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Multiple scan data association by
convex variational inference (extended version)

Jason L. Williams, Senior Member, IEEE and Roslyn A. Lau, Student Member, IEEE

Abstract—Data association, the reasoning over correspondence
between targets and measurements, is a problem of fundamental
importance in target tracking. Recently, belief propagation (BP)
has emerged as a promising method for estimating the marginal
probabilities of measurement to target association, providing fast,
accurate estimates. The excellent performance of BP in the par-
ticular formulation used may be attributed to the convexity of the
underlying free energy which it implicitly optimises. This paper
studies multiple scan data association problems, i.e., problems
that reason over correspondence between targets and several sets
of measurements, which may correspond to different sensors or
different time steps. We find that the multiple scan extension of
the single scan BP formulation is non-convex and demonstrate
the undesirable behaviour that can result. A convex free energy
is constructed using the recently proposed fractional free energy
(FFE). A convergent, BP-like algorithm is provided for the single
scan FFE, and employed in optimising the multiple scan free
energy using primal-dual coordinate ascent. Finally, based on a
variational interpretation of joint probabilistic data association
(JPDA), we develop a sequential variant of the algorithm that is
similar to JPDA, but retains consistency constraints from prior
scans. The performance of the proposed methods is demonstrated
on a bearings only target localisation problem.

I. INTRODUCTION

Multiple target tracking is complicated by data association,
the unknown correspondence between measurements and
targets. The classical problem arises under the assumption
that measurements are received in scans (i.e., a collection of
measurements made at a single time), and that within each
scan, each target corresponds to at most one measurement, and
each measurement corresponds to at most one target.

Techniques for addressing data association may be classified
as either single scan (considering a single scan of data at a
time) or multiple scan (simultaneously considering multiple
scans), and as either maximum a posteriori (MAP) (finding the
most likely correspondence), or marginal-based (calculating the
full marginal distribution for each target). Common methods
include:

1) Global nearest neighbour (GNN), e.g., [1], is a single
scan MAP method, which finds the MAP correspondence
in the latest scan, and proceeds to the next scan assuming
that correspondence was correct
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2) Multiple hypothesis tracking (MHT) [2]–[4] is a multiple
scan MAP method, which in each scan seeks to find the
MAP correspondence over a recent history of scans

3) Joint probabilistic data association (JPDA) [5] is a
single scan marginal-based method, which calculates
the marginal distribution of each target, and proceeds by
approximating the joint distribution as the product of its
marginals

Classical JPDA additionally approximates the distribution of
each target as a moment-matched Gaussian distribution; in
this paper, we use the term JPDA more generally to refer to
the approach that retains the full marginal distribution of each
target in a manner similar to [6]–[10].

Compared to GNN, MHT and JPDA, multiple scan variants
of JPDA, e.g., [11], have received less attention. One may posit
that this is due to their formidable computational complexity:
While there exist fast approximations to the multiple scan
MAP problem such as Lagrangian relaxation [12], [13], no
such equivalents have existed for either single scan or multiple
scan JPDA.

Variational inference (e.g., [14], [15]) describes the collection
of methods that use optimisation (or calculus of variations)
to approximate difficult inference problems in probabilistic
graphical models (PGMs). Methods within this framework
include belief propagation (BP) [16], [17], mean field (MF)
[18],1 hybrid BP/MF approaches [19], [20], tree-reweighted
sum product (TRSP) [21] and norm-product BP (NPBP) [22].
Excellent performance has been demonstrated in a variety of
problems, typified by the recognition that turbo coding is an
instance of BP [23].

Variational inference was first applied to data association in
[24]–[26], addressing the problem of distributed tracking using
wireless sensor networks. The problem was formulated with
vertices corresponding to targets and sensors, where sensor
nodes represent the joint association of all sensor measurements
in the scan to targets. A related sensor network application
was studied in [27].

In contrast to these methods, which hypothesise the joint
association of all sensor measurements via a single variable,
the approach in [28]–[32] formulates the single scan problem
in terms of a bipartite graph, where vertices hypothesise
the measurement associated with a particular target, or the
target associated with a particular measurement. Empirically, it
was found that BP converges reliably and produces excellent
estimates of both the marginal association probabilities [30],

1Mean field is also referred to as variational Bayes; following [14], we
use the term variational inference more generally, to refer to the entire family
of optimisation-based methods.
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[32] and the partition function [31]. Convergence of BP in the
two related formulations was proven in [33], [34].

In [35] it was shown that, when correctly parameterised,
the variational inference problem that underlies the bipartite
formulation is convex. This may be understood to be the source
of the empirically observed robustness of the approach when
applied to the bipartite model. For example, it was shown in
[36] that the approximations produced by BP tend to be either
very good, or very bad. This may be understood through the
intuition that BP converges to a “good” approximation if the
objective function that it implicitly optimises is locally convex
in the area between the starting point and the optimal solution,
and a “bad” approximation if it is non-convex. Accordingly, if
the problem is globally convex, a major source of degenerate
cases is eliminated.

Various applications merging the BP formulation in [32] with
MF (as proposed in [20]) and expectation maximisation (EM)
were examined in [37]–[41]. PGM methods provide a path for
extending the bipartite model to multiple scan problems; this
has been studied in [42], [43], which extends the single scan BP
formulation of [32] to multiple scans using a restricted message
passing schedule, rather than optimising the variational problem
to convergence. An alternative PGM formulation of the same
problem was utilised in [44] for the purpose of parameter
identification. However, these approaches lose the convexity
property of the single scan bipartite formulation, which is
understood to be the source of the robustness of this special
case.

A. Contributions

This paper addresses the multiple scan data association
problem using a convexification of the multiple scan model.
We consider methods that optimise the variational problem to
convergence, rather than using restricted message schedules as
proposed in [42], [43]. A preliminary look at the convergence
and performance of BP in multiple scan problems was also
included in [30]. In section IV, we perform a thorough
evaluation of these methods on a bearings only localisation
problem, and find that each of these methods can, in a
challenging environment, give vanishingly small likelihood
to the true solution in a significant portion of cases.

While our preliminary study [45] applying an extension of
the fractional free energy (FFE) (introduced in [46]) to tracking
problems showed promise, the absence of a rapidly converging,
BP-like algorithm for solving it has limited its practical use.
In this paper, we provide such an algorithm, and prove its
convergence.

Subsequently, the FFE is used as a building block in a
multiple scan formulation, which is shown in section IV to
address the undesirable behaviour of the previous methods. The
proposed method results in a convex variational problem for the
multiple scan model, and a convergent algorithm for solving
the problem is developed. Importantly, association consistency
constraints from previous scans are retained. The sequential
version of the algorithm is motivated by a new variational
interpretation of JPDA.

II. BACKGROUND AND MODEL

We use the abbreviated notation p(x), p(z|x), etc, to
represent the probability density function (PDF) or point mass
function (PMF) of the random variable corresponding to the
value x, z conditioned on x, etc.

A. Probabilistic graphical models and variational inference

PGMs [14], [15], [47] aim to represent and manipulate the
joint probability distributions of many variables efficiently
by exploiting factorisation. The Kalman filter [48] and the
hidden Markov model (HMM) [49] are two examples of
algorithms that exploit sparsity of a particular kind (i.e., a
Markov chain) to efficiently conduct inference on systems
involving many random variables. Inference methods based on
the PGM framework generalise these algorithms to a wider
variety of state spaces and dependency structures.

PGMs have been developed for undirected graphical models
(Markov random fields), directed graphical models (Bayes
nets) and factor graphs. In this work we consider a subclass
of pairwise undirected models, involving vertices (i.e., random
variables) v ∈ V , and edges (i.e., dependencies) e ∈ E ⊂ V×V ,
and where the joint distribution can be written as:2

p(xV) ∝
∏
v∈V

ψv(xv)
∏

(i,j)∈E

ψi,j(xi, xj).

As an example, a Markov chain involving variables
(x1, . . . , xT ) may be formulated by setting ψ1(x1) = p(x1),
ψt(xt) = 1 for t > 1, and edges ψt−1,t(xt−1, xt) =
p(xt|xt−1), t ∈ {2, . . . , T} representing the Markov transition
kernels, although other formulations are possible.

Exact inference can be conducted on tree-structured graphs
using belief propagation (BP), which operates by passing mes-
sages between neighbouring vertices. We denote by µi→j(xj)
the message sent from vertex i ∈ V to vertex j ∈ V where
(i, j) ∈ E . The iterative update equations are then:

µi→j(xj) ∝
∑
xi

ψi,j(xi, xj)ψi(xi)
∏

(j′,i)∈E,j′ 6=j

µj′→i(xi).

(1)
This is also known as the sum-product algorithm. If the
summations are replaced with maximisations, then we arrive
at max-product BP, which generalises the Viterbi algorithm
[50], providing the MAP joint state of all variables in the
tree-structured graph. At convergence of sum-product BP, the
marginal distribution at a vertex v can be calculated as:

p(xv) ∝ ψv(xv)
∏

(v,i)∈E

µi→v(xv). (2)

In the case of a Markov chain, if all vertices are jointly
Gaussian, BP is equivalent to a Kalman smoother. Similarly,
if all vertices are discrete, BP is equivalent to inference on an
HMM using the forward-backward algorithm. BP unifies these
algorithms and extends them from chains to trees.

2In the general setting, the joint distribution is a product of maximal
cliques [14, p9]. Since the graph is undirected, we assume that E is symmetric,
i.e., if (i, j) ∈ E then (j, i) ∈ E . We need only incorporate one of these two
factors in the distribution.
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Inference in cyclic graphs (graphs that have cycles, i.e., that
are not tree-structured) is far more challenging. Conceptually,
one can always convert an arbitrary cyclic graph to a tree by
merging vertices (e.g., so-called junction tree representations)
[15], [47], but in practical problems, the dimensionality of
the agglomerated variables tends to be prohibitive. BP may
be applied to cyclic graphs; practically, this simply involves
repeated application of (1) until convergence occurs (i.e., until
the maximum change between subsequent messages is less than
a pre-set threshold). Unfortunately, this is neither guaranteed
to converge to the right answer, nor to converge at all.
Nevertheless, it has exhibited excellent empirical performance
in many practical problems [36]. For example, the popular
iterative turbo decoding algorithm has been shown to be an
instance of BP applied to a cyclic graph [23].

The current understanding of BP in cyclic graphs stems
from [17]. It has been shown (e.g., [14, Theorem 3.4]) that one
can recover exact marginal probabilities from an optimisation
of a convex function known as the Gibbs free energy. In the
single-vertex case (or if all variables are merged into a single
vertex), this can be written as described in lemma 1.

Lemma 1. The Gibbs free energy variational problem for a
single random variable x can be written as:

minimise
q(x)

−H(x)− E[logψ(x)] (3)

subject to q(x) ≥ 0,
∑
x

q(x) = 1, (4)

where E[logψ(x)] ,
∑
x q(x) logψ(x), and H(x) =

−E[log q(x)] is the entropy of the distribution q(x) (all
expectations and entropies are under the distribution q). The
solution of the optimisation is q(x) = ψ(x)∑

x′ ψ(x′) ∝ ψ(x).

Similar expressions apply for continuous random variables,
replacing sums with integrals. The objective in (3) can be
recognised as the Kullback-Leibler (KL) divergence between
q(x) and the (unnormalised) distribution ψ(x). If the graph is
a tree, the entropy can be decomposed as:

H(x) =
∑
v∈V

H(xv)−
∑

(i,j)∈E

I(xi;xj), (5)

I(xi;xj) = H(xi) +H(xj)−H(xi, xj). (6)

I(xi;xj) is the mutual information between xi and xj [51].
Accordingly, the variational problem can be written as:

minimise
q(xv),q(xi,xj)

−
∑
v∈V
{H(xv) + E[logψv(xv)]}

−
∑

(i,j)∈E

{−I(xi;xj) + E[logψi,j(xi, xj)]} (7)

subject to q(xi, xj) ≥ 0 ∀ (i, j) ∈ E , ∀ xi, xj (8)∑
xv

q(xv) = 1 ∀ v ∈ V (9)∑
xj

q(xi, xj) = q(xi) ∀ (i, j) ∈ E (10)∑
xi

q(xi, xj) = q(xj) ∀ (i, j) ∈ E . (11)

For tree-structured graphs, BP can be shown to converge to the
optimal value of this convex, variational optimisation problem.
It has further been shown that the feasible set described by
(8)-(11) is exact, i.e., any feasible solution can be obtained by
a valid joint distribution, and any valid joint distribution maps
to a feasible solution.

If a graph contains a leaf vertex xi that is connected only
to vertex xj via factor ψi,j(xi, xj),3 then inference can be
performed equivalently by eliminating vertex xi, and replacing
the vertex factor for xj with [15, ch 9]

ψ̃j(xj) =
∑
xi

ψi,j(xi, xj). (12)

Given the resulting marginal distribution for p(xj) (or an
approximation thereof), the pairwise joint distribution (or belief)
of (xi, xj) can be reconstructed as:

p(xi, xj) = p(xj)
ψi,j(xi, xj)

ψ̃j(xj)
. (13)

Lemma 2 provides a variational viewpoint of vertex elimination,
interpreting it as a partial minimisation of the pairwise joint of
the neighbour and leaf, conditioned on the marginal distribution
of the neighbour of the leaf. The theorem uses the conditional
entropy, defined as: [51]

H(xi|xj) = −
∑
xj

q(xj)
∑
xi

q(xi|xj) log q(xi|xj) (14)

= −
∑
xi

∑
xj

q(xi, xj) log
q(xi, xj)∑
x′i
q(x′i, xj)

. (15)

Conditional entropy was shown to be a concave function of
the joint in [52]. Note that, due to marginalisation constraints,

H(xi|xj) = H(xi, xj)−H(xj) = H(xi)− I(xi;xj). (16)

Lemma 2. Let J [q(xj)] be the solution of the following
optimisation problem:

J [q(xj)] = minimise
q(xi,xj)≥0

−H(xi|xj)− E[logψi,j(xi, xj)]

(17)

subject to
∑
xi

q(xi, xj) = q(xj) ∀ xj . (18)

Then

J [q(xj)] = −
∑
xj

q(xj) log
∑
xi

ψi,j(xi, xj), (19)

and the minimum of the optimisation of (17) is attained at
q(xi, xj) = q(xj)q(xi|xj), where

q(xi|xj) =
ψi,j(xi, xj)∑
x′i
ψi,j(x′i, xj)

. (20)

Proof of this result can be found in [22, App C]. On tree-
structured graphs, BP may be viewed as successive applications
of variable elimination, followed by reconstruction.

If the graph has cycles (i.e., is not a tree), then the entropy
does not decompose into the form in (5)-(7). Furthermore, the

3Without loss of generality, assume that neither vertex has a vertex factor,
as this can be incorporated into the edge factor.
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feasible set in (8)-(11) is an outer bound to the true feasible set,
i.e., there are feasible combinations of marginal distributions
that do not correspond to a valid joint distribution. Nevertheless,
as an approximation, one may solve the optimisation in (7)-
(11). The objective in (7) is referred to as the Bethe free energy
(BFE) after [53], a connection identified in [17]. For a cyclic
graph, it differs from the Gibbs free energy, but is a commonly
utilised approximation.

It was shown in [17] that, if it converges, the solution
obtained by BP is a local minimum of the BFE. The BP
message iterates in (1) can be viewed as a general iterative
method for solving a series of fixed point equations derived
from the optimality conditions of the BFE variational problem
(see [14, 4.1.3]). The marginal probability estimates obtained
using BP, denoted in this paper by the symbol q, are referred
to as beliefs.

TRSP [14], [21] provides a convex alternative to the BFE, by
applying weights γi,j ∈ [0, 1] to the mutual information terms
I(xi;xj). If the weights correspond to a convex combination
of embedded trees (i.e., a convex combination of weighted,
tree-structured sub-graphs, where in a given graph γi,j = 1 if
the edge is included, and γi,j = 0 otherwise), then the resulting
free energy is convex. A rigorous method for minimising energy
functions of this form was provided in [22].

Finally, MF [18] approaches the problem by approximating
the entropy and expectation in (3) assuming that the joint
distribution is in a tractable form, e.g., the product of the
marginal distributions. Consequently, the expectations (the
second term of (3)) are non-convex, and resulting methods
tend to underestimate the support of the true distribution, e.g.,
finding a single mode of a multi-modal distribution. It is also
possible to use a hybrid of MF and BP, as proposed in [19],
[20].

B. Multiple scan data association

The problem we consider is that of data association across
multiple scans, involving many targets, the state of which is
to be estimated through point measurements. We assume that
many targets are present, each target gives rise to at most one
measurement (excluding so-called extended target problems,
where targets may produce multiple measurements), and each
measurement is related to at most one target (excluding so-
called merged measurement problems, e.g., where multiple
targets fall within a resolution cell). We assume that false
alarms occur according to a Poisson point process (PPP).

For clarity of presentation, we assume that all measurements
related to the i-th target are independent conditioned on the
target state xi. If xi is the target state vector at a given time,
this effectively restricts the problem such that the multiple
scans correspond to different sensors at the same time instant,
or the target state is static. Problems involving multiple time
steps can be addressed by replacing xi with the joint state
over a time window, e.g., xi = (xi1, . . . ,x

i
t). An alternative

approach involving association history hypotheses is discussed
in [54, app A].

We assume that the number of targets n is known, though the
method can easily be extended to an unknown, time-varying
number of targets using the ideas in [10], [55]. The joint

state of all targets is X = (x1, . . . ,xn). We denote the
set of measurements received in scan s ∈ S = {1, . . . , S}
by Zs = {z1

s, . . . ,z
ms
s }. We consider a batch-processing

algorithm, where all scans s ∈ S are processed at once, and a
sequential method, where scans are introduced incrementally,
but some reprocessing is performed on each scan in the
window after a new scan is revealed. Our goal is to avoid the
need to explicitly enumerate or reason over global association
hypotheses, i.e., hypotheses in the joint state space of all
targets. Instead, marginal distributions of each target are stored,
and dependencies between targets are accounted for using
variational methods.

We assume that the prior information for each target is
independent, such that the prior distribution of X is

p(X) ∝
n∏
i=1

ψi(xi), (21)

where the factors ψi(xi) collectively represent the joint.
We use the symbol i ∈ {1, . . . , n} to refer to a target index,

j ∈ {1, . . . ,ms} to refer to a measurement index, and s ∈
S to refer to a measurement scan index. Each target i is
detected in each scan s with probability P d

s (xi), target-related
measurements follow the model ps(zs|xi), and false alarms
occur according to a PPP with intensity λfa

s (zs).
The relationship between targets and measurements is

described via a set of latent association variables, comprising:
1) For each target i ∈ {1, . . . , n}, an association variable

ais ∈ {0, 1, . . . ,ms}, the value of which is an index to
the measurement with which the target is hypothesised to
be associated in scan s (zero if the target is hypothesised
to have not been detected)

2) For each measurement j ∈ {1, . . . ,ms}, an association
variable bjs ∈ {0, 1, . . . , n}, the value of which is an index
to the target with which the measurement is hypothesised
to be associated (zero if the measurement is hypothesised
to be a false alarm)

This redundant representation implicitly ensures that each
measurement corresponds to at most one target, and each target
corresponds to at most one measurement. It was shown in [32]
that, for the single scan case, this choice of formulation results
in an approximate algorithm with guaranteed convergence and
remarkable accuracy.

Denoting as = (a1
s, . . . , a

n
s ) and bs = (b1s, . . . , b

ms
s ), the

joint distribution of the measurements and association variables
for scan s can be written as:

p(Zs,as, bs|X) ∝

 ∏
i|ais>0

P d
s (xi)ps(z

ais
s |xi)


×

 ∏
i|ais=0

[1− P d
s (xi)]

×
 ∏
j|bjs=0

λfa
s (zjs)


× ψs(as, bs), (22)

where ψs(as, bs) = 1 if as and bs form a consistent
association event (i.e., if ais = j > 0 then bjs = i and vice
versa), and ψs(as, bs) = 0 otherwise.
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Fig. 1. Graphical model formulation of multiple scan problem.

The quantity of interest is the posterior distribution

p(X,aS , bS |ZS) ∝ p(X)
∏
s∈S

p(Zs,as, bs|X). (23)

Dividing (22) through by
∏ms
j=1 λ

fa
s (zjs) (since the measurement

values are constants in (23)), this can be written as

p(X,aS , bS |ZS) ∝
n∏
i=1

ψi(xi)∏
s∈S

ψis(xi, ais) ms∏
j=1

ψi,js (ais, b
j
s)

 , (24)

where

ψis(x
i, ais) =

{
Pd
s (xi)ps(z

j
s|x

i)

λfa
s (zjs)

, ais = j > 0

1− P d
s (xi), ais = 0

(25)

and the functions

ψi,js (ais, b
j
s) =

{
0, ais = j, bjs 6= i or bjs = i, ais 6= j

1, otherwise
(26)

provide a factored form of ψs(as, bs), collectively ensuring
that the redundant sets of association variables (a1

s, . . . , a
n
s )

and (b1s, . . . , b
ms
s ) are consistent (i.e., setting the probability

of any event in which the collections are inconsistent to zero).
A graphical model representation of (24) is illustrated in

figure 1.
Over multiple time steps, JPDA operates by calculating the

marginal distribution of each target, pi(xi), fitting a Gaussian
to this distribution, and proceeding to the next time step
approximating the joint prior distribution by the product of
these approximated marginal distributions. It may be applied
similarly to multiple sensor problems, introducing an arbitrary
order to the sensors.

C. Single scan BP data association

The single scan version of the model in section II-B was
studied in [30], [32], with similar formulations (excluding false
alarms and missed detections) examined in [31], [35]; the
graphical model for the single scan data association problem
is illustrated in figure 2. In [32], [34], simplified BP equations
were provided, and convergence was proven; these results do
not apply to the multiple scan problem. In the present work, we
seek to address the multiple scan problem using ideas in convex

Fig. 2. Bipartite formulation of a single scan data association problem.

optimisation, but first we review the single scan formulation
and the underlying variational problem.

Following similar lines to [35], we show in [54, app B-A] that
the Bethe variational problem for the single scan formulation
can be solved by minimising the objective:

minimise
qi,js

n∑
i=1

ms∑
j=0

qi,js log
qi,js

wi,js
+

ms∑
j=1

q0,j
s log q0,j

s

−
n∑
i=1

ms∑
j=1

(1− qi,js ) log(1− qi,js ) (27)

subject to

ms∑
j=0

qi,js = 1 ∀ i ∈ {1, . . . , n} (28)

n∑
i=0

qi,js = 1 ∀ j ∈ {1, . . . ,ms} (29)

0 ≤ qi,js ≤ 1 (30)

where qi,js = q(ais = j) = q(bjs = i) is the belief that target i
is associated with measurement j (or, if j = 0, that target i
is missed, or if i = 0, that measurement j is a false alarm4),
and wi,js = ψi(ais = j) is the node factor, which will be
defined subsequently in (32). The constraints in (28) and
(29) are referred to as consistency constraints, as they are
a necessary condition for the solution to correspond to a valid
joint association event distribution.

It is not obvious that the optimisation in (27)-(30) is convex,
but it can be proven using the result in [35], which shows that
a closely related objective (excluding terms involving qi,0s and
q0,j
s ) is convex on the subset in which (30) and either (28) or

(29) apply. Details can be found in the proof of lemma 3.
In [46] it was shown that, if the correct fractional coefficient

γ ∈ [−1, 1] is incorporated on the final term in the objective
(27) (excluding false alarms and missed detections, and setting
ms = n), the value of the modified objective function at
the optimum is the same as the Gibbs free energy objective.
In the formulation that incorporates false alarms and missed
detections, the fractional free energy (FFE) objective is:5

F γB([qi,js ]) =

n∑
i=1

ms∑
j=0

qi,js log
qi,js

wi,js
+ γ

ms∑
j=1

q0,j
s log q0,j

s

− γ
n∑
i=1

ms∑
j=1

(1− qi,js ) log(1− qi,js ). (31)

4If j = 0 then there is no corresponding q(bjs), and if i = 0 then there
is no corresponding q(ais).

5Note that we reverse the sign of γ in comparison to [46], so that γ = 1
yields the regular BFE.
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Despite the fact that the “right” value of γ is not known for any
particular problem, our preliminary investigations in [45], and
the results in section IV, show that fractional values γ ∈ [0, 1]
can yield improved beliefs.6 Practically, the value could be
chosen a priori based on the problem parameters. It is straight-
forward to show that the inclusion of the fractional coefficient
γ ∈ [−1, 1] retains convexity of (31) (on the appropriate
subset); again, details are in the proof of lemma 3.

We now consider how these results may be applied to solve
the single scan problem incorporating the kinematic states xi,
as illustrated in figure 3(a) (or, equivalently, the single scan
version of figure 1). Whilst a solution for the belief of xi

can be recovered from a solution of (27)-(30) using lemma
2, a variational problem formulation incorporating xi admits
extension to multiple scan problems. As in (24), this model
involves factors ψi(xi) and ψis(x

i, ais), where in (27),

wi,js = ψis(a
i
s = j) =

∫
ψi(xi)ψis(x

i, ais = j)dxi. (32)

It is shown in [54, app B-A] that we can arrive at the problem in
(27)-(30) by performing a partial minimisation of the following
objective over qi(xi) and the pairwise joint qis(x

i, ais):

FB([qi(xi)], [qis(x
i, ais)], [q

i,j
s ]) = −

n∑
i=1

{
H(xi)

+ E[logψi(xi)] +H(ais|xi) + E[logψis(x
i, ais)]

}
+

ms∑
j=1

q0,j
s log q0,j

s −
n∑
i=1

ms∑
j=1

(1− qi,js ) log(1− qi,js ), (33)

subject to the constraints:

qis(x
i, ais) ≥ 0, q0,j

s ≥ 0, (34)
ms∑
ais=0

qis(x
i, ais) = qi(xi), (35)

qi,js =

∫
qis(x

i, j)dxi, (36)

n∑
i=0

qi,js = 1, (37)

ms∑
ais=0

∫
qis(x

i, ais)dx
i = 1. (38)

D. Conjugate duality and primal-dual coordinate ascent

The Fenchel-Legendre conjugate dual of a function f(q) is
defined as: [56]

f∗(λ) = sup
q
λTq − f(q). (39)

The dual f∗(λ) is convex regardless of convexity of f(q),
since it is constructed as the supremum of a family of linear
functions. The key outcome of conjugate duality is that, if

6e.g., in high SNR cases (very high Pd, very low λfa), the BFE objective
tends to yield solutions that are almost integral, i.e., are closer to MAP
solutions rather than marginal probabilities, as illustrated later in figure 6(a).
The inclusion of the γ coefficient on the term involving q0,js retains the
property of the BFE that the optimisation provides a near-exact result when
targets are well-spaced.

f(q) is closed and convex, then the conjugate dual of f∗(λ) is
the original function f(q), thus f(q) and f∗(λ) are alternate
representations of the same object.

Dual functions are useful in constrained convex optimisation
since the optimal value of the primal

min
q

f(q) subject to Aq = 0 (40)

is the same as the optimal value of the dual optimisation

max
λ
−f∗(ATλ), (41)

and if f(q) is strictly convex then, given the optimal solution
λ∗ of the dual, the optimal value q∗ of the primal can be
recovered as the solution of the unconstrained optimisation

min
q
f(q)− (ATλ∗)Tq. (42)

One additional usefulness of conjugate duality over La-
grangian duality is its ability to tractably address objectives
that decompose additively. In this work, we utilise the primal-
dual framework developed in [22], which addresses problems
of the form:

min
q
f(q) +

n∑
i=1

hi(q), (43)

where f(q) and hi(q) are proper, closed, convex functions.
Constraints are addressed by admitting extended real-valued
functions. It is shown in [22], [57] that the dual of (43) is

max
λ1,...,λn

−f∗ (−
∑n
i=1 λi)−

n∑
i=1

h∗i (λi). (44)

Thus, assuming smoothness of f∗ (or strict convexity of f ),
the dual optimisation can be performed via block coordinate
ascent, iteratively performing the following steps for each i:

µ :=
∑
j 6=i

λj , (45)

λi := arg max
λi

−f∗(−λi − µ)− h∗i (λi). (46)

The method in [22] shows that the block optimisations
required in (46) can be performed via primal minimisations, i.e.,
the updated value λi can be obtained through the optimisation

q∗ := arg min
q

f(q) + hi(q) + µTq, (47)

λi := −µ−∇f(q∗). (48)

In [22], the authors develop the norm-product belief propa-
gation algorithm for convexifications of general PGM inference
problems. While these methods could be applied to the problem
of interest, they do not exploit the unique problem structure and
resulting convexity discussed in section II-C. Consequently,
the necessary convexification procedure would produce an
unnecessarily large change to the BFE. Thus we adopt the
optimisation framework of [22], but the solution does not
exactly fit the NPBP algorithm, and so it is necessary to develop
it from the basic framework.
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III. VARIATIONAL MULTIPLE SCAN DATA ASSOCIATION

The standard approach to tracking using JPDA and related
methods is to calculate the marginal distribution of each target,
and proceed to the next scan approximating the posterior as
the product of the single-target marginal distributions.7 In
many cases, this approach is surprisingly effective. The method
proposed in this work is based on a variational interpretation of
the JPDA approach, which gives rise to a family of formulations
that includes the JPDA-like approach and MSBP. We refer to the
JPDA-like approach using the BP approximation of marginal
association probabilities (beliefs), as JPDA-BP. In comparison,
true JPDA uses exact marginal association probabilities, and
approximates the posterior as a Gaussian at each step.

In particular, we examine the single scan BP approach (e.g.,
[10]) which calculates association beliefs, and approximates
the joint as the product of the beliefs (although the steps taken
are not unique to the BP estimate of marginal probabilities).
Consider the example in figure 3(a), where in scan 1 (S = {1})
the beliefs are calculated through the optimisation of (33).
Denote the solution as qi(xi, ai1) and qi,j1 . JPDA-BP moves
forward to the next scan approximating the joint as:

p(X,a1) ≈
n∏
i=1

qi(xi, ai1). (49)

This approximated joint distribution can be formulated as a
PGM using the graph in the left-hand side of figure 3(b),
where the factor ψ̄i1(xi, ai1) is modified such that the simplified
formulation results in the same solution as the original problem
in figure 3(a). This does not mean to say that the objective on
the left-hand side of figure 3(b) is equivalent to that in figure
3(a). Note that we could eliminate the nodes ai1 from the graph
as they will subsequently remain leaf nodes, but we choose to
retain them for comparison to the proposed algorithm.

When a second scan of measurements is introduced (S =
{1, 2}), JPDA-BP effectively solves the problem in the right-
hand side of figure 3(b) where, for the newest scan (s =
2), ψ̄i2(xi, ai2) , ψi2(xi, ai2). Although the data for qi,j1 (i.e.,
ψ̄i1(xi, ai1)) is unchanged from the left-hand side of figure 3(b),
introduction of new information in scan 2 will, in general,
modify the belief values for the first scan, qi,j1 . Consistency
constraints (specifically, (37)) will no longer hold. If BP was
applied directly without the approximations made by JPDA (i.e.,
(49)), we would arrive at the problem in figure 3(c). Comparing
the variational problems at scan 2 in figures 3(b) (JPDA-BP)
and 3(c) (MSBP), we note the following differences:

1) The concave term −
∑n
i=1

∑ms
j=1(1− qi,js ) log(1− qi,js )

appears only for scan 2 in figure 3(b), but for both scans
in figure 3(c)

2) The constraint
∑n
i=0 q

i,j
s = 1 appears only for scan 2 in

figure 3(b), but for both scans in figure 3(c)
3) The factors ψ̄i1(xi, ai1) have been modified in figure 3(b)

but remain at their original values in figure 3(c)
4) The objective function in figure 3(b) is convex, whereas

the objective in figure 3(c) is non-convex

7It can be shown (e.g., [15, p277]) that the product of the marginals is
the distribution with independent targets that best matches the exact joint
distribution.

It can be shown that the modification of the factors ψ̄i1(xi, ai1)
effectively incorporates the Lagrange multipliers for the con-
straints that are being relaxed, and a linearisation of the concave
term (the third line in the objective in figure 3(a)), such that
the change in 3) above attempts to nullify changes 1) and
2), i.e., the solution of the modified variational problem is
the same as the original one. The linearisation of the concave
term is reminiscent of a single iteration of the convex-concave
procedure in [58].

The proposed solution is illustrated in figure 3(d). Compared
to JPDA-BP (figure 3(b)), it makes the following modifications:

1) As in the FFE objective in (31), we apply fractional
weights γs to the concave terms −

∑n
i=1

∑ms
j=1(1 −

qi,js ) log(1 − qi,js ), such that if
∑
s γs < 1 then the

objective function will be strictly convex
2) We retain constraints

∑n
i=0 q

i,j
s = 1 for both scans

3) If the coefficient γs differs from the value used for that
scan at the previous time step, we modify the factor
ψis(x

i, ais) such that the solution remains unchanged
(before the following scan is incorporated)

The reason for the latter step is that it was found to be desirable
to use values γs closer to 1 in the current (most recent) scan,
and reducing to zero in earlier scans. In our experiments, we use
the selection γs = 0.55 in the current scan, and γs = 0 in past
scans. In this case, the algorithm approximates the objective
function in a similar manner to JPDA-BP, but the consistency
constraints from previous scans are retained. Thus, unlike
JPDA, when later scans are processed, the constraints which
ensure that the origin of past measurements is consistently
explained remain enforced. In section IV, we will see that this
can result in improved performance.

JPDA and JPDA-BP operate sequentially, at each stage
introducing a new set of nodes, as in figure 3(b). Following
approximation, association variables from past scans are leaf
nodes, and thus can be eliminated. Like MSBP, the proposed
method maintains past association variables, and introduces a
new set in each scan. The sequential variant of the algorithm
operates by performing one or more forward-backward sweeps
over recent scans. Complexity could be mitigated by performing
the operations on past scans intermittently, rather than upon
receipt of every scan.

In what follows (and in figure 3), we assume that the target
state xi is discrete. This can be achieved by using a particle
representation, such that the prior distribution ψi(xi) contains
the prior weights of the particles. An expression such as∑
xi ψ

i(xi)ψis(x
i,ais) should be interpreted as the sum of

the function evaluated at the particle locations. The output
of the inference procedure developed is used to reweight the
particles, e.g., recovering an estimate of the PDF of continuous
kinematic state ξi as:

qi(ξi) ≈
∑
xi

qi(xi)δ(ξi − xi). (50)

The association history formulation of appendix A may be
applied simply by replacing xi with the single target association
history aiS . Some simplifications can be made in this case since
H(ais|aiS) = 0.
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Fig. 3. Probabilistic graphical model and Bethe free energy (a) single scan formulation, (b) multiple scan formulation using JPDA-BP approximation, (c)
standard multiple scan approach using MSBP, and (d) convex multiple scan approach, where shading depicts the weighting of the corresponding entropy and
mutual information terms. The formulation in the diagrams excludes false alarm events (q0,js ) for simplicity; these events are modelled in the formulation in
the text. For the newest scan (s = 2) in the right of (b) and (d), ψ̄i

2(xi, ai2) , ψi
2(xi, ai2).



WILLIAMS AND LAU: MULTIPLE SCAN DATA ASSOCIATION BY CONVEX VARIATIONAL INFERENCE 9

A. Bethe free energy function
In [54, app B-B], we show that the Bethe free energy for

the multiple scan formulation in section II-B (and figure 3(c))
can be written as:

FB([qi(xi)], [qis(x
i, ais)], [q

i,j
s ]) =

−
n∑
i=1

{
H(xi) + E[logψi(xi)]

}
−
∑
s∈S

n∑
i=1

{
H(ais|xi) + E[logψis(x

i, ais)]
}

+
∑
s∈S

ms∑
j=1

q0,j
s log q0,j

s −
∑
s∈S

n∑
i=1

ms∑
j=1

(1− qi,js ) log(1− qi,js ),

(51)

subject to the constraints:

qis(x
i, ais) ≥ 0, qi(xi) ≥ 0 (52)∑
xi

ms∑
ais=0

qis(x
i, ais) = 1 (53)

ms∑
ais=0

qis(x
i, ais) = qi(xi) ∀ i,xi ∀ s ∈ S (54)

qi,js =
∑
xi

qis(x
i, j) ∀ i, j, ∀ s ∈ S (55)

qi,js ≥ 0 ∀ i, j, ∀ s ∈ S (56)
n∑
i=0

qi,js = 1 ∀ j, ∀ s ∈ S, (57)

where qi(xi) is the belief (i.e., approximate probability) of the
state of target i, qi,js is the belief that target i is associated
with measurement zjs, q

0,j
s is the belief that measurement zjS

is not associated with any target, and the set S indexes the
measurement scans under consideration.

B. Convexification of energy function
In this work, we consider convex free energies of the form:

F γ,βB ([qi(xi)], [qis(x
i, ais)], [q

i,j
s ]) =

−
n∑
i=1

{
H(xi) + E[logψi(xi)]

}
−
∑
s∈S

n∑
i=1

{
H(ais|xi) + E[logψis(x

i, ais)]
}

+
∑
s∈S

βs

ms∑
j=1

q0,j
s log q0,j

s

−
∑
s∈S

γs

n∑
i=1

ms∑
j=1

(1− qi,js ) log(1− qi,js ). (58)

The difference between (58) and (51) is the incorporation of
the coefficients γs ∈ [0, 1) and βs ∈ (0, 1] in the final two
terms. We will show that (58) is convex if η ≥ 0 (strictly
convex if η > 0), where

η = 1−
∑
s∈S

γs. (59)

The use of re-weighting to obtain a convex free energy is
closely related to the TRSP algorithm [21].

In the development that follows, we provide a decomposition
of the convex free energy that permits application of primal-
dual coordinate ascent (PDCA). First we give the basic form,
and show that the components are convex. Then we state
weights which ensure that the objective is the same as (58).
Then, in section III-C, we provide algorithms to minimise each
block that needs to be solved in PDCA.

In order to optimise (58), we consider decompositions of
the expression of the form:

F γ,βB ([qi(xi)], [qis(x
i, ais)]) = f([qi(xi)], [qis(x

i, ais)])

+
∑
s∈S

{
hs,1([qi(xi)], [qis(x

i, ais)])

+ hs,2([qi(xi)], [qis(x
i, ais)])

}
, (60)

where

f([qi(xi)], [qis(x
i, ais)])

=−
n∑
i=1

{
κf,xH(xi) + E[logψi(xi)]

}
−
∑
s∈S

n∑
i=1

{
κf,sH(xi, ais) + E[logψis(x

i, ais)]
}
, (61)

hs,1([qi(xi)], [qis(x
i, ais)])

=−
n∑
i=1

{
κs,1,xH(xi) + κs,1,sH(xi, ais)

}
+ βs

ms∑
j=1

q0,j
s log q0,j

s

− γs
n∑
i=1

ms∑
j=1

(1− qi,js ) log(1− qi,js ), (62)

hs,2([qi(xi)], [qis(x
i, ais)])

=−
n∑
i=1

{
κs,2,xH(xi) + κs,2,sH(xi, ais)

}
. (63)

Note that we do not consider (60) or (62) to depend on [qi,js ]
as these are uniquely determined from [qis(x

i, ais)] by the
constraints in (55)–(57) (which will be enforced whenever
we consider the block hs,1, the only block that includes these
variables).

Immediate statements that can be made regarding convexity
of (61)–(63) include:

1) f is strictly convex if κf,x > 0 and κf,s > 0; this is the
consequence of the convexity of entropy

2) hs,2 is convex if the consistency constraints (54) are
enforced for scan s, κs,2,s ≥ 0, and κs,2,x + κs,2,s ≥ 0;
this is the consequence of the convexity of entropy, and
of conditional entropy

Convexity of hs,1 is proven in the lemma below. Subsequently,
the decomposition in terms of f , hs,1 and hs,2 (for each s ∈ S)
is utilised in the PDCA framework introduced in section II-D.
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Lemma 3. If constraints (52)–(57) are enforced for scan s,
κs,1,s ≥ 0, βs ≥ 0 and κs,1,s + κs,1,x ≥ γs, then hs,1 is
convex.

The proof of lemma 3 is in [54, app C]. The following
lemma provides coefficients which fit (58) into the form (60),
in order to permit solution using PDCA.

Lemma 4. Given the following, (60) is equivalent to (58):

κf,x = κf,s =
η

S + 1
, (64)

κs,1,x = − η

S + 1
, (65)

κs,1,s = γs +
η

S + 1
, (66)

κs,2,x = −
(

1− γs −
2η

S + 1

)
, (67)

κs,2,s = 1− γs −
2η

S + 1
, (68)

where S = |S| is the number of scans in the problem

Lemma 4 can be shown by substituting the coefficients into
(60), and showing that the coefficients of H(xi) sum to −(S−
1), and the coefficients of H(xi, ais) sum to 1. Examining the
values in lemma 4, we find (60) is convex (under the constraints
(52)–(57)). This in turn shows that (58) is convex.

C. Solution of convex energy

The convex free energy in (60) is of the form (43), so we
propose a solution using PDCA. As discussed in section II-D,
this is achieved by iterating (45), (47) and (48), commencing
with λs = 0 ∀ s ∈ S . To begin, we note that if the gradient of
a block hi with respect to a subset of variables is zero,8 then
those updated dual variables in (48) will be zero.

The algorithm proceeds by repeatedly cycling through blocks
hs,1 and hs,2 for each s ∈ S. The following lemmas provide
algorithms for solving each block in turn; the proofs can be
found in [54, app C].

Lemma 5. Consider the problem to be solved in block (s, 1):

minimise f([qi(xi)], [qis(x
i, ais)])

+ hs,1([qi(xi)], [qis(x
i, ais)])

+

n∑
i=1

∑
xi

µi(xi)qi(xi)

+
∑
τ∈S

n∑
i=1

∑
xi

mτ∑
aiτ=0

µiτ (xi, aiτ )qiτ (xi, aiτ ) (69)

under the constraints (52)–(57), where (54)–(57) is applied
only for scan s, and κf,x + κs,1,x = 0. The solution of this
problem is given by:

qis(x
i, ais) = qis(a

i
s)×

exp
{
φi(xi)+φis(x

i,ais)
κf,s+κs,1,s

}
exp φ̃is(a

i
s)

, (70)

8As discussed in [22], constraints for each block can be incorporated into
hi, so this condition also implies that no constraints are incorporated for the
subset of variables in block hi.

where

φi(xi) = logψi(xi)− µi(xi), (71)

φis(x
i, ais) = logψis(x

i, ais)− µis(xi, ais), (72)

φ̃is(a
i
s) = log

[∑
xi

exp

{
φi(xi) + φis(x

i, ais)

κf,s + κs,1,s

}]
. (73)

The single scan marginal qis(a
i
s) is the solution of the following

sub-problem:

minimise

n∑
i=1

ms∑
j=0

qi,js log
qi,js

wi,js
+ β̃s

ms∑
j=1

q0,j
s log q0,j

s

− γ̃s
n∑
i=1

ms∑
j=1

(1− qi,js ) log(1− qi,js ), (74)

subject to (56)–(57) and the additional constraint
∑ms
j=0 q

i,j
s =

1 ∀ i, derived from (53) and (55). In (74), β̃s = βs
κf,s+κs,1,s

,
γ̃s = γs

κf,s+κs,1,s
, and logwi,js = φ̃is(j). This sub-problem is

studied in theorem 1. The update to λ is

λis,1,x(xi)
c
= φi(xi)− κf,x log qi(xi), (75)

λis,1,s(x
i, ais)

c
= φis(x

i, ais)− κf,s log qis(x
i, ais), (76)

qi(xi) =

ms∑
ais=0

qis(x
i, ais), (77)

where c
= denotes equality up to an additive constant. For other

scans τ ∈ S, τ 6= s, λis,1,τ (xi, aiτ ) = 0.

Lemma 6. The solution of block (s, 2):

minimise f([qi(xi)], [qis(x
i, ais)])

+ hs,2([qi(xi)], [qis(x
i, ais)])

+

n∑
i=1

∑
xi

µi(xi)qi(xi)

+
∑
τ∈S

n∑
i=1

∑
xi

mτ∑
aiτ=0

µiτ (xi, aiτ )qiτ (xi, aiτ ), (78)

under the constraints (52)–(54) (including (54) only for scan
s) is:

qi(xi) ∝ exp

{
φi(xi) + φ̃is(x

i)

κf,x + κf,s + κs,2,x + κs,2,s

}
, (79)

qis(x
i, ais) = qi(xi)×

exp
{

φis(x
i,ais)

κf,s+κs,2,s

}
exp

{
φ̃is(x

i)
κf,s+κs,2,s

} , (80)

where

φi(xi) = logψi(xi)− µi(xi), (81)

φis(x
i, ais) = logψis(x

i, ais)− µis(xi, ais), (82)

φ̃is(x
i) = (κf,s + κs,2,s)

× log

 ms∑
ais=0

exp

{
φis(x

i, ais)

κf,s + κs,2,s

} . (83)
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input : n,m ∈ N; wi,j ∀ i ∈ {0, . . . , n}, j ∈ {0, . . . ,m};

γ ∈ [0, 1); α ∈ (0.5,∞) ∩ [γ,∞);
β ∈ (0.5,∞) ∩ [γ,∞)

output : qi,j ∀ i ∈ {0, . . . , n}, j ∈ {0, . . . ,m}
1 κ := −1− γ + α+ β

2 Initialise

3 yi,j := 1 ∀ i ∈ {0, . . . , n}, j ∈ {0, . . . ,m}
4 Iterate to convergence

5 repeat

6 xi,j :=
(

w0,jy0,j +
∑

i′ w
i′,jyi

′,j
)−(1−γ)

×
(

w0,jy0,j +
∑

i′ 6=i w
i′,jyi

′,j
)−γ

× eκ ∀ i, j

7 xi,0 := (yi,0)
1

α
−1 ∀ i

8 x0,j :=
(

w0,jy0,j +
∑

i′ w
i′,jyi

′,j
)−1

∀ j

9 yi,j :=
(

wi,0xi,0 +
∑

j′ w
i,j′xi,j′

)−(1−γ)

×
(

wi,0xi,0 +
∑

j′ 6=j w
i,j′xi,j′

)−γ

× eκ ∀ i, j

10 yi,0 :=
(

wi,0xi,0 +
∑

j′ w
i,j′xi,j′

)−1

∀ i

11 y0,j := (x0,j)
1

β
−1 ∀ j

12 until sufficiently small change in yi,j , yi,0, y0,j

13 Calculate outputs (q0,0 , 0)

14 qi,j := wi,jyi,jx0,j ∀ i, j

15 qi,0 := wi,0(yi,0)
1

α ∀ i, q0,j := w0,j(y0,j)
1

1−β ∀ j

Fig. 4. Fractional BP algorithm for optimising single scan fractional free energy
(74), where α is the coefficient of qi,0 log qi,0

wi,0
(i.e., α = 1 in this instance).

Calculations marked ∀i or
∑

i are over the range i ∈ {1, . . . , n} (excluding
i = 0), while those marked ∀j or

∑
j are over the range j ∈ {1, . . . ,m}

(excluding j = 0).

The update to λ is

λis,2,x(xi)
c
= φi(xi)− κf,x log qi(xi), (84)

λis,2,s(x
i, ais)

c
= φis(x

i, ais)− κf,s log qis(x
i, ais). (85)

For other scans τ ∈ S, τ 6= s, λis,2,τ (xi, aiτ ) = 0.

Theorem 1. The iterative procedure in figure 4 converges to
the minimum of the problem in (74), provided that β̃s > 0.5,
γ̃s ∈ [0, 1), and a feasible interior solution exists.

This theorem is proven in [54, app D]. Implementation of
the algorithm can be challenging due to numerical underflow.
This can be mitigated by implementing the updates in the log
domain using well-known numerical optimisations for log-sum-
exp [59, p844]. An alternative method for solving this form of
problem based on Newton’s method was provided in [45]; the
iterative BP-like method in figure 4 is significantly faster in
most cases.

Theorem 2. The iterative procedure in figure 5 converges to
the minimum of the overall convex free energy, provided that
weights are as given in lemma 4, γs ≥ 0, and

∑
s∈S γs < 1.

This theorem is a corollary of claim 8 in [22], recognising
that the algorithms are an instance of this framework.

input : S; ψi(xi), ψi
s(x

i, ais); γs, βs, ∆γs, ∆βs
output : qi(xi), qis(x

i, ais), ψ̄
i
s(x

i, ais)
1 Initialise

2 Set κ values according to lemma 4

3 λis,1,x(x
i) := 0, λis,1,s(x

i, ais) := 0
4 λis,2,x(x

i) := 0, λis,2,s(x
i, ais) := 0

5 Perform primal-dual coordinate ascent until convergence

6 repeat

7 for s ∈ S do

8 Solve block (s, 1)
9 µs(x

i) :=
∑

τ∈S\{s} λ
i
s,1,x(x

i) +
∑

τ∈S λ
i
s,2,x(x

i)

10 µs(x
i, ais) := λis,2,s(x

i, ais)
11 Calculate λis,1,x(x

i), λis,1,s(x
i, ais) using lemma 5

12 Solve block (s, 2)
13 µs(x

i) :=
∑

τ∈S λ
i
s,1,x(x

i) +
∑

τ∈S\{s} λ
i
s,2,x(x

i)

14 µs(x
i, ais) := λis,1,s(x

i, ais)
15 Calculate λis,2,x(x

i), λis,2,s(x
i, ais), q

i(xi) and

qis(x
i, ais) using lemma 6

16 end

17 until sufficiently small change in λis,1,x(x
i), λis,2,x(x

i),
λis,1,s(x

i, ais), λ
i
s,2,s(x

i, ais)
18 Calculate modified ψ̄i

s(x
i, ais) using theorem 3 (if

required)

Fig. 5. PDCA algorithm for minimising convex free energy based on
decomposition described in lemma 4.

D. Modification of factors between scans

As discussed at the beginning of this section (and illustrated
in figure 3), we propose solving a problem at scan S involving
a recent history of scans of measurements s ∈ S with fractional
weights configured to give high accuracy in the newest scan, and
using lower values in earlier scans. The main goal of retaining
historical scans is to ensure that consistency constraints from
past scans remain enforced.

Suppose that we solve the multiple scan problem at scan S.
When we move to scan S′ = S + 1, we will set γS = 0, this
time using the larger value for γS′ . Thus we seek to modify
the problem parameters at time S to counteract the change of
reducing γs to zero. This is analogous to the approximation
that JPDA makes, approximating the posterior as the product
of the marginals.

More generally, suppose we have been using weights γs,
s ∈ S, and at the next time, we will change these to γ̄s.
Similarly, suppose that the coefficients of the terms involving
q0,j
s were βs, and will be changed to β̄s. The following theorem

gives the modification to the problem parameters necessary to
ensure that the solution of the problem remains unchanged.

Theorem 3. Let [qi(xi)], [qis(x
i, ais)] and [qi,js ] be the solution

of the problem in (58) using fractional weights γs and βs, s ∈ S .
Suppose that the weights are changed to γ̄s = γs + ∆γs and
β̄s = βs + ∆βs, and the problem parameters are changed as
follows:

log ψ̄is(x
i, ais = j) = logψis(x

i, j)

+ ∆γs[1 + log(1− qi,js )]−∆βs[1 + log q0,j
s ] (86)

for j > 0, and log ψ̄is(x
i, 0) = logψis(x

i, 0) remains un-
changed. Then the solution of the modified problem, denoted
[q̄i(xi)], [q̄is(x

i, ais)] and [q̄i,js ], is unchanged.
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The proof of the theorem is in [54, app E]. Figure 5 includes
a step to incorporate these modifications.

E. Uses and limitations of proposed method

The proposed method seeks to estimate marginal distributions
of target states. This provides a complete summary of the infor-
mation available when considering each target separately, and
is useful, for example, when seeking to provide a confidence
region for the target location, or when deciding whether it
is necessary to execute sensor actions which will provide
clarifying information. The experiments in the following
section demonstrate that the proposed methods provide a
scalable approach for solving problems of this type, addressing
limitations experienced using existing methods.

In some tracking problems, a particular type of uncertainty
arises, in which multiple modes appear in the joint distribution
which essentially correspond to exchanges of target identity; the
coalescence problem in JPDA is a well-known example of this
(e.g., [60]). In such instances, multiple modes will appear in the
estimates of the marginal distributions; this is by design, and
is a correct summary of the uncertainty which exists. In these
cases, extracting point estimates from marginal distributions
is not straight-forward, but can be performed using methods
such as the variational minimum mean optimal subpattern
assignment (VMMOSPA) estimator [61]. Alternatively, if a
point estimate is all that is required, MAP-based methods can
be used. Likewise, MF or hybrid MF-BP methods (e.g., [20],
applied to tracking in [38], [39]) tend to provide good estimates
of a particular mode (and hence point estimates), at the expense
of not characterising the full multi-modal uncertainty which
exists (see [39]).

Past experiments (e.g., [32]) have shown that the accuracy
of the beliefs provided by BP is highest when SNR is low,
e.g., high false alarm rate and/or low probability of detection.
Conversely, accuracy is lowest in high SNR conditions, e.g., low
false alarm rate, high probability of detection. As demonstrated
in the next section, this can now be mitigated through the
use of FFE. This behaviour is complementary to traditional
solution techniques, which perform very well in high SNR
conditions (when ambiguity is the least, permitting tractable,
exact solution) but fail in low SNR conditions where many
targets are interdependent.

IV. EXPERIMENTS

The proposed method is demonstrated through a simulation
which seeks to estimate the marginal distribution of several
targets using bearings only measurements. The region of interest
is the square [−100, 100]2 ⊂ R2. Tracks are initialised using a
single accurate bearing measurement from one sensor, corrupted
by Gaussian noise with 0.1◦ standard deviation (e.g., as may
be provided if there is an accurate, low false alarm rate
sensor providing bearing measurements from a single location);
particle filter representations of each track are initialised by
randomly sampling from the posterior calculated by combining
these measurements with a uniform prior on the region of
interest. The proposed algorithm is then utilised to refine the
sensor positions. Target-originated bearing measurements are
corrupted with 1◦ standard deviation Gaussian noise. False

alarms are uniform over the bearing range covering the region
of interest.

We compare to two variants of JPDA, both of which maintain
a particle representation of each target location, and utilise BP
to approximate data association probabilities. The first variant
(which we refer to as JPDA-PBP, with ‘P’ denoting parallel)
processes measurements from different sensors in parallel,
solving each single-sensor problem once, as in [43] (this is
better suited to maintaining track rather than initial localisation).
The second variant (JPDA-BP) approaches multi-sensor data
by sequentially processing individual sensors, similar to the
IC-TOMB/P approach in [43].

For the proposed method, we compare:
1) γs = βs = 1

|S|+1 for each scan, weights according to
lemma 4, and solving using figure 5, not utilising sequen-
tial modification (i.e., the final line of the algorithm); we
refer to this as the convex variational (CV) algorithm

2) The method using the sequential modification of section
III-D, introducing a new scan at each step with γs = 0.55,
for past scans setting γs = 0, and with βs = κf,s+κs,1,s,
again solving using figure 5; we refer to this as the CV-
sequential (CVS) algorithm

A. Illustrative example

The result in figure 6 illustrates the behaviour on a simplified
version of the problem, with three sensors, two targets, and
a low false alarm rate (10−6). The top row (a)-(e) shows the
results for different algorithms utilising the first two sensors,
where the first sensor initialises the distribution for each
target (drawing particles along each bearing line), and the
second permits triangulation. The sensor locations are shown
as triangles, while true target locations are shows as crosses.
Measurements are illustrated as dotted grey lines. The marginal
distributions of the two targets, as estimated by the various
algorithms studied, are shown in the background image.
• Due to the low false alarm rate, JPDA-BP (shown in (a))

essentially provides a MAP association. The marginal
distribution estimates indicate high confidence for each
target, in an incorrect (ghost) location, assigning near-zero
probability density to the true target location.

• JPDA-FBP(0.55) (shown in (b)) utilises the fractional
BP method, based on figure 4 (for which convergence
is proven as theorem 1), with γ = 0.55. The figure
demonstrates correct characterisation of the uncertainty
in the problem, with each marginal distribution estimate
showing significant probability density in both the true
target location, and the ghost location.

• Since tracks are initialised using sensor 1, and updated
using sensor 2, the two sensor problem is a single scan
association problem, and JPDA-PBP and MSBP (shown in
(c) and (d)) is identical to JPDA-BP, similarly indicating
high confidence for each target in a ghost location, and
assigning near-zero probability density to the true target
location.

• Similarly, CV (shown in (e)) is identical to JPDA-FBP,
and again correctly characterises the uncertainty in the
problem.
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Fig. 6. Example problem involving two targets and two or three sensors. Targets are marked as ‘+’, and sensors as ‘4’, and bearing measurements are
illustrated as dotted grey lines. Tracks are initialised with measurements from sensor 1, and updated with two measurements from sensor 2 (top row, (a)-(e)).
Bottom row (f)-(j), incorporates an additional scan from sensor 3, in which a single measurement was received. Background image shows marginal distribution
estimates for the two tracks overlaid.

The bottom row (f)-(j) shows the results for the same algo-
rithms introducing a third sensor, which receives a measurement
on one of the two targets.

• Utilising the measurement from the third sensor, JPDA-BP
(shown in (f)) correctly localises one of the two targets,
but the second remains invalid, indicating high confidence
in a ghost location, and assigning near-zero probability
to the true target location.

• JPDA-FBP is shown in (g) to correctly localise one of
the two targets, but a bimodal distribution remains for the
second. This is unnecessary: localisation of the first target
effectively confirms that the upper measurement from
sensor 2 belongs to that target, which in turn confirms that
the lower measurement belongs to the other target. Thus
the distribution exhibits unnecessarily high uncertainty as
a consequence of not enforcing past association feasibility
constraints.

• Because data from sensor 2 is not used when interpreting
data from sensor 3, JPDA-PBP (shown in (h)), still
indicates high confidence in a ghost location for both
targets, and near-zero probability in the true location.

• By simultaneously optimising over multiple scans of data,
MSBP (shown in (i)) is able to recover from the incorrect
solution in (d) and arrive at the correct solution.

• Likewise, by retaining association feasibility constraints
from previous scans, CV (shown in (j)) is able to utilise
the confirmation of the location of one target to resolve the
bimodal uncertainty in the other target, correctly localising
both targets.

Of the methods shown, JPDA-BP, JPDA-PBP and MSBP
exhibit false confidence in ghost locations in figures (a), (c),
(d), (f) and (h), and JPDA-FBP fails to localise the distribution
to the extent possible in (g). CV is the only method shown
that is able to correctly characterise the uncertainty present in
both cases.

B. Quantitative analysis

As illustrated through the example in figure 6, the goal in
this work is to produce a faithful estimate of the marginal
probability distributions. This is quite different to problems in
which the aim is to produce a point estimate of target location,
for which the standard performance measure is mean square
error (MSE). In 200 Monte Carlo trials of the scenario in figure
6(a)-(e), JPDA-BP, JPDA-PBP and MSBP resolve uncertainty
to a single mode for each target, which is correct 76% of the
time, and incorrect (as in figure 6(a), (c) and (d)) 24% of the
time. This incorrect resolution of uncertainty could lead to dire
outcomes if the decision is made to take an action based on the
incorrect characterisation of uncertainty (which indicates high
confidence in a single, incorrect mode, as in figure 6(a), (c) and
(d)), rather than wait until further information is obtained (as
the characterisation in figure 6(b) and (e) would direct). Since
MSE is a measure only of the proximity of the single point
estimate to the true location, it does not capture the correctness
of the uncertainty characterised in the marginal probability
distribution, and it is not an adequate measure in this class of
problem.

Instead, we utilise two performance measures, which directly
measure occurrences of the undesirable outcomes in figure
6(a), (c), (d), (f), (g) and (h), and which are known to behave
consistently in the presence of multi-modal uncertainty. The
performance measures are the entropy of the beliefs produced
by each method, and the high probability density (HPD) value
in which the true location lies. The HPD value is defined as
the total probability under a distribution that is more likely
than a given point; e.g., given a point x∗ (the true location of
the target) and a distribution p, the HPD value is

HPD(p, x∗) =

∫
x|p(x)≥p(x∗)

p(x)dx. (87)

Three examples of this are illustrated in figure 7; in each case,
the true target location is marked as x∗, and the HPD value is
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∗

HPD(p, x∗) = 0.98HPD(p, x∗) = 0.79HPD(p, x∗) = 0.21

Fig. 7. Example of HPD value for different true target locations (x∗). HPD
is the area of probability that is more likely than a given point, i.e., the area
of the shaded region in each diagram.

the area of the shaded region. Thus if HPD(p, x∗) ≈ 1 then x∗

is in the distant tails of p(x) and is assigned very low likelihood,
as in figure 6(a), (c), and (d) while if HPD(p, x∗) = 0 then x∗

falls on the most likely value of p(x) (i.e., it is a MAP estimate).
Under mild conditions, it can be shown that if x∗ ∼ p(x)
(i.e., if p(x) correctly characterises the uncertainty in x∗) then
HPD(p, x∗) ∼ U{0, 1} [62, section 9.7.2]. If the distribution
of HPD values is concentrated at the lower end, then the beliefs
generated are conservative, i.e., they overestimate uncertainty
in such a way that the true value rarely falls in the tails. If the
distribution of HPD values is concentrated at the higher end,
then the beliefs are non-conservative, i.e., they underestimate
uncertainty, and the true value is often falling in the tails.

The entropy of the distribution characterises its uncertainty;
for example, the entropy of a multivariate Gaussian distribution
with covariance P is 0.5 log |2πeP|. Entropy is often preferred
over variance for multi-modal distributions as it is not affected
by the distance between well-spaced modes (whereas the
distance between the modes will dominate the variance). The
HPD value is not sufficient, e.g., since an estimator based
purely on the prior distribution should produce a uniform HPD
distribution, but this would have a much higher entropy than a
solution which utilises all available measurement data. Likewise
entropy is not sufficient, since one could devise a method
of approximating beliefs which reports an arbitrarily small
uncertainty; this would report large HPD values. There is not
a single measure which adequately characterises performance
in this class of problem. This pair of values is necessary
to capture the undesirability of the behaviour in figure 6(a),
(c) and (d) (assigning near-zero likelihood to the true target
location, and producing a HPD(p, x∗) ≈ 1), as well as the
undesirability of the behaviour in figure 6(g) (not resolving
uncertainty when adequate information exists to do so, and
thus increasing entropy).

For the quantitative experiment, twelve sensors are spaced
equally around a circle with radius 100 units. False alarms
follow a Poisson distribution with one per scan on average, and
targets are detected with probability 0.9. The number of targets
is Poisson distributed with expected value of twelve (but in
each simulation the true number is known by the estimator; the
method can be extended to accommodate an unknown number
of targets using [10]).

The results in figures 8–9 show the cumulative distribution
function (CDF) of the HPD value (top) and entropy (bottom)
for the various methods. Figure 8 shows that MSBP produces
significantly non-conservative results. Although the entropies

JPDA-BP JPDA-PBP CV CVS(0.55) MSBP
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B:10.6%
A:12.4%
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Fig. 8. CDF of HPD value of true location and entropy for beliefs of each
target over 200 Monte Carlo trials. Points A, B and C mark the percent of
cases in which the true target location is less likely than 99% of the marginal
distribution estimates produced by MSBP, JPDA-BP and JPDA-PBP, i.e., it is
in the tails in a similar manner to figure 6(a), (c), (d), (f) and (h).

of the MSBP beliefs are significantly smaller than the other
methods, the point labelled as ‘A’ in the top figure reveals
that the true location is less likely than 99% of the belief for
12.4% of targets (treating each target in each Monte Carlo
simulation as a sample). This indicates that if the MSBP belief
is used to construct a 99% confidence region for the location
of a particular target, the target does not lie within the region
12.4% of the time. An instance of this is illustrated in figure
6(d), where the beliefs effectively rule out the location of the
true target. These results may be useful in applications where
smaller entropy is desirable, but when consistency and accuracy
of the beliefs is essential, it is unacceptable.

JPDA-BP and JPDA-PBP also produce non-conservative
results, since the CDF of the HPD value consistently lies
below the x = y line (i.e., the CDF of a uniform distribution).
The points labelled as ‘B’ and ‘C’ reveal that the true location
is less likely than 99% of the belief for 10.6% of targets for
JPDA-BP, and 8.26% of targets for JPDA-PBP. Again, this
indicates that if the respective beliefs are used to construct
99% confidence regions for a particular target, the target does
not lie within the region for 10.6% or 8.26% of the time, as
illustrated in figures 6(a) and (c).

The convex variational (CV) method is shown to produce
conservative beliefs, since the CDF of the HPD value consis-
tently lies above the x = y line. The cost of this conservatism
is beliefs with higher entropy; in many applications this may
be preferable. The CVS method with γs = 0.55 is also shown
to significantly reduce instances where the target is in a very
low likelihood area of the belief. By tuning the value of γs a
trade-off between conservatism and entropy can be obtained.

A large family of heuristic methods can be developed by
employing the algorithm in figure 5 with weights that do not
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Fig. 9. CDF of HPD value of true location and entropy for beliefs of each
target over 200 Monte Carlo trials.

ensure that each component (62), (63) is convex. We consider
an instance of this, which sets κf,x = κf,s = 1, κs,1,x =
−1, and κs,1,s = κs,2,x = κs,2,s = 0. As long as κf,x +∑
s∈S [κs,1,x+κs,2,x] = −|S|+ 1 and κf,s+κs,1,s+κs,2,s =

1 ∀ s ∈ S , the original objective remains unchanged, and if the
algorithm converges, the result is optimal (assuming convexity).
Experimentally, convergence appears to be both reliable and
rapid, though not guaranteed. In the rare case that convergence
is not obtained, weights may be reverted (immediately or via
a homotopy) to the form in lemma 4, for which convergence
is guaranteed, but slower in practice. With γs = 1 ∀ s ∈ S,
this can be seen to be equivalent to multiple scan BP (which
is non-convex since

∑
s∈S γs > 1).

Figure 9 shows the results of the heuristic approach. The
algorithms with guaranteed convergence are marked as CV and
CVS(0.55); the heuristic equivalents are CVH and CVSH(0.55)
respectively. CVSH1(0.55) uses a single backward-forward
sweep after introducing each new sensor. The slight difference
between the method with guaranteed performance and the
heuristic method is caused by the different values of βs used
(since we must ensure that β̃s > 0.5; in each case we select
βs to set β̃s = 1). The results demonstrate that very similar
performance can be obtained with a single sweep.

V. CONCLUSION

This paper has shown how the BP data association method
of [32] can be extended to multiple scans in a manner which
preserves convexity, using convex optimisation alongside a
convergent, BP-like method for optimising the FFE. In doing
so, it was demonstrated that the conservative beliefs can be
obtained, whereas the estimates provided by MSBP and JPDA-
BP are significantly non-conservative, and can provide beliefs
which effectively rule out the true target location a significant

proportion of the time. The result is a scalable, reliable
algorithm for estimating marginal probability distributions using
multiple scans.
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APPENDIX A
ASSOCIATION HISTORY MODEL

In section II-B, the problem of interest is formulated to
incorporate both continuous states xi and discrete association
hypothesis variables ais. Alternatively, we may formulate the
problem by defining association history hypotheses aiS =
(ai1, . . . , a

i
S), which detail which measurement corresponds to

the target in each scan. The role of the variational algorithm is to
determine the marginal association distribution pi(aiS) for each
target. Calculation of the kinematic distribution conditioned on
an association hypothesis, pi,a

i
S (xi), can utilise well-studied

methods such as the Kalman filter (KF) [48], extended Kalman
filter (EKF), unscented Kalman filter (UKF) [63], or the particle
filter (PF) [64].
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Definition 1. A global association history hypothesis (or
global hypothesis for short) is a hypothesis for the origin of
every measurement received so far, i.e., for each measurement
it specifies from which target it originated, or if it was a false
alarm.

Definition 2. A single target association history hypothesis
(or single target hypothesis for short) is a sequence of time-
stamped measurements that are hypothesised to correspond to
the same target.

A global hypothesis for the scans in set S may be represented
as aS = (a1

S , . . . ,a
n
S). Each single target hypothesis is

equipped with a hypothesis weight wi,a
i
S (utilised in the

calculation of the probability of the global hypotheses), and the
target state probability density function (PDF) conditioned on
the hypothesis pi,a

i
S (xi). Under this model, prediction steps

may be easily introduced to incorporate a stochastic state
model.

We denote by AiS the set of feasible single-target hypotheses
for target i ∈ {1, . . . , n} in the scans in S. The set of all
feasible global hypotheses (i.e., those in which no two targets
utilise the same measurement) can be written as:

AS =

{
(a1
S , . . . ,a

n
S)

∣∣∣∣aiS = (ai1, . . . , a
i
S) ∈ AiS ,

ais 6= ajs ∀ s, i, j s.t. i 6= j, ais 6= 0

}
. (88)

The joint distribution of states and hypotheses conditioned
on measurements may be written as:

p(X,aS , bS |ZS) ∝

{
n∏
i=1

wi,a
i
Spi,a

i
S (xi)

}{∏
s∈S

ψs(as, bs)

}
.

(89)
Marginalising the kinematic states, the probability of a global

hypothesis aS = (a1
S , . . . ,a

n
S) ∈ AS (and the corresponding

bS ) can be written in the form:

p(aS , bS |ZS) ∝

{
n∏
i=1

wi,a
i
S

}{∏
s∈S

ψs(as, bs)

}
. (90)

The joint PDF of all targets can be represented through a
total probability expansion over all global hypotheses:

p(X) =
∑

aS∈AS

p(aS)

n∏
i=1

pi,a
i
S (xi), (91)

where, for notational simplicity, we drop the explicit condition-
ing on ZS from p(X) and p(aS). It is of interest to obtain
the marginal distributions of global hypothesis probabilities:

pi(aiS) =
∑

ãS=(ã1
S ,...,ã

n
S)∈AS |ãiS=aiS

p(ãS). (92)

From these marginal association distributions, we can find the
marginal state PDF of each target:

pi(xi) =
∑

aiS∈AiS

pi(aiS)pi,a
i
S (xi). (93)

We now describe the updates which occur when a new scan
of measurements is received, i.e., when S = {1, . . . , S} is

replaced by S ′ = {1, . . . , S′}, where S′ = S + 1. If the new
scan represents a new time step, each hypothesis-conditioned
PDF pi,a

i
S (xi) first undergoes prediction according to standard

KF/EKF/UKF/PF expressions. A new single-target hypothesis
aiS′ = (aiS , a

i
S′) is generated for each combination of an old

single-target hypothesis aiS , and choice of event in the new
scan, aiS′ , where aiS′ = 0 denotes a missed detection, and
aiS′ = j ∈ {1, . . . ,mS′} indicates that target i corresponded
to measurement j. The parameters for the hypothesis aiS′ =
(aiS , 0) can be calculated using the expression:

wi,a
i
S′ = wi,a

i
S

∫
[1− P d

S′(x
i)]pi,a

i
S (xi)dxi, (94)

pi,a
i
S′ (xi) ∝ [1− P d

S′(x
i)]pi,a

i
S (xi). (95)

The hypothesis aiS′ = (aiS , j), which updates the old single-
target hypothesis aiS with measurement zjS′ , is calculated using
the expressions:

wi,a
i
S′ =

wi,a
i
S
∫
pS′(z

j
S′ |xi)P d

S′(x
i)pi,a

i
S (xi)dxi

λfa
S′(z

j
S′)

,

(96)

pi,a
i
S′ (xi) ∝ pS′(zjS′ |x

i)P d
S′(x

i)pi,a
i
S (xi). (97)

The extension of these steps to accommodate an unknown,
time-varying number of targets can be found in [10].

The association history model can be written in a graphical
model form as:

p(X,aS , bS |ZS) ∝
n∏
i=1

ψi(xi,aS)ψi(aS)
∏
s∈S

ψis(aiS , ais) ms∏
j=1

ψi,js (ais, b
j
s)

 ,

(98)

where ψi(xi,aS) = pi,a
i
S (xi), ψi(aS) = wi,a

i
S , and

ψis(a
i
S , a

i
s) ensures that aiS and ais are in agreement:

ψis(a
i
S , a

i
s) =

{
1, aiS = (ãi1, . . . , ã

i
S), ãis = ais

0, otherwise.
(99)

This graph is illustrated in figure 10. Marginalising the
kinematic states xi (which can be done simply since they
are leaves), we arrive at the representation

p(aS , bS |ZS) ∝
n∏
i=1

ψi(aS)
∏
s∈S

ψis(aiS , ais) ms∏
j=1

ψi,js (ais, b
j
s)

 . (100)

The derivation of section III may be applied directly to the
model in (100), substituting aiS in place of xi. The kinematic
distribution can then be recovered as

q(xi,aiS) = q(aiS)ψi(xi,aS) = q(aiS)pi,a
i
S (xi). (101)

APPENDIX B
DERIVATION OF BETHE FREE ENERGY FORM

A. Single scan

In this section, we present two formulations for the single
scan problem, (102)-(105) and (117)-(120), and show they
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Fig. 10. Graphical model of association history formulation of multiple scan
problem.

are equivalent to the formulation of (27)-(30) after partial
minimisation. The formulation of (27)-(30) is similar to the
formulation in [35]; the difference is our formulation includes
the belief that target i is not detected, qi,0s , and the belief
that measurement zjs is not used by any target, q0,j

s , whereas
the formulation in [35] is for the matrix permanent problem,
which excludes qi,0s and q0,j

s (and is thus constrained such that
n = ms).

The Bethe variational problem in section II-C involving
random variables ais and bjs can be solved by minimising:

FB([qis(a
i
s)], [q

i,j
s (ais, b

j
s)], [q

j
s(b

j
s)]) =

−
n∑
i=1

{
H(ais) + E[logψis(a

i
s)]
}
−

ms∑
j=1

H(bjs)

−
n∑
i=1

ms∑
j=1

{
−I(ais; b

j
s) + E[logψi,js (ais, b

j
s)]
}
, (102)

subject to the constraints:

qi,js (ais, b
j
s) ≥ 0, qis(a

i
s) ≥ 0, qjs(b

j
s) ≥ 0, (103)

n∑
bjs=0

qi,js (ais, b
j
s) = qis(a

i
s),

ms∑
ais=0

qi,js (ais, b
j
s) = qjs(b

j
s),

(104)
ms∑
ais=0

n∑
bjs=0

qi,js (ais, b
j
s) = 1,

ms∑
ais=0

qis(a
i
s) = 1,

n∑
bjs=0

qjs(b
j
s) = 1,

(105)

where ψis(a
i
s) is defined by (32), I(ais; b

j
s) is defined in (6),

and ψi,js (ais, b
j
s) is in (26). Note that there is some redundancy

in these constraints, which is retained to reinforce that the
constraints in (103) and (105) are retained when the marginal
constraints (104) are relaxed in the next step.

Let the marginals qis(a
i
s) and qjs(b

j
s) be fixed and feasible.

Because the marginals are fixed, the Bethe variational problem
(102)-(105) is convex with respect to qi,js (ais, b

j
s). In addition,

since the marginals are feasible, then qis(a
i
s = j) = qjs(b

j
s =

i) , qi,js . Relaxing the marginal constraints (104), the dual

function for the partial minimisation can be written as:

minimise
qi,js (ais,b

j
s)
FB([qis(a

i
s)], [q

i,j
s (ais, b

j
s)], [q

j
s(b

j
s)])

+

n∑
i=1

ms∑
j=1

ms∑
ais=0

λi,js (ais)

 n∑
bjs=0

qi,js (ais, b
j
s)− qis(ais)


+

n∑
i=1

ms∑
j=1

n∑
bjs=0

λi,js (bjs)

 ms∑
ais=0

qi,js (ais, b
j
s)− qjs(bjs)


subject to

ms∑
ais=0

n∑
bjs=0

qi,js (ais, b
j
s) = 1, qi,js (ais, b

j
s) ≥ 0,

where λi,js (ais) and λi,js (bjs) are dual variables. Solving the
dual function yields the solution:

qi,js (ais, b
j
s) =

1

ci,j
ψi,js (ais, b

j
s) exp{−λi,js (ais)− λi,js (bjs)},

(106)

where ci,j is the normalisation constant.
Using the marginalisation constraints (104), the pairwise

joint (106) and the definition of ψi,js (ais, b
j
s) in (26) (which

ensures that qi,js (ais, b
j
s) = 0 if ais = j, bjs 6= i or bjs = i,

ais 6= j), we find that qi,js = qi,js (ais = j, bjs = i), which is
related to the dual variables by

qi,js =
1

ci,j
exp{−λi,js (ais = j)} exp{−λi,js (bjs = i)}. (107)

Secondly, for i′ 6= i and j′ 6= j, we find that qis(a
i
s = j′) = qi,j

′

s

and qjs(b
j
s = i′) = qi

′,j
s are related to the dual variables by

qi,j
′

s =
1

ci,j
exp{−λi,js (ais = j′)}

n∑
i′=0
i′ 6=i

exp{−λi,js (bjs = i′)},

(108)

qi
′,j
s =

1

ci,j
exp{−λi,js (bjs = i′)}

ms∑
j′=0
j′ 6=j

exp{−λi,js (ais = j′)}.

(109)

As we have already seen, qi,js = qi,js (ais = j, bjs = i). In the
remaining case, ais = j′ 6= j, bjs = i′ 6= i, we again exploit the
structure of ψi,js (ais, b

j
s) to obtain

qi,js (ais, b
j
s) =

1

ci,j
exp{−λi,js (ais = j′)} exp{−λi,js (bjs = i′)}.

(110)
Substituting (107)–(110) into the pairwise normalisation con-
straint (105) yields:

qi,js +
1

ci,j

n∑
i′=0
i′ 6=i

exp{−λi,js (bjs = i′)}

×
ms∑
j′=0
j′ 6=j

exp{−λi,js (ais = j′)} = 1. (111)
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Subsequently, we find for i′ 6= i, j′ 6= j,

qi,js (ais = j′, bjs = i′) =
qi,j

′

s qi
′,j
s

1− qi,js
. (112)

Substituting the marginals and the pairwise joint into the
entropies H(ais), H(bjs) and H(ais, b

j
s) yields:

−H(ais) =

ms∑
j=0

qi,js log qi,js , (113)

−H(bjs) =

n∑
i=0

qi,js log qi,js , (114)

−H(ais, b
j
s) = qi,js log qi,js +

n∑
i′=0
i′ 6=i

ms∑
j′=0
j′ 6=j

qi,j
′

s qi
′,j
s

1− qi,js
log

qi,j
′

s qi
′,j
s

1− qi,js

= qi,js log qi,js − (1− qi,js ) log (1− qi,js )

+

ms∑
j′=0
j′ 6=j

qi,j
′

s log qi,j
′

s +

n∑
i′=0
i′ 6=i

qi
′,j
s log qi

′,j
s (115)

so that the mutual information (6) is:

I(ais; b
j
s) = −qi,js log qi,js − (1− qi,js ) log (1− qi,js ). (116)

Substituting (113)-(116) into the single scan formulation (102)-
(105), we arrive at the equivalent Bethe variational problem
(27)-(30) where wi,js = ψis(a

i
s = j).

The Bethe variational problem in section II-C involving
random variables xi, ais and bjs (illustrated in figure 3(a)) can
be solved by minimising:

FB([qi(xi)], [qis(x
i, ais)], [q

i
s(a

i
s)], [q

i,j
s (ais, b

j
s)], [q

j
s(b

j
s)]) =

−
n∑
i=1

{
H(xi) + E[logψi(xi)]

}
−

n∑
i=1

H(ais)−
ms∑
j=1

H(bjs)

−
n∑
i=1

{
−I(xi; ais) + E[logψis(x

i, ais)]
}

−
n∑
i=1

ms∑
j=1

{
−I(ais; b

j
s) + E[logψi,js (ais, b

j
s)]
}
, (117)

subject to the constraints (103)-(105) and

qis(x
i, ais) ≥ 0, qis(x

i) ≥ 0, (118)
ms∑
ais=0

qis(x
i, ais) = qis(x

i),
∑
xi

qis(x
i, ais) = qis(a

i
s), (119)

∑
xi

ms∑
ais=0

qis(x
i, ais) = 1,

∑
xi

qis(x
i) = 1. (120)

Partial minimisation over the pairwise joint qi,js (ais, b
j
s)

arrives at the Bethe variational problem (33)-(38). A rear-

rangement of the Bethe free energy (33) is:

FB([qis(a
i
s)], [q

i
s(x

i, ais)], [q
i,j
s ]) =

−
n∑
i=1

{
H(ais) +H(xi|ais) + E[logψi(xi)ψis(x

i, ais)]
}

+

ms∑
j=1

q0,j
s log q0,j

s −
n∑
i=1

ms∑
j=1

(1− qi,js ) log(1− qi,js ). (121)

Let qis(a
i
s) and qi,js be fixed and feasible. Minimising the

Bethe free energy (121) with respect to qis(x
i, ais) subject to

the constraints (34)-(38) yields the solution (using (13)):

qis(x
i, ais) =

qis(a
i
s)ψ

i(xi)ψis(x
i, ais)∑

xi′ ψ
i(xi

′
)ψis(x

i′, ais)
. (122)

Substituting qis(x
i, ais) into the Bethe free energy (121) results

in the equivalent Bethe variational problem (27)-(30) where
wi,js =

∑
xi ψ

i(xi)ψis(x
i, j), and qis(a

i
s = j) = qi,js .

B. Multiple scans
The Bethe variational problem in section II-B, which is

represented by figure 3(c), can be solved by minimising:

FB([qi(xi)], [qis(x
i, ais)], [q

i
s(a

i
s)], [q

i,j
s (ais, b

j
s)], [q

j
s(b

j
s)]) =

−
n∑
i=1

{
H(xi) + E[logψi(xi)]

}
−
∑
s∈S

n∑
i=1

H(ais)−
∑
s∈S

ms∑
j=1

H(bjs)

−
∑
s∈S

n∑
i=1

{
−I(xi; ais) + E[logψis(x

i, ais)]
}

−
∑
s∈S

n∑
i=1

ms∑
j=1

{
−I(ais; b

j
s) + E[logψi,js (ais, b

j
s)]
}
, (123)

subject to the constraints (103)-(105) and (118)-(120) for s ∈
S. Partial minimisation over qi,js (ais, b

j
s) and rearrangement

produces the equivalent variational problem (51)-(57).

APPENDIX C
PROOF OF ALGORITHMS FOR MINIMISING PDCA

SUB-PROBLEMS

In this section, we prove lemmas 5 and 6, i.e., we derive
algorithms for minimising the blocks utilised in the PDCA
algorithm. Before we begin, we prove the preliminary result in
lemma 3, which shows that the block hs,1 is convex (convexity
of f and hs,2 is straight-forward).

Proof of lemma 3: If κs,1,x ≥ 0, then convexity with
respect to qi(xi) is immediate. Otherwise, −κs,1,x > 0; let
κ̃ = κs,1,s + κs,1,x ≥ 0, and rewrite the first line of (62) as:

−
n∑
i=1

{
−κs,1,xH(ais|xi) + κ̃H(xi|ais) + κ̃H(ais)

}
.

The first two terms are convex by definition of conditional
entropy, as is the second line in (62), so we focus on the
remainder of the expression:

− κ̃
n∑
i=1

H(ais)− γs
n∑
i=1

ms∑
j=1

(1− qi,js ) log(1− qi,js ), (124)
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where −H(ais) =
∑ms
j=0 q

i,j
s log qi,js . Recognising (124) as:

γs

 n∑
i=1

ms∑
j=0

qi,js log qi,js −
n∑
i=1

ms∑
j=0

(1− qi,js ) log(1− qi,js )


+(κ̃−γs)

n∑
i=1

ms∑
j=0

qi,js log qi,js +γs

n∑
i=1

(1−qi,0s ) log(1−qi,0s ),

(125)

we obtain the desired result; the first line is convex by
theorem 20 in [35], which shows that the function S(ξ) =∑
j ξj log ξj−

∑
j(1−ξj) log(1−ξj) is convex on the domain

ξj ≥ 0,
∑
j ξj = 1; the second line is convex by convexity of

x log x.
Proof of lemma 5: Collecting terms, the objective to be

minimised is:

Fµs,1([qi(xi)], [qis(x
i, ais)])

= −
n∑
i=1

{
(κf,x + κs,1,x)H(xi) + E[φi(xi)]

}
−

∑
τ∈S\{s}

n∑
i=1

{
κf,τH(xi, aiτ ) + E[φiτ (xi, aiτ )]

}
−

n∑
i=1

{
(κf,s + κs,1,s)H(xi, ais) + E[φis(x

i, ais)]
}

+ βs

ms∑
j=1

q0,j
s log q0,j

s − γs
n∑
i=1

ms∑
j=1

(1− qi,js ) log(1− qi,js ).

(126)

For τ ∈ S\{s}, hs,1 is constant with respect to qiτ (xi, aiτ ), so
λis,1,τ (xi, aiτ ) = 0. If we define

φ̃is(x
i, ais) = φi(xi) + φis(x

i, ais), (127)

qi(xi) =

ms∑
ais=0

qis(x
i, ais), (128)

then the terms in (126) that depend on qis(x
i, ais) can be written

as

−
n∑
i=1

(κf,s + κs,1,s)[H(xi|ais) +H(ais)]

−
n∑
i=1

E[φ̃is(x
i, ais)] + βs

ms∑
j=1

q0,j
s log q0,j

s

− γs
n∑
i=1

ms∑
j=1

(1− qi,js ) log(1− qi,js ). (129)

Using lemma 2 to minimise with respect to qis(x
i, ais) while

holding qis(a
i
s) fixed, we find that the optimisation becomes

(κf,s + κs,1,s)

[
−

n∑
i=1

{
H(ais) + E[φ̃is(a

i
s)]
}

+ β̃s

ms∑
j=1

q0,j
s log q0,j

s − γ̃s
n∑
i=1

ms∑
j=1

(1− qi,js ) log(1− qi,js )

]
,

(130)

while qis(x
i, ais) can be recovered via (70). Dividing by (κf,s+

κs,1,s), we obtain (74). Finally, since

∇qi(xi)f = κf,x log qi(xi) + κf,x − logψi(xi), (131)

we find that the update in (48) reduces to

λis,1,x(xi) = −µi(xi)− κf,x log qi(xi)− κf,x + logψi(xi)

= φi(xi)− κf,x log qi(xi)− κf,x, (132)

which is the result in (75). Following identical steps for
qis(x

i, ais) gives the result in (76).
Proof of lemma 6: Collecting terms, the objective to be

minimised is:

Fµs,2([qi(xi)], [qiτ (xi, aiτ )])

= −
n∑
i=1

{
(κf,x + κs,2,x)H(xi) + E[φi(xi)]

}
−
∑
τ∈S

n∑
i=1

{
κf,τH(xi, aiτ ) + E[φiτ (xi, aiτ )]

}
−

n∑
i=1

{
κs,2,sH(xi, ais)

}
. (133)

For τ ∈ S\{s}, (54) is not enforced, and hs,2 is constant
with respect to qiτ (xi, aiτ ), so λis,2,τ (xi, aiτ ) = 0. Since the
constraint (54) is enforced for time s, (133) can be written
equivalently as

Fµs,2([qi(xi)], [qiτ (xi, ais)]) = −
n∑
i=1

{
κ̃H(xi) + E[φi(xi)]

}
−

n∑
i=1

{
(κf,s + κs,2,s)H(ais|xi) + E[φis(x

i, ais)]
}

−
∑

τ∈S\{s}

n∑
i=1

{
κf,τH(xi, aiτ ) + E[φiτ (xi, aiτ )]

}
, (134)

where κ̃ = κf,x + κf,s + κs,2,x + κs,2,s. Using lemma 2
to perform a partial minimisation of (134) with respect to
qiτ (xi, aiτ ), holding qi(xi) fixed, we find the result in (80) and
the remaining problem:

Fµs,2([qi(xi)])
c
= −

n∑
i=1

{
κ̃H(xi) + E

[
φi(xi) + φ̃is(x

i)
]}

.

(135)

Using lemma 1, we obtain the result in (79).
Following similar steps to (132) gives the updates for

λis,2,x(xi) and λis,2,s(x
i, ais).

APPENDIX D
PROOF OF CONVERGENCE OF SINGLE SCAN ITERATION

In this section, we prove convergence of an iterative
algorithm for solving the single scan block, illustrated in figure
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2:

minimise

n∑
i=1

m∑
j=1

qi,j log
qi,j
wi,j

+ α

n∑
i=1

qi,0 log
qi,0
wi,0

+ β

m∑
j=1

q0,j log
q0,j

w0,j

− γ
n∑
i=1

m∑
j=1

(1− qi,j) log(1− qi,j) (136)

subject to

m∑
j=0

qi,j = 1 ∀ i ∈ {1, . . . , n} (137)

n∑
i=0

qi,j = 1 ∀ j ∈ {1, . . . ,m} (138)

0 ≤ qi,j ≤ 1, (139)

where γ ∈ [0, α] ∩ [0, β] ∩ [0, 1), α ∈ (0.5,∞), β ∈ (0.5,∞).
In our analysis, we permit values wi,j = 0, maintaining a finite
objective by fixing the corresponding qi,j = 0, and defining
qi,j/wi,j , 1; since these take on fixed values, we do not
consider them to be optimisation variables. While we state
the algorithm more generally, we prove convergence for three
cases:

1) n = m and wi,0 = w0,j = 0 (i.e., no missed
detection/false alarm events)

2) wi,0 > 0 ∀ i, w0,j = 0 ∀ j, α = 1 (i.e., missed detections
but no false alarms)

3) wi,0 > 0 ∀ i, w0,j > 0 ∀ j, α = 1 (i.e., missed detections
and false alarms)

In case 1 above, α and β have no effect since qi,0 = 0 and
q0,j = 0. Similarly, in case 2, β has no effect since q0,j = 0.
Assumption 1 ensures that the problem has a relative interior
(again, we exclude the qi,j variables for which wi,j = 0, since
they are fixed to zero).

Assumption 1. There exists a feasible point in the relative
interior, i.e., there exists qi,j satisfying the constraints (137)-
(139) such that 0 < qi,j < 1 ∀ (i, j) s.t. wi,j > 0.

Assumption 2. The graph is connected, i.e., we can travel from
any left-hand side vertex ai, i ∈ {1, . . . , n} to any right-hand
side vertex bj , j ∈ {1, . . . ,m} by following a path consisting
of edges (i′, j′) with wi′,j′ > 0.

Assumption 1 can easily be shown to be satisfied if wi,0 >
0 ∀ i and w0,j > 0 ∀ j (i.e., missed detection and false alarm
likelihoods are non-zero). In problems without false alarms or
missed detections, the condition excludes infeasible problems
(e.g., where two measurements can only be associated with
a single target), and problems with trivial components (e.g.,
where a measurement can only be associated with one target,
so that measurement and target can be removed and the smaller
problem solved via optimisation). Assumption 2 ensures that
the problem is connected; this property is utilised in the proof
of case 1. Any problem in which the graph is not connected
can be solved more efficiently by solving each connected
component separately.

Lemma 7. The solution of (136)-(139) lies in the relative
interior, i.e., 0 < qi,j < 1 ∀ (i, j) s.t. wi,j > 0.

Proof. Rewrite the objective in (136) in the form:

(1− γ)

n∑
i=1

m∑
j=1

qi,j log
qi,j
wi,j

+ (α− γ)

n∑
i=1

qi,0 log
qi,0
wi,0

+ β

m∑
j=1

q0,j log
q0,j

w0,j

+γ

[
n∑
i=0

m∑
j=1

qi,j log
qi,j
wi,j
−

n∑
i=1

m∑
j=1

(1−qi,j) log(1−qi,j)

]
.

(140)

Consider two feasible points q0 and q1, where q0 is on the
boundary and q1 is in the relative interior (such a point exists
by assumption 1). Let qλ = λq1 + (1− λ)q0, and denote the
objective evaluated at qλ by

f(λ) = g(λ) + h(λ),

where g(λ) is the first two lines of (140) evaluated at qλ,
and h(λ) is the final line. Lemma 3 shows that h(λ) is
convex, therefore its gradient is monotonically non-decreasing.
Consequently it must be the case that:

lim
λ↓0

h′(λ) = c <∞. (141)

The derivative of g(λ) is given by:

g′(λ) = (1−γ)

n∑
i=1

m∑
j=1

(q1
i,j−q0

i,j)

[
log

λq1
i,j + (1− λ)q0

i,j

wi,j
+ 1

]

+ (α− γ)

n∑
i=1

(q1
i,0 − q0

i,0)

[
log

λq1
i,0 + (1− λ)q0

i,0

wi,0
+ 1

]

+ β

m∑
j=1

(q1
0,j − q0

0,j)

[
log

λq1
0,j + (1− λ)q0

0,j

w0,j
+ 1

]
.

Since q0 is on the boundary and q1 is not, we must have:

lim
λ↓0

g′(λ) = −∞. (142)

By (141) and (142), we thus have that f ′(λ) < 0 ∀ λ ∈
(0, ε) for some ε > 0. Thus the optimum cannot lie on the
boundary.

Lemma 8. The Karush-Kuhn-Tucker (KKT) optimality condi-
tions [65] for the problem in (136) are:

log
qi,j
wi,j

+ γ log(1− qi,j) + 1 + γ − λi − µj = 0 ∀ i, j > 0,

(143)

α log
qi,0
wi,0

+ α− λi = 0 ∀ i > 0, (144)

β log
q0,j

w0,j
+ β − µj = 0 ∀ j > 0, (145)

as well as the primal feasibility conditions (137)-(139). The
conditions are necessary and sufficient for optimality. In case
1 (where wi,0 = 0 ∀ i and w0,j = 0 ∀ j) the solution is unique
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up to a constant c being added to λi ∀ i and subtracted from
µj ∀ j. In other cases, the solution is unique.

Proof. One complication is that the objective is not convex
on Rn+1×m+1 but rather only on the subspace in which
either (137) or (138) is satisfied. We show that the regular
KKT conditions are still necessary and sufficient in this case.
Relaxing the non-negativity condition,9 the problem can be
expressed as:

minimise f(q)

subject to A1q = b1, A2q = b2.

The KKT conditions for this problem are:

∇f(q)−AT
1 λ−AT

2 µ = 0, (146)
A1q = b1, A2q = b2. (147)

Given a solution q0 that satisfies A1q0 = b1, we can
express any feasible q as q0 + P(q − q0) where P =
I − AT

1 (A1A
T
1 )−1A1 is the matrix that projects onto the

null-space of A1. Thus we can equivalently solve

minimise f(q0 + P(q − q0))

subject to A1q = b1, A2q = b2.

Since the argument of f lies in the feasible subspace for the
first constraint, this problem is convex, and under Assumption 1
the Slater condition [65] is satisfied, so the KKT conditions are
necessary and sufficient. The KKT conditions for this modified
problem are:

P∇f(q)−AT
1 λ−AT

2 µ = 0, (148)
A1q = b1, A2q = b2, (149)

where, after taking the gradient of f in (148), we substitute
q0 +P(q−q0) = q since the point must satisfy the constraints
(149). The projection of the gradient is:

P∇f(q) = ∇f(q)−AT
1 (A1A

T
1 )−1A1∇f(q).

Thus a point (q∗,λ∗,µ∗) satisfying the KKT conditions for
the modified problem (148)-(149) corresponds to a point
(q∗, λ̃

∗
,µ∗) in the KKT conditions for the original problem

(146)-(147), where

λ̃
∗

= λ∗ + (A1A
T
1 )−1A1∇f(q). (150)

Similarly, given a point satisfying the KKT conditions for the
original problem, we can find a corresponding point satisfying
the modified KKT conditions (148)-(149) by inverting (150).
Thus points satisfying the KKT conditions for the original
problem (146)-(147) and the modified problem (148)-(149) are
in direct correspondence.

The expressions in (143)-(145) are found by forming the
Lagrangian and taking gradients. Uniqueness of the solution
comes from strict convexity of f . The freedom to choose
a constant offset is the result of linear dependence of the
constraints in case 1 (since each set of constraints implies that∑
i,j qi,j = n).

9Alternatively, define f(q) = ∞ for points violating the constraint.

The optimisation methodology we adopt is to define an
iterative method and prove that it converges to a point that
satisfies the KKT conditions, motivated by analysis of the BP
iteration in [32], [35]. Defining λ̄i = λi − α, µ̄i = µi − β and
κ = −1− γ + α+ β, the KKT conditions in (143)-(145) can
be rewritten as:

qi,j =
wi,j exp{λ̄i + µ̄j + κ}

(1− qi,j)γ
∀ i, j > 0, (151)

qi,0 = wi,0 exp{ 1
α λ̄i} ∀ i > 0, (152)

q0,j = w0,j exp{ 1
β µ̄j} ∀ j > 0. (153)

While these expressions do not permit us to immediately solve
for qi,j , they permit application of an iterative method, in which
we repeatedly calculate new LHS values of qi,j by updating
either λ̄i via the equation:

exp λ̄i =

wi,0 exp{( 1
α − 1)λ̄i}+

m∑
j=1

wi,j exp{µ̄j + κ}
(1− qi,j)γ

−1

,

(154)
or µ̄j via the equation:

exp µ̄j =

[
w0,j exp{( 1

β − 1)µ̄j}+

n∑
i=1

wi,j exp{λ̄i + κ}
(1− qi,j)γ

]−1

,

(155)
where the RHS values of qi,j , λ̄i and µ̄j refer to the previous
iterates. The updates in (154) and (155) are applied alternately.
After each update, the values of qi,j are recalculated using
(151)-(153).

The iteration may be written equivalently in terms of the
parameterisation xi,j and yi,j , where

xi,j =
exp{µ̄j + κ}
(1− qi,j)γ

,

xi,0 = exp{( 1
α − 1)λ̄i}, x0,j = exp{µ̄j}, (156)

yi,j =
exp{λ̄i + κ}
(1− qi,j)γ

,

yi,0 = exp{λ̄i}, y0,j = exp{( 1
β − 1)µ̄j}. (157)

Algebraic manipulation yields equivalent iterations in terms of
xi,j and yi,j as:

x
(k+1)
i,j = ri,j(y

(k)) ,

(
w0,jy

(k)
0,j +

∑
i′

wi′,jy
(k)
i′,j

)−(1−γ)

×

w0,jy
(k)
0,j +

∑
i′ 6=i

wi′,jy
(k)
i′,j

−γ × eκ, (158)

x
(k+1)
i,0 = ri,0(y(k)) , (y

(k)
i,0 )

1
α−1, (159)

x
(k+1)
0,j = r0,j(y

(k)) ,

(
w0,jy

(k)
0,j +

∑
i′

wi′,jy
(k)
i′,j

)−1

,

(160)
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Fig. 11. Structure of iterative solution, alternating between half-iterations
x(k+1) = r(y(k)) and y(k+1) = s(x(k+1)).

and

y
(k+1)
i,j = si,j(x

(k+1)) ,

wi,0x(k+1)
i,0 +

∑
j′

wi,j′x
(k+1)
i,j′

−(1−γ)

×

wi,0x(k+1)
i,0 +

∑
j′ 6=j

wi,j′x
(k+1)
i,j′

−γ × eκ,
(161)

y
(k+1)
i,0 = si,0(x(k+1)) ,

wi,0x(k+1)
i,0 +

∑
j′

wi,j′x
(k+1)
i,j′

−1

,

(162)

y
(k+1)
0,j = s0,j(x

(k+1)) , (x
(k+1)
0,j )

1
β−1. (163)

The shorthand
∑
i′ represents the sum over the set i′ ∈

{1, . . . , n}, while
∑
i′ 6=i represents the same summation,

excluding the i-th element. Similarly,
∑
j′ represents the sum

over the set j′ ∈ {1, . . . ,m}, while
∑
j′ 6=j represents the same

summation, excluding the j-th element. The structure of this
iterative method is illustrated in figure 11. Note that if γ = 1,
this reduces to the BP iteration of [32].

At this point, we have stated but not derived the iteration
(158)–(163). The validity of the expressions is established by
proving that the solution of the KKT conditions is a fixed point
of the iteration (in lemma 9), and then showing that repeated
application of the expressions yields a contraction, which is
guaranteed to converge to the unique fixed point.

Lemma 9. Let (q∗i,j , λ̄
∗
i , µ̄
∗
j ) be the solution of the KKT

conditions in lemma 8, and let x∗i,j and y∗i,j be the values
calculated from (q∗i,j , λ̄

∗
i , µ̄
∗
j ) using (156)–(157). Then x∗i,j and

y∗i,j are a fixed point of r(·) and s(·) in (158)-(163).

Proof. Feasibility implies that
∑n
i=0 qi,j = 1 ∀ j. Therefore:

w0,j exp{ 1
β µ̄
∗
j}+

n∑
i=1

wi,j exp{λ̄∗i + µ̄∗j + κ}
(1− q∗i,j)γ

= 1, (164)

or

exp{µ̄∗j} =

[
w0,j exp{( 1

β − 1)µ̄∗j}+

n∑
i=1

wi,j exp{λ̄∗i + κ}
(1− q∗i,j)γ

]−1

(165)
Equating terms, this proves (160), and shows that the first
factor in (158) is exp{(1− γ)µ̄∗j}. To prove (158), note that

1

1− q∗i,j
=

1

1− wi,j exp{λ̄∗i+µ̄∗j+κ}
(1−q∗i,j)γ

, (166)

thus

exp{µ̄∗j}
1− q∗i,j

=

[
exp{−µ̄∗j} −

wi,j exp{λ̄∗i + κ}
(1− q∗i,j)γ

]−1

(167)

=

w0,j exp{( 1
β − 1)µ̄∗j}+

n∑
i′=1
i′ 6=i

wi′,j exp{λ̄∗i′ + κ}
(1− q∗i′,j)γ


−1

(168)

Raising this to the power γ and multiplying by exp{(1−γ)µ̄∗j+
κ}, we obtain (158). Similar steps show (161) and (162), while
(159) and (163) are immediate.

Our goal in what follows is to prove that the composite
operator r(s(·)) is a contraction, as defined below. We utilise
the same distance metric as in [32]:

d(x, x̃) = max
i,j

log

∣∣∣∣xi,jx̃i,j

∣∣∣∣ ,
where we define 0/0 = 1.

Definition 3. An operation g(x) is a contraction with respect
to d(·, ·) if there exists α ∈ [0, 1) such that for all x, x̃

d[g(x), g(x̃)] ≤ αd(x, x̃). (169)

If the expression is satisfied for α = 1, then g(x) is a non-
expansion.

Lemma 10. Let g(·) be the operator taking the weighted
combination with non-negative weights wi,j ≥ 0:

gk,l(x) =
∑
i,j

wi,j,k,lxi,j .

g(·) is non-expansive with respect to d.

Proof. Let L = exp{d(x, x̃)} <∞ (otherwise there is nothing
to prove), so that 1

Lxi,j ≤ x̃i,j ≤ Lxi,j . Then

gk,l(x̃) =
∑
i,j

wi,j,k,lx̃i,j ≤ L
∑
i,j

wi,j,k,lxi,j = Lgk,l(x),

(170)

and

gk,l(x̃) =
∑
i,j

wi,j,k,lx̃i,j ≥ 1
L

∑
i,j

wi,j,k,lxi,j = 1
Lgk,l(x).

(171)

Lemma 11. Let f(·) be formed from two operators g(·) and
h(·) as

fi,j(x) = gi,j(x)ρghi,j(x)ρh .

Suppose that g(·) and h(·) are contractions or non-expansions
with coefficients αg and αh. If αf = αg|ρg| + αh|ρh| < 1,
then f(·) is a contraction with respect to d. If αf = 1 then
f(·) is a non-expansion.
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Proof.

d[f(x),f(x̃)]

= max
i,j

log

∣∣∣∣fi,j(x)

fi,j(x̃)

∣∣∣∣ (172)

= max
i,j

log

∣∣∣∣gi,j(x)ρghi,j(x)ρh

gi,j(x̃)ρghi,j(x̃)ρh

∣∣∣∣ (173)

≤ |ρg|max
i,j

log

∣∣∣∣gi,j(x)

gi,j(x̃)

∣∣∣∣+ |ρh|max
i,j

log

∣∣∣∣hi,j(x)

hi,j(x̃)

∣∣∣∣ (174)

≤ (|ρg|αg + |ρh|αh)d(x, x̃). (175)

The following results immediately from lemmas 10 and 11.

Corollary 1. The operators r(·) and s(·) defined in (158)-
(162) are non-expansions.

Lemma 12. If d(x, x̃) ≤ log L̄ < ∞, then the operator s(·)
is a contraction in cases 2 and 3 with a contraction factor
dependent on L̄ and wi,j .

Proof. Lemma 2 in [32] shows that the update:

yi,j =
wi,j

1 +
∑
j′ 6=j wi,j′xi,j′

(176)

is a contraction. The proof of lemma 2 in [32] may be trivially
modified to show that the updates:

c1
c2 +

∑
j′ 6=j wi,j′xi,j′

, (177)

c1
c2 +

∑
j′ wi,j′xi,j′

(178)

are also contractions for any c1 > 0, c2 > 0. In cases 2 and
3, α = 1, so xi,0 = 1. Therefore, these results combined with
lemma 11, show that (161) and (162) are contractions. Since
| 1β − 1| < 1, (163) is also a contraction.

This is adequate to prove convergence in cases 2 and 3: s(·)
is a contraction, and r(·) is a non-expansion, so the composite
operator is a contraction. Combined with lemma 8, this shows
that the iteration converges to the unique solution of the KKT
conditions. The fact that the contraction factor in lemma 12
depends on an upper bound on the distance L̄ is not of concern;
since the combined operation is a contraction, the contraction
factor for the upper bound L̄ that we begin with will apply
throughout.

The final step is to prove convergence in case 1. For this,
we prove that n successive iterations of applying operators r(·)
and s(·) collectively form a contraction. The proof is based on
[35], but adapts it to address γ < 1, and to admit cases where
some edges have wi,j = 0.

As discussed in lemma 8, the solution in case 1 is not
changed by adding any constant c to λ̄i ∀ i and subtracting
it from µ̄j ∀ j; this is clear from (151), and was termed
message gauge invariance in [35, remark 30]. Incorporating
any such constant simply offsets all future iterations by the
value, having no impact on the qi,j iterates produced. Thus,
for the purpose of proving convergence, when analysing r(·),
we scale y∗i,j such that mini,j [y

(k−1)
i,j /y∗i,j ] = 1, and we denote

maxi,j [y
(k−1)
i,j /y∗i,j ] = L for some L with 1 < L < ∞ (if

L = 1 then convergence has occurred, and L =∞ will only
occur if y∗i,j = 0, which contradicts lemma 7). The result is
similar to that obtained by changing the distance to Hilbert’s
projective metric (e.g., [66]). We emphasise that this rescaling
does not need to be performed in the online calculation; rather
we are exploiting an equivalence to aid in proving convergence.

Lemmas 13 and 14 establish an induction which shows
that after n steps, we are guaranteed to have reduced
maxi,j [y

(k+n)
i,j /y∗i,j ]. The induction commences with a single

edge with y
(k−1)
i,j /y∗i,j = 1, setting T (k−1) = {(i, j)}, and

v(k−1) = 1. As the induction proceeds, the set T (k) (or,
alternately, S(k)) represents the edges for which improvement
in the bound L is guaranteed, and v(k) < L (or, alternately,
u(k)) represents the amount of improvement that is guaranteed.
The induction proceeds by alternately visiting the left-hand
vertices and right-hand vertices (e.g., in figure 2), at each stage
adding to the set S(k) edges (i, j) for which wi,j > 0, and an
edge that is incident on the vertex j is in T (k) (or, alternatively,
adding to T (k) edges that could be traversed by starting from
a vertex i represented by an edge in S(k)).

Lemma 13. At iteration (k − 1), suppose that 1 ≤
y

(k−1)
i,j /y∗i,j ≤ L < ∞ ∀ i, j, and y

(k−1)
i,j /y∗i,j ≤ v(k−1) <

L ∀ (i, j) ∈ T (k−1). Then 1/L ≤ x
(k)
i,j /x

∗
i,j ≤ 1 ∀ (i, j), and

1/u(k) ≤ x(k)
i,j /x

∗
i,j ≤ 1 ∀ (i, j) ∈ S(k), where

S(k) ={
(i, j) ∈ {1, . . . , n}2

∣∣∃i′ s.t. (i′, j) ∈ T (k−1), wi,j > 0
}
,

(179)

and

u(k) = max
j

[θ
(k−1)
j v(k−1)+(1−θ(k−1)

j )L]1−γLγ < L, (180)

where

θ
(k−1)
j =

∑
i|(i,j)∈T (k−1)

wi,jy
∗
i,j

/∑
i

wi,jy
∗
i,j . (181)

Proof. Consider the sum in the first factor in (158) (remem-
bering that w0,j = 0):

σ∗j =
∑
i

wi,jy
∗
i,j , σ

(k)
j =

∑
i

wi,jy
(k−1)
i,j , (182)

so that σ(k)
j /σ∗j ≥ 1, and

σ
(k)
j

σ∗j
≤
v(k−1)

∑
i|(i,j)∈T (k−1) wi,jy

∗
i,j + L

∑
i|(i,j)/∈T (k−1) wi,jy

∗
i,j∑

i wi,jy
∗
i,j

= θ
(k−1)
j v(k−1) + (1− θ(k−1)

j )L.

While a similar analysis could be applied to the second factor
of the expression for r(y) (as in [35]), to prove convergence
in the case with γ < 1, it is adequate to simply bound it by:

1 ≤
∑
i′ 6=i wi′,jy

(k−1)
i′,j∑

i′ 6=i wi′,jy
∗
i′,j

≤ L. (183)

Substituting these bounds into (158) gives the desired result.
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Lemma 14. At iteration k, suppose that 0 < 1
L ≤ x

(k)
i,j /x

∗
i,j ≤

1 ∀ i, j, and 1/L < 1/u(k) ≤ x
(k)
i,j /x

∗
i,j ∀ (i, j) ∈ S(k). Then

1 ≤ y(k)
i,j /y

∗
i,j ≤ L ∀ (i, j) and 1 ≤ y(k)

i,j /y
∗
i,j ≤ v(k) ∀ (i, j) ∈

T (k), where

T (k) =
{

(i, j) ∈ {1, . . . , n}2
∣∣∃j′ s.t. (i, j′) ∈ S(k), wi,j > 0

}
(184)

and

1

v(k)
= min

i

[
ω

(k)
i

u(k)
+

(1− ω(k)
i )

L

]1−γ
1

Lγ
>

1

L
, (185)

where

ω
(k)
i =

∑
j|(i,j)∈S(k)

wi,jx
∗
i,j

/∑
j

wi,jx
∗
i,j . (186)

Proof. Following similar steps to the proof of lemma 13, we
define:

τ∗i =
∑
j

wi,jx
∗
i,j , τ

(k)
i =

∑
j

wi,jx
(k)
i,j , (187)

so that τ (k)
i /τ∗i ≤ 1, and

τ
(k)
i

τ∗i
≥

1
u(k)

∑
j|(i,j)∈S(k) wi,jx

∗
i,j + 1

L

∑
j|(i,j)/∈S(k) wi,jy

∗
i,j∑

j wi,jy
∗
i,j

= ω
(k)
i

1

u(k−1)
+ (1− ω(k)

i )
1

L
.

The second factor in (161) can be bounded by the expression

1

L
≤
∑
j′ 6=j wi,j′x

(k)
i,j′∑

j′ 6=j wi,j′x
∗
i,j′
≤ 1. (188)

Substituting these bounds into (161) gives the desired result.

We employ lemmas 13 and 14 by setting v(k−1) = 1 (scaling
y∗i,j accordingly), and T (k−1) to contain the edge(s) with
y

(k−1)
i,j /y∗i,j = 1. Iteratively applying the lemmas for n steps,

we find that 1 ≤ y
(k+n)
i,j /y∗i,j ≤ v(k+n) < L ∀ (i, j) since

we will have T (k+n) containing all edges (since the graph is
connected). To prove linear convergence, we first need to show
that the distance is reduced by at least a constant, or that

α(L) ,
log v(k+n)(L)

logL
< 1. (189)

where v(k+n)(L) depends on L through the recursion in (180)
and (185). The inequality in (189) can be established simply
by commencing from v(k−1) = 1, and observing that if
v(k+l−1) < L then u(k+l) < L and v(k+l) < L for any l > 0.
This is not adequate to prove convergence; we further need
to show that the constant α(L) is non-decreasing in L. This
ensures that the initial contraction rate (for the first n iterations)
applies, at least, in all subsequent n-step iteration blocks.

Lemma 15. α(L) is continuous and non-decreasing in L, i.e.,
its left and right derivatives everywhere satisfy

∂−α(L) ≥ 0, ∂+α(L) ≥ 0.

Proof. Taking either the left or right derivative of α(L) in
(189):

∂α(L) =
∂v(L) · logL

v(L) −
1
L log v(L)

log2 L
. (190)

Thus it suffices to show that (omitting the iteration index
superscript from v)

∂−v(L) ≥ v(L) log v(L)

L logL
, ∂+v(L) ≥ v(L) log v(L)

L logL
.

(191)
We prove by induction, showing that the property in (191) is
maintained through the recursion in (180) and (185). The base
case is established by noting that if v(k−1) = 1, then (191)
holds. Now suppose that the property (191) is held for some
iteration (k + l − 1) with upper bound v(k+l−1)(L). Then let

ũ
(k+l)
j (L) = θ

(k+l−1)
j v(k−l−1)(L) + (1− θ(k+l−1)

j )L.

By the second result in lemma 16, ũ(k+l)
j will satisfy the

property (191) for each j. The pointwise maximum in (180):

ũ(k+l)(L) = max
j
ũ

(k+l)
j (L)

will introduce a finite number of points where ũ(k+l)(L) is
continuous but the derivative is discontinuous. However, the
one-sided derivative at any of these points will satisfy (191)
since each component in the pointwise maximum satisfied it.
Finally, the result of (180) is:

u(k+l)(L) = [ũ(k+l)(L)]1−γLγ .

The first result in lemma 16 shows that this will satisfy (191).
Now we need to prove that the other half-iteration (185)

maintains the property (191). First, note that if L̄ = 1/L and
ū(k+l) = 1/u(k+l) then the final result in lemma 16 shows
that if u(k+l)(L) satisfies (191), then:

∂−ū
(k+l)(L̄) ≥ ū(k+l)(L̄) log ū(k+l)(L̄)

L̄ log L̄
,

∂+ū
(k+l)(L̄) ≥ ū(k+l)(L̄) log ū(k+l)(L̄)

L̄ log L̄
.

(192)

Subsequently, if:

ṽ
(k+l)
i (L̄) = ω

(k+l)
i ū(k−l)(L̄) + (1− ω(k+l)

i )L̄,

then the second result in lemma 16 establishes that ṽ(k+l)
i will

satisfy the property (192) for each i. As with the pointwise
maximum in the the previous case, the pointwise minimum
(185):

ṽ(k+l)(L̄) = min
i
ṽ

(k+l)
i (L̄)

will introduce a finite number of points where ṽ(k+l)(L̄) is
continuous but the derivative is discontinuous. However, the
one-sided derivative at any of these points will satisfy (192).
The first result in lemma 16 shows that the composition:

v̄(k+l)(L̄) = [ṽ(k+l)(L̄)]1−γL̄γ

will also satisfy (192). Finally, the result of (185) is:

v(k+l)(L) = 1/v̄(k+l)(1/L)
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which will satisfy (192) by the final result in lemma 16.

Lemma 16. Suppose that du(x)
dx ≥ u(x) log u(x)

x log x . Then if v(x)
is given by any of the following:

1) v(x) = u(x)1−γxγ ,
2) v(x) = θu(x) + (1− θ)x

then dv(x)
dx ≥

v(x) log v(x)
x log x . Finally, if y = 1/x and

v(y) = 1/u(x) = 1/u(1/y),

then dv(y)
dy ≥

v(y) log v(y)
y log y .

Proof. For the first case:

dv(x)

dx
= (1− γ)

du(x)

dx
u(x)−γxγ + γu(x)1−γxγ−1

≥ (1− γ)
u(x) log u(x)

x log x
u(x)−γxγ + γu(x)1−γxγ−1

=
u(x)1−γxγ [(1− γ) log u(x) + γ log x]

x log x

=
v(x) log v(x)

x log x
.

For the second case:
dv(x)

dx
= θ

du(x)

dx
+ (1− θ)

≥ θu(x) log u(x)

x log x
+ (1− θ)

=
θu(x) log u(x) + (1− θ)x log x

x log x

≥ v(x) log v(x)

x log x
,

where the final inequality is the result of convexity of x log x.
For the final result, let f(x) = 1/u(x) and g(y) = 1/y and
apply the chain rule:

dv(y)

dy
= f ′(g(y))× g′(y)

= − u
′(1/y)

u(1/y)2
×− 1

y2

≥ 1

u(1/y)2y2
× u(1/y) log u(1/y)

(1/y) log(1/y)

=
[1/u(1/y)] log[1/u(1/y)]

y log y
=
v(y) log v(y)

y log y
.

APPENDIX E
PROOF OF SEQUENTIAL MODIFICATION

This section proves theorem 3, i.e., that the solution of the
problem in (58) is the same as the solution of the modified
problem of the same form, changing γs to γ̄s = γs + ∆γs, βs
to β̄s = βs + ∆βs, and ψis(x

i, ais) as described in (86).
Proof of theorem 3: Let F γ,βB be the original problem

(in (58)) and F̄ γ̄,β̄B be the modified problem. Note that the
modifying term in (86) depends only on ais, so we can
equivalently implement the modification by retaining the
unmodified ψis(x

i, ais) and incorporating an additive term

− E[φis(a
i
s)] = −

ms∑
j=0

qi,js φis(j), (193)

where

φis(j) = ∆γs[1 + log(1− qi,js )]−∆βs[1 + log q0,j
s ]. (194)

Consider the KKT conditions relating to [qi,js ], since all
modifications relate to these variables. The conditions in the
original problem are:

νi,js + ρis + σjs + γs log(1− qi,js ) + γs = 0, (195)

ν0,j
s + σjs + βs log q0,j

s + βs = 0, (196)

where νi,js is the dual variable for the constraint in (55), ρis is
the dual variable for the constraint

∑ms
j=0 q

i,j
s = 1, and σjs is

the dual variable for (57). For the modified problem, the same
two KKT conditions are:

ν̄i,js + ρ̄is + σ̄js + γ̄s log(1− q̄i,js ) + γ̄s − φis(j) = 0, (197)

ν̄0,j
s + σ̄js + β̄s log q̄0,j

s + β̄s = 0. (198)

Substituting in (194) and expanding γ̄s and β̄s, we find:

ν̄i,js + ρ̄is + σ̄js + [γs + ∆γs] log(1− q̄i,js ) + γs + ∆γs

−∆γs[1 + log(1− qi,js )] + ∆βs[1 + log q0,j
s ] = 0, (199)

Subsequently, by setting q̄i,js = qi,js , q̄0,j
s = q0,j

s , ν̄i,js = νi,js ,
ρ̄is = ρis and

σ̄js = σjs −∆βs[1 + log q0,j
s ], (200)

we find a primal-dual solution (with identical primal values
[qi,js ]) that satisfies the KKT conditions for the modified
problem, providing a certificate of optimality.
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