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Abstract—This two-part paper aims to quantify the cost
of device activity detection in an uplink massive connectivity
scenario with a large number of devices but device activities
are sporadic. Part I of this paper shows that in an asymptotic
massive multiple-input multiple-output (MIMO) regime, device
activity detection can always be made perfect. Part II of
this paper subsequently shows that despite the perfect device
activity detection, there is nevertheless significant cost due to
device detection in terms of overall achievable rate, because
of the fact that non-orthogonal pilot sequences have to be
used in order to accommodate the large number of potential
devices, resulting in significantly larger channel estimation
error as compared to conventional massive MIMO systems
with orthogonal pilots. Specifically, this paper characterizes
each active user’s achievable rate using random matrix theory
under either maximal-ratio combining (MRC) or minimum
mean-squared error (MMSE) receive beamforming at the base-
station (BS), assuming the statistics of their estimated channels
as derived in Part I. The characterization of user rate also
allows the optimization of pilot sequences length. Moreover, in
contrast to the conventional massive MIMO system, the MMSE
beamforming is shown to achieve much higher rate than the
MRC beamforming for the massive connectivity scenario under
consideration. Finally, this paper illustrates the necessity of
user scheduling for rate maximization when the number of
active users is larger than the number of antennas at the BS.

Index Terms—Beamforming, massive connectivity, massive
multiple-input multiple-output (MIMO), random matrix the-
ory, large-system analysis, Internet-of-Things (IoT), machine-
type communications (MTC).

I. INTRODUCTION

A. Motivation

Motivated by the emerging Internet-of-Things (IoT) and

machine-type communications (MTC) applications, this

two-part paper studies the uplink communication in a

massive multiple-input multiple-output (MIMO) single-cell

system, in which a base-station (BS) is equipped with a large

number of antennas to serve a massive number of devices
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with sporadic traffic. Specifically, the BS is equipped with

M antennas, serving N potential devices, out of which K
are active at any given time. A two-phase multiple-access

scheme is adopted in which within each coherence time of

length T , the active users send their pilot sequences during

the first L < T symbols for device activity detection and

channel estimation in the first phase, while send their data

messages during the remaining T−L symbols in the second

phase.

A key challenge of the above system is that due to the

limited coherence time, only non-orthogonal pilot sequences

can be assigned to the users, as typically N ≫ L. The

main objective of Part I of this paper [2] is to quantify

the performance of device activity detection and channel

estimation when randomly generated non-orthogonal pilot

sequences are assigned for each device. Part II of this paper

examines its impact on the overall achievable data rate for

this massive connectivity system with massive MIMO.

Part I of this paper [2] shows that the user activity

detection and channel estimation problem in the first phase

can be cast as a compressed sensing problem that takes

advantage of the sparsity in device activity, for which

the approximate message passing (AMP) algorithm [3]–

[6] can be used to solve the above problem. Specifically,

Part I of this paper designs a minimum mean-squared error

(MMSE) denoiser in a vector form of the AMP algorithm for

user activity detection and channel estimation based on the

statistics of the channel, and shows that in certain asymptotic

regime where K,N,L all go to infinity, the probabilities of

missed detection and false alarm as well as the statistical

distributions of the active users’ estimated channels can be

characterized analytically. Interestingly, it is shown that the

MMSE-based AMP algorithm is capable of driving the user

detection error probability down to zero as the number of

BS antennas M goes to infinity. Thus, massive MIMO is

naturally suited for massive connectivity.

Part II of the paper leverages the above perfect user

activity detection result as well as the statistical distributions

of the estimated channels to characterize in closed-form

the overall achievable rates under the aforementioned two-

phase transmission protocol with either the maximal-ratio

combining (MRC) or the MMSE beamforming at the BS,

again in the massive MIMO regime as M goes to infinity.

Our main conclusion is that despite perfect detection, there

is nevertheless significant cost on user achievable rate due to

massive device detection because the use of non-orthogonal

http://arxiv.org/abs/1706.06433v2
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pilot sequences results in larger channel estimation errors.

B. Prior Work

Massive MIMO systems [7], where each BS is equipped

with a large number (sometimes in the order of 100’s) of

antennas, have emerged as a key technology for achieving

dramatic spectral efficiency gains in future wireless systems.

In a single-cell system where the number of antennas at the

BS is much larger than that of the users, the channels of

different users become asymptotically orthogonal under the

so-called “favorable” propagation conditions [7]. As a result,

simple matched filter (MF) processing, such as maximal-

ratio transmission (MRT) in the downlink and MRC in the

uplink, is already asymptotically optimal for maximizing the

user rate, assuming perfect channel state information (CSI)

[7]. Moreover, it is shown in [8] that each single-antenna

user in a massive MIMO system can scale down its transmit

power proportional to the number of antennas at the BS to

get the same rate performance as a corresponding single-

input single-output (SISO) system, assuming perfect CSI.

Despite its promises, massive MIMO system is also

faced with many practical challenges, chief among which

is channel estimation [9]. Channel training for the uplink

MIMO system should typically be done with orthogonal

pilot sequences within each cell; further the optimal training

length in time should be the same as the number of transmit

antennas in uncorrelated Rayleigh fading channels [10].

With this channel training strategy, the user rates achieved

by the MRC beamforming and MMSE beamforming at the

BS are characterized in [8], [11] utilizing the random matrix

theory, where it is shown that even with imperfect CSI,

the throughput achieved by the MRC beamforming is very

close to that of MMSE beamforming in the uplink massive

MIMO system. We remark that channel training is even

more challenging in the downlink massive MIMO system,

especially when the system operates in the frequency-

division duplex (FDD) mode where channel reciprocity does

not hold between uplink and downlink. Many sophisticated

schemes have been proposed for this long-standing problem

in the downlink FDD massive MIMO system [9], [12].

Finally, we mention that in a multi-cell system, the non-

orthogonality of the pilot sequences in nearby cells causes

pilot contamination, which then becomes the dominant im-

pairment in the asymptotic massive MIMO regime [7].

In contrast to the conventional massive MIMO literature,

this paper points out that channel training can be a limiting

factor even in the single-cell uplink scenario, when massive

number of devices are involved. This is because when the

total number of devices is much larger than the number

of BS antennas, it is impossible to assign orthogonal pilot

sequences to each device. Part I of this paper [2] deals

with device activity detection. In this Part II of the paper,

we aim to quantify the cost of non-orthogonal pilots for

channel estimation and subsequently the overall achievable

rate. One of the consequences of our result is that MMSE

beamforming is necessary for maximizing the user rate,

because of the fact that the inter-user interference cannot

be effectively canceled by a simple MRC operation when

the number of active users is comparable to the number of

antennas at the BS.

C. Main Contributions

This two-part paper provides an analytical performance

characterization of the two-phase transmission protocol in

a single-cell massive connectivity scenario with massive

MIMO, in which the active users send their non-orthogonal

pilot sequences to the BS simultaneously for user activity

detection and channel estimation in the first phase, then

transmit data to the BS for information decoding in the

second phase, within the same coherence time. The main

contributions of Part II of this paper are as follows.

Based on the user activity detection and channel estima-

tion statistics results of Part I of this paper and also based

on techniques from random matrix theory, we characterize

the user achievable rate for both the cases of MRC and

MMSE beamforming at the BS, in an asymptotic limit

where the number of antennas at the BS and the number

of users both go to infinity, while keeping their ratio fixed.

By comparing to the case with prior information of user

activity at the BS, it is shown that despite the guaranteed

success in activity detection, the non-orthogonality of pi-

lot sequences can nevertheless lead to significantly larger

channel estimation error as compared to the conventional

massive MIMO system, thus limiting the overall achievable

transmission rate. We quantify this cost and illustrate that

the optimal pilot sequence length in a massive connectivity

system should be longer than that in conventional massive

MIMO system for maximizing the overall transmission rate.

This paper shows that the massive connectivity system

also possesses other fundamental differences as compared

to the conventional massive MIMO system with a small

number of users. First, the user rate is finite due to inter-user

interference, even in a single-cell massive MIMO system

with infinite number of antennas and without pilot contam-

ination from other cells. Second, the user rate achieved by

the MMSE beamforming at the BS is significantly higher

than that achieved by the MRC beamforming. At last, we

show that in an overloaded system where the number of

active users is much larger than that of the antennas at the

BS, user scheduling can significantly improve the overall

transmission rate if the MMSE beamforming is applied at

the BS.

D. Organization

The rest of Part II of this paper is organized as follows.

Section II describes the system model for massive connec-

tivity and introduces the two-phase transmission protocol

for user detection, channel estimation, and data transmis-

sion. Section III reviews the vector AMP algorithm and

its performance in terms of user activity detection and

channel estimation derived in Part I of this paper; Section
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IV analyzes user achievable rate with the MRC and MMSE

beamforming at the BS with or without user scheduling;

Section V investigates the cost of user activity detection on

user rate; Sections VI and VII optimize the pilot sequence

length and number of scheduled intervals to maximize

the user sum rate, respectively; Section VIII provides the

numerical simulation results pertaining to user achievable

rate. Finally, Section IX concludes the paper and points out

several future directions.

E. Notation

Scalars are denoted by lower-case letters, vectors by bold-

face lower-case letters, and matrices by bold-face upper-

case letters. The identity matrix and the all-zero matrix of

appropriate dimensions are denoted as I and 0, respectively.

For a matrix M of arbitrary size, MH and MT denote

its conjugate transpose and transpose, respectively. The

expectation operator is denoted as E[·]. The distribution of

a circularly symmetric complex Gaussian (CSCG) random

vector with mean x and covariance matrix Σ is denoted by

CN (x,Σ); the space of complex matrices of size m× n is

denoted as Cm×n.

II. SYSTEM MODEL

The overall system model is as introduced in Part I of this

two-part paper [2]. The channel input-output relationship for

the uplink communication in a single cell consisting of N
single-antenna users and one BS with M antennas is given

as:

y =
∑

n

hnαnxn + z =
∑

k∈K

hkxk + z, (1)

where xn ∈ C with a power E|xn|2 = ρ is the transmit

signal of user n, hn ∈ CM×1 ∼ CN (0, βnI) denotes the

complex uplink channel vector from user n to the BS with

a path-loss exponent βn known by the BS, z ∈ CM×1 ∼
CN (0, σ2I) is the additive white Gaussian noise (AWGN)

vector at the BS, and y ∈ CM×1 is the received signal.

Here in (1), αn’s are the user activity indicators used to

model the sporadic traffic pattern of massive connectivity,

i.e., αn = 1 if user n is active at one coherence time, and

αn = 0 otherwise, n = 1, · · · , N . At last, K is the set of

active users within a coherence block, i.e., K = {n : αn =
1, n = 1, · · · , N}, with a cardinality K = |K|.

Within each coherence time with T symbols, we adopt

the following two-phase multiple access scheme: in the

first phase of length L symbols, the BS conducts user

activity detection and channel estimation based on the pilot

sequences from the active users; in the second phase, the

BS decodes user messages based on the estimated channels

in the previous phase. The transmitted signals of the active

users are assumed to be synchronized in both phases. The

key point here is that in a massive connectivity system

with N > L, it is impossible to assign orthogonal pilots

to all the potential users. In this paper, we assume a non-

orthogonal pilot sequence assignment strategy in which each

user n is allocated to a pilot an ∈ CL×1 whose entries

are generated from independently and identically distributed

(i.i.d.) complex Gaussian distribution with zero mean and

variance 1/L.

III. USER ACTIVITY DETECTION AND CHANNEL

ESTIMATION IN MASSIVE MIMO REGIME

The AMP algorithm is effective for device activity de-

tection and channel estimation for the massive connectivity

scenario. This section first summarizes the main analysis in

[2], then further derives an analytic expression for channel

estimation error for system parameter regime of most in-

terest, which is useful for subsequent characterization of

the cost of non-orthogonal pilot sequences on user rate

and for optimization of the pilot sequence length for rate

maximization.

A. AMP for Activity Detection and Channel Estimation

Consider the first phase of massive device transmission

in which each user sends its pilot sequence synchronously

through the channel. Define ρpilot as the identical transmit

power of the active users in the first transmission phase.

The transmit signal of user n can be expressed as αn

√
ξan,

where ξ = Lρpilot denotes the total transmit energy of each

active user in the first phase. The received signal at the BS

is then

Y =
√

ξAX +Z, (2)

where Y ∈ CL×M is the matrix of received signals across

M antennas over L symbols, A = [a1, · · · ,aN ] is the

collection of user pilot sequences, X = [x1, · · · ,xN ]T is

the collection of user equivalent channels xn = αnhn’s,

and Z = [z1, · · · , zM ] with zm ∼ CN (0, σ2I), ∀m, is

the independent AWGN at the BS. As X is row sparse,

Part I of this paper proposes to use the MMSE-based vector

AMP algorithm to recover X based on the noisy observation

Y . More details on the implementation of the vector AMP

algorithm can be found in [2].

The main result of [2] is an analytical characterization

of the user activity detection and channel estimation perfor-

mance using the vector AMP algorithm in the asymptotic

regime where L,K,N → ∞, while their ratios converge

to some fixed positive values N/L → ω and K/N → ǫ
with ω, ǫ ∈ (0,∞), while keeping the total transmit power

fixed at ξ. Specifically, for user activity detection, we show

that in the above asymptotic regime, the probabilities of

missed detection (a user is active but is declared as inactive)

and false alarm (a user is inactive but is declared as active)

by the MMSE-based AMP algorithm both converge to zero

exponentially as the number of antennas at the BS, i.e., M ,

goes to infinity.

Moreover, for channel estimation, after the convergence

of the vector AMP algorithm, the covariance matrices of the

estimated channel of an active user k ∈ K, denoted by ĥk,
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and the corresponding channel estimation error, denoted by

∆hk = hk − ĥk, are given, respectively, by

Cov(ĥk, ĥk) = υk(M)I, (3)

Cov(∆hk,∆hk) = ∆υk(M)I, (4)

where υk(M) and ∆υk(M) respectively converge to as the

number of antennas at the BS goes to infinity:

lim
M→∞

υk(M) =
β2
k

βk + τ2∞
, (5)

lim
M→∞

∆υk(M) =
βkτ

2
∞

βk + τ2∞
. (6)

In (5) and (6), τ2∞ is the fixed-point solution to the following

simplified state evolution of the AMP algorithm as M → ∞:

τ20 =
σ2

ξ
+ ωǫEβ[β], (7)

τ2t+1 =
σ2

ξ
+ ωǫEβ

[

βτ2t
β + τ2t

]

, t ≥ 0. (8)

We emphasize that although the above results are obtained

in the asymptotic regimes where N,K,L go to infinity, they

can be used to predict the performance of practical systems

with finite but large N,K,L,M accurately. In particular,

for a practical system with parameters ρpilot, L, K , N and

pathloss βk for each user k, we simply set

ξ = Lρpilot, ǫ =
K

N
, ω =

N

L
, (9)

in order to run the simplified state evolution (7)-(8) to obtain

τ2∞ and subsequently υk and ∆υk for each user k. Although

the above asymptotic results are obtained in the limit of large

M , they already corroborate well with the simulation results

as shown in Part I of this paper [2] for practical values of

M = 16 and M = 64. In this Part II of the paper, we assume

the above characterization of the channel estimation error in

order to analytically characterize the overall achievable rate.

B. High SNR Characterization of Channel Estimation

A key step in obtaining the statistics of the channel

estimation error according to (3)–(6) is in identifying the

fixed point τ2∞ of the state evolution (8). In general, the fixed

point is a complicated function of the system parameter.

But in certain regime of practical interest, simple analytic

characterization of the fixed point can be obtained.

Observe that in practice, the vector AMP algorithm for

device activity detection and channel estimation should work

in the regime of ωǫ < 1, i.e., L > K , in order to control the

channel estimation error. Thus, the behavior of τ2∞ when

L > K is of most interest. Further, the iterative state

evolution simplifies considerably in the high signal-to-noise

ratio (SNR) limit. The first technical result of this paper is

a high SNR characterization of the fixed point.

Theorem 1: Suppose that ωǫ < 1, i.e., L > K . Then, there

is a unique fixed-point solution τ2∞ to (8), which satisfies

σ2

ξ
≤ τ2∞ ≤ σ2

ξ(1 − ωǫ)
. (10)

Moreover, suppose that the channel path-loss variable β is

bounded below, i.e., β ≥ βmin, for some positive βmin.

Then, in the SNR regime where ξβmin

σ2 → ∞, the unique

fixed-point solution to (8) is given by

τ2∞ → σ2

ξ(1 − ωǫ)
. (11)

Proof: Please refer to Appendix A.

Note that in a single-cell system without inter-cell inter-

ference, the SNR of the even cell-edge user is typically high

within reasonable range. As a result, the approximation of

τ2∞ given in (11) is expected to be accurate in the single-cell

system, as verified later in this paper by simulations. More-

over, (10) shows that the upper bound of τ2∞ is σ2/ξ(1−ωǫ).
Therefore, the asymptotic high-SNR limit obtained in (11)

is also the worst-case noise power, and all the results based

on this approximation can be viewed as performance lower

bound for any value of SNR.

The main consequence of Theorem 1 is that under prac-

tical system parameters K , L, N , ρpilot, and for reasonably

large M (such as M = 16 or 64), the covariance matrices

of the estimated channel and the channel estimation error

for user k, resulting from the use of AMP for joint device

detection and channel estimation, are in the form of (3) and

(4), in which υk and ∆υk can be approximated respectively

as:

υk =
β2
k

βk + σ2

ρpilot(L−K)

, (12)

and

∆υk =
βk

σ2

ρpilot(L−K)

βk +
σ2

ρpilot(L−K)

, (13)

where we have used (9). Curiously, the above expressions

are independent of N . This is because device activity

detection is already perfect in the massive MIMO regime;

the channel estimation error is mainly due to the non-

orthogonality of the pilot sequences of the K active users.

IV. ACHIEVABLE RATE FOR MASSIVE CONNECTIVITY

We are now ready to use the channel estimation error

characterization in the previous section to evaluate the

achievable data transmission rate in the second phase while

accounting for the channel estimation error, in the massive

MIMO regime. As user activity detection is perfect in the

massive MIMO regime in the first phase, we focus on an

equivalent wireless system in the second phase consisting

of only K active users that simultaneously transmit their

data to the BS in the uplink. Moreover, for these users,

we utilize the covariance matrices of the estimated channels

and channel estimation errors as given in (3)-(6), or as in

the high SNR regime, (12)-(13).

In this paper, we choose to study the user achievable rate

in certain asymptotic regime, where not only M goes to

infinity, but also K goes to infinity, while their ratio is kept

fixed, i.e., K/M → µ with µ ∈ (0,∞). Note that this is
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a different asymptotic regime as in the analysis of the first

phase, but we justify by pointing out that both analyses are

ultimately intended for performance projection of system

with finite parameters. Had we followed the asymptotic

regime of the analysis of the first phase, where K goes to

infinity first for each finite M , then let M go to infinity, we

would have obtained zero user rate, which is not of practical

interest. Our present approach of letting both K and M go

to infinity in the analysis of the second phase, while simply

assuming the channel estimation characterization of the first

phase, is validated by simulation later in the paper. It also

leads to valuable system insight by allowing performance

comparison to the case with prior user activity information

at the BS, i.e., the case with orthogonal pilot sequences

assignment as widely assumed in the current massive MIMO

literature.

A. Achievable Rates with MRC and MMSE Receivers

The equivalent baseband signal received at the BS for the

second phase is expressed as

y =
∑

n∈K

hn

√

ρdatasn + z, (14)

where sn ∼ CN (0, 1) denotes the transmit symbol of user

n ∈ K, which is modeled as a CSCG random variable with

zero-mean and unit-variance, ρdata denotes the identical

transmit power of the active users in the second transmission

phase, and z ∼ CN (0, σ2I) denotes the AWGN at the BS.

The BS employs linear beamforming on the received

signal y for decoding user messages:

ŝk =wH
k

(

∑

n∈K

hn

√

ρdatasn + z

)

=wH
k ĥk

√

ρdatask +wH
k

∑

n∈K,n6=k

ĥn

√

ρdatasn

+wH
k

∑

n∈K

∆hn

√

ρdatasn +wH
k z, ∀k ∈ K, (15)

where wk ∈ C
M×1 denotes the beamforming vector for

the active user k ∈ K. In the above signal model, the

BS views the estimated channels as the true channels, and

treats the term due to the channel estimation error, i.e.,

wH
k

∑

n∈K∆hn

√

ρdatasn, as additional noise.

Assume that the estimated channel and channel estima-

tion error for each active user k are Gaussian distributed

with the covariance matrices given in (3)-(6), i.e., ĥk ∼
CN (0,

β2
k

βk+τ2
∞

I) and ∆hk ∼ CN (0,
βkτ

2
∞

βk+τ2
∞

I). This can be

justified by the fact that in the asymptotic massive MIMO

regime, user activity detection is perfect and the MMSE

denoiser as given in Theorem 1 of Part I asymptotically

becomes a linear MMSE channel estimator for the active

users. As a result, the estimated channels from the AMP

algorithm can be assumed to be close to Gaussian in the

massive MIMO limit. Following the standard bounding

technique based on the worst case uncorrelated noise [10],

the uplink achievable rate of active user k can be written

down as

Rk =
T − L

T
log2(1 + γk), ∀k, (16)

where the signal-to-interference-plus-noise ratio (SINR) of

user k given the channel realization is shown in (17) on the

bottom of the page.

This paper considers two different receive beamforming

strategies, namely the MRC beamforming and MMSE beam-

forming, which are respectively defined as

wMRC
k = ĥk, (18)

wMMSE
k =
(

∑

n∈K

ρdataĥnĥ
H

n+
∑

n∈K

ρdataβnτ
2
∞

βn+τ2∞
I+σ2I

)−1

ĥk.

(19)

The following theorem characterizes the achievable rates

of each user with the MRC beamforming and the MMSE

beamforming, respectively, in our interested asymptotic

regime.

Theorem 2: Consider an uplink massive MIMO system

with M BS antennas serving K users. Assume that the

estimated channel and channel estimation error for each

active user k are Gaussian distributed with the covariance

matrices given in (3)-(6), i.e., ĥk ∼ CN (0,
β2
k

βk+τ2
∞

I) and

∆hk ∼ CN (0,
βkτ

2
∞

βk+τ2
∞

I), ∀k ∈ K. In the asymptotic

regime where both K,M go infinity but with their ratio kept

constant, i.e., K/M → µ with µ ∈ (0,∞), the achievable

rate for each user, assuming MRC beamforming (18) at the

BS, is given by (16), where

γMRC
k → β2

k

µE[β](βk + τ2∞)
, ∀k. (20)

The achievable rate for each active user, assuming MMSE

beamforming (19) at the BS, is given by (16), where

γMMSE
k → β2

k

βk + τ2∞
Γ, ∀k, (21)

with Γ being the unique finite fixed-point solution of the

following equation:

Γ =
1

µE
[

β2

β+τ2
∞

+β2Γ

]

+ µE
[

βτ2
∞

β+τ2
∞

] . (22)

γk =
ρdata|wH

k ĥk|2

ρdata
∑

n∈K,n6=k

|wH
k ĥn|2 + ρdata‖wk‖2

∑

n∈K

βnτ2
∞

βn+τ2
∞

+ σ2‖wk‖2
. (17)
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Proof: Please refer to Appendix B.

We remark that given the perfect user detection and

channel estimation characterization obtained in Part I of this

paper [2], Theorem 2 can also be obtained based on the

techniques used in [11]. Since we are considering a single-

cell rather than multi-cell setting, we are able to provide a

different and simpler proof in Appendix B. Note that this

two-part paper studies a different system as compared to

[11], since in [11] there are only K users who are assumed

to be always active, while in our paper, K out of N users

are active in each coherence interval, as result, the device

activity detection step has impact on the channel estimation

error, thus leading to more involved SINR expressions as

compare to [11].

We also remark that if the channel estimation had been

perfect, i.e., τ2∞ = 0 so that ĥk = hk, ∀k, the above theorem

reduces to known results in the literature. With the MRC

receive beamforming at the BS, each user’s SINR given in

(20) in this case reduces to

γMRC
k → βk

µE[β]
. (23)

This is the same result as in [13, Proposition 3.3].

Moreover, with the MMSE receive beamforming at the

BS, Γ as given in (22) in the perfect channel estimation case

reduces to the fixed-point solution to the following equation:

Γ =
1

µE
[

β
1+βΓ

] . (24)

As a result, each user’s SINR is the fixed-point solution to

the following equation:

γMMSE
k = βkΓ =

βk

µE
[

β
1+βΓ

] =
βk

µE
[

ββk

βk+βγMMSE
k

] , (25)

which is the same result as in [13, Theorem 3.1].

Observe that the user achievable rates under both the

MRC and MMSE beamforming strategies as shown in The-

orem 2 are finite, in contrast to the conventional single-cell

(thus without pilot contamination) massive MIMO scenario

with a small number of users, where the user achievable

rates go to infinite in the massive MIMO limit [7], [8].

This is because in a massive connectivity scenario where the

number of users is comparable with the number of antennas

at the BS, the total inter-user interference power seen by

each user is comparable to that of its desired signal, due to

the fact that although each interference alone is very weak

due to the channel asymptotic orthogonality, there are a large

number of interference sources in the system, resulting in

finite achievable rate.

It is also worth noting that the MRC beamforming is op-

timal in the conventional single-cell massive MIMO system

in the asymptotic limit of large number of BS antennas but

finite number of users, because the user channels become

orthogonal with each other in the limit, thus the inter-user

interference is asymptotically zero. But this is not the case

for the massive connectivity scenario under consideration in

User Detection and Channel Trainging
User Detection and 
Channel Training

L (T-L)/J (T-L)/J

…...Interval 1 Interval J

Fig. 1. User scheduling strategy in an overloaded system.

which the number of users also goes to infinity. Because

of the large number of interference sources in the system,

the inter-user interference remains significant with MRC

beamforming. In contrast, the MMSE beamforming strategy

can more effectively control the inter-user interference. As

a result, there is a performance gap between the MRC and

MMSE beamforming strategies in the massive connectivity

scenario.

B. User Scheduling for Overloaded System

The above analysis assumes that in the second phase, all

the K active users transmit simultaneously to the BS. It is

worth noting that in an overloaded system where the number

of active users is larger than the number of the antennas

at the BS, i.e., µ = K/M > 1, in general we should

further divide the second phase into J intervals such that in

each interval only K/J users are scheduled for information

transmission in order to control the inter-user interference,

as shown in Fig. 1. In the following, we formulate the user

achievable rates with scheduling in an overloaded system.

The optimization over J is treated later in Section VII. Note

that we assume a finite J such that K/J goes to infinity thus

Theorem 2 still applies to each scheduled interval.

First, consider the case with the MRC beamforming at

the BS. Note that for each interval the ratio between the

numbers of the scheduled users and the antennas at the BS

is reduced to K/(JM) = µ/J . Moreover, the transmission

time1 for each active user is reduced to (T − L)/J . As a

result, the rate expression for each active user becomes

RMRC,SC
k =

T − L

TJ
log2(1 + γMRC,SC

k ), ∀k, (26)

where the SINR is

γMRC,SC
k → Jβ2

k

µE[β](βk + τ2∞)
. (27)

Moreover, with the MMSE beamforming at the BS, the

achievable rate for each active user is given by

RMMSE,SC
k =

T − L

TJ
log2(1 + γMMSE,SC

k ), ∀k, (28)

where the SINR is

γMMSE,SC
k → β2

k

βk + τ2∞
Γ, (29)

1We ignore the overhead for informing each active user of the index of
its scheduled interval since it is negligible compared to L.
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with Γ the fixed-point solution to

Γ =
J

µE
[

β2

β+τ2
∞

+β2Γ

]

+ µE
[

βτ2
∞

β+τ2
∞

] . (30)

C. High SNR Approximation of User Rate

When the overall system operates in the regime L > K ,

and if we assume high SNR, we can use (11) to approximate

τ2∞ in the above rate expressions. In this case, (11) can be

further simplified as τ2∞ = σ2

ρpilot(L−K)
. Further, for practical

systems with finite K and M , expressions such as µE[β] can

be replaced by their emperical average, i.e., 1
M

∑

k∈K βk.

With the above approximations, for the case without user

scheduling, the user SINRs using the MRC and the MMSE

receive beamforming as given in (20) and (21), respectively,

reduce to

γMRC
k ≈ β2

k
1
M

∑

n∈K

βn(βk +
σ2

ρpilot(L−K)
)
, ∀k, (31)

γMMSE
k ≈ β2

k

βk + σ2

ρpilot(L−K)

Γ, ∀k, (32)

with Γ being the unique solution to the following equation:

1

Γ
=

1

M

∑

n∈K

β2
n

βn + σ2

ρpilot(L−K)
+ β2

nΓ

+
1

M

∑

n∈K

βnσ
2

ρpilot(L−K)

βn + σ2

ρpilot(L−K)

. (33)

For the case with user scheduling, we have:

γMRC,SC
k ≈ Jβ2

k
1
M

∑

n∈K

βn(βk +
σ2

ρpilot(L−K)
)
, ∀k, (34)

γMMSE,SC
k ≈ β2

k

βk +
σ2

ρpilot(L−K)

Γ, ∀k, (35)

with Γ being the unique solution to the following equation:

J

Γ
=

1

M

∑

n∈K

β2
n

βn + σ2

ρpilot(L−K)
+ β2

nΓ

+
1

M

∑

n∈K

βnσ
2

ρpilot(L−K)

βn + σ2

ρpilot(L−K)

. (36)

V. COST OF MASSIVE DEVICE DETECTION

One of the main results from Part I of this paper [2] is

that in the massive MIMO regime, user activity detection

can always be made with negligible probability of error.

What is then the cost of device detection? A goal of the

Part II of this paper is to illustrate that the cost of device

detection arises as consequence of significantly larger chan-

nel estimation error due to the use of non-orthogonal pilot

sequences. This section quantifies such cost by comparing

the user achievable rate as given in the previous section to

the achievable rate of the widely studied massive MIMO

system with known user activity but with imperfect channel

estimation. We focus on the L > K regime in order to

have reasonable channel estimation error. For simplicity, we

ignore the issue of scheduling and assume that all active

users transmit simultaneously in the second phase.

When the user activities are perfectly known at the BS,

Phase I of the transmission then consists of only the K active

users sending their pilot sequences to the BS for channel

estimation purpose. Similar to (2), the received signal at the

BS is

Y =
√

ρpilotL
∑

k∈K

akh
H
k +Z

=
√

ρpilotLAKHK +Z, (37)

where AK = [· · · ,ak, · · · ] ∈ CL×K with ‖ak‖2 = 1 and

HK = [· · · ,hk, · · · ]H ∈ CK×M are the collections of the

pilot sequences and channels for all the active users k ∈ K.

Differing, however, from the massive connectivity sce-

nario where the pilot sequences must be non-orthogonal,

e.g., the entries of A in (2) are generated based on the

i.i.d. Gaussian distribution, in the case with prior user

activity information, it is the best to assign orthogonal pilot

sequences with length L ≥ K to the active users [10], i.e.,

AH
KAK = I . The BS then applies matching filter, i.e., AH

K ,

to its received signal (37), resulting in

ĥk =
√

ρpilotLhk + (aH
k Z)H , ∀k ∈ K. (38)

Note that the equivalent noise is distributed as (aH
k Z)H ∼

CN (0, σ2I). It can be shown that if the MMSE channel

estimation is used on the channel model (38), the estimated

channels and their uncorrelated channel estimation errors are

distributed as ĥk ∼ CN
(

0,
β2
k

βk+σ2/(ρpilotL)
I
)

and ∆hk ∼
CN

(

0, βkσ
2/(ρpilotL)

βk+σ2/(ρpilotL)I
)

, ∀k ∈ K, respectively [8]. Similar

to Theorem 2 and by using the approximation technique

used in Section IV-C, the users’ rates achieved by the MRC

and MMSE beamforming strategies in the regime L > K
can be shown to be as given in (16), where

γMRC
k ≈ β2

k
1
M

∑

n∈K

βn(βk +
σ2

ρpilotL )
, ∀k, (39)

γMMSE
k ≈ β2

k

βk +
σ2

ρpilotL

Γ, ∀k, (40)

with Γ being the unique solution to the following equation:

1

Γ
=

1

M

∑

n∈K

β2
n

βn + σ2

ρpilotL + β2
nΓ

+
1

M

∑

n∈K

βnσ
2

ρpilotL

βn + σ2

ρpilotL

. (41)

Comparing to the massive connectivity scenario with-

out prior user activity information, for which the SINRs

achieved by the MRC and MMSE beamforming are given

in (31) and (32), respectively, it can be observed that the
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cost of user activity detection lies in the effective channel

estimation error, which increases from σ2

ρpilotL
to σ2

ρpilot(L−K)
.

As mentioned earlier, the reason for this cost is that for the

massive connectivity scenario, since L < N , it is impossible

to assign orthogonal pilot sequences to all N users. If the

entries of A are generated according to i.i.d. Gaussian dis-

tribution, although the user activity detection by the vector

AMP algorithm is perfect due to the results in Part I of this

paper [2], this choice of A nevertheless results in larger

channel estimation error because of multiuser interference

as compared to the case where orthogonal pilot sequences

can be used. This is reminiscent of the well-known inter-cell

pilot contamination problem in conventional massive MIMO

systems, except that the contamination now comes from the

non-orthongal pilots within the cell as the cost of supporting

massive connectivity.

VI. OPTIMIZATION OF PILOT LENGTH

The characterization of the channel estimation error and

user achievable rates also allows an optimization of the pilot

sequence length for maximizing the system sum rate. Longer

pilot sequences result in better channel estimation but shorter

data transmission time, and vice versa, so there is an optimal

L that balances the two effects. Again in this section, we

ignore scheduling and assume that all active users transmit

simultaneously in the second phase. The optimization of user

scheduling is discussed in the next section.

First, consider the case with MRC beamforming at the BS.

According to (16) and (31), in the practical regime of L >
K , the sum rate maximization problem can be expressed as

max
K<L<T

T − L

T

∑

k∈K

log2






1 +

Mβ2
k

∑

n∈K

βn(βk +
σ2

ρpilot(L−K)
)







(42)

Theorem 3: The objective function of problem (42) is a

concave function over L in the range K < L < T , if L is

relaxed as a real number.

Proof: Please refer to Appendix C.

According to Theorem 3, problem (42) can be globally

solved as follows. First, we ignore the constraint that L
is an integer and solve the relaxed convex version of

problem (42). Let L∗ denote the optimal solution, which

is not necessarily an integer. Then, L∗ either rounding up

or rounding down to the next integer value would be the

optimal pilot sequence length, depending on which way

maximizes the user sum rate.

Next, consider the case when the MMSE beamforming

is employed at the BS. According to (16) and (32), in the

case of L > K , the sum rate maximization problem over

the pilot sequence length for the MMSE beamforming case

is

max
K<L<T

T − L

T

∑

k∈K

log2

(

1 +
β2
k

βk +
σ2

ρpilot(L−K)

Γ

)

(43)

where Γ is the solution to (33). However, since Γ is a com-

plicated function of L, it is non-trivial to solve the problem

(43). Nevertheless, the optimal pilot sequence length for

the MMSE beamforming case can be obtained by a one-

dimension search.

VII. OPTIMIZATION OF USER SCHEDULING

We now consider the question of in an overloaded system

with more users than the number of BS antennas, what the

optimal number of scheduling intervals J should be chosen

as for maximizing the systme sum rate. Assuming L > K ,

consider first the case of MRC beamforming at the BS.

According to the user rate expressions given in (26) and

(34), the sum rate maximization problem over J can be

formulated as

max
J≥1

T − L

TJ

∑

k∈K

log2






1 +

JMβ2
k

∑

n∈K

βn(βk + σ2

ρpilot(L−K)
)







(44)

Theorem 4: The objective function of problem (44) is a

monotonically decreasing function over J . As a result, the

optimal solution to problem (44) is J∗ = 1.

Proof: Please refer to Appendix D.

Intuitively, Theorem 4 implies that under MRC, if we

reduce the number of scheduled users in each interval, the

sacrifice of data transmission time plays a more significant

role on user sum rate than the reduction in inter-user

interference. Such a phenomenon reveals the inefficiency of

MRC beamforming in an overloaded system, since even user

scheduling cannot improve the user sum rate.

Next, consider the case when the MMSE beamforming

is employed at the BS. According to the user rate given in

(28) and (35), the sum rate maximization problem over J
can be formulated as

max
J≥1

T − L

TJ

∑

k∈K

log2

(

1 +
β2
k

βk +
σ2

ρpilot(L−K)

Γ

)

(45)

where Γ is the solution to (36). Since the solution to (36) is a

complicated function of J , it is non-trivial to solve problem

(45) analytically. However, the optimal solution to problem

(45) can be easily obtained numerically via a one-dimension

search.

Differing from the case of MRC beamforming at the

BS, as shown later by numerical simulations, the optimal

solution to problem (45) is J strictly larger than 1 in general.

Thus, user scheduling can significantly improve the user sum

rate when the MMSE beamforming is employed at the BS.

VIII. NUMERICAL EXAMPLES

In this section, we provide numerical examples to verify

the main results of this paper. The setup is the same as in

the numerical simulations in Part I of this paper. There are

N = 2000 users in a single cell. Let dn denote the distance

between user n and the BS, ∀n. It is assumed that dn’s
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Fig. 2. Fixed point of state evolution when each of the N = 2000 users
accesses the channel with probability ǫ = 0.05 or ǫ = 0.075 in each
coherence time; the BS has M = 128 antennas, and the SNR of the
farthest user is 14dB.

are randomly distributed in the regime [0.05km, 1km]. The

path loss model of the wireless channel for user n is given

as βn = −128.1−36.7 log10(dn) in dB, ∀n. The bandwidth

and the coherence time of the wireless channel are 1MHz

and 1ms, respectively, thus in each coherence block T =
1000 symbols can be transmitted. The transmit power for

each user at both the first and second transmission phases is

ρpilot = ρdata = 23dBm. The power spectral density of the

AWGN at the BS is assumed to be −169dBm/Hz. Moreover,

all the following numerical results are obtained by averaging

over 100, 000 channel realizations.

A. Fixed-Point of State Evolution for AMP

Fig. 2 shows the numerical evaluation of the fixed-point

solution to the state evolution of AMP, which is used for

characterizing the channel estimation error. In this numerical

example, each of the N users accesses the channel with

probability ǫ = 0.05 or ǫ = 0.075 in each coherence time

(around K = 100 or K = 150 users are active), and the

number of antennas at the BS is M = 128. Note that in

this example, the SNR of the farthest user, which is 1km

away from the BS, is 14dB. Fig. 2 shows the comparison

between the numerical evaluation of the fixed point (8) and

the high-SNR approximation given in (11) in Theorem 1 for

different values of L. Note that the transmit power is set to

be ξ = Lρpilot so that (11) reduces to τ2∞ = σ2

ρpilot(L−K) .

It is observed that (11) is a very good approximation of the

exact fixed-point solution in this practical SNR range when

L > K .

B. Cost for User Activity Detection on User Rates

Next we quantify the cost of user activity detection on

achievable rates. Figs. 3 and 4 show the user sum rates
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(b) MRC Receive Beamforming with M = 256

Fig. 3. User sum rate comparison with MRC receive beamforming between
the cases with and without prior user activity information at the BS when
each of the N = 2000 users accesses the channel with probability ǫ = 0.05

in each coherence time and the BS has M = 128 or 256 antennas.

versus the length of the pilot sequences L for both the

cases of MRC and MMSE beamforming at the BS. In this

numerical example, there are M = 128 or M = 256
antennas at the BS and each of the N = 2000 users accesses

the channel with probability ǫ = 0.05 at each coherence

time (around K = 100 users are active). As baseline, the

scenario with prior information on user activity known at the

BS is also plotted, where orthogonal pilot sequences can be

assigned to the active users for channel estimation in the

first phase.

With the MRC beamforming at the BS, it is observed

from Fig. 3 that for the case without prior information of

the user activity, the theoretical result shown in Theorem

2 and the high-SNR approximation (16) and (31) both

perfectly match the numerical result for various values of L.



10

100 150 200 250

Pilot Sequence Length:  L

380

400

420

440

460

480

500

520

540

560

580
S

um
 R

at
e 

(b
ps

/H
z)

AMP: Numerical
AMP: Predicated by Theorem 2
AMP: High SNR Approximation
Known User Activity

(a) MMSE Receive Beamforming with M = 128

100 150 200 250

Pilot Sequence Length:  L

600

650

700

750

800

850

900

950

1000

S
um

 R
at

e 
(b

ps
/H

z)

AMP: Numerical
AMP: Predicated by Theorem 2
AMP: High SNR Approximation
Known User Activity

(b) MMSE Receive Beamforming with M = 256

Fig. 4. User sum rate comparison with MMSE receive beamforming
between the cases with and without prior user activity information at the BS
when each of the N = 2000 users accesses the channel with probability
ǫ = 0.05 in each coherence time and the BS has M = 128 or M = 256

antennas.

Moreover, it is observed that the optimal pilot lengths are

L = K = 100 and L = 110 for the cases with and without

prior information of the user activity at the BS, respectively.

Note that without prior information of the user activity,

the MSE for channel estimation is larger, thus more time

needs to be spent in the first phase to improve the channel

estimation accuracy. Finally, it is observed that maximal sum

rates for the cases with and without prior information of

user activity at the BS are very close, indicating that the

cost of user activity detection is quite small under MRC

beamforming.

The user achievable rate can be dramatically improved,

however, if MRC beamforming is replaced with MMSE

beamforming, as shown in Fig. 4. It can be observed

from Fig. 4 that with the MMSE beamforming at the BS,
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Fig. 5. User sum rate versus different numbers of scheduled intervals in
the second transmission phase when each of the N = 2000 users accesses
the channel with probability ǫ = 0.15 in each coherence time and the BS
has M = 64 antennas.

the theoretical result shown in Theorem 2 and the high-

SNR approximation (16) and (32)-(33) perfectly match the

numerical result for all values of L. Moreover, it is observed

that the optimal pilot length is L = 160 when user activity

is not known a priori at the BS, and the cost of user

activity detection is about 10% of the overall sum rate.

Note that this optimal length is much longer than that

for the case with MRC beamforming, which is L = 110.

This is because different from the MRC beamforming, the

MMSE beamforming for each user is a function of the

estimated channels of all the users, as shown in (19). As

a result, the performance of MMSE beamforming is more

sensitive to the channel estimation error, thus we should

allocate more time for channel training. Given the significant

sum rate improvement of MMSE beamforming over MRC

beamforming, this is a small price to pay.

It is worth emphasizing that MRC is not well suited

for massive connectivity applications, because as explained

earlier it is unable to mitigate the significant multiuser

interference stemmed from a large number of devices. The

fact that MMSE beamforming is capable of achieving five

or six times higher sum rate than MRC, as shown in Figs. 3

and 4, illustrates that MMSE rather than MRC beamforming

should be used for massive connectivity applications, even

though MRC would have been adequate in conventional

massive MIMO systems.

C. The Impact of User Scheduling on User Rates

Finally, we study the impact of user scheduling in an

overloaded system. In this example, we assume that there

are M = 64 antennas at the BS and each of the N = 2000
users accesses the channel with probability ǫ = 0.15 at each

coherence time (around K = 300 users are active) such that

µ = K
M > 1. It is further assumed that the pilot sequence
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length is L = 400. Fig. 5 shows the user sum rate versus

the number of scheduled intervals of the data transmission

phase J . For the case of MRC beamforming at the BS,

it is observed that the user sum rate decreases with the

number of scheduled intervals J , which verifies Theorem

4. This is in fact an indication of the inefficiency of MRC

beamforming in an overloaded system. In contrast, for the

MMSE beamforming, it is observed that user scheduling

can significantly enhance the overall sum rate. Specifically,

in this numerical example the optimal strategy is to schedule

60 users in each of J = 5 intervals such that for any

particular interval the system is almost fully loaded. This

example shows that for massive connectivity applications

with massive MIMO, if the number of users is much larger

than the number of antennas at the BS, combining user

scheduling together with MMSE receive beamforming at

the BS can be a good strategy for managing multiuser

interference.

IX. CONCLUSION AND FUTURE WORK

This two-part paper illustrates that massive MIMO is

ideally suited for massive connectivity applications. The

main technical contribution of the overall two-part paper is

a characterization of the effect of using non-orthogonal pilot

sequences for massive device activity detection, channel

estimation, and data transmission. The main conclusion of

this Part II of the paper is that despite perfect device activity

detection in the massive MIMO regime, a loss in the overall

achievable transmission rate nevertheless arises as compared

to the conventional massive MIMO system because of the

significantly larger channel estimation error due to the non-

orthogonality of pilot sequences. We also show that for

massive connectivity applications, it is essential to use

MMSE beamforming instead of MRC; the optimal pilot

length should be longer than that in conventional massive

MIMO systems in order to compensate for the additional

channel estimation error; finally scheduling can enhance the

overall transmission rate.

There are a number of directions along which the results

of this paper can be further extended. First, we mention that

power control has not been taken into account. In this paper,

all the active users transmit with an identical transmit power

in each of the first and second phases. It is conceivable that

users far away from the BS can be assigned with higher

power so that a more fair rate distribution among all the

active users can be achieved. Second, this paper has not

addressed the issue of optimal scheduling. Future work on

how to select the active users in each scheduled interval to

maximize user achievable rate will be of interest. Further,

the results of this paper are restricted to single-cell scenarios.

Future work can extend the existing results to account for

inter-cell interference and to investigate ways to provide

adequate coverage to cell-edge users.

APPENDIX

A. Proof of Theorem 1

First, we show that when ωǫ < 1, the fixed point of the

simplified state evolution

τ2∞ =
σ2

ξ
+ ωǫEβ

[

βτ2∞
β + τ2∞

]

, (46)

is unique. Define

f(x) = x− ωǫEβ

[

βx

β + x

]

− σ2

ξ
, x ≥ 0. (47)

It can be easily shown that f(x) is a continuous function of

x. Moreover, the derivative of f(x) is

f ′(x) = 1− ωǫEβ

[

β2

(β + x)2

]

, x ≥ 0. (48)

When ωǫ < 1, we have f ′(x) ≥ 0, thus f(x) is a monoton-

ically increasing function for x ∈ [0,∞). Consequently, the

fixed point of (46) is unique.

Second, we show that the fixed-point solution of (46) is

bounded by (10) if ωǫ < 1. It can be easily seen from (46)

that τ2∞ ≥ σ2/ξ. Moreover, we have

τ2∞ =
σ2

ξ
+ ωǫEβ

[

βτ2∞
β + τ2∞

]

≤ σ2

ξ
+ ωǫτ2∞, (49)

where the inequality is because βτ2∞/(β+τ2∞) ≤ τ2∞, ∀β ≥
0. As a result, if ωǫ < 1, it follows that τ2∞ ≤ σ2/((1 −
ωǫ)ξ).

Next, we verify that when ξβmin

σ2 → ∞,

τ2∞ =
σ2

ξ(1− ωǫ)
(50)

is a fixed-point solution of (46). Substituting the above τ2∞
into the right-hand side of the simplified state evolution, we

have

σ2

ξ
+ ωǫEβ

[

βτ2∞
β + τ2∞

]

=
σ2

ξ
+

σ2ωǫ

ξ(1− ωǫ)
Eβ

[

1

1 + σ2

βξ(1−ωǫ)

]

→ σ2

ξ
+

σ2ωǫ

ξ(1 − ωǫ)

=
σ2

ξ(1− ωǫ)
= τ2∞, (51)

where the second last line is due to the high SNR assumption

and that ωǫ < 1. This verifies that (50) is the unique solution

to (46) in the high SNR limit.

B. Proof of Theorem 2

With the MRC beamforming given in (18), it can be

shown that the SINR of user k given in (17) reduces to

γMRC
k =

ρdata‖ĥk‖4

ρdata
∑

n∈K,n6=k

|ĥH

k ĥn|2+ρdata‖ĥk‖2
∑

n∈K

βnτ2
∞

βn+τ2
∞

+σ2‖ĥk‖2
.

(52)
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If the estimated channels are distributed as ĥn ∼
CN (0,

β2
n

βn+τ2
∞

I), ∀n ∈ K, as M → ∞, it thus follows

that

‖ĥk‖2
M

→
(

β2
k

βk + τ2∞

)

, (53)

and

‖ĥk‖2
∑

n∈K

βnτ
2
∞

βn+τ2
∞

KM
→ E

[

βτ2∞
β + τ2∞

](

β2
k

βk + τ2∞

)

. (54)

Moreover, according to Appendix B in [13], we have

∑

n∈K,n6=k

|ĥH

k ĥn|2

KM
→ E

[

β2

β + τ2∞

]

β2
k

βk + τ2∞
. (55)

As a result, as M → ∞, each active user’s achievable SINR

converges to

γMRC
k

→
ρdataM2

(

β2
k

βk+τ2
∞

)2

ρdataKME

[

β2

β+τ2
∞

+
βτ2

∞

β+τ2
∞

] (

β2
k

βk+τ2
∞

)

+σ2M
(

β2
k

βk+τ2
∞

)

→ β2
k

µE[β](βk + τ2∞)
, ∀k, (56)

thus establishing (20).

With the MMSE beamforming given in (19), it can be

shown that the SINR of user k given in (17) reduces to

γMMSE
k = ρdataĥ

H

k





∑

n∈K,n6=k

ρdataĥnĥ
H

n

+
∑

n∈K

ρdataβnτ
2
∞

βn + τ2∞
I + σ2I

)−1

ĥk. (57)

If the estimated channels are distributed as ĥk ∼
CN (0,

β2
k

βk+τ2
∞

I), ∀k ∈ K, as M → ∞, it thus follows

that

γMMSE
k

→ ρdataβ2
k

M(βk + τ2∞)
tr

((

∑

n∈K,n6=k

ρdataĥnĥ
H

n

M

+
∑

n∈K

ρdataβnτ
2
∞

M(βn + τ2∞)
I +

σ2

M
I

)−1)

(58)

→ ρdataβ2
k

M(βk + τ2∞)
tr

((

∑

n∈K

ρdataĥnĥ
H

n

M

+
∑

n∈K

ρdataβnτ
2
∞

M(βn + τ2∞)
I +

σ2

M
I

)−1)

(59)

→ ρdataβ2
k

M(βk + τ2∞)
tr

((

∑

n∈K

ρdataβ2
n

M(1 + en)(βn + τ2∞)
I

+
∑

n∈K

ρdataβnτ
2
∞

M(βn + τ2∞)
I +

σ2

M
I

)−1)

(60)

→ β2
k

βk + τ2∞
· 1

µE
[

β2

(1+e)(β+τ2
∞

)

]

+ µE
[

βτ2
∞

β+τ2
∞

]

+ σ2

Mρdata

(61)

→ β2
k

βk + τ2∞
· 1

µE
[

β2

(1+e)(β+τ2
∞)

]

+ µE
[

βτ2
∞

β+τ2
∞

] , (62)

where

ek =
1

M
tr

(

E

(

ρdataĥkĥ
H

k

)

(

∑

n∈K

E

(

ρdataĥnĥ
H

n

)

M(1 + en)

+
∑

n∈K

ρdataβnτ
2
∞

M(βn + τ2∞)
I +

σ2

M
I

)−1)

→ ρdataβ2
k

M(βk + τ2∞)
tr

((

∑

n∈K

ρdataβ2
n

M(1 + en)(βn + τ2∞)
I

+
∑

n∈K

ρdataβnτ
2
∞

M(βn + τ2∞)
I +

σ2

M
I

)−1)

→γMMSE
k . (63)

In the above, (58) is due to [14, Lemma 4], (59) is due to

[14, Lemma 6], (60) is due to [14, Theorem 1], and (63) is

due to (60).

As a result, the user SINRs are the fixed-point solution

to the following equations:

γMMSE
k =

β2
k

βk + τ2∞
·

1

µE
[

β2

(1+γMMSE)(β+τ2
∞

) +
βτ2

∞

β+τ2
∞

] , ∀k ∈ K.

(64)

Define

Γ =
1

µE
[

β2

(1+γMMSE)(β+τ2
∞) +

βτ2
∞

β+τ2
∞

] . (65)

Then, (64) reduces to

γMMSE
k =

β2
k

βk + τ2∞
· Γ, ∀k ∈ K. (66)

By taking (66) into both the left-hand side and right-hand

side of the equation given in (64), it can be shown that Γ is

the fixed-point solution to the following equation:

Γ =
1

µE

[

β2

(1+ β2

β+τ2
∞

×Γ)(β+τ2
∞

)
+

βτ2
∞

β+τ2
∞

] (67)

=
1

µE
[

β2

β+τ2
∞+β2Γ

]

+ µE
[

βτ2
∞

β+τ2
∞

] . (68)
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At last, we prove the uniqueness of the fixed-point solu-

tion to (22). First, it can be observed that Γ = 0 is not the

fixed-point solution. Divide both the left-hand side and right-

hand side of (22) by Γ and consider the following function:

f(Γ) =
1

µE
[

β2Γ
β+τ2

∞+β2Γ

]

+ µE
[

βτ2
∞Γ

β+τ2
∞

] − 1. (69)

It can be shown that f(Γ) is a decreasing function over Γ
when Γ ≥ 0. Moreover, we have f(Γ → ∞) → −1 < 0 and

f(Γ = 0) → ∞ > 0. As a result, the must be a unique finite

solution to f(Γ) = 0, which is the unique finite fixed-point

solution to (22).

Theorem 2 is thus proved.

C. Proof of Theorem 3

Suppose L is relaxed as a real number. For convenience,

define

fk(L) = log2






1 +

β2
k

1
M

∑

n∈K

βn(βk + σ2

ρpilot(L−K)
)






,

(70)

f(L) =
∑

k∈K

fk(L), (71)

g(L) =
T − L

T
f(L). (72)

Note that g(L) is the objective function of problem (42).

First, we study the function fk(L). Define

ak = β2
k +

1

M

∑

n∈K

βnβk, ∀k ∈ K. (73)

It can be shown that the first-order derivative of fk(L) is

f ′
k(L)

=

β2
kσ

2

ρpilot log 2
(

ak(L −K) +

1
M

∑

n∈K

βnσ2

ρpilot

)

(

βk(L−K) + σ2

ρpilot

)

> 0, if L > K. (74)

Moreover, it can be observed that f ′
k(L) is a monotonically

decreasing function of L if L > K . As a result, it follows

that f ′′
k (L) < 0, ∀k. It then follows that f ′(L) > 0 and

f ′′(L) < 0 when L > K .

Next, we study the function g(L). It can be shown that

the first and second-order derivatives of g(L) are

g′(L) =
−f(L) + (T − L)f ′(L)

T
, (75)

g′′(L) =
−2f ′(L) + (T − L)f ′′(L)

T
. (76)

Since f ′(L) > 0 and f ′′(L) < 0, it then follows that

g′′(L) < 0 when L/K > 1. As a result, if L is relaxed

as a real number, the objective function of problem (42) is

a concave function of L when L/K > 1. Theorem 3 is thus

proved.

D. Proof of Theorem 4

For convenience, define x = 1/J . Then, according to (26)

and (27), the rate of user k is given as

fk(x) =
(T − L)x

T
log2






1 +

Mβ2
k

∑

n∈K

βn(βk + σ2

ρpilot(L−K))x






.

(77)

Let us first ignore the constraint that J is an integer, thus x
is a continuous variable. In this case, it can be shown that

the first-order derivative of fk(x) is

f ′
k(x) =

T − L

T
log2






1 +

β2
k

1
M

∑

n∈K

βn(βk + σ2

ρpilot(L−K)
)x







− T − L

T ln 2

β2
k

1
M

∑

n∈K

βn(βk + σ2

ρpilot(L−K)
)x+ β2

k

.

(78)

Moreover, the second-order derivative of fk(x) is

f ′′
k (x) = −T − L

T ln 2

β4
k

[ 1
M

∑

n∈K

βn(βk +
σ2

ρpilot(L−K)
)x + β2

k]
2x

< 0. (79)

As a result, f ′
k(x) is a decreasing function of x. It can

be shown that f ′
k(x → ∞) → 0. It then follows that

f ′
k(x) > f ′

k(x → ∞) = 0, i.e., fk(x) is an increasing

function of x. Note that x = 1/J , it thus follows that

each user’s rate is a decreasing function of J . In other

words, J = 1 maximizes each user’s rate. Consequently, the

objective function of problem (44) is a decreasing function

over J and the optimal solution to problem (44) is J∗ = 1.

Theorem 4 is thus proved.
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