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FDD Massive MIMO Channel Estimation with
Arbitrary 2D-Array Geometry

Jisheng Dai, An Liu, and Vincent K. N. Lau

Abstract—This paper addresses the problem of downlink chan-
nel estimation in frequency-division duplexing (FDD) massive
multiple-input multiple-output (MIMO) systems. The existing
methods usually exploit hidden sparsity under a discrete Fourier
transform (DFT) basis to estimate the downlink channel. How-
ever, there are at least two shortcomings of these DFT-based
methods: 1) they are applicable to uniform linear arrays (ULAs)
only, since the DFT basis requires a special structure of ULAs;
and 2) they always suffer from a performance loss due to
the leakage of energy over some DFT bins. To deal with the
above shortcomings, we introduce an off-grid model for downlink
channel sparse representation with arbitrary 2D-array antenna
geometry, and propose an efficient sparse Bayesian learning
(SBL) approach for the sparse channel recovery and off-grid
refinement. The main idea of the proposed off-grid method is
to consider the sampled grid points as adjustable parameters.
Utilizing an in-exact block majorization-minimization (MM)
algorithm, the grid points are refined iteratively to minimize the
off-grid gap. Finally, we further extend the solution to uplink-
aided channel estimation by exploiting the angular reciprocity
between downlink and uplink channels, which brings enhanced
recovery performance.

Index Terms—Channel estimation, massive multiple-input
multiple-output (MIMO), sparse Bayesian learning (SBL),
majorization-minimization (MM), off-grid refinement.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) has at-
tracted significant attention in wireless communications, and
has been widely considered as a key candidate technology
to meet the capacity demand in 5G wireless networks [1],
[2]. To fully reap the benefit of excessive base station (BS)
antennas, knowledge of channel state information at the
transmitter (CSIT) is essentially required [3]. Many research
efforts have been devoted to time-division duplexing (TDD)
massive MIMO, because the CSIT in the TDD mode can be
obtained by exploiting channel reciprocity, where the pilot-
aided training overhead is proportional to the number of active
mobile users (MUs) only [4], [5]. However, in the frequency-
division duplexing (FDD) mode, the conventional training
overhead for the CSIT acquisition grows proportionally with
the BS antenna size [6], [7], which can be quite large in
massive MIMO systems. Hence, it appears to be an extremely
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challenging task to obtain accurate CSIT in FDD massive
MIMO systems.

Fortunately, due to the limited local scattering effect in the
propagation environment, the elements in the massive MIMO
channel are highly correlated. Many works have shown that
the effective dimension of a massive MIMO channel is much
less than its original dimension [8]–[11]. Specifically, if the
BS is equipped with a large uniform linear array (ULA),
the massive MIMO channel has an approximately sparse
representation under the discrete Fourier transform (DFT)
basis [10], [12], [13]. Exploiting such hidden sparsity, many
efficient downlink channel estimation and feedback algorithms
have been proposed in recent years [8], [10], [11], [14]–[19].
Nevertheless, it is worth noting that the validity of the DFT
basis as a sparse representation of a massive MIMO channel
depends on ULAs. When the antenna geometry deviates from
a ULA, the aforementioned methods will fail to work.

DFT-based channel estimation methods always have a per-
formance loss, even for ULA systems, because of the leakage
of energy in the DFT basis. As shown in [20]–[22], the DFT
basis actually provides a fixed sampling grid that discretely
covers the angular domain of the massive MIMO system.
Since signals usually come from random directions, the leak-
age energy caused by direction mismatch is unavoidable. To
achieve a better sparse representation, Ding and Rao [20]–[22]
considered an overcomplete DFT basis, which corresponds to a
denser sampling grid on the angular domain. The overcomplete
DFT basis may still lead to a high direction mismatch, if
the grid is not sufficiently dense. On the other hand, if a
very dense sampling grid is used, the l1-norm-based recovery
methods may not work well due to high correlation between
the basis vectors. To overcome the leakage issue and to
generalize for general antenna geometry, dictionary learning
techniques were also proposed in [20]–[22]. However, the
standard dictionary learning approach has several drawbacks:
1) its convergence is not theoretically guaranteed; and 2)
learning a comprehensive dictionary requires collecting a large
amount of channel measurements as training samples from all
locations in a specific cell, which may pose great challenges
in practical implementations.

In this paper, we consider a generic off-grid model for
channel sparse representation of massive MIMO systems with
an arbitrary 2D-array geometry, and we propose an efficient
sparse Bayesian learning (SBL) approach [23], [24] for joint
sparse channel recovery and off-grid refinement. The main idea
of the proposed method is to consider the sampled grid points
as adjustable parameters. Then, we utilize an in-exact block
majorization-minimization (MM) algorithm [25], [26] to refine
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the grid points iteratively. After several iterations, the refined
points will approach the actual directions of arrival/departure,
so the proposed method can significantly alleviate direction
mismatch in the angular domain. The following summarizes
the contributions of this paper.
• Model-based Off-Grid Sparse Basis

We provide a novel off-grid model for massive MIMO
channel sparse representation with an arbitrary 2D-array
geometry. Off-grid models have been applied widely to
the direction-of-arrival in array signal processing [27]–
[29]. However, the commonly used linear approximation
off-grid model does not work well, especially when the
grid is not sufficiently fine [30]. Our proposed model
avoids using any approximations, and thus can signifi-
cantly alleviate the modeling error.

• Joint Sparse Channel Recovery and Off-Grid Refine-
ment with Autonomous Learning
We propose an SBL-based framework based on in-exact
block MM algorithm for joint sparse channel recovery
and off-grid refinement. The proposed solution outper-
forms l1-norm recovery [31]–[33],1 and has an inherent
learning capability, so no prior knowledge about the
sparsity level, noise variance or direction mismatch is
required. We show that the solution converges to the
stationary solution of the optimization problem. Simu-
lation results reveal substantial performance gains over
the existing state-of-the-art baselines.

• Enhanced Recovery Performance with Angular Reci-
procity
We further extend the solution to uplink-aided channel
estimation by exploiting angular reciprocity2 between
downlink and uplink channels. Characterizing the joint
sparse structure with angular reciprocity was first ad-
dressed in [22]. However, it always has a performance
loss due to the fact that the joint sparse structure only
holds approximately. Our new extension strictly charac-
terizes the joint sparse structure by the inherent mecha-
nism of the off-grid model, bringing enhanced recovery
performance.

The rest of the paper is organized as follows. In Section II,
we present the system model and review the state-of-the-art
DFT-based channel estimation for massive MIMO systems.
In Section III, we provide the SBL-based off-grid channel
estimation method for a linear array, and then, in Section IV,
we extend it to an arbitrary 2D-array geometry. In Section V,
we exploit angular reciprocity to improve channel estimation
performance. Numerical experiments and discussions follow
in Sections VI and VII, respectively.
Notations : C denotes complex number, ‖ · ‖p denotes

1SBL methods include l1-norm-based methods as a special case when a
maximum a posteriori (MAP) optimal estimate is adopted with a fixed
Laplace signal prior, and theoretical and empirical results show that SBL
methods with better priors can achieve enhanced performance over the l1-
norm-based methods [24], [34].

2We consider an FDD system, so the reciprocity of the channel realization
between the uplink and downlink does not hold. However, the directions of
arrival and departure of the uplink are reciprocal with those of the downlink
due to the fact that both the uplink and downlink face the same scattering
structure [22].

p-norm, (·)T denotes transpose, (·)H denotes Hermitian trans-
pose, (·)† denotes pseudoinverse, I denotes identity matrix,
AΩ denotes the sub-matrix formed by collecting the columns
from Ω, CN (·,µ,Σ) denotes complex Gaussian distribution
with mean µ and variance Σ, supp(·) denotes the set of
indices of nonzero elements, tr(·) denotes trace operator,
diag(·) denotes diagonal operator, and � denotes Hadamard
product.

II. MASSIVE MIMO CHANNEL MODEL AND EXISTING
SOLUTIONS

A. Massive MIMO Channel Model

Consider a massive MIMO system operating in FDD mode.
There is one BS with N (� 1) antennas and K MUs equipped
with a single antenna. The array at the BS has an arbitrary
geometry in the plane. Without loss of generality, we define
the reference plane (the X-Y plane) to be the plane of 2D array,
and set the origin of a polar coordinate system to be at the
first element of the array, as illustrated in Fig. 1. We consider
a flat fading channel, and the downlink channel vector from
the BS to the k-th user is given by [35], [36]

hk =

Nc∑
c=1

Ns∑
s=1

ξkc,sa(θkc,s, ϕ
k
c,s), (1)

where Nc stands for the number of scattering clusters, Ns
stands for the number of sub-paths per scattering cluster, ξkc,s
is the complex gain of the s-th sub-path in the c-th scattering
cluster for the k-th MU, θkc,s and ϕkc,s are the corresponding az-
imuth and elevation angles-of-departure (AoDs), respectively.
The steering vector a(θ, ϕ) ∈ CN×1 is

a(θ, ϕ) = [1, e
−j2π d2λd cos(ϕ) sin(θ−φ2)

,

. . . , e
−j2π dNλd cos(ϕ) sin(θ−φN )

]T , (2)

where (dn, φn) is the coordinates of the n-th sensor, and λd
is the wavelength of the downlink propagation. For a linear
array, a(θ, ϕ) can be simplified by

a(θ) = [1, e
−j2π d2λd sin(θ)

, . . . , e
−j2π dNλd sin(θ)

]T . (3)

Specifically, for a ULA, a(θ) becomes

a(θ) = [1, e
−j2π d

λd
sin(θ)

, . . . , e
−j2π (N−1)d

λd
sin(θ)

]T , (4)

where d stands for the distance between adjacent sensors.
According to the geometry-based stochastic channel model

(GSCM) [37], the number of scattering clusters Nc is usually
small, and the sub-paths associated with each scattering cluster
are likely to concentrate in a small range around the line-
of-sight (LOS) direction between the BS and the scattering
cluster. Therefore, only a few dimensions in the angular do-
main are occupied, which, in return, brings a low dimensional
representation for the massive MIMO channels [8], [12], [13].
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Fig. 1. Illustration of downlink channel model for a massive MIMO system.
Note that we define the coordinate system with the X-Y plane being the plane
of 2D array, regardless of how the plane of 2D array is placed at the BS (e.g.,
horizontally or perpendicularly).

B. Review of Downlink Channel Estimation

In this subsection, we review the state-of-the-art DFT-based
sparse channel estimation for the downlink channel in an FDD
system. Assume that the BS is equipped with a ULA, and it
broadcasts a sequence of T training pilot symbols, denoted by
X ∈ CT×N , for each MU to estimate the downlink channel.
Then, the downlink received signal yk ∈ CT×1 at the k-th
MU is given by

yk = Xhk + nk, (5)

where nk ∈ CT×1 stands for the additive complex Gaussian
noise with each element being zero mean and variance σ2 in
the downlink, and tr(XXH) = PTN with P/σ2 measuring
the training SNR. Since the number of antennas N at the BS is
large, it is unlikely to obtain a robust recovery of hk by using
conventional channel estimation techniques, e.g., least squares
(LS) method. Recently, the emerging compressed sensing (CS)
technique has given new interest in the problem of downlink
channel estimation with limited training overhead. The main
idea of these methods is to find a sparse representation of hk
in the DFT basis [35], i.e.,

hk = Ftk (6)

where F ∈ CN×N denotes the DFT matrix and tk is the sparse
representation channel vector. Then, the received signal yk in
(5) can be formulated as

yk = XFtk + nk, (7)

and the corresponding sparse signal recovery problem is given
by

min
tk
‖tk‖0, subject to ‖yk −XFtk‖2 ≤ ε, (8)

where ε is a constant determined by the upper bound of ‖nk‖2.
As l0-norm is non-convex, it is usually relaxed by l1-norm, i.e.,

min
tk
‖tk‖1, subject to ‖yk −XFtk‖2 ≤ ε. (9)

C. Challenges for the DFT-based Method

In this subsection, we discuss challenges for the DFT-based
method. Firstly, this method is applicable to ULAs only, which
is explained as follows. The DFT matrix can be written in the
form of

F =
[
f
(
− 1

2

)
, f

(
− 1

2 + 1
N

)
, . . . , f

(
1
2 −

1
N

)]
(10)

with

f(x) =
1√
N

[
1, e−j2πx, . . . , e−j2πx(N−1)

]T
, (11)

which provides a fixed grid that uniformly covers
the range [− 1

2 ,
1
2 ] with N + 1 sampling points, i.e.,{

− 1
2 , (− 1

2 + 1
N ), . . . , ( 1

2 −
1
N ), 1

2

}
3. As illustrated in

(4), the steering vectors of ULAs share the same structure
with f(x). For each sampling point (e.g., the n-th point),
we can always find a θ̂n in the angular domain such that
d
λd

sin(θ̂n) = − 1
2 + n−1

N . Hence, it is equivalent to saying
the DFT basis actually provides a fixed sampling grid in the
angular domain. When the true azimuth AoDs θkc,ss lie on (or,
practically, close to) the sampling points {θ̂1, θ̂2, . . . , θ̂N+1},
the channel vector hk definitely has a sparse representation
in the DFT basis. Since the sparse property hinges strongly
on the shared structure between the DFT basis and the ULA
steering, the DFT-based method is applicable to ULAs only.

The other shortcoming of the DFT-based method is that it
always has a performance loss, even for ULA systems, due
to the leakage of energy. As will be illustrated shortly, the
leakage of energy caused by direction mismatch is unavoidable
in practice. According to (6), we have

tk = FHhk =

Nc∑
c=1

Ns∑
s=1

ξkc,sv(θkc,s), (12)

where v(θkc,s) = FHa(θkc,s). Then, the n-th element of v(θ)
can be calculated as

vn(θ) =
1√
N

N−1∑
i=0

ej2πi(−
1
2 +n−1

N )e
−j2π id

λd
sin(θ)

=
1√
N

1− ej2π(n−1
N −

1
2−

d
λd

sin(θ))N

1− ej2π(n−1
N −

1
2−

d
λd

sin(θ))

=
1√
N

sin(π%(θ)N)

sin(π%(θ))
ejπ%(θ)(N−1), (13)

where %(θ) = n−1
N − 1

2 −
d
λd

sin(θ). Clearly, the modulus of
vn(θ) (denoted as |vn(θ)|) is a periodic function w.r.t. θ, and

3Only the first N points are used in the DFT matrix since f(− 1
2
) = f( 1

2
).
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Fig. 2. Illustration of problem of energy leakage for the DFT basis, where
the sampling points for the DFT basis in the angular domain are denoted by
the dotted blue lines, the true azimuth AoD at θ = 5.0198◦ is denoted by
the red line, and the distance between the red line and the nearest dotted blue
line is called the direction mismatch.

it achieves the maximum value at θ = θ̂n. If the true azimuth
AoDs are located on the predefined points {θ̂1, θ̂2, . . . , θ̂N+1},
there is no energy leakage. In practice, however, direction
mismatch is unavoidable because signals usually come from
random directions. Any direction mismatch will result in the
leakage of energy in the DFT basis. Fig. 2 shows an example
of the energy leakage, where the ULA is of size N = 80
and the inter-antenna spacing is a half wavelength. For an off-
grid azimuth AoD (e.g, θ∗ = 5.0198◦), there is a very serious
energy leakage, where both |v44(θ∗)| and |v45(θ∗)| have large
values, as well as some significant values with |v43(θ∗)| and
|v46(θ∗)|.

To achieve a better sparse representation, [20]–[22] applied
an overcomplete DFT basis, which corresponds to a denser
sampling grid covering the angular domain with more points.
However, if the grid is not sufficiently dense, the overcomplete
DFT method may still lead to a high direction mismatch. In
order to solve the problem of direction mismatch, as well as
apply the sparse channel estimation method to more general
array geometry, we propose an efficient SBL-based off-grid
method for downlink channel estimation. In the following, we
first focus on a simple case, where the BS is equipped with
a linear array, and thus only the azimuth angle is involved
in the steering vector. This simple case will help to simplify
the algorithm design and link the proposed off-grid method
with the state-of-the-art methods that are usually applicable to
ULAs only. After that, we extend the proposed off-grid method
to an arbitrary 2D-array geometry, where both the azimuth and
elevation angles are presented in the steering vector. Finally,
we exploit angular reciprocity to further improve channel
estimation performance.

III. OFF-GRID DOWNLINK CHANNEL ESTIMATION FOR
LINEAR ARRAY

In this section, we will propose an efficient SBL-based off-
grid method for downlink channel estimation with a linear

array, which includes a ULA as a special case. For ease of
exposition, we proceed as follows. We begin by introducing a
model-based off-grid basis to handle the direction mismatch
for a linear array. Then, we apply this off-grid model to the
downlink channel estimation, and an in-exact MM algorithm
is provided, as well as its convergence analysis.

A. Off-Grid Basis for Massive MIMO Channels

For ease of notation, we drop the MU’s index k and
denote the true azimuth AoDs as {θl, l = 1, 2, . . . , L}, where
L = NcNs. Let ϑ̂ = {ϑ̂l}L̂l=1 be a fixed sampling grid
that uniformly covers the angular domain [−π2 ,

π
2 ], where L̂

denotes the number of grid points. If the grid is fine enough
such that all the true DOAs θls, l = 1, 2, . . . , L, lie on (or
practically close to) the grid, we can use the following model
for h:

h = Aw, (14)

where A =
[
a(ϑ̂1), a(ϑ̂2), . . . , a(ϑ̂L̂)

]
∈ CN×L̂, a(θ)

is a steering vector for a linear array [defined in (3)], and w ∈
CL̂×1 is a sparse vector whose non-zero elements correspond
to the true directions at {θl, l = 1, 2, . . . , L}. For example, if
the l̂-th element of w is nonzero and the corresponding true
direction is θl, then we have θl = ϑ̂l̂. Note that A includes
the DFT basis as a special case.

As mentioned in Section II-B, the assumption of the true
directions being located on the predefined spatial grid is
usually invalid in practice. To handle the direction mismatch,
we adopt an off-grid model. Specifically, if θl /∈ {ϑ̂i}L̂i=1 and
ϑ̂nl , nl ∈ {1, 2, . . . , L̂}, is the nearest grid point to θl, we
write θl as

θl = ϑ̂nl + βnl , (15)

where βnl corresponds to the off-grid gap. Using (15), we
have a (θl) = a(ϑ̂nl + βnl). Then, h can be rewritten as

h = A(β)w, (16)

where β = [β1, β2, . . . , βL̂]T , A(β) = [a(ϑ̂1 + β1),a(ϑ̂2 +

β2), . . . ,a(ϑ̂L̂ + βL̂)], and

βnl =

{
θl − ϑ̂nl , l = 1, 2, . . . , L

0, otherwise
.

Note that with the off-grid basis, the model can significantly
alleviate the direction mismatch because there always exists
some βnl making (15) hold exactly. The received signal y in
(5) can be rewritten by

y = XA(β)w + n = Φ(β)w + n, (17)

where Φ(β) , XA(β). Since the coefficient vector β is
unknown, the current l1-norm minimization algorithm can not
be applied to the off-grid channel model (17) directly. To
jointly recover the sparse signal and refine the grid points,
we adopt the SBL algorithm [23], [24], which is one of the
most popular approaches for sparse recovery and perturbation
calibration. Theoretical and empirical results show that SBL
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methods can achieve enhanced performance over l1 regular-
ized optimization (please also refer to our simulations). In the
following, we will discuss how to jointly recover the sparse
signal and refine the grid.

B. Sparse Bayesian Learning Formulation

Under the assumption of circular symmetric complex Gaus-
sian noises, we have

p(y|w, α,β) = CN (y|Φ(β)w, α−1I), (18)

where α = σ−2 stands for the noise precision. Since α is
usually unknown, we model it as a Gamma hyperprior p(α) =
Γ(α; 1 + a, b), where we set a, b → 0 as in [23], [24] so as
to obtain a broad hyperprior. We assume a noninformative
uniform prior for β:

β ∼ U

([
−π

2
,
π

2

]L̂)
. (19)

Following the commonly used sparse Bayesian model [23],
we further assign a non-stationary Gaussian prior distribution
with a distinct precision γi for each element of w. Letting
γ = [γ1, γ2, . . . , γL̂]T , we have

p(w|γ) = CN (w|0,diag(γ−1)). (20)

Similarly, we model γis as independent Gamma distributions,
i.e.,

p(γ) =

L̂∏
i=1

Γ(γi; 1 + a, b). (21)

This two-stage hierarchical prior gives

p(w) =

∫ ∞
0

CN (w|0,diag(γ−1))p(γ)dγ

∝
L̂∏
i=1

(
b+ |wi|2

)−(a+ 3
2 )
, (22)

which is recognized as encouraging sparsity due to the heavy
tails and sharp peak at zero with a small b [23], [34]. In fact, it
can be shown that finding a MAP estimate of w with the prior
(22) is equivalent to finding the minimum l0-norm solution
using FOCUSS with p → 0 [38]. This explains why SBL
methods can achieve enhanced performance over the l1-norm-
based methods. Since directly finding the aforementioned
MAP estimate of w is difficult, SBL methods introduce a two-
stage hierarchical prior to get around the problematic MAP
estimate. We refer interested readers to Section V of [34] for
details.

It is worth noting that the precisions γls in (20) fully indicate
the support of w. For example, if γl is large, the l-th element
of w tends to zero; otherwise, the value of the l-th element
is significant. As a consequence, once we obtain the precision
vector γ, as well as the off-grid gap β, the estimated downlink
channel he can be obtained by

he = AΩ(β) (ΦΩ(β))
†
y, (23)

where Ω = supp(w). Therefore, in the rest part of this section,
we only need to focus on finding the optimal γ and β. As the

noise precision α is still unknown, we find the most-probable
values α?, γ? and β? together by maximizing the posteriori
p(α,γ,β|y), i.e.,

(α?,γ?,β?) = arg max
α,γ,β

p(α,γ,β|y), (24)

or, equivalently,

(α?,γ?,β?) = arg max
α,γ,β

ln p(y, α,γ,β). (25)

The above objective is a high-dimensional non-convex func-
tion. It is difficult to directly use the gradient ascent method
on the original objective function because gradient ascent is
known to have a slow convergence speed, and moreover, the
gradient of the original objective function has no closed-form
expression. To overcome this challenge, we propose a novel
in-exact block MM algorithm to find a stationary point of (25).

C. Overview of the In-exact Block MM Algorithm

The principle behind the block MM algorithm is to itera-
tively construct a continuous surrogate function (lower bound)
for the objective function ln p(y, α,γ,β), and then alternately
maximize the surrogate function with respect to α, γ and
β. The surrogate function is chosen such that the alternating
maximization w.r.t. each variable has a closed-form/simple
solution.

Specifically, let U(α,γ,β|α̇, γ̇, β̇) be the surrogate function
constructed at some fixed point (α̇, γ̇, β̇) which satisfies the
following properties:

U(α,γ,β|α̇, γ̇, β̇) ≤ ln p(y, α,γ,β), ∀α,γ,β, (26)

U(α̇, γ̇, β̇|α̇, γ̇, β̇) = ln p(y, α̇, γ̇, β̇), (27)

∂U(α, γ̇, β̇|α̇, γ̇, β̇)

∂α

∣∣∣∣∣
α=α̇

=
∂ ln p(y, α, γ̇, β̇)

∂α

∣∣∣∣∣
α=α̇

, (28)

∂U(α̇,γ, β̇|α̇, γ̇, β̇)

∂γ

∣∣∣∣∣
γ=γ̇

=
∂ ln p(y, α̇,γ, β̇)

∂γ

∣∣∣∣∣
γ=γ̇

, (29)

∂U(α̇, γ̇,β|α̇, γ̇, β̇)

∂β

∣∣∣∣∣
β=β̇

=
∂ ln p(y, α̇, γ̇,β)

∂β

∣∣∣∣
β=β̇

. (30)

Then, we update α,γ, andβ as

α(i+1) = arg max
α
U(α,γ(i),β(i)|α(i),γ(i),β(i)), (31)

γ(i+1) = arg max
γ
U(α(i+1),γ,β(i)|α(i+1),γ(i),β(i)), (32)

β(i+1) = arg max
β
U(α(i+1),γ(i+1),β|α(i+1),γ(i+1),β(i)),

(33)

where (·)(i) stands for the i-th iteration. The overall flow of the
block MM algorithm is given in Fig. 3. The update rules (31)–
(33) guarantee the convergence of the block MM algorithm as
follows.
Lemma 1. The update rules (31)–(33) give a non-decreasing
sequence ln p(y, α(i),γ(i),β(i)), i = 1, 2, 3, . . .

Proof: See Appendix A.
In the block MM algorithm, we need to obtain the optimal

solutions for the maximization problems in (31)–(33). How-
ever, the maximization problem w.r.t. β in (33) is non-convex
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Fig. 3. The overall flow of the block MM algorithm.

and it is difficult to find its optimal solution. Therefore, in
this paper, we use an in-exact MM algorithm where β(i+1)

is obtained by applying a simple one-step update. In the
following, we will discuss the choice of the surrogate function
and the hyperparameter updates for α, γ and β, respectively.
Despite the in-exact update for β, we will prove that the
in-exact block MM algorithm still converges to a stationary
solution of the optimization problem (25).

D. Detailed Implementations
To update α, γ and β, we first have to choose an ap-

propriate surrogate function U(α,γ,β|·, ·, ·) that satisfies the
properties mentioned in (26)–(30). Inspired by the expectation-
maximization (EM) algorithm [39], we use the corresponding
lower bound function as the surrogate function; i.e., for any
fixed point (α̇, γ̇, β̇), we construct the surrogate function as

U(α,γ,β|α̇, γ̇, β̇)

=

∫
p(w|y, α̇, γ̇, β̇) ln

p(w,y, α,γ,β)

p(w|y, α̇, γ̇, β̇)
dw, (34)

and we have the following lemma.
Lemma 2. All the properties in (26)–(30) hold true with the
surrogate function U(α,γ,β|·, ·, ·) given in (34).

Proof: See Appendix B.
Note that, from (18) and (20), p(w|y, α,γ,β) is complex

Gaussian [23], [27]:

p(w|y, α,γ,β) = CN (w|µ(α,γ,β),Σ(α,γ,β)) , (35)

where

µ(α,γ,β) = αΣ(α,γ,β)ΦH(β)y,

Σ(α,γ,β) =
(
αΦH(β)Φ(β) + diag(γ)

)−1
.

With U(α,γ,β|·, ·, ·), we discuss the hyperparameter up-
dates for α, γ and β, respectively, as follows.

1) Update for α: The maximization problem in (31) has a
simple and closed-form solution:
Lemma 3. The optimization problem (31) has a unique
solution:

α(i+1) =
T + a

b+ η(α(i),γ(i),β(i))
, (36)

where

η(α,γ,β) = tr
(
Φ(β)Σ(α,γ,β)ΦH(β)

)
+ ‖y −Φ(β)µ(α,γ,β)‖22 .

Proof: See Appendix C.
2) Update for γ: The maximization problem in (32) also

has a simple and closed-form solution:
Lemma 4. The optimization problem (32) has a unique
solution:

γ
(i+1)
l =

a+ 1

b+
[
Ξ(α(i+1),γ(i),β(i))

]
ll

, ∀l, (37)

where

Ξ(α,γ,β) = Σ(α,γ,β) + µ(α,γ,β)µH(α,γ,β).

Proof: See Appendix D.
3) Update for β: Since the maximization problem (33) is

non-convex and it is difficult to find its optimal solution, we
apply gradient update on the objective function of (33) and
obtain a simple one-step update for β. We name the procedure
of updating β as grid refining, because it is related with the
modeling error caused by the off-grid gap. The derivative of
the objective function in (33) w.r.t. β can be calculated as

ζ
(i)
β = [ζ(i)(β1), ζ(i)(β2), . . . , ζ(i)(βL̂)]T , (38)

with

ζ(i)(βl) =2Re
(

(a′(ϑ̂l + βl))
HXHX(a(ϑ̂l + βl))

)
· c(i)1

+ 2Re
(

(a′(ϑ̂l + βl))
HXHc

(i)
2

)
, (39)

where c
(i)
1 = −α(i+1)(χ

(i)
ll + |µ(i)

l |2), c
(i)
2 =

α(i+1)((µ
(i)
l )∗y

(i)
−l − X

∑
j 6=l χ

(i)
jl a(ϑ̂j + βj)), y

(i)
−l =

y−X·
∑
j 6=l(µ

(i)
j ·a(ϑ̂j+βj)), a′(ϑ̂j+βl) = da(ϑ̂j+βl)/dβl,

µ
(i)
l and χ(i)

jl denote the l-th element and the (j, l)-th element
of µ(α(i+1),γ(i+1),β(i)) and Σ(α(i+1),γ(i+1),β(i)),
respectively. The detailed derivation for (39) can be found
in Appendix E. It is clear that the optimal solution for β is
hard to obtain. Fortunately, due to the convergence property
illustrated in (87), we just have to find a suboptimal solution
that increases the value of the objective function step by step.
The most popular numerical method is to update the value of
βl in the derivative direction, i.e.,

β(i+1) = β(i) + ∆β · ζ(i)
β , (40)

where ∆β is the stepsize. Here, we can resort to backtracking
line search [40] to determine the maximum stepsize ∆β , which
ensures that the objective value can be strictly decreased before
reaching the stationary point. The complexity of choosing the
right stepsize mainly depends on calculating the cost function.
If the number of calculations of the cost function in every
backtracking line search is Rb, the computational complexity
is O(RbT L̂

2) per iteration for parameter tuning. Note that
the complexity in calculating ζ is O(TNL̂) per iteration.
This suggests the computational requirement of updating β
is O(RbT L̂

2) per iteration, because L̂ is usually larger than
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N . To reduce the computational complexity, we alternatively
use a fixed stepsize to update β:

β(i+1) = β(i) +
rθ

100
· sign(ζ

(i)
β ), (41)

where rθ = π/L̂ stands for the grid interval, and sign(·) stands
for the signum function whose computational complexity is
negligible. The motivation for choosing this fixed stepsize
comes from the fact that a tiny difference between the ob-
tained angles and the true angles does not affect the channel
estimation performance much. The term rθ

100 guarantees that
the final gap is smaller than 1% of rθ, and the (approximate)
true values may be attained within 100 iterations in the worst
case.

Finally, following are some practical implementation tips
for the proposed method. Empirical evidence shows that
the proposed method usually converges within 30 iterations,
and it remains very robust to the choice of initialization.
We can simply set the initialization as follows: a = b =
0.0001, α(0) = 1, γ(0) = 1, and β(0) = 0. Note
that MATLAB codes have been made available online at
https://sites.google.com/site/jsdaiustc/publication.

E. Convergence Analysis and Discussion

From Lemma 1, the sequence ln p(y, α(i),γ(i),β(i)), i =
1, 2, 3, . . ., is non-decreasing and it converges to a limit
because the evidence function has the upper bound of 1. In
the following, we further prove that the sequence of iterates
generated by the algorithm converges to a stationary point.
Theorem 5. For the surrogate function defined in (34), if vari-
ables are iteratively updated by (36), (37) and (40), the iterates
generated by the in-exact block MM algorithm converge to a
stationary solution of the optimization problem (25).

Proof: See Appendix F.
Next, we address the difference between the proposed

in-exact block MM algorithm and the EM algorithm. The
standard SBL method usually exploits the EM algorithm to
perform the Bayesian inference. The EM algorithm iteratively
constructs the same lower bound as in (34), and simultaneously
updates α, γ and β by

(α(i+1),γ(i+1),β(i+1))

= arg max
α,γ,β

U(α,γ,β|y, α(i),γ(i),β(i)). (42)

The EM algorithm can find a local optimal solution and its
convergence can be guaranteed, if the joint maximization
problem in (42) is solvable. Unfortunately, in our problem,
(42) is non-convex and is intractable in the presence of β.
Hence, the EM algorithm cannot be directly applied to our
problem.

One commonly used method to address this challenge is
to first obtain a convex approximation of the non-convex
problem (42) using the linear approximation off-grid model
[27], [28], and then update α, γ and β by solving the resulting
convex approximation problem in each iteration. Specifically,
by replacing the steering vector a(θl) = a(ϑ̂nl +βnl) with the
linear approximation

a(θl) ≈ a(ϑ̂nl) + βnl · a′(ϑ̂nl), (43)

the surrogate function in (34) becomes convex and thus can be
maximized efficiently. However, we do not adopt this linear
approximation method, because if the grid is not sufficiently
fine, (43) may lead to a large modeling error, and the final
channel estimation performance will be poor.

Finally, we discuss the computational complexity of the
proposed method, whose main computational burden is given
as follows.

• The complexities in calculating Σ(α,γ,β) and
µ(α,γ,β) in each iteration are O(T L̂2) and O(L̂2),
respectively.

• The complexities in updating α and γ in each iteration
are O(T L̂2) and O(L̂), respectively.

• The complexity in updating β is O(TNL̂) per iteration
if the fixed stepsize update is used.

This suggests the total computational requirement of the
proposed method is O(T L̂2) per iteration, because L̂ is usually
larger than N .

IV. EXTENSION TO ARBITRARY 2D-ARRAY GEOMETRY

In this section, we extend the proposed off-grid method to an
arbitrary 2D-array geometry, where the steering vector a(θ, ϕ)
[defined in (2)] contains both azimuth and elevation angles.
Following the convention in Section III, we adopt a fixed
sampling grid ϑ̂ = {ϑ̂l}L̂l=1 to uniformly cover the azimuth
domain [−π, π], and define the off-grid gap β similarly to
(16). Then, the received signal y in (5) can be rewritten by

y = Φ(β, ϕ̂)w + n, (44)

where Φ(β, ϕ̂) = XA(β, ϕ̂), A(β, ϕ̂) = [a(ϑ̂1 +
β1, ϕ̂1),a(ϑ̂2 + β2, ϕ̂2), . . . ,a(ϑ̂L̂ + βL̂, ϕ̂L̂)], and

ϕ̂nl =

{
ϕl, l = 1, 2, . . . , L

0, otherwise
.

Note that the definition of nl can be found in (15). Compared
with (17), the only difference is that the measurement matrix
Φ(β, ϕ̂) contains an additional unknown variable (i.e., ϕ̂). In
the following, we will show how to blend ϕ̂ with the proposed
off-grid method.

In the sparse Bayesian learning formulation for the new
model (44), almost all the results in Section III-B remain
unchanged, except that (18) is replaced by

p(y|w, α,β, ϕ̂) = CN (y|Φ(β, ϕ̂)w, α−1I), (45)

and the optimization problem (25) is modified by

(α?,γ?,β?, ϕ̂?) = arg max
α,γ,β,ϕ̂

ln p(y, α,γ,β, ϕ̂). (46)

For ease of notation, let Θ , {α,γ,β, ϕ̂}. At some fixed
point Θ̇ = {α̇, γ̇, β̇, ˙̂ϕ}, we construct the surrogate function
as

U(Θ|Θ̇) =

∫
p(w|y, Θ̇) ln

p(w,y,Θ)

p(w|y, Θ̇)
dw. (47)
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Then, in the maximization step of the (i+ 1)-th iteration, we
update α,γ,β and ϕ̂ as

α(i+1) = arg max
α
U(α,γ(i),β(i), ϕ̂(i)|Θ(i)), (48)

γ(i+1) = arg max
γ
U(α(i+1),γ,β(i), ϕ̂(i)|Θ(i)

1 ), (49)

β(i+1) = arg max
β
U(α(i+1),γ(i+1),β, ϕ̂(i)|Θ(i)

2 ), (50)

ϕ̂(i+1) = arg max
ϕ̂
U(α(i+1),γ(i+1),β(i+1), ϕ̂|Θ(i)

3 ), (51)

where Θ
(i)
j denotes the first j elements of Θ(i) coming from

the (i + 1)-th iteration. Applying the results in Section III-D
directly, we can obtain the solutions to (48)–(50):

α(i+1) =
T + a

b+ η(α(i),γ(i),β(i), ϕ̂(i))
, (52)

γ
(i+1)
l =

a+ 1

b+
[
Ξ(α(i+1),γ(i),β(i), ϕ̂(i))

]
ll

, ∀l, (53)

β(i+1) =β(i) +
rθ

100
· sign(ζ

(i)
β ), (54)

where η(α,γ,β, ϕ̂), Ξ(α,γ,β, ϕ̂), and ζβ follow the same
definitions as in Section III-D, except for the tiny modification
of adding the new variable ϕ̂ after β for all the equalities.

What remains is to obtain the update for ϕ̂. The last max-
imization problem (51) is similar to (50), where the objective
function w.r.t ϕ̂ is also non-convex. Hence, we apply the same
one-step update for ϕ̂ as in (54). Following similar procedures
to those in Appendix-E, we can obtain the derivative of the
objective function w.r.t ϕ̂l as

ζ(i)
ϕ = [ζ(i)(ϕ̂1), ζ(i)(ϕ̂2), . . . , ζ(i)(ϕ̂L̂)]T , (55)

with

ζ(i)(ϕ̂l) =

2Re
(

(a′ϕ(ϑ̂l + β
(i+1)
l , ϕ̂l))

HXHX(a(ϑ̂l + β
(i+1)
l , ϕ̂l))

)
· c(i)ϕ1

+ 2Re
(

(a′ϕ(ϑ̂l + β
(i+1)
l , ϕ̂l))

HXHc
(i)
ϕ2

)
, (56)

where c
(i)
ϕ1 = −α(i+1)(χ

(i)
ϕ,ll + |µ(i)

ϕ,l|2), c
(i)
ϕ2 =

α(i+1)((µ
(i)
ϕ,l)
∗y

(i)
ϕ−l − X

∑
j 6=l χ

(i)
ϕ,jla(ϑ̂j + β

(i+1)
j , ϕ̂j)),

y
(i)
ϕ−l = y − X ·

∑
j 6=l(µ

(i)
ϕ,j · a(ϑ̂j + β

(i+1)
j , ϕ̂j)),

a′ϕ(ϑ̂j + β
(i+1)
j , ϕ̂j) = da(ϑ̂j + β

(i+1)
j , ϕ̂j)/dϕ̂j ,

µ
(i)
ϕ,l and χ

(i)
ϕ,jl denote the l-th element and the

(j, l)-th element of µ(α(i+1),γ(i+1),β(i+1), ϕ̂(i)) and
Σ(α(i+1),γ(i+1),β(i+1), ϕ̂(i)), respectively. With (55), we
are able to update ϕ̂ similarly to (40).

There are some important tips for practical implementations.
We note that the elevation angle ϕ ranges from −π/2 to
π/2, but it is sufficient to assume that ϕ ranges from 0 to
π/2, because the steering vector contains cosϕ only. Hence,
we initialize each ϕ̂l uniformly from [0, π/2]. To reduce the
computational complexity, we use a fixed stepsize to update
ϕ̂ [similarly to (41)]:

ϕ̂(i+1) = ϕ̂(i) +
π

36
·max

{
(ρ)i, 0.001

}
· sign(ζ

(i)
β ), (57)

Fig. 4. Illustration of angular reciprocity for a massive MIMO system,
where the downlink transmission and the uplink transmission are denoted by
the dotted black lines and red lines, respectively.

where 0 < ρ < 1 is a constant.4 Here, we use a different
stepsize, π

36 ·max
{

(ρ)i, 0.001
}

instead of the rθ/100 in (41),
because there is no grid covering the elevation angle domain.
The motivation for choosing such a stepsize comes from the
fact that 1) the term π

36 guarantees that the true elevation angles
can be approximately approached within 20 iterations; and 2)
the term (ρ)i keeps the stepsize decreasing, so as to attain a
sufficiently small value [which is no less than π

36 · 0.001 due
to the constant term 0.001 in (57)].

V. CHANNEL ESTIMATION WITH ANGULAR RECIPROCITY

For the downlink channel estimation, the training period
T could become a bottleneck of the recovery performance,
because the dimension of the measurement vector y in (17) is
determined by the training period T , while T is usually much
less than N . The performance of the downlink channel esti-
mation can be improved if we collect more useful information.
Inspired by the angular reciprocity used in [22], we present an
off-grid uplink-AoA-aided channel estimation method in this
section. Here we only take the linear array as an example,
but its extension to an arbitrary 2D-array antenna geometry is
straightforward. Note that angular reciprocity is quite different
from the commonly used channel reciprocity in TDD systems.
In the first subsection, we will explain angular reciprocity in
detail.

A. Angular Reciprocity

Following the downlink channel model in Section II-A, the
uplink channel vector from the k-th user to the BS is given
by

h̄k =

Nc∑
c=1

Ns∑
s=1

ξ̄kc,sā(θ̄kc,s), (58)

where ξ̄kc,s is similarly defined as ξkc,s, θ̄
k
c,s is the corresponding

azimuth angle-of-arrival (AoA), as illustrated in Fig. 4, and
ā(θ) ∈ CN×1 is the steering vector for a linear array:

ā(θ) = [1, e−j2π
d2
λu

sin(θ), . . . , e−j2π
dN
λu

sin(θ)]T ,

4The maximum movement is about π
36

∑∞
i=1(ρ)

i. In order to cover the
whole angle domain [0, π/2], ρ should be chosen to be from 0.9474 to 1.
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where λu is the wavelength of uplink propagation. Usually,
channel reciprocity does not hold in FDD systems because
different frequency bands are used in the downlink and uplink
transmission. However, if the downlink and uplink transmis-
sions operate closely in time, it is reasonable to have the
following assumption:
Assumption 6 (Angular Reciprocity [22]). The azimuth AoAs
of signals for the k-th MU in the uplink transmission almost
coincide with the azimuth AoDs of signals in the downlink
transmission, i.e.,

θkc,s = θ̄kc,s, ∀k, c, s, (59)

as illustrated in Fig. 4.
To exploit the angular reciprocity, Ding and Rao [22]

collected the downlink and uplink channel vectors for the k-th
MU in pair

hk =Ftk, (60)
h̄k =Ft̄k, (61)

where t̄k is the sparse representation of h̄k under the DFT
basis for ULAs. It is worth noting that the steering vectors
a(θkc,s) and ā(θ̄kc,s) are distinct if different frequency bands
are used. Hence, the angular reciprocity between the downlink
and uplink transmissions does not bring a joint sparse structure
for tk and t̄k. To get around this problem, they assume that
the frequency duplex distance is not large (i.e., λd ≈ λu). In
this case, they approximately have

a(θkc,s) ≈ ā(θ̄kc,s), (62)

and then

supp(tk) ≈ supp(tk). (63)

As the joint sparse structure only holds approximately, it may
results in performance loss. To handle this drawback, we will
propose a joint off-grid model in the next subsection.

B. Joint Off-Grid Model

For the uplink channel estimation, assume that each MU
broadcasts a sequence of T̄ training pilot symbols, denoted
by sk ∈ CT̄×1, k = 1, 2, . . . ,K. Then, the received signal
Ȳ ∈ CN×T̄ at the BS is given by

Ȳ = H̄S + N̄, (64)

where H̄ = [h̄1, h̄2, . . . , h̄K ] ∈ CN×K with h̄k being the
channel vector for the k-th MU, S = [s1, s2, . . . , sK ]T ∈
CK×T̄ , and N̄ ∈ CN×T̄ stands for the additive complex
Gaussian noise with each element being zero mean and
variance σ̄2 in the uplink. If the number of MUs is small, i.e.,
K ≤ T̄ , the uplink channel matrix Hu can be easily obtained
by the conventional LS estimate, i.e.,

[h̄ls1 , h̄
ls
2 , . . . , h̄

ls
K ] , ȲS† = H̄ + E, (65)

or, equivalently,

h̄lsk =h̄k + ek, k = 1, 2, . . . ,K, (66)

where h̄lsk stands for the LS estimate of h̄k and E ,
[e1, e2, . . . , eK ] stands for the estimation error. If S consists of

an orthogonal pilot sequence, E is i.i.d. Gaussian. Compared
with the requirement T ≥ N for the downlink channel
estimation, it is much easier to meet the requirement T̄ ≥ K
for the uplink channel estimation.

With (66) and (17), we are able to exploit the sparse
property of each MU independently. We drop the MU’s index
k for ease of notation, and then the paired sparse representation
equalities can be rewritten as

y =Φ(β)w + n, (67)

h̄ls =Φ̄(β)w̄ + e, (68)

where (67) coincides with (17), Φ̄(β) = [ā(ϑ̂1 + β1), ā(ϑ̂2 +
β2), . . . , ā(ϑ̂L̂ + βL̂)], and w̄ is the sparse representation
of h̄ls. If the angular reciprocity holds, it is easy to check
that supp(w) = supp(w̄). Different from the approximation
method [22] that hinges on the condition of (62), our off-grid
model guarantees a jointly sparse structure from the angular
domain directly, where neither approximation of λd ≈ λu nor
the assumption of ULA at the BS is required. In the following,
we will show how to jointly recover the sparse vectors w and
w̄ in the framework of SBL with the in-exact MM algorithm.
Since the results can be similarly derived by following the
procedures in Section III, detailed derivations are omitted for
brevity.

C. Sparse Bayesian Learning Formulation

Under the assumption of circular symmetric complex Gaus-
sian noises, we have

p(y|w, α,β) = CN (y|Φ(β)w, α−1I), (69)

p(h̄ls|w̄, ᾱ,β) = CN (h̄ls|Φ̄(β)w̄, ᾱ−1I), (70)

where ᾱ stands for the noise precision of e, which is further
modeled as a Gamma hyperprior p(ᾱ) = Γ(ᾱ; a, b). Recall
that, in Section III-B, we have used γ to control the sparsity
of w as follows:

p(w|γ) = CN (w|0,diag(γ−1)). (71)

If we let τ = [τ1, τ2, . . . , τL̂]T be a nonnegative vector and

p(w̄|γ) = CN (w̄|0,diag((γ � τ )−1)), (72)

w and w̄ will share a joint sparse structure. For example, γ−1
l

tends to zero, so is (γlτl)
−1. Therefore, (71) and (72) provide

a mathematic representation of the angular reciprocity. The
estimated uplink channel h̄ls contains the AoA information in
the uplink. The proposed method only exploits the azimuth
AoA information in h̄ls to help in identifying the azimuth
AoD in the downlink (downlink channel support) via the
angular reciprocity in (71) and (72). The small scale fading
information contained in the estimated uplink channel h̄ls

cannot be exploited since the channel reciprocity does not hold
for FDD systems.
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D. Bayesian Inference

For ease of notation, let wa , {w, w̄}, ya , {y, h̄ls},
Θ , {α, ᾱ,γ, τ ,β}. We assume a noninformative uniform
prior for τ . At some fixed point Θ̇ = {α̇, ˙̄α, γ̇, τ̇ , β̇}, we
construct the surrogate function as

U(Θ|Θ̇) =

∫
p(wa|ya, Θ̇) ln

p(wa,ya,Θ)

p(wa|ya, Θ̇)
dwa, (73)

where

p(wa,ya,Θ) = p(y|w, α,β)p(w|γ)p(h̄ls|w̄, ᾱ,β)

· p(w̄|γ, τ )p(α)p(ᾱ)p(γ)p(τ )p(β)

and

p(wa|ya,Θ) = CN (w|µ(α,γ,β),Σ(α,γ,β))

· CN (w̄|µ̄(ᾱ,γ, τ ,β), Σ̄(ᾱ,γ, τ ,β)),

with

µ̄(ᾱ,γ, τ ,β)) = ᾱΣ̄(ᾱ,γ, τ ,β))Φ̄H(β)h̄ls,

Σ̄(ᾱ,γ, τ ,β)) =
(
ᾱΦ̄H(β)Φ̄(β) + diag(γ � τ )

)−1
.

Note that µ(α,γ,β) and Σ(α,γ,β) have been defined in (35).
In the maximization step of the (i + 1)-th iteration, we

update α, ᾱ,γ, τ ,β as

α(i+1) = arg max
α
U(α, ᾱ(i),γ(i), τ (i),β(i)|Θ(i)), (74)

ᾱ(i+1) = arg max
ᾱ
U(α(i+1), ᾱ,γ(i), τ (i),β(i)|Θ(i)

1 ), (75)

γ(i+1) = arg max
γ
U(α(i+1), ᾱ(i+1),γ, τ (i),β(i)|Θ(i)

2 ), (76)

τ (i+1) = arg max
τ
U(α(i+1), ᾱ(i+1),γ(i+1), τ ,β(i)|Θ(i)

3 ),

(77)

β(i+1) = arg max
β
U(α(i+1), ᾱ(i+1),γ(i+1), τ (i+1),β|Θ(i)

4 ).

(78)

Extending Lemmas 3 and 4, the updates for α, ᾱ, γ and τ
can be obtained as follows:

α(i+1) =
T + a

b+ ηd(Θ(i))
, (79)

ᾱ(i+1) =
N + a

b+ ηu(Θ
(i)
1 )

, (80)

γ
(i+1)
l =

a+ 2

b+
[
Ξd(Θ

(i)
2 ) + τlΞu(Θ

(i)
2 )
]
ll

, ∀l, (81)

τ
(i+1)
l =

1[
γ

(i+1)
l Ξu(Θ

(i)
3 )
]
ll

, ∀l, (82)

where

ηd(Θ) = tr
(
Φ(β)Σ(α,γ,β)ΦH(β)

)
+ ‖y −Φ(β)µ(α,γ,β)‖22 ,

ηu(Θ) = tr
(
Φ̄(β)Σ̄(ᾱ,γ, τ ,β)Φ̄H(β)

)
+
∥∥h̄ls − Φ̄(β)µ̄(ᾱ,γ, τ ,β)

∥∥2

2
,

Ξd(Θ) = Σ(α,γ,β) + µ(α,γ,β)µH(α,γ,β),

Ξu(Θ) = Σ̄(ᾱ,γ, τ ,β) + µ̄(ᾱ,γ, τ ,β)µ̄H(ᾱ,γ, τ ,β).

Finally, we discuss how to refine the grid for the uplink-
AoA-aided channel estimation. Ignoring the terms independent
of β, the objective function in (78) becomes

U(α(i+1), ᾱ(i+1),γ(i+1), τ (i+1),β|Θ(i)
4 )

=− α(i+1)
∥∥∥y −Φ(β)µ(i)

∥∥∥2

2

− α(i+1)tr
(
Φ(β)Σ(i)ΦH(β)

)
− ᾱ(i+1)

∥∥∥h̄ls − Φ̄(β)µ̄(i)
∥∥∥2

2

− ᾱ(i+1)tr
(
Φ̄(β)Σ̄(i)Φ̄H(β)

)
, (83)

where µ(i) , µ(α(i+1),γ(i+1),β(i)),
Σ(i) , Σ(α(i+1),γ(i+1),β(i)), µ̄(i) ,
µ̄(ᾱ(i+1),γ(i+1), τ (i+1),β(i)), and Σ̄(i) ,
Σ̄(ᾱ(i+1),γ(i+1), τ (i+1),β(i)). Calculating the derivative of
(83) w.r.t. βl leads to

ζ(i)(βl) =2Re
(

(a′(ϑ̂l + βl))
HXHX(a(ϑ̂l + βl))

)
· c(i)d1

+ 2Re
(

(a′(ϑ̂l + βl))
HXHc

(i)
d2

)
+ 2Re

(
(ā′(ϑ̂l + βl))

H(ā(ϑ̂l + βl))
)
· c(i)u1

+ 2Re
(

(ā′(ϑ̂l + βl))
Hc

(i)
u2

)
, (84)

where ā′(ϑ̂j + βl) = dā(ϑ̂j + βl)/dβl c
(i)
d1 =

−α(i+1)(χ
(i)
d,ll + |µ(i)

d,l|2), c
(i)
d2 = α(i+1)((µ

(i)
d,l)
∗y

(i)
d−l −

X
∑
j 6=l χ

(i)
d,jl(a(ϑ̂j + βj))), c(i)u1 = −ᾱ(i+1)(χ

(i)
u,ll + |µ(i)

u,l|2),
c

(i)
u2 = ᾱ(i+1)((µ

(i)
u,l)
∗h

(i)
−l −

∑
j 6=l χ

(i)
u,jl(ā(ϑ̂j + βj))), y

(i)
d−l =

y−X·
∑
j 6=l(µ

(i)
d,j ·a(ϑ̂j+βj)), h

(i)
−l = h̄ls−

∑
j 6=l(µ

(i)
u,j ·ā(ϑ̂j+

βj)), µ(i)
d,l (µ(i)

u,l) and χ(i)
d,jl (χ(i)

u,jl) denote the l-th element and
the (j, l)-th element of µ(i) (µ̄(i)) and Σ(i) (Σ̄(i)), respectively.
With (84), we are able to update β similarly as in (40) or
(41.) Noth that following the same initializations mentioned
in Section III-D, we set α(0) = ᾱ(0) = 1, γ(0) = τ (0) = 1
and β(0) = 0 for the off-grid uplink-AoA-aided method.

VI. SIMULATION RESULTS

In this section, we conduct simulations to investigate the
performance of our proposed methods. The proposed methods
are compared with the following methods:
• Baseline 1 (SBL): hk is recovered using the standard

SBL method [23] with the dictionary A defined in (14).
• Baseline 2 (DFT)): hk is recovered using the l1-norm

minimization algorithm [31]–[33] with a DFT basis.
• Baseline 3 (Overcomplete DFT)): hk is recovered using

the l1-norm minimization algorithm [31]–[33] with the
dictionary A defined in (14).

• Baseline 4 (Dictionary Learning)): hk is recovered using
the method proposed in [22] with the dictionary A
defined in (14).

Since the state-of-the-art DFT methods work for ULAs only,
we first focus on simulations for ULAs, where we use the
3GPP spatial channel model (SCM) [36] to generate the chan-
nel coefficients for an urban microcell. The uplink frequency
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Fig. 5. Element modulus of w for three independent trials with N = 100, T = 40 and SNR= 10 dB. The true azimuth AoDs are denoted by dotted lines.
a) Off-Grid; b) SBL; c) Overcomplete DFT; d) DFT.

is 1980 MHz, the downlink frequency is 2170 MHz, and
the inter-antenna spacing is d = c/(2f0), with c being the
light speed and f0 = 2000 MHz. Then, we run simulations
with the 3GPP 3D channel model [41], which provides a 2D
array model involving both azimuth and elevation angles. All
the parameters of the 3D channel model follow 3D-UMa-
NOLS (see Table 7.3-6 in [41]) and the downlink frequency
is 2170 MHz. The normalized mean square error (NMSE) is
defined as

1

Mc

Mc∑
m=1

‖hem − hm‖22
‖hm‖22

, (85)

where hem is the estimate of hm at the n-th Monte Carlo trial
and Mc = 200 is the number of Monte Carlo trials.

A. Recovered Channel Sparsity in the Angular Domain for
ULA

In Fig. 5, we illustrate the effect of direction mismatch on
the channel sparse representation performance for different
channel estimation strategies. Consider a simple scenario
where a ULA with 100 antennas at the BS is used to send the
training pilot symbols with ten azimuth AoDs in total, which
are simply denoted as θ1 = −30◦, θ2 = −25◦, θ3 = −20◦,
θ4 = −10◦, θ5 = 0◦, θ6 = 5◦, θ7 = 15◦, θ8 = 20◦, θ9 = 25◦,
and θ10 = 30◦. The training pilots are randomly generated
with T = 40 and the SNR is set to 10 dB. Fig. 5 shows the el-
ement modulus of the recovered channel sparse representation
w, where the number of grid points L̂ is fixed to 200 or 400
for all the methods, except for the classical DFT method. It is
observed that 1) the solution of the classical DFT method is not
exactly sparse, and it has a significant performance loss due
to the leakage of energy over many bins; 2) the standard SBL
method and the overcomplete DFT method can achieve better
sparse representations, especially for a dense grid (L̂ = 400),
but direction mismatch always exists; and 3) our proposed off-
grid method can greatly improve the sparsity and accuracy of

the channel representation, and the direction mismatch can be
almost eliminated.

B. Channel Estimation Performance Versus T for ULA

In Fig. 6, Monte Carlo trials are carried out to investigate
the impact of the number of pilot symbols on the downlink
channel estimation performance for ULA. Assume that the
ULA at the BS is equipped with 150 antennas, and the system
supports ten MUs, where each MU has a single antenna.
All the results are obtained by averaging over 200 Monte
Carlo channel realizations. Every channel realization consists
of Nc = 3 random scattering clusters ranging from −40◦ to
40◦, and each cluster contains Ns = 10 sub-paths concentrated
in a 20◦ angular spread. The training pilots are randomly
generated, the SNR is chosen as 0 dB or 10 dB, and the
number of grid points is fixed to 200 for all but the DFT
method. Fig. 6 shows the NMSE performance of the downlink
channel estimate achieved by the different channel estimation
strategies versus the number of training pilot symbols T . It
can be seen that 1) the NMSEs of all the methods decrease as
the number of training pilot symbols increases, and the DFT
method gives the worst performance; 2) compared with the
DFT method, the state-of-the-art methods (the overcomplete
DFT and dictionary learning method) can improve the NMSE
performance, but the improvement is not significant (they
are all worse than the standard SBL method); and 3) our
proposed off-grid method always outperforms the state-of-the-
art methods, and the uplink-AoA-aided method can further
improve the performance of the downlink channel estimation,
as it collects more useful information than the off-grid method.

C. Channel Estimation Performance Versus L̂ for ULA

In Fig. 7, we study the impact of the number of grid points
on the downlink channel estimation performance for ULA. We
consider the same scenario as in Section VI-B, except that
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Fig. 6. NMSE of dowlink channel estimate versus the number of training
pilot symbols for ULA. a) SNR = 0 dB; b) SNR = 10 dB.
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Fig. 7. NMSE of downlink channel estimate versus the number of grid points
for ULA. a) N = 150, Nc = 2 and SNR = 0 dB; b) N = 200, Nc = 3
and SNR= 10 dB.

the number of training pilot symbols is fixed to 70, and the
scattering clusters range from −90◦ to 90◦. All the results
are obtained by averaging over 200 Monte Carlo channel
realizations. Fig. 7 shows the NMSE performance of the
downlink channel estimate achieved by the different channel
estimation strategies versus the number of grid points L̂. It
is shown that the overcomplete DFT method and dictionary
learning method achieve the same performance, because there
is no benefit in learning the true AoDs which range from −90◦

to 90◦. The NMSEs of the DFT method, overcomplete DFT
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Fig. 8. NMSE of dowlink channel estimate versus the number of training
pilot symbols for 2D array. a) L̂ = 250 and SNR = 0 dB; b) L̂ = 300 and
SNR = 10 dB.
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Fig. 9. NMSE of downlink channel estimate versus the number of grid points
for 2D array with SNR = 0 dB. a) T = 80; b) T = 100.

method and SBL method coincide with each other at L̂ = 150
in Fig. 7-a and L̂ = 200 in Fig. 7-b, respectively, because they
use the same grid in the case of N = L̂. The NMSEs of our
methods decrease as the number of grid points increases, and
they always outperform the others, no matter what number of
grid points is used.

D. Channel Estimation Performance with 2D Array

In Figs. 8 and 9, Monte Carlo trials are carried out to
investigate the channel estimation performance with the 2D
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array. Assume that the 2D planar array at the BS is equipped
with 20× 10 antennas, where both the horizontal and vertical
inter-antenna spacings are a half wavelength. Every channel
realization consists of Nc = 20 random scattering clusters,
and each cluster contains Ns = 20 subpaths. The AoDs
are randomly generated by the 3GPP 3D channel model,
where the azimuth AoDs range from −180◦ to 180◦ and
the elevation AoDs range from −90◦ to 90◦. The training
pilots are randomly generated, the SNR is chosen as 0 dB
or 10 dB, and ρ in (57) is set to 0.95. All the results are
obtained by averaging over 200 Monte Carlo channel realiza-
tions. Fig. 8 shows the NMSE performance of the downlink
channel estimate achieved by the different channel estimation
strategies versus the number of training pilot symbols T , and
Fig. 9 shows the NMSE performance of the downlink channel
estimate achieved by the different channel estimation strategies
versus the number of grid points L̂. It can be seen that 1) the
DFT method and overcomplete DFT method give very poor
performance, because they can not work for non-ULAs; 2) the
standard SBL method outperforms the DFT-based methods,
but the performance improvement is not significant; and 3) our
proposed off-grid method indeed works for the 2D array, and it
can substantially improve the channel estimation performance.

VII. CONCLUSION

The problem of downlink channel estimation in FDD mas-
sive MIMO systems is addressed in this paper. We provide
a novel off-grid model for massive MIMO channel sparse
representation, which can greatly improve the sparsity and
accuracy of the channel representation. To the best of our
knowledge, our work is the first to utilize an off-grid channel
model to combat modeling error for channel estimation. The
proposed off-grid model and the SBL-based framework have
wide applicability. They do not require any prior knowledge
about the sparsity of channels, nor the variance of noises,
and all the parameters are automatically tuned by the in-exact
MM algorithm. Extending the results to MUs with multiple
antennas is straightforward in the framework of SBL.

APPENDIX

A. Proof of Lemma 1

The non-decreasing property can be achieved as

ln p(y, α(i+1),γ(i+1),β(i+1))

≥U(α(i+1),γ(i+1),β(i+1)|α(i+1),γ(i+1),β(i)) (86)

≥U(α(i+1),γ(i+1),β(i)|α(i+1),γ(i+1),β(i)) (87)

= ln p(y, α(i+1),γ(i+1),β(i)) (88)

≥U(α(i+1),γ(i+1),β(i)|α(i+1),γ(i),β(i)) (89)

≥U(α(i+1),γ(i),β(i)|α(i+1),γ(i),β(i)) (90)

= ln p(y, α(i+1),γ(i),β(i)) (91)

≥U(α(i+1),γ(i),β(i)|α(i),γ(i),β(i)) (92)

≥U(α(i),γ(i),β(i)|α(i),γ(i),β(i)) (93)

= ln p(y, α(i),γ(i),β(i)), (94)

where (86), (89) and (92) follow (26); (88), (91) and (94)
follow (27); and (87), (90) and (93) follow (33), (32) and
(31), respectively.

B. Proof of Lemma 2

Letting q(w) be an arbitrary distribution, the lower bound
of ln p(y, α,γ,β) can be written as

ln p(y, α,γ,β) = ln

∫
p(w,y, α,γ,β)dw

= ln

∫
q(w)

p(w,y, α,γ,β)

q(w)
dw

≥
∫
q(w) ln

p(w,y, α,γ,β)

q(w)
dw, (95)

where Jensen’s inequality is applied in the last step. The
equality holds when p(w,y,α,γ,β)

q(w) = c for a constant c that
does not depend on w. As q(w) is a distribution, we have∫
q(w)dw = 1. This further indicates that

c =

∫
p(w,y, α,γ,β)dw = p(y, α,γ,β) (96)

and

q(w) = p(w|y, α,γ,β). (97)

With (95) and (97), it is easy to check that the constructed
surrogate function U(α,γ,β|α̇, γ̇, β̇) always satisfies (26) and
(27) for any fixed (α̇, γ̇, β̇).

To prove (28), we first rewrite the left side of (28) as

∂U(α, γ̇, β̇|α̇, γ̇, β̇)

∂α

∣∣∣∣∣
α=α̇

=

∫
p(w|y, α̇, γ̇, β̇)

∂ ln p(w,y, α, γ̇, β̇)

∂α
dw

∣∣∣∣∣
α=α̇

=

∫
p(w|y, α̇, γ̇, β̇)

p(w,y, α, γ̇, β̇)

∂p(w,y, α, γ̇, β̇)

∂α
dw

∣∣∣∣∣
α=α̇

=
1

p(y, α̇, γ̇, β̇)

∫
∂p(w,y, α, γ̇, β̇)

∂α
dw

∣∣∣∣∣
α=α̇

=
1

p(y, α̇, γ̇, β̇)
· ∂p(y, α, γ̇, β̇)

∂α

∣∣∣∣∣
α=α̇

. (98)

On the other hand, the right side of (28) is

∂ ln p(y, α, γ̇, β̇)

∂α
=

1

p(y, αd, γ̇, β̇)

∂p(y, α, γ̇, β̇)

∂α
. (99)

Combining (98) and (99), we achieve the equality in (28).
Since the proofs for (29)–(30) can be similarly achieved, they
are omitted for brevity.
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C. Proof of Lemma 3

For α, ignoring the independent terms, the objective func-
tion in (31) can be rewritten as

U(α,γ(i),β(i)|α(i),γ(i),β(i))

=

∫
p(w|y, α(i),γ(i),β(i)) ln p(y|w, α,β(i))dw

+

∫
p(w|y, α(i),γ(i),β(i)) ln p(α)dw

=− α
∫
p(w|y, α(i),γ(i),β(i))

∥∥∥y −Φ(β(i))w
∥∥∥2

2
dw

+ T lnα+ (a) lnα− bα
=(T + a) lnα− α(b+ η(α(i),γ(i),β(i))). (100)

Since (100) is a strick concave function related to α, setting
its derivative to zero gives the unique optimal solution

α(i+1) =
T + a

b+ η(α(i),γ(i),β(i))
.

D. Proof of Lemma 4

For γ, ignoring the independent terms of the objective
function in (32), we obtain

U(α(i+1),γ,β(i)|α(i+1),γ(i),β(i))

=

∫
p(w|y, α(i+1),γ(i),β(i)) ln p(w|γ)dw

+

∫
p(w|y, α(i+1),γ(i),β(i)) ln p(γ)dw

=− ln |diag(γ−1)|+ (a)

L̂∑
l=1

ln γi − b
L̂∑
l=1

γi

−
∫
p(w|y, α(i+1),γ(i),β(i))

(
(w)Hdiag(γ)w

)
dw

=

L̂∑
l=1

ln γl + (a)

L̂∑
l=1

ln γi − b
L̂∑
l=1

γi

− tr
(
Ξ(α(i+1),γ(i),β(i)) · diag(γ)

)
.

Differentiating w.r.t. each γl yields

∂U(α(i+1),γ,β(i)|α(i+1),γ(i),β(i))

∂γl

=
a+ 1

γl
− b−

[
Ξ(α(i+1),γ(i),β(i))

]
ll
.

Then, setting the derivative to zero and solving for γl give the
unique optimal solution

γ
(i+1)
l =

a+ 1

b+
[
Ξ(α(i+1),γ(i),β(i))

]
ll

.

E. Derivation for Eq. (38)

Ignoring the independent terms, the objective function in
(33) becomes

U(α(i+1),γ(i+1),β|α(i+1),γ(i+1),β(i))

=

∫
p(w|y, α(i+1),γ(i+1),β(i)) ln p(y|w, α(i+1),β)dw

=− α(i+1)

∫
p(w|y, α(i+1),γ(i+1),β(i))

· ‖y −Φ(β)w‖22 dw

=− α(i+1)
∥∥∥y −Φ(β)µ(α(i+1),γ(i+1),β(i))

∥∥∥2

2

− α(i+1)tr
(
Φ(β)Σ(α(i+1),γ(i+1),β(i))ΦH(β)

)
.

For ease of notation, we simply denote µ(α(i+1),γ(i+1),β(i))
and Σ(α(i+1),γ(i+1),β(i)) by µ(i) and Σ(i), respectively.
Calculating the derivative of each term in the above equality
w.r.t. βl, we obtain

∂
∥∥y −Φ(β)µ(i)

∥∥2

2

∂βl

=
∂
∥∥∥y(i)
−l − µ

(i)
l ·X(a(ϑ̂l + βl))

∥∥∥2

2

∂βl

=2Re
(

(a′(ϑ̂l + βl))
HXHXa(ϑ̂l + βl)

)
· |µ(i)

l |
2

− 2Re
(

(a′(ϑ̂l + βl))
HXH · (µ(i)

l )∗y
(i)
−l

)
and

∂tr
(
Φ(β)Σ(i)ΦH(β)

)
∂βl

=2Re
(

(a′(ϑ̂l + βl))
HXHXa(ϑ̂l + βl)

)
· χ(i)

ll

+ 2Re

(a′(ϑ̂l + βl))
HXHX ·

∑
j 6=l

χ
(i)
jl a(ϑ̂j + βj)

 .

Hence, the derivative of U(α(i+1),γ(i+1),β|α(i+1),γ(i+1),β(i))
w.r.t βl is same as (39).

F. Proof of Theorem 5

According to Theorem 2-b in [25], the block MM algo-
rithm will converge to a stationary solution if the following
additional conditions are satisfied:
• All the properties in (26)–(30) hold true with the surro-

gate function.
• At least two of the problems (31)–(33) have a unique

solution.
Lemmas 2–4 guarantee that the above two conditions hold
true, respectively
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