ∈ CN×N . Problem (12) is then convexified by

dropping the nonconvex constraint rank(V ) = 1. SDR-based

methods seldom yield solutions of rank-1 in the noisy case.

Further eigen-decomposition or randomization procedures are

required to recover the estimator v̂ from the SDR solution V̂ .

Performance of SDR solutions degrades when the data size is

small, or when the set of measurements does not include the

voltage magnitude at all buses, as will be demonstrated by our

numerical results in Sec. V.

III. FEASIBLE POINT PURSUIT BASED SOLVERS

In this section, the FPP-based power flow and PSSE solvers

will be developed based on procedures distinct from existing

iterative optimization and SDR-based SE approaches. To this

end, some basics of FPP are first reviewed. For nonconvex
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QCQPs, FPP iteratively solves a series of convexified QC-

QPs obtained with successive convex inner-restrictions of the

original nonconvex feasibility set, and with additive slacks to

approximate the feasible solutions of the original nonconvex

QCQP [17]. Specifically, starting with an initial guess, FPP

first decomposes the quadratic terms in all nonconvex con-

straints into their convex and nonconvex parts by means of

eigen-decomposition, which can be efficiently carried out of-

fline; then it linearizes the nonconvex parts around the current

iterate to obtain a restricted convex QCQP. Due to restriction

of the feasibility set, the convexified QCQP may be infeasible.

To sustain feasibility, a slack variable is introduced for each

relaxed constraint, with a convex penalty on the slack variables

added to the cost function, which can enforce sparing use of

slacks to produce solutions of minimal constraint violation.

The minimizer of the regularized convex QCQP subproblem is

taken as the next iterate, which will be used as the linearization

point of the nonconvex components at the next iteration.

This successive convex approximation and feasibility-restoring

procedure is repeated until a certain stopping criterion is met.

Further details of FPP can be found in [17], [18].

Note that the power flow problem (10) consists of quadratic

equality constraints, which are not in the standard QCQP form.

To apply FPP, equalities are relaxed to inequalities, while

penalizing the slack variables s := {sℓ ≥ 0}Lℓ=1, yielding

minimize
v∈CN , {sℓ}L

l=1

f(s) =

L
∑

l=1

s2ℓ (13a)

subject to
∣

∣zℓ − vHHℓv
∣

∣ ≤ sℓ, 1 ≤ ℓ ≤ L (13b)

where other choices of the convex penalty function f(·) in-

clude the (weighted) ℓ1 or ℓ∞ norm. Problem (13) is equivalent

to the original power flow formulation (10) when the latter

is feasible. To see this, assume that the set of power flow

equations in (10b) admits (possibly more than one) feasible

solutions. Clearly at the optimum of (13), the objective reduces

to zero, the slack variables {sℓ}Lℓ=1 take zero values, and

all equalities in (13b) are achieved, thus yielding a feasible

solution to the set of power flow equations in (10).

Similarly, our PSSE formulation in (12) minimizes a quartic

polynomial of v. To use FPP, problem (12) is reformulated as

minimize
v∈CN , {sℓ}L

l=1

f(s) =

L
∑

l=1

wℓs
2
ℓ (14a)

subject to
∣

∣zℓ − vHHℓv
∣

∣ ≤ sℓ, 1 ≤ ℓ ≤ L (14b)

where the slack variables s := {sℓ ≥ 0}Lℓ=1 in this case

relate to the deviations between noisy measurements {zℓ}Lℓ=1

and the actual quantities {vHHℓv}Lℓ=1. Problem (14) can

be similarly shown equivalent to (12). Other convex penalty

functions f(·) in (14a) can also be selected. In particular, if

the error vector follows the multivariate Laplace distribution,

i.e., η ∼ Laplace(0, b) with b := [b1 · · · bL]
T collect-

ing all scaling parameters, minimizing the ℓ1-based function

f(s) =
∑L

ℓ=1 wℓsℓ with wℓ = 1/bℓ in (14) produces the

maximum likelihood estimate [2], [6].

Apparently, the reformulated power flow and PSSE prob-

lems are of the same form [cf. (13) and (14)], except for a

minor difference in the cost functions. Setting unit weights

wℓ = 1 in (14) reduces problem (14) to (13). Without loss of

generality, we will hereafter focus on the PSSE formulation

(14), and develop the novel FPP solver. The power flow

problem can be readily handled with all weights being wℓ = 1.

In this direction, let us first convert problem (14) into a

standard QCQP. Note that constraints (14b) can be replaced

by two sets of inequalities to arrive at

minimize
v∈CN , s∈RL

L
∑

l=1

wℓs
2
ℓ (15a)

subject to vHHℓv ≤ zℓ + sℓ, 1 ≤ ℓ ≤ L (15b)

vH (−Hℓ)v ≤ −zℓ + sℓ, 1 ≤ ℓ ≤ L. (15c)

Problem (15) is nonconvex even for (semi)definite coefficient

matrices {Hℓ}Lℓ=1. Next we demonstrate how to take advan-

tage of FFP to solve the problem at hand in detail.

As discussed in Sec. II, there are two types of {Hℓ}
matrices, one corresponding to the squared voltage magni-

tude, and the other to power quantities. Type-I {Hℓ} are

positive semidefinite [cf. (7)], while Type-II are non-definite

[cf. (8) and (9)]. For ease of exposition, let us introduce the

FPP constraint convexification procedure using one nonconvex

quadratic constraint in (15). Along the lines of FPP, consider

the term vHHℓv in (15b) for some Hℓ in (8), which can be

decomposed into its convex and nonconvex components as

vHH
(+)
ℓ v + vHH

(−)
ℓ v ≤ zℓ + sℓ (16)

where H
(+)
ℓ and H

(−)
ℓ represent the positive semidefinite

(convex) and negative semidefinite (nonconvex) parts of Hℓ

in (16), respectively. For the nonconvex source vHH
(−)
ℓ v in

(16), an inner linear restriction will be derived next.

The following inequality holds for any y ∈ CN due to the

negative semidefiniteness of H
(−)
ℓ

(v − y)HH
(−)
ℓ (v − y) ≤ 0. (17)

Upon expanding the left-hand-side and rearranging terms, one

arrives at

vHH
(−)
ℓ v ≤ 2ℜ

{

yHH
(−)
ℓ v

}

− yHH
(−)
ℓ y.

Key to the FPP algorithm is replacing the nonconvexity

stemming from H
(−)
ℓ in (16) or (15b) by its inner linear

approximation at some given point y to yield

vHH
(+)
ℓ v + 2ℜ

{

yHH
(−)
ℓ v

}

≤ zℓ + yHH
(−)
ℓ y + sℓ. (18)

The strategy in selecting the linearization point y will be

discussed shortly. In the same fashion, the nonconvex quadratic

constraints in (15c) can be replaced by

vH
(

−H
(−)
ℓ

)

v−2ℜ
{

yHH
(+)
ℓ v

}

≤−zℓ−y
HH

(+)
ℓ y+sℓ. (19)

Heed that the flexibility introduced by the slacks {sℓ}
L
ℓ=1

always restores the feasibility of the relaxed constraints, which

contributes to improved performance of FPP over other con-

vexification approaches [17]. In the presence of noise, the

minimum values required for {sℓ ≥ 0}Lℓ to satisfy (18) and

(19) depend on the measurement error contained in {zℓ}Lℓ=1.



5

The FPP method replaces all nonconvex constraints in (15b)

by their convex restriction (18), and those in (15c) by (19) to

derive a convexified QCQP regularized with slack variables to

ensure feasibility. Minimizing some convex penalty function of

the slacks {sℓ}Lℓ=1 not only minimizes the fitting error between

{zℓ} and {vHHℓv}, but also enforces sparing use of slacks

and promotes solutions of minimal constraint violation.

In a nutshell, the developed FPP-based PSSE solver can

be understood as follows. Starting with an initial point v0

(typically the flat voltage profile point, i.e., all-ones vector),

our FPP-based solver successively tackles a sequence of con-

vexified QCQPs with the linearization point being the current

iterate vk, which is the v-minimizer obtained by solving a

convexified QCQP at the previous iteration. Hence, assuming

available the v-minimizer vk at the (k + 1)-st iteration,

our FPP-based solver boils down to solving the following

convexified QCQP subproblem

{vk+1, sk+1} := argmin
v, s

L
∑

l=1

wℓs
2
ℓ (20a)

subject to

vHH
(+)
ℓ v+ 2ℜ

{

yHH
(−)
ℓ v

}

≤ zℓ+ yHH
(−)
ℓ y+ sℓ (20b)

vHH
(−)
ℓ v+ 2ℜ

{

yHH
(+)
ℓ v

}

≥ zℓ+ yHH
(+)
ℓ y− sℓ (20c)

∀ℓ = 1, 2, . . . , L

where y := vk is the v-minimizer of (20) at the k-th

iteration. The QCQP in (20) is convex, which can be solved

in polynomial time using off-the-shelf solvers [20]

The FPP-based PSSE solver is summarized in Alg. 1. The

following three properties of our FPP-based solver are worth

highlighting.

Remark 1 (Power flow analysis). Cast as a special instance of

PSSE, the power flow problem in (10) can be solved by our

developed FPP-based PSSE solver with unit weights wℓ = 1.

Remark 2 (Bad data removal). Besides the ℓ2-norm in (20a),

other convex penalty functions can be used to fit different

(noisy) data models. In particular, adopting the weighted ℓ1-

norm (i.e., replacing s2ℓ with |sℓ|) yields the weighted least-

absolute-value estimator known for bad data cleansing [21].

Remark 3 (Synchrophasors). Synchrophasors, if available, can

be easily incorporated into the developed PSSE formulation

(20). To see this, letting ζn = Φnv+ǫn collect the noisy PMU

data at bus n, hybrid estimation exploiting both nonlinear

SCADA measurements and linear PMU ones can be achieved

[22] with an additional data-fitting term for the PMU data

in (20a), namely,
∑

n∈P ‖ζn −Φnv‖22, where P denotes the

subset of the PMU-instrumented buses.

On the theoretical side, the following result establishes con-

vergence of our developed FPP-based solvers to a stationary

point of the WLS formulation.

Proposition 1 (Global convergence of FPP-based solvers). Let

{vk}∞k=0 be any sequence generated by the FPP-based solver

in Alg. 1. Then, all limit points of {vk}∞k=0 are stationary

points of the WLS problem in (12).

Algorithm 1: FPP-based power flow and PSSE Solvers

Input: Data {(zℓ,Hℓ)}; weights {wℓ = 1} for power

flow, and {wℓ = 1/σ2
ℓ} for PSSE; solution

accuracy ǫ > 0.

Initialization: set k = 0 and y = [1 · · · 1]T .

repeat

{vk, sk} ← minimizer of problem (20)

y ← vk

k ← k + 1
until ‖vk − vk−1‖2 ≤ ǫ.
Output: v̂ ← vk.

Proof. As elaborated in Sec. III, solving problem (15) is

equivalent to solving problem (12). The nonconvex QCQP

of complex-valued vector v ∈ C
N in (15) can be equiva-

lently posed as a QCQP of the expanded real-valued vector

u := [ℜ(v)T ℑ(v)T ]T ∈ R2N , where the associated quadratic

matrices {Hℓ} are given as

Hℓ :=

[

ℜ(Hℓ) −ℑ(Hℓ)
ℑ(Hℓ) ℜ(Hℓ)

]

∈ R
2N×2N , 1 ≤ ℓ ≤ L.

Accordingly, each constraint in (15) can be re-expressed as the

difference between two convex functions. To see this, consider

e.g. constraint (15b), which can be rewritten as
(

uT H
(+)

ℓ u− sℓ
)

−
(

uT (−H
(−)

ℓ )u
)

≤ zℓ (21)

where H
(+)

ℓ and H
(−)

ℓ are the positive and negative semidef-

inite parts of Hℓ, hence rendering terms uT H
(+)

ℓ u − sℓ

and uT (−H
(−)

ℓ )u both convex. Alg. 1 is tantamount to an

application of the convex-concave procedure [23], [24] to the

reformulated QCQP in the real domain. Hence, the sequence

generated by Alg. 1 converges to a stationary point of (12) by

appealing to the results in [25, Thm. 10].

IV. CRAMÉR-RAO BOUND FOR PSSE

According to standard results from estimation theory [26],

the variance of any unbiased estimator is lower bounded by

the Cramér-Rao lower bound (CRLB). Appreciating its key

role as a performance benchmark across different estimators,

this section establishes the CRLB for the fundamental PSSE

problem. The CRLB analysis of PSSE however, entails finding

derivatives (gradient and Hessian) of a real-valued function

with respect to multiple complex-valued variables. To address

this challenge, we call for advanced complex analysis tools

based on the so-termed Wirtinger derivative and Wirtinger’s

calculus, which are detailed in the Appendix. The following

result provides a closed-form CRLB for any unbiased PSSE

solver under the AWGN model in (11), which can be directly

used to assess the performance of other PSSE solvers.

Proposition 2. Consider estimating the unknown state vector

v ∈ CN from noisy data {zℓ}Lℓ=1 obeying the model in (11),

where the noise ηℓ is assumed Gaussian distributed with mean

zero and variance σ2
ℓ , and is also independent across meters.

Then the covariance matrix of any unbiased estimator v̂ obeys

Cov(v̂) � [F †(v,v)]1:N,1:N (22)
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TABLE I
EMPIRICAL SUCCESS RATE ON IEEE TEST SYSTEMS WITH θ = 0.1π.

Test case 5-bus 9-bus 14-bus 24-bus 30-bus 39-bus

FPP-based 100% 100% 100% 100% 100% 100%

SDR-based 0 29% 40% 2% 94% 97%

GN-based 100% 100% 100% 100% 87% 64%

TABLE II
EMPIRICAL SUCCESS RATE ON IEEE TEST SYSTEMS WITH θ = 0.3π.

Test case 5-bus 9-bus 14-bus 24-bus 30-bus 39-bus

FPP-based 100% 100% 100% 100% 100% 100%

SDR-based 4% 33% 15% 10% 0 0

GN-based 100% 55% 33% 21% 0 5%

where the Fisher information matrix is given by

F (v,v)=

[
∑L

ℓ=1
1
σ2

ℓ

(Hℓv)(Hℓv)
H

∑L

ℓ=1
1
σ2

ℓ

(Hℓv)(Hℓv)
H

∑L

ℓ=1
1
σ2

ℓ

(Hℓv)(Hℓv)
H

∑L

ℓ=1
1
σ2

ℓ

(Hℓv)(Hℓv)
H

]

.

(23)

Furthermore, F has at least rank-1 deficiency even when all

possible SCADA measurements are available.

The proof of Prop. 2 is deferred to the Appendix. Even

though the Fisher information matrix (FIM) in (23) is rank

deficient, the pseudo-inverse of FIM qualifies itself as a valid

yet generally looser lower bound on the mean-square error

(MSE) of any unbiased estimator [27]. This lower bound

is often attainable in practice, and is predictive of optimal

estimator performance [27], as will be demonstrated by our

numerical tests in Sec. V. The derived CRLB in (22) will be

employed to benchmark and compare performance of different

PSSE solvers next.

V. SIMULATED TESTS

In the section, we compare the proposed FPP-based solvers

in Alg. 1 with existing alternatives including the WLS via

Gauss-Newton iterations (GN-based), and the SDR-based

solver (SDR-based) [9] for both power flow and PSSE tasks

on several IEEE benchmark systems [28]. Throughout, all re-

ported numerical results were obtained by averaging over 100
independent Monte Carlo realizations. The three PSSE solvers

from noisy measurements are compared in terms of the mean-

square error
∑100

i=1 ‖v̂i − v‖22 /100, where v̂i is the returned

estimate at the i-th realization, and v the actual voltage profile.

In the absence of noise, performance of the power flow solvers

is assessed through the empirical success rate over 100 trials.

A success is declared for a trial if the returned power flow so-

lution v̂ incurs a relative violation on the given set of L power

flow equations, given by
∑L

ℓ=1(zℓ− v̂HHℓv̂)
2/

∑L

ℓ=1 z
2
ℓ less

than 10−3. (The reason why ‖v − v̂‖22 is not used is due to

existence of possibly multiple solutions v satisfying the set of

power flow equations.)

Different system quantities and voltage profiles were gener-

ated via the MATLAB-based toolbox MATPOWER [29]. The

Gauss-Newton method was implemented using the SE function

‘doSE.m’ in MATPOWER, which was modified to terminate

either upon convergence, or, when the condition number of

the approximate linearization exceeds 105 flagging explosion

of the iterates [9]. The SDR- and FPP-based solvers were

1 2 3 4 5
Types of measurements

10-3

10-2

10-1

100

101

102

M
ea

n-
sq

ua
re

 e
rr

or
 (

p.
u.

)

GN-based SE
SDR-based SE
FPP-based SE
Cramer-Rao bound

Fig. 1. MSEs as well as CRLB versus types of measurements used on the
IEEE 14-bus test system using: i) Gauss-Newton based SE; ii) SDR-based
SE; and iii) FPP-based SE.

realized via the optimization modeling package YALMIP [30],

as well as the interior-point solver SeDuMi [20]. Furthermore,

the flat-voltage profile point was used as the initial guess for

the Gauss-Newton and FPP approaches. In order to fix the

phase ambiguity, the phase generated at the reference bus

is set to 0 in all tests. The FPP solver stops either when a

maximum number 100 of iterations are reached, or when the

objective value improvement between two consecutive itera-

tions becomes smaller 10−5. All experiments were conducted

on an Intel CPU @ 3.4 GHz (32 GB RAM) computer.

To evaluate the performance of the FPP-based solver for

power flow analysis, the first experiment simulates noiseless

data corresponding to the classical power flow problem. That

is, a total of L = 2N − 1 system variables were specified at

the PV, PQ, and slack buses to solve for 2N − 1 real-valued

unknowns in v ∈ CN with the reference bus’s phase fixed at

0. The actual voltage magnitude of each bus was uniformly

distributed over [0.9, 1.1], and its angle over [−θ, θ] with θ =
0.1π and 0.3π. Empirical success rate results on several IEEE

benchmark systems were reported in Tables I and II for θ =
0.1π and 0.3π, respectively. Apparently, our developed FPP-

based power flow solver solves exactly the classical power flow

problem in all simulated tests, while the SDR-based one fails

with high probability. The Gauss-Newton method performs

well when the initial point lies close to the actual solution due

to small θ in Table I, while it diverges frequently for large θ
values in Table II.

The second experiment compares the MSE performance

of various approaches relative to the analytical Cramér-

Rao bound in (22) on the IEEE 14-bus test system [28].

The actual voltage magnitude and angle of each bus were

generated uniformly over [0.9, 1.1], and [−0.4π, 0.4π], re-

spectively. Initially, all voltage magnitudes as well as all

sending-end and receiving-end active power flow were taken,

which corresponds to the base case 3 in the x-axis of

Fig. 1. To demonstrate the SE performance evolution of

various approaches with respect to the increasing number

of measurements, additional types of measurements were
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Fig. 2. Magnitude and angle estimation errors at each bus on the IEEE 30-
bus benchmark system using: i) Gauss-Newton based SE; ii) SDR-based SE;
and iii) FPP-based SE.

included in a deterministic manner detailed next. All seven

types of SCADA measurements in (7)-(9) were ordered as

{|Vk|2, P f
mn, P

t
mn, Q

f
mn, Q

t
mn, Pn, Qn}. Each x-axis value in

Fig. 1 implies that the number of ordered types of mea-

surements was used in the experiment to obtain the mean-

square errors. For instance, 5 on the x-axis corresponds to

the case where the first 5 types of measurements (i.e., all

|Vk|2, P f
mn, P

t
mn, Q

f
mn, Q

t
mn) were used; and likewise for all

other x-axis values. Measurement noise was randomly and

independently generated from Gaussian distribution having

zero-mean and standard deviation 0.1. The SDR estimator was

recovered from the SDR solution by picking the minimum-

cost vector over the eigenvector and 5, 000 zero-mean Gaus-

sian randomizations with covariance matrix being the SDR

solution. The MSE as well as the CRLB versus the types of

measurements available are shown in Fig. 1, corroborating the

near-optimal performance relative to the CRLB and robustness

of our developed FPP-based PSSE solver.

The last experiment on the IEEE 30-bus benchmark system

simulates a high signal-to-noise ratio and complete-data sce-

nario, where all voltage magnitude as well as all active power

flow at both sending- and receiving-ends were measured to

be advantageous to the SDR-based method [6]. Independent

zero-mean Gaussian noise was assumed to have standard

deviations 0.05 for power measurements and 0.02 for voltage

measurements. The actual voltage magnitude and angle of

each bus were generated uniformly at random over [0.9, 1.1],
and [−0.4π, 0.4π], respectively. Fig. 2 depicts the average

magnitude and angle estimation errors of three PSSE schemes

across buses. The curves in Fig. 2 demonstrate the merits of

the FPP-based PSSE solver in this scenario.

VI. CONCLUSIONS

Motivated by the inherent nonconvexity of the power flow

and PSSE tasks and leveraging recent advances in handling

nonconvex QCQPs, this work first reformulated power flow

and PSSE as a nonconvex QCQP. The resulting nonconvex

QCQP was subsequently solved by the FPP algorithm. The

novel FPP-based solvers were shown to converge to a station-

ary point of the WLS formulation. To fairly compare different

PSSE solvers from noisy data, the CRLB for PSSE assuming

an AWGN model was derived based on Wirtinger’s calculus

for functions over complex domains. Extensive numerical tests

showed markedly improved performance of our FPP-based

solver for both power flow and PSSE tasks at the price of

increased runtime over competing Gauss-Newton- and SDR-

based alternatives on a variety of IEEE test systems.

Pertinent future research directions include developing dis-

tributed implementations for large-scale power networks by

exploiting the natural low-rank and sparsity structure present

in the coefficient matrices {Hℓ}. Another possibility con-

sists of leveraging state-of-the-art approaches for tackling

random quadratic systems of equations to solve the power

flow and PSSE problems [31]. Generalizing feasible point

pursuit algorithms to other nonconvex power grid control tasks

such as stochastic energy management [32], and distribution

system-level power flow and PSSE [13] constitute meaningful

directions for future research as well.

VII. APPENDIX

Proof of Proposition 2: For the AWGN model in (11) with

η ∼ N (0, diag(σ2)), the data likelihood can be written as

p(z;v) =

L
∏

ℓ=1

1
√

2πσ2
ℓ

exp

[

−

(

zℓ − vHHℓv
)2

2σ2
ℓ

]

and the negative log-likelihood f(v) = − ln p(z;v) is

f(v) =

L
∑

ℓ=1

[

1

2σ2
ℓ

(

zℓ − vHHℓv
)2

+
1

2
ln
(

2πσ2
ℓ

)

]

. (24)

The Fisher information matrix is defined as the Hessian

of the objective function f(v) ∈ R with respect to the

variable vector v ∈ CN . So the task of deriving the Cramér-

Rao bound amounts to finding the Hessian of a real-valued

function with respect to a complex-valued vector. Recall from

Wirtinger’s calculus that f(v) can be equivalently rewritten

as f(v,v) [33]. Upon introducing the conjugate coordinates

[vT vT ]T ∈ C
2N , the so-called Wirtinger derivative is [33]

∂f

∂v
:=

∂f(v,v)

∂vT

∣

∣

∣

∣

v=constant

=

[

∂f

∂v1
· · ·

∂f

∂vN

]∣

∣

∣

∣

v=constant

∂f

∂v
:=

∂f(v,v)

∂vT

∣

∣

∣

∣

v=constant

=

[

∂f

∂v1
· · ·

∂f

∂vN

]∣

∣

∣

∣

v=constant

.

Our definitions here follow the convention in multivariate cal-

culus that derivatives are denoted by row vectors, and gradients

by column vectors. For brevity, let φℓ(v,v) := zℓ − vT Hℓv.

Accordingly, the derivatives of f in (24) can be obtained as

∂f

∂v
=

L
∑

ℓ=1

1

σ2
ℓ

φℓ(v,v)
∂φℓ(v,v)

∂vT
(26a)

∂f

∂v
=

L
∑

ℓ=1

1

σ2
ℓ

φℓ(v,v)
∂φℓ(v,v)

∂vT
(26b)
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where the partial derivatives of φℓ can be found as

∂φℓ(v,v)

∂vT
= −vT Hℓ = −(Hℓv)

H (27a)

∂φℓ(v,v)

∂vT
= −vT HT

ℓ = −(Hℓv)
H. (27b)

In the conjugate coordinate system, the complex Hessian is

defined as

H := ∇2f =

[

Hvv Hvv

Hvv Hvv

]

(28)

whose blocks are given by

Hvv :=
∂

∂vT

(

∂f

∂v

)H

, Hvv :=
∂

∂vT

(

∂f

∂v

)H

Hvv :=
∂

∂vT

(

∂f

∂v

)H

, Hvv :=
∂

∂vT

(

∂f

∂v

)H

.

After substituting (26) and (27) into the last equations, and

with some tedious algebraic manipulations, the first block of

H can be obtained as

Hvv =
∂

∂vT

(

L
∑

ℓ=1

−1

σ2
ℓ

φℓ(v,v)Hℓv
)

=

L
∑

ℓ=1

1

σ2
ℓ

(

Hℓv(Hℓv)
H − φℓ(v,v)Hℓ

)

. (29)

The other blocks can be derived in a similar fashion. Upon

omitting algebraic details, the remaining three blocks can be

obtained as follows

Hvv =

L
∑

ℓ=1

1

σ2
ℓ

Hℓv(Hℓv)
H (30)

Hvv =

L
∑

ℓ=1

1

σ2
ℓ

Hℓv(Hℓv)
H (31)

Hvv =

L
∑

ℓ=1

1

σ2
ℓ

(

Hℓv(Hℓv)
H − φℓ(v,v)Hℓ

)

. (32)

Evaluating the Hessian H in (28) [and its blocks in (29)-

(32)] at the true value of v, and taking the expectation

with respect to the noise vector η, it is easy to verify that

E [φℓ(v,v)] = 0. Hence, the φℓ-related terms disappear, so

the FIM F := E[H] ∈ C2N×2N can be expressed as [34]

F =

[

∑L

ℓ=1Hℓv(Hℓv)
H
/

σ2
ℓ

∑L

ℓ=1 Hℓv(Hℓv)
H
/

σ2
ℓ

∑L

ℓ=1Hℓv(Hℓv)
H
/

σ2
ℓ

∑L

ℓ=1 Hℓv(Hℓv)
H
/

σ2
ℓ

]

=

L
∑

ℓ=1

gℓg
H
ℓ

△
= GGH (33)

where G := [g1 · · · gL] ∈ C2N×L is introduced to show the

rank-deficiency of F , whose ℓ-th column is given as

gℓ :=

[

Hℓv/σℓ

Hℓv/σℓ

]

=

[

Hℓ/σℓ 0

0 Hℓ/σℓ

] [

v

v

]

. (34)

To demonstrate the rank-1 deficiency of F , it suffices to

find a nonzero vector d ∈ C2N such that Fd = 0. To

this end, consider the vector d :=
[

vT − vT
]T
6= 0. It is

straightforward to check that for all ℓ = 1, 2, . . . , L

gH
ℓ d =

[

vHHℓ/σℓ vHHℓ/σℓ

]

[

v

−v

]

= 0

therefore giving rise to Fd =
∑L

ℓ=1 gℓ
(

gH
ℓ d

)

= 0. That is,

for any nonzero v, there always exists a nonzero vector d =
[

vT − vT
]T

lying in the null space of F , hence verifying

the rank-1 deficiency of F . This concludes the proof.
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