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Multiple Object Tracking in Unknown Backgrounds
with Labeled Random Finite Sets

Yuthika Punchihewa, Ba-Tuong Vo, Ba-Ngu Vo and Du Yong Kim

Abstract—This paper proposes an on-line multiple object
tracking algorithm that can operate in unknown background.
In a majority of multiple object tracking applications, model
parameters for background processes such as clutter and detec-
tion are unknown and vary with time, hence the ability of the
algorithm to adaptively learn the these parameters is essential
in practice. In this work, we detail how the Generalized Labeled
Multi-Bernouli (GLMB) filter, a tractable and provably Bayes
optimal multi-object tracker, can be tailored to learn clutter and
detection parameters on-the-fly while tracking. Provided that
these background model parameters do not fluctuate rapidly
compared to the data rate, the proposed algorithm can adapt to
the unknown background yielding better tracking performance.

Index Terms—Random finite sets, generalized labeled multi-
Bernoulli, multi-object tracking, data association, optimal assign-
ment, ranked assigment, Gibbs sampling

I. INTRODUCTION

In a multi-object scenario the number of objects and their
individual states evolve in time, compounded by false detec-
tions, misdetections and measurement origin uncertainty [1]–
[4]. For example, in the video dataset KITTI-17 from KITTI
datasets [5], see Fig. 1, the number of objects varies with
time due to objects coming in and out of the scene, and the
detector (e.g. background subtraction, foreground modelling
[6]) used to convert each image into point measurements,
invariably misses objects in the scene as well as generating
false measurements or clutter.

Knowledge of parameters for uncertainty sources such as
clutter and detection profile are of critical importance in
Bayesian multi-object filtering, arguably, more so than the
measurement noise model. Most multi-object tracking tech-
niques are built on the assumption that multi-object system
model parameters are known a priori, which is generally not
the case in practice [1]–[4]. Significant mismatches in clutter
and detection model parameters inevitably result in erroneous
estimates. For the video tracking example in Fig. 1 the clutter
rate and detection profile are not known and have to be guessed
before a multi-object tracker can be applied. The tracking
performance of the Bayes optimal multi-object tracking filter
[7], [8], for the guessed clutter rate and ’true’ clutter rate (that
varies with time as shown in Fig. 2), demonstrates significant
performance degradation.

Except for a few applications, the clutter rate and detection
profile of the sensor are not available. Usually these parameters
are either estimated from training data or manually tuned.

However, a major problem in many applications is the time-
varying nature of the misdetection and clutter processes, see
Fig. 2 for example. Consequently, there is no guarantee that the
model parameters chosen from training data will be sufficient
for the multi-object filter at subsequent frames. Thus, current
multi-object tracking algorithms are far from being a ’plug-
and-play’ technology, since their application still requires
cumbersome and error-prone user configuration.

This paper proposes an online multi-object tracker that
learns the clutter and detection model parameters while track-
ing. Such capability is essential for applications where the
clutter rate and detection profile vary with time. Specifically,
we detail a GLMB filter for Jump Markov system (JMS),
which is applicable to tracking multiple manuevering objects
as well as joint tracking and classification of multiple objects.
Using the JMS-GLMB filter, we develop a multi-object tracker
that can adaptively learn clutter rate and detection profile
while tracking, provided that the detection profile and clut-
ter background do not change too rapidly compared to the
measurement-update rate. An efficient implementation of the
proposed filter and experiments confirm markedly improved
performance over existing multi-object filters for unknown
background such as the λ-CPHD filter [9]. Preliminary results
have been reported in [10], which outlines a GLMB filter for
jump-Markov system model.

We remark that robust Bayesian approaches to problems
with model mismatch in the literature such as [11]–[16] are too
computationally intensive for an on-line multi-object tracker.
A Sequential Monte Carlo technique for calibration of time-
invariant multi-object model parameters was proposed in [17].
While this approach is quite general it is not directly applicable
to time-varying clutter rate and detection profile, and is also
too computationally intensive for an on-line tracker. Previous
work on CPHD/PHD, multi-Bernoulli and multi-target Bayes
filters for unknown clutter rate and detection profile [9], [18]–
[23] do not output object tracks. Further, the CPHD/PHD,
multi-Bernoulli filters require more drastic approximations
than the GLMB filter.

The remainder of paper is organized as follows. Section
II provides background material on multi-object tracking and
the GLMB filter. Section III details two versions of the
GLMB filter for a general multi-object JMS model and a non-
interacting multi-object JMS model. Section IV presents an
efficient implementation of the non-interacting JMS-GLMB
filter for tracking in unknown clutter rate and detection profile.
Numerical studies are presented in Section V and concluding
remarks are given in Section VI.
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Fig. 1: Frames 16, 48 of the image sequence from [5] and object detections obtained using the detector in [35]. The number
of objects varies with time due to objects coming in and out of the scene. Object estimates (marked by blue boxes) using the
standard GLMB filter for guessed clutter rate of 60 (left column) and ’true’ clutter rate (right column). Tracking using ’true’
clutter rate accurately estimated several objects that were missed in the frames on the left.

Fig. 2: ’True’ clutter rate for the first 60 frames of the dataset
[5]. Note that it is not possible to know the true clutter rate for
real video data. For illustration we assume that the clutter rate
varies slowly and use the average clutter count over a moving
10-frame window as the ’true’ clutter rate.

II. BACKGROUND

This section reviews relevant background on the random
finite set (RFS) formulation of multi-object tracking and the
GLMB filter. Throughout the article, we adopt the following
notations. For a given set S, |S| denotes its cardinality (number
of elements), 1S(·) denotes the indicator function of S, and
F(S) denotes the class of finite subsets of S. We denote the
inner product

∫
f(x)g(x)dx by 〈f, g〉, the list of variables

Xm, Xm+1, ..., Xn by Xm:n, the product
∏
x∈X f(x) (with

f∅ = 1) by fX , and a generalization of the Kroneker delta
that takes arbitrary arguments such as sets, vectors, integers
etc., by

δY [X] ,

{
1, if X = Y
0, otherwise .

A. Multi-object State

At time k, an existing object is described by a vector xk ∈
X. To distinguish different object trajectories, each object is
identified by a unique label `k that consists of an ordered
pair (t, i), where t is the time of birth and i is the index of
individual objects born at time t [7]. The trajectory of an object
is given by the sequence of states with the same label.

Formally, the state of an object at time k is a vector
xk = (xk, `k) ∈ X× Lk, where Lk denotes the label space
for objects at time k (including those born prior to k). Note
that Lk is given by Bk ∪ Lk−1, where Bk denotes the label
space for objects born at time k (and is disjoint from Lk−1).

In the RFS approach to multi-object tracking [3], [4]. the
collection of object states, referred to as the multi-object state,
is naturally represented as a finite set [24]. Suppose that there
are Nk objects at time k, with states xk,1, ...,xk,Nk

, then the
multi-object state is defined by the finite set

Xk = {xk,1, ...,xk,Nk
} ∈ F(X× Lk),

We denote the set {` : (x, `) ∈ X} of labels of X by L(X).
Note that since the label is unique, no two objects have the
same label, i.e. δ|X|[|L(X)|] = 1. Hence ∆(X) , δ|X|[|LX|]
is called the distinct label indicator.

A labeled RFS is a random variable on F(X×L) such that
each realization has distinct labels. The distinct label property
ensures that at any time no two tracks can share any common
points. For the rest of the paper, we follow the convention
that single-object states are represented by lower-case letters
(e.g. x, x), while multi-object states are represented by upper-
case letters (e.g. X , X), symbols for labeled states and their
distributions are bold-faced (e.g. x, X, π, etc.), and spaces
are represented by blackboard bold (e.g. X, Z, L, etc.). For
notational compactness, we drop the time subscript k, and use
the subscript ‘+’ for time k + 1.

B. Standard multi-object system model

Given the multi-object state X at time k, each state (x, `) ∈
X either survives with probability PS(x, `) and evolves to
a new state (x+, `+) at time k + 1 with probability density
f+(x+|x, `)δ`[`+] or dies with probability 1 − PS(x, `). The
set B+ of new objects born at time k + 1 is distributed
according to the labeled multi-Bernoulli (LMB) density

∆(B+)
[
1B+

rB,+
]L(B+)

[1− rB,+]
B+−L(B+)

p
B+

B,+, (1)



3

where rB,+(`) is the probability that a new object with label
` is born, pB,+(·, `) is the distribution of its kinematic state,
and B+ is the label space of new born objects [7]. The multi-
object state X+ (at time k+1) is the superposition of surviving
objects and new born objects. Note that the label space of all
objects at time k + 1 is the disjoint union L+ = L ] B+. It
is assumed that, conditional on X, objects move, appear and
die independently of each other.

For a given multi-object state X, each (x, `) ∈ X is either
detected with probability PD(x, `) and generates a detection
z ∈ Z with likelihood g(z|x, `) or missed with probability
1−PD(x, `). The multi-object observation is the superposition
of the observations from detected objects and Poisson clutter
with (positive) intensity κ. Assuming that, conditional on X,
detections are independent of each other and clutter, the multi-
object likelihood function is given by [7], [8]

g(Z|X) ∝
∑
θ∈Θ

1Θ(L(X))(θ)
∏

(x,`)∈X

ψ
(θ(`))
Z (x, `) (2)

where: Θ is the set of positive 1-1 maps θ : L→ {0:|Z|}, i.e.
maps such that no two distinct arguments are mapped to the
same positive value, Θ(I) is the set of positive 1-1 maps with
domain I; and

ψ
(j)
{z1:M}(x, `) =

{
PD(x,`)g(zj |x,`)

κ(z) , if j = 1:M
1− PD(x, `), if j = 0

. (3)

The map θ specifies which objects generated which detections,
i.e. object ` generates detection zθ(`) ∈ Z, with undetected
objects assigned to 0. The positive 1-1 property means that θ
is 1-1 on {` : θ(`) > 0}, the set of labels that are assigned
positive values, and ensures that any detection in Z is assigned
to at most one object.

For the special case with zero-clutter, i.e. κ is identi-
cally zero, the multi-object likelihood function still takes
the same form, but with PD(x, `)g(zj |x, `)/κ(z) replaced by
PD(x, `)g(zj |x, `), see [3], [4]. To cover both positive and
identically-zero clutter intensities we write

ψ
(j)
{z1:M}(x, `) =

{
PD(x,`)g(zj |x,`)
κ(z)+δ0[κ(z)] , if j = 1:M

1− PD(x, `), if j = 0
. (4)

C. Generalized Labeled Multi-Bernoulli

A Generalized Labeled Multi-Bernoulli (GLMB) filtering
density, at time k, is a multi-object density that can be written
in the form

π(X) = ∆(X)
∑

ξ∈Ξ,I⊆L
ω(I,ξ)δI [L(X)]

[
p(ξ)
]X

. (5)

where each ξ ∈ Ξ , Θ0 × ... × Θk represents a history
of association maps ξ = (θ1:k), each p(ξ)(·, `) is a prob-
ability density on X, and each ω(I,ξ) is non-negative with∑
ξ∈Ξ

∑
I⊆L ω

(I,ξ) = 1. The cardinality distribution of a
GLMB is given by

Pr(|X|=n) =
∑

ξ∈Ξ,I⊆L
δn [|I|]ω(I,ξ), (6)

while, the existence probability and probability density of track
` ∈ L are respectively

r(`) =
∑

ξ∈Ξ,I⊆L
1I(`)ω

(I,ξ), (7)

p(x, `) =
1

r(`)

∑
ξ∈Ξ,I⊆L

1I(`)ω
(I,ξ)p(ξ)(x, `). (8)

Given the GLMB density (5), an intuitive multi-object esti-
mator is the multi-Bernoulli estimator, which first determines
the set of labels L ⊆ L with existence probabilities above
a prescribed threshold, and second the mode/mean estimates
from the densities p(·, `), ` ∈ L, for the states of the objects.
A popular estimator is a suboptimal version of the Marginal
Multi-object Estimator [3], which first determines the pair
(L, ξ) with the highest weight ω(L,ξ) such that |L| coincides
with the mode cardinality estimate, and second the mode/mean
estimates from p(ξ)(·, `), ` ∈ L, for the states of the objects.

For the standard multi-object system model the GLMB
density is a conjugate prior, and is also closed under the
Chapman-Kolmogorov equation [7]. Moreover, the GLMB
posterior can be tractably computed to any desired accuracy in
the sense that, given any ε > 0, an approximate GLMB within
ε from the actual GLMB in L1 distance, can be computed
(in polynomial time) [8]. The GLMB filtering density can be
propagated forward in time via a prediction step and an update
step as in [8] or in one single step as in [25]. Since the number
of components grow exponentially in the predicted/filtered
densities during prediction/update stages, truncation of hy-
potheses with low weights is essential during implementation.
Polynomial complexity schemes for truncation of insignificant
weights were given in [8] and [25], via Murty’s algorithm with
a quartic (or at best cubic) complexity, or via Gibbs sampling
with a linear complexity, where the complexity is given in the
number of measurements.

III. JUMP MARKOV SYSTEM GLMB FILTERING

We first derive from the GLMB recursion a multi-object
filter for Jump Markov system (JMS) in subsection III-A,
which is applicable to tracking multiple manuevering objects
as well as joint tracking and classification of multiple objects.
When the modes of the multi-object JMS do not interact, the
JMS-GLMB recursion reduces to a more tractable form, which
is presented in subsection III-B. This special case is then used
to develop a multi-object tracker that can operate in unknown
background in section IV.

A. GLMB filter for Jump Markov Systems

A Jump Markov System (JMS) consists of a set of param-
eterised state space models, whose parameters evolve with
time according to a finite state Markov chain. A JMS can
be specified in terms of the standard system parameters for
each mode or class as follows.

Let M be the (discrete) index set of modes in the system.
Suppose that mode m is in effect at time k, then the state
transition density from ζ, at time k, to ζ+, at time k + 1,
is denoted by f (m)

+ (ζ+|ζ), and the likelihood of ζ generating
the measurement z is denoted by g(m)(z|ζ) [26], [27], [28].
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Moreover, the joint transition of the state and mode assumes
the form:

f+(ζ+,m+|ζ,m) = f
(m+)
+ (ζ+|ζ)ϑ+(m+|m), (9)

where ϑ+(m+|m) denotes the probability of switching from
mode m to m+ (and satisfies

∑
m+∈M ϑ+(m+|m) = 1). Note

that by defining the augmented state as x = (ζ,m) ∈ X ×
M, a JMS model can be expressed as a standard state space
model with transition density (9) and measurement likelihood
function g(z|ζ,m) = g(m)(z|ζ).

In a multi-object system, each object is identified by a label
` that remains unchanged throughout its life, hence the JMS
state equation for such an object is written as

f+(ζ+,m+|ζ,m, `) = f
(m+)
+ (ζ+|ζ, `)ϑ+(m+|m) (10)

g(z|ζ,m, `) = g(m)(z|ζ, `) (11)

Additionally, to emphasize the dependence on the mode,
the survival, birth and detection parameters are, respectively,
denoted as

p
(m+)
B,+ (ζ+, `+) , pB,+(ζ+,m+, `+),

P
(m)
S (ζ, `) , PS(ζ,m, `),

P
(m)
D (ζ, `) , PD(ζ,m, `).

Substituting these parameters and the JMS state equations
(10)-(11) into the GLMB recursion in [25] yields the so-called
JMS-GLMB recursion.

Proposition 1. If the filtering density at time k is the GLMB
(5), then the filtering density at time k + 1 is the GLMB

π(X+|Z+)∝∆(X+)
∑

I,ξ,I+,θ+

ω(I,ξ)ω
(I,ξ,I+,θ+)
Z+

δI+[L(X+)]
[
p

(ξ,θ+)
Z+

]X+

(12)
where I ∈ F(L), ξ ∈ Ξ, I+ ∈ F(L+), θ+ ∈ Θ+,

ω
(I,ξ,I+,θ+)
Z+

=1Θ+(I+)(θ+)
[
1− P̄ (ξ)

S

]I−I+[
P̄

(ξ)
S

]I∩I+
×

[1− rB,+]
B+−I+ r

B+∩I+
B,+

[
ψ̄

(ξ,θ+)
Z+

]I+
(13)

P̄
(ξ)
S (`) =

∑
m∈M

P̄
(ξ)
S (m, `), (14)

P̄
(ξ)
S (m, `) =

〈
p(ξ)(·,m, `), P (m)

S (·, `)
〉
, (15)

ψ̄
(ξ,θ+)
Z+

(`) =
∑
m+∈M

ψ̄
(ξ,θ+)
Z+

(m+, `), (16)

ψ̄
(ξ,θ+)
Z+

(m+, `) =
〈
p̄

(ξ)
+ (·,m+, `), ψ

(θ+(`))
Z+

(·,m+, `)
〉

(17)

p̄
(ξ)
+ (ζ+,m+, `) = 1B+(`)p

(m+)
B (ζ+, `) +

1L(`)

∑
m∈M

〈
P

(m)
S (·, `)f (m+)

+ (ζ+|·, `), p
(ξ)

(·,m, `)
〉
ϑ(m+|m)

P̄
(ξ)
S (`)

(18)

p
(ξ,θ+)
Z+

(ζ+,m+, `) =
p̄

(ξ)
+ (ζ+,m+, `)ψ

(θ+(`))
Z+

(ζ+,m+, `)

ψ̄
(ξ,θ+)
Z+

(m+, `)
(19)

ψ
(j)
{z1:|Z|}(ζ,m, `) =

{
P

(m)
D (ζ,`)g(m)(zj|ζ,`)
κ(zj)+δ0[κ(zj)] , if j ∈ {1, ..., |Z|}

1− P (m)
D (ζ, `), if j = 0

(20)

Notice that the above expression is in δ-GLMB form since
it can be written as a sum over I+, ξ, θ+ with weights

ω
(I+,ξ,θ+)
Z+

∝
∑
I

ω(I,ξ)ω
(I,ξ,I+,θ+)
Z+

.

This special case of the GLMB recursion is particularly
useful for tracking multiple manuevering objects and joint
multi-object tracking and classification. Indeed the application
of the JMS-GLMB recursion to multiple manuevering object
tracking has been reported our preliminary work [10], where
separate prediction and update steps was introduced. The same
result was independently reported in [29].

B. Multi-Class GLMB

The JMS-GLMB recursion can be applied to the joint multi-
object tracking and classification problem by using the mode
as the class label (not to be confused to object label). What
distinguishes this problem from generic JMS-GLMB filtering
is that the modes do not interact with each other in the
following sense:

1) All possible states of a new object with the same object
label share a common mode (class label);

2) An object cannot switch between different modes from
one time step to the next.

Let B(m) denote the set of labels of all elements in X×M×
B with mode m. Then condition 1 implies that the label sets
B(m) and B(m′) for different modes m and m′ are disjoint
(otherwise there exist a label ` in both B(m) and B(m′), which
means there are states in X×M×B with different modes m
and m′ but share a common label `). Furthermore, the sets
B(m), m ∈ M cover B, i.e. B =

⋃
m∈M B(m), and thus form

a partition of the space B. A new object is classified as class
m (and has mode m) if and only if its label falls into B(m).
Thus for an LMB birth model, condition 1 means

rB,+(`+) =
∑
m+∈M

r
(m+)
B,+ 1

B
(m+)

+

(`+), (21)

p
(m+)
B,+ (ζ+, `+) = p

(m+)
B,+ (ζ+)1

B
(m+)

+

(`+). (22)

Note that r(m+)
B,+ and p(m+)

B,+ (ζ+) are respectively the existence
probability and probability density of the kinematics ζ+ of
a new object given mode m+, while 1

B
(m+)

+

(`+) is the

probability of mode m+ given label `+.
Condition 2 means that the mode transition probability

ϑ(m+|m) = δm[m+], (23)

which implies that each object belongs to exactly one of
the classes in M for its entire life. Consequently, the non-
interacting mode condition means that at time k, the label
space for all class m objects is L(m) =

⊎k
t=0 B

(m)
t , and

the set of all possible labels is given by the disjoint union
L =

⊎
m∈M L(m).

For a multi-object JMS system with non-interacting modes,
the JMS-GLMB recursion reduces to a form where the weights
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and multi-object exponentials can be separated according to
classes. We call this form the multi-class GLMB.

Proposition 2. Let X(m) denote the subset of X with mode
m, and hence X =

⊎
m∈M X(m). Suppose that the hybrid

multi-object density at time k is a GLMB of the form

π(X) =
∑
ξ,I

1Θ(I)(ξ ⊥ Θ)
∏
m∈M

π(I(m),ξ(m))(X(m)) (24)

where ξ ∈ Ξ, I ⊆ L, ξ ⊥ Θ denotes the projection ξ into the
space Θ, I(m) , I ∩ L(m), ξ(m) = ξ|L(m)

0 ×...×L(m)
k

(i.e. the

map ξ restricted to L(m)
0 × ...× L(m)

k ), and

π(I,ξ)(X) , ∆(X)w(I,ξ)δI [L(X)]
[
p(ξ)
]X

(25)

Then the hybrid multi-object filtering density at time k + 1 is
the GLMB

πZ+
(X+)∝

∑
ξ,I,θ+,I+

1Θ+(I+)(θ+)
∏
m∈M

π
(m,I(m),ξ(m),I

(m)
+ ,θ

(m)
+ )

Z+
(X

(m)
+ )

(26)
where I+∈F(L+), θ+∈Θ+, I(m)

+ = I+∩L(m)
+ , θ(m)

+ = θ+|L(m)
+

π
(m,I,ξ,I+,θ+)
Z+

(X+) =

∆(X+)w
(m,I,ξ,I+,θ+)
Z+

w(I,ξ)δI+ [L(X+)]
[
p

(ξ,θ+)
Z+

]X+

(27)

w
(m,I,ξ,I+,θ+)
Z+

=
[
ψ̄

(ξ,θ+)
Z+

(m, ·)
]I+

[1− rB,+]
B(m)
+ −I+r

B(m)
+ ∩I+
B,+

×
[
1− P̄ (ξ)

S (m, ·)
]I−I+[

P̄
(ξ)
S (m, ·)

]I∩I+
(28)

P̄
(ξ)
S (m, `) =

〈
p(ξ)(·,m, `), P (m)

S (·, `)
〉
, (29)

ψ̄
(ξ,θ+)
Z+

(m, `) =
〈
p̄

(ξ)
+ (·,m, `), ψ(θ+(`))

Z+
(·,m, `)

〉
, (30)

p̄
(ξ)
+ (ζ,m, `) =1L(m)(`)

〈
P

(m)
S (·, `)f (m)

+ (ζ|·, `)), p(ξ)(·,m, `)
〉

P̄
(ξ)
S (m, `)

+1B(m)
+

(`)p
(m)
B (ζ, `) (31)

p
(ξ,θ+)
Z+

(ζ,m, `) =
p̄

(ξ)
+ (ζ,m, `)ψ

(θ+(`))
Z+

(ζ,m, `)

ψ̄
(ξ,θ+)
Z+

(m, `)
(32)

ψ
(j)
{z1:|Z|}(ζ,m, `) =

{ P
(m)
D (ζ,`)g(m)(zj|ζ,`)
κ(zj)+δ0[κ(zj)] ,if j ∈ {1, ..., |Z|}

1− P (m)
D (ζ, `), if j = 0

(33)

Proof. Note that the L(m)
0 ×...×L(m)

k ,m ∈M form a partition
of L0 × ... × Lk , and since each ξ(m) was defined as a
restrictions of ξ over L(m)

0 × ... × L(m)
k , ξ is completely

characterized by the ξ(m),m ∈M. By defining

ω(I,ξ) = 1Θ(I)(ξ ⊥ Θ)
∏
m∈M

w(I(m),ξ(m)) (34)

p(ξ)(ζ,m, `) =
[
p(ξ(m))(ζ,m, `)

]1L(m) (`)

(35)

it can be seen that (24) is a GLMB of the form (5) since

δI [L(X)] =
∏
m∈M

δI(m) [L(X(m))]

[
p(ξ)
]X

=
[
p(ξ)
]⊎

m∈M X(m)

=
∏
m∈M

[
p(ξ(m))

]X(m)

.

Thus by applying Proposition 1, the hybrid multi-object fil-
tering density at time k + 1 is given by (12-20). Substituting
(34), (35), (21-23) into (12-20), decomposing

X+ =
⊎

m∈M
X

(m)
+ (36)

ω
(I,ξ,I+,θ+)
Z+

= 1Θ+(I+)(θ+)
∏
m∈M

w
(m,I(m),ξ(m),I

(m)
+ ,θ

(m)
+ )

Z+
(37)

p
(ξ,θ+)
Z+

=

(
p

(ξ(m),θ
(m)
+ )

Z+

)1
L(m)
+

(`)

(38)

and rearranging yields (26). Note that (23) ensures that m+ =
m.

Given a GLMB filtering density of the multi-class form (24),
the GLMB filtering density for class c ∈ M, can be obtained
by marginalizing the other classes according to the following
proposition.

Proposition 3. For the multi-class GLMB (24), the marginal
GLMB for class c is given by

π
(
X(c)

)
= ∆(X(c))

∑
ξ,I

ω(I,ξ)δI(c) [L(X(c))]
[
p(ξ(c))

]X(c)

Proof. Note that∫
π(I(m),ξ(m))(X(m))δX(m)

=

∫
∆(X(m))w(I(m),ξ(m))δI(m)[L(X(m))]

[
p(ξ)
]X(m)

δX(m)

= w(I(m),ξ(m)).

Since, the X(m), m ∈M are disjoint,

π(X(c)) =

∫
π

( ⊎
m∈M

X(m)

)
δ

( ⊎
m∈M−{c}

X(m)

)
=

∫ ∑
ξ,I

1Θ(I)(ξ⊥Θ)×

∏
m∈M

π(I(m),ξ(m))(X(m))δ

( ⊎
m∈M−{c}

X(m)

)
=
∑
ξ,I

1Θ(I)(ξ⊥Θ)π(I(c),ξ(c))(X(c))×

∏
m∈M−{c}

∫
π(I(m),ξ(m))(X(m))δX(m)

=
∑
ξ,I

1Θ(I)(ξ⊥Θ)π(I(c),ξ(c))(X(c))×

∏
m∈M−{c}

w(I(m),ξ(m)).

= ∆(X(c))
∑
ξ,I

ω(I,ξ)δI(c) [L(X(c))]
[
p(ξ(c))

]X(c)

.
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IV. GLMB FILTERING WITH UNKNOWN BACKGROUND

Clutter or false detections are generally understood as
detections that do not correspond to any object [1]–[4]. Since
the number false detections and their values are random, clutter
is usually modelled by RFSs in the literature [3], [4], [30].
The simplest and the most commonly used clutter model is the
Poisson RFS [30], in most cases, with a uniform intensity over
the surveillance region. Alternatively clutter can be treated as
detections originating from clutter generators–objects that are
not of interest to the tracker [9], [18]–[20].

In [9] a CPHD recursion was derived to propagate separate
intensity functions for clutter generators and objects of inter-
est, and their collective cardinality distribution of the hybrid
multi-object state. Similarly, in [20] analogous multi-Bernoulli
recursions were derived to propagate the disjoint union of
objects of interest and clutter generators. In this work we show
that the multi-class GLMB filter is an effective multi-object
object tracker that can operate under unknown background by
learning the clutter and detection model on-the-fly.

This section details an on-line multi-object tracker that
operates in unknown clutter rate and detection profile. In
particular we propose a GLMB clutter model in subsection
IV-A by treating clutter as a special class of objects with com-
pletely uncertain dynamics, and describe a dedicated GLMB
recursion for propagating the joint filtering density of clutter
generators and objects of interest. Implementation details are
given in subsection IV-B. Extension of the proposed algorithm
to accommodate unknown detection profile is described in
subsection IV-F.

A. GLMB Joint Object-Clutter Model

We propose to model the finite set of clutter generators
and objects of interest as two non-interacting classes of ob-
jects, and propagate this so-called hybrid multi-object filtering
density forward in time via the multi-class GLMB recursion.
The GLMB filtering density of the hybrid multi-object state
captures all relevant statistical information on the objects of
interest as well as the clutter generators. What distinguishes
the objects of interest from clutter generators is that the former
have relatively predictable dynamics whereas the latter have
completely random dynamics.

In the hybrid multi-object model, the Poisson clutter in-
tensity κ is identically 0 and each detection is generated
from either a clutter generator or an object of interest, which
constitute, respectively, the two modes (or classes) 0 and 1
of the mode space M = {0, 1}. Since the classes are non-
interacting, there are no switchings between objects of interest
and clutter generators. Moreover, the label space for new born
clutter generators B(0) and the label space for new born objects
of interest B(1) are disjoint and the LMB birth parameters are
given by

rB,+(`+) = r
(0)
B,+1B(0)

+
(`+) + r

(1)
B,+1B(1)

+
(`+),

p
(m+)
B,+ (ζ+, `+) = p

(m+)
B,+ (ζ+)1

B
(m+)

+

(`+)

Since clutter are distinguishable from targets by their com-
pletely random dynamics, each clutter generator has a transi-
tion density independent of the previous state and a uniform

measurememt likelihood in the observation region with vol-
ume V

f
(0)
+ (ζ+|ζ, `) = s(ζ+)

g(0)(z|ζ, `) = u(z)V −1

Note that the labels of clutter generators can effectively be
ignored since it is implicit that their labels are distinct but are
otherwise uninformative. Further, for Gaussian implementa-
tions it is assumed that the survival and detection probabilities
for clutter generators are state independent

P
(0)
S (ζ, `) = P

(0)
S

P
(0)
D (ζ, `) = P

(0)
D

Applying the multi-class GLMB recursion to this model, it
can be easily seen that all clutter generators are functionally
identical (from birth through prediction and update)

p
(0)
B (ζ, `) = p̄

(ξ(0))
+ (ζ, 0, `) = p

(ξ(0),θ
(0)
+ )

Z+
(ζ, 0, `) = s(ζ)

and that the weight update for clutter generators reduces to

w
(0,I(0),ξ(0),I

(0)
+ ,θ

(0)
+ )

Z+

=
[
1− P (0)

S

]|I(0)−I(0)+ | [
P

(0)
S

]|I(0)∩I(0)+ |×[
1− r(0)

B,+

]|B(0)
+ −I

(0)
+ | [

r
(0)
B,+

]|B(0)
+ ∩I

(0)
+ |×[

1− P (0)
D,+

]|{`∈I(0)+ :θ
(0)
+ (`)=0}| [

P
(0)
D,+V

−1
]|{`∈I(0)+ :θ

(0)
+ (`)>0}|

(39)

Thus propagation of clutter generators within each GLMB
component reduces to propagation of their weights

w
(0,I

(0)
+ ,ξ(0),θ

(0)
+ )

Z+
=
∑
I(0) w

(I(0),ξ(0))w
(0,I(0),ξ(0),I

(0)
+ ,θ

(0)
+ )

Z+
.

B. Implementation

The key challenge in the implemention of the multi-class
GLMB filter is the propagation of the GLMB components,
which involves, for each parent GLMB component (I, ξ),
searching the space F(L+) × Θ+ to find a set of (I+, θ+)
such that the children components (I, ξ, I+, θ+) have significant
weights ω(I,ξ,I+,θ+)

Z+
. In [25], the set of (I+, θ+) is generated from

a Gibbs sampler with stationary distribution is constructed
so that only valid children components have positive prob-
abilities, and those with high weights are more likely to be
sampled than those with low weights. A direct application of
this approach to generate new children would, however, be
expensive, for the following reasons.

Let P = |I|, P (0) = |I(0)|, P (1) = |I(1)| and M = |Z+|.
According to [25] the complexity of the joint prediction and
update via Gibbs sampling with T iterations is O(TP 2M).
Since the present formulation treat clutter as objects, the
total number of hypothesized objects P ≥ P (0) ≥ M , and
hence the complexity is at least O(TM3), which is cubic
in the number of measurements and results in a relatively
inefficient implementation. This occurs because the majority
of the computational effort is spent on clutter generators even
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though they are not of interest. This problem is exacerbated
as the clutter rate increases.

In the following we propose a more efficient implementation
by focusing on the filtering density of the objects of interest
instead of the hybrid multi-object filtering density. Observe
that given any (I

(1)
+ , θ

(1)
+ ) ∈ F(L(1)

+ )×Θ
(1)
+ , and (I

(0)
+ , θ

(0)
+ ) ∈

F(L(0)
+ )×Θ

(0)
+ , where Θ

(m)
+ denotes the space of positive 1-1

maps from L(m)
+ to {0, 1, ...,M}, we can uniquely define

(I+, θ+) , (I
(1)
+ ] I(0)

+ , 1L(1)
+
θ

(1)
+ + 1L(0)

+
θ

(0)
+ ). (40)

Further, the weight of the resulting component (I, ξ, I+, θ+) is

ω
(I,ξ,I+,θ+)
Z+

= 1Θ(I+)(θ+)w
(0,I(0),ξ(0),I

(0)
+ ,θ

(0)
+ )

Z+
w

(1,I(1),ξ(1),I
(1)
+ ,θ

(1)
+ )

Z+

(41)
see Proposition 2 (37). Note that if θ+ is not a valid association
map then 1Θ(I+)(θ+) = 0, and hence the weight is zero.

For each parent GLMB component (I, ξ), rather than
searching for (I+, θ+) with significant ω(I,ξ,I+,θ+)

Z+
in the space

F(L+)×Θ+, we:

1) seek (I
(1)
+ , θ

(1)
+ ) with significant w

(1,I(1),ξ(1),I
(1)
+ ,θ

(1)
+ )

Z+

from the smaller space F(L(1)
+ )×Θ

(1)
+ ;

2) for each such (I
(1)
+ , θ

(1)
+ ) find the (I

(0)
+ , θ

(0)
+ ) with the

best w
(0,I(0),ξ(0),I

(0)
+ ,θ

(0)
+ )

Z+
, subject to the constraint

1L(1)
+
θ

(1)
+ + 1L(0)

+
θ

(0)
+ ∈ Θ(I

(1)
+ ] I(0)

+ ); (42)

3) construct (I+, θ+) from (I
(1)
+ , θ

(1)
+ ) and (I

(0)
+ , θ

(0)
+ ) via

(40) and compute the corresponding weight via (41).
Due to the constraint 42, 1Θ(I+)(θ+) = 1, and hence,

it follows from (41) that the resulting GLMB component
(I, ξ, I+, θ+) also has significant weight.

The advantage of this strategy is two fold:
• searching over a much smaller space F(L(1)

+ ) × Θ
(1)
+

results in a linear complexity in the measurements
O(T (P (1))2M) since typically P (1) << M ;

• finding (I
(0)
+ , θ

(0)
+ ) with the best weight subject to the

constraint θ+ ∈ Θ(I+) is straight forward and requires
miminal computation.

C. Propagating Objects of Interest

One way to generate significant (I
(1)
+ , θ

(1)
+ ) is to

design a Gibbs sampler with stationary distribution

w
(1,I(1),ξ(1),I

(1)
+ ,θ

(1)
+ )

Z+
. However, this approach requires

computing the hybrid multi-object density, which we try to
avoid in the first place.

A much more efficient alternative is to treat the multi-
Bernoulli clutter as Poisson with matching intensity, and apply
the standard GLMB filter (the JMS-GLMB filter (12) with a
single-mode), where the Gibbs sampler [31] (or Murty’s algo-
rithm [32]) can be used to obtain significant (I

(1)
+ , θ

(1)
+ ) [25].

Since there are |I(0)| clutter generators from the previous time
with survival probability P

(0)
S , and |B(0)

+ | clutter birth with
probability r

(0)
B,+, the predicted clutter intensity is given by

κ̂+ = (P
(0)
S |I(0)|+r

(0)
B,+|B

(0)
+ |)P

(0)
D,+V

−1. Note that a Poisson
RFS has larger variance on the number of clutter points than

a multi-Bernoulli with matching intensity. Hence, in treating
clutter as a Poisson RFS, we are effectively tempering with
the clutter model to induce the Gibbs sampler (or Murty’s
algorithm) to generate more diverse components [25].

Following [25], let us enumerate Z+ = {z1:M}, I(1) =

{`1:R}, and B(1)
+ = {`R+1:P }. The (I

(1)
+ , θ

(1)
+ ) ∈ F(L(1)

+ ) ×
Θ(I

(1)
+ ) at time k+ 1 with significant weights are determined

by solving a ranked assignment problem with cost matrix
[η

(ξ(1))
i (j)], i = 1 : P , j = −1 : M , where

η
(ξ(1))
i (j)=


1− P̄ (ξ(1))

S (1, `i) `i ∈ I(1), j < 0

P̄
(ξ(1))
S (1, `i)ψ̄

(ξ(1),θ
(1)
+ )

Z+
(1, `i) `i ∈ I(1), j ≥ 0

1− rB,+(`i) `i ∈ B(1)
+ , j < 0

rB,+(`i)ψ̄
(ξ(1),θ

(1)
+ )

Z+
(1, `i) `i ∈ B(1)

+ , j ≥ 0

ψ̄
(ξ(1),θ

(1)
+ )

Z+
(1, `) =

〈
p̄

(ξ(1))
+ (·, 1, `), ψ(θ

(1)
+ (`))

Z+
(·, 1, `)

〉

ψ
(j)
Z+

(ζ, 1, `) =

 P
(1)
D,+(ζ,`)g

(1)
+ (zj |ζ,`)

κ̂+
, if j ∈ {1, ...,M}

1− P (1)
D,+(ζ, `), if j = 0

Such a ranked assignment problem can be solved by Murty’s
algorithm or the Gibbs sampler given in Section III-D [25].

D. Propagating Clutter Generators

Given (I
(1)
+ , θ

(1)
+ ) pertaining to the objects of interest, we

proceed to determine (I
(0)
+ , θ

(0)
+ ) pertaining to clutter gen-

erators, which maximizes ω
(0,I(0),ξ(0),I

(0)
+ ,θ

(0)
+ )

Z+
where I

(0)
+ ⊆

I(0) ∪ B(0)
+ and θ

(0)
+ : I

(0)
+ → {0 : M} subject to constraint

(42).
Denote by Z

(1)
+ ⊆ Z+ the set of measurements assigned

to I(1)
+ by θ(1)

+ and the remaining set of measurements Z+−
Z

(1)
+ , due to clutter generators, by Z

(0)
+ . Recall that clutter

generators are functionally identical except in label and that
their propagation reduces to calculating their corresponding
weights (39). Let N (0)

S = |I(0)∩I(0)
+ | and N (0)

B,+ = |B(0)
+ ∩I

(0)
+ |

denote the counts of surviving and new born clutter gener-
ators respectively. Then |I(0) − I

(0)
+ | = |I(0)| − N

(0)
S and

|B(0)
+ − I(0)

+ | = |B
(0)
+ | −N

(0)
B,+. Observe that the count |Z(0)

+ |
of clutter must equal the number of detections of clutter
generators according to (I

(0)
+ , θ

(0)
+ ), i.e. |Z(0)

+ | = |{` ∈ I(0)
+ :

θ
(0)
+ (`) > 0}| and hence the count of misdetections of clutter

generators according to (I
(0)
+ , θ

(0)
+ ) is N (0)

S +N
(0)
B,+−|Z

(0)
+ | =

|{` ∈ I(0)
+ : θ

(0)
+ (`) = 0}|. Consequently the weight (39) can

be rewritten as

ω
(0,I(0),ξ(0),I

(0)
+ ,θ

(0)
+ )

Z+

=
[
1− P (0)

S

]|I(0)|−N(0)
S
[
P

(0)
S

]N(0)
S
[
1− r(0)

B,+

]|B(0)
+ |−N

(0)
B,+ ×[

r
(0)
B,+

]N(0)
B,+
[
1− P (0)

D,+

]N(0)
S +N

(0)
B,+−|Z

(0)
+ |[

P
(0)
D,+V

−1
]|Z(0)

+ |

∝

[
P

(0)
S (1− P (0)

D,+)

1− P (0)
S

]N(0)
S
[
r

(0)
B,+(1− P (0)

D,+)

1− r(0)
B,+

]N(0)
B,+
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Thus seeking the best (I
(0)
+ , θ

(0)
+ ) subject to constraint (42)

reduces to seeking the best (N
(0)
S , N

(0)
B,+) subject to the

constraints 0 ≤ N
(0)
S ≤ |I(0)|, 0 ≤ N

(0)
B,+ ≤ |B

(0)
+ | and

N
(0)
S +N

(0)
B,+ ≤ |Z

(0)
+ |.

E. Linear Gaussian Update Parameters

Let N (·; ζ̄, P ) denotes a Gaussian density with mean ζ̄ and
covariance P . Then for a linear Gaussian multi-object model
of the objects of interest P (1)

S (ζ, `) = P
(1)
S , P (1)

D (ζ, `) = P
(1)
D ,

f
(1)
+ (ζ+|ζ, `) = N (ζ+;Fζ,Q), g(1)(z|ζ, `) = N (z;Hζ,R),

and p(1)
B,+(ζ+) = N (ζ+; ζ̄

(1)
+ , P

(1)
+ ), where F is the transition

matrix, Q is the process noise covariance, H is the observation
matrix, R is the observation noise covariance, ζ̄(1)

+ and P
(1)
+

are the mean and covariance of the kinematic state of a new
object of interest. If each current density of an object of
interest is a Gaussian of the form

p(ξ(1))(ζ, 1, `) = N (ζ; ζ̄
(ξ(1))

(`), P (ξ(1))(`)) (43)

then the terms (30), (31), (32) can be computed analytically
using the following identities:∫
N (ζ; ζ̄, P )N (ζ+;Fζ,Q)dζ = N (ζ+;F ζ̄, FPFT +Q),

N (ζ; ζ̄, P )N (z;Hζ,R)

= q(z)N (ζ; ζ̄ +K(z −Hζ̄), [I −KH]P ),

q(z) = N (z;Hζ̄,HPHT +R),

K = PHT
[
HPHT +R

]−1
.

F. Extension to Unknown Detection Probability

Following the approach in [9], to jointly estimate an un-
known detection probability, we augment a variable a ∈ [0, 1]
to the state, i.e. x = (ζ,m, a, `), so that

P
(m)
D (ζ, a, `) = a. (44)

Additionally, in this model g(m)(z|ζ, a, `) = g(m)(z|ζ, `),
P

(m)
S (ζ, a, `) = P

(m)
S , p(1)

B,+(ζ+, a+) = p
(1)
B,+(ζ+)p

(1)
B,+(a+),

and the transition density is given by

f
(m)
+ (ζ+, a+|ζ, a, `) = f

(m)
+ (ζ+, |ζ, `)f

(∆)
+ (a+|a). (45)

The unknown detection probability is then modelled on a
Beta distribution β(·, s, t) where s and t are positive shape
parameters and the single-object state density is modelled by
a Beta-Gaussian density:

p(ξ(1))(ζ, 1, a, `)

= β(a; s(ξ(1))(`), t(ξ
(1))(`))N (ζ;m(ξ(1))(`), P (ξ(1))(`)

Note that in practice, we only use the Beta model for the
unknown detection probability of the objects of interest. For
clutter generators, we use a fixed detection probability between
0.5 and 1. Values close to 0.5 result in a large variance on
the clutter cardinality and faster reponse to changes in clutter
parameter, while the converse is true for values close to 1.

Analytic computation of the terms (30), (31), (32) can be
performed separately for the Gaussian part (which has been
given in the previous subsection) and the Beta part using [9]:

β(a+; s+, t+) =

∫
β(a; s, t)f

(∆)
+ (a+|a)da

where

s+ =

(
µβ(1− µβ)

σ2
β

− 1

)
µβ ,

t+ =

(
µβ(1− µβ)

σ2
β

− 1

)(
1− µβ

)
.

µβ =
s

s+ t
, σ2

β =
st

(s+ t)2(s+ t+ 1)

(note that β(·; s+, t+) has the same mean µβ as β(·; s, t) but
a larger variance than σβ) and

(1− a)β(a; s, t) =
B(s, t+ 1)

B(s, t)
β(a; s, t+ 1),

aβ(a; s, t) =
B(s+ 1, t)

B(s, t)
β(a; s+ 1, t),

where B(s, t) =
∫ 1

0
as−1(1− a)t−1da.

V. NUMERICAL STUDIES

A. Simulations

The following simulation scenario is used to test the
proposed robust multi-object filter. The target state vector
[x, y, ẋ, ẏ]T consists of cartesian coordinates and the veloci-
ties. Objects of interest move according to a constant velocity
model, with zero-mean Gaussian process noise of covariance

Qf = vf
2


T 4/4 T 3/2 0 0
T 3/2 T 2 0 0

0 0 T 4/4 T 3/2
0 0 T 3/2 T 2


where vf = 5ms−1 and T = 1s. Objects of interest are
born from a labeled multi Bernoulli distribution with four
components of 0.03 birth probability, and birth densities

N (· , [0, 0, 0, 0]T , Pγ),

N (· , [400,−600, 0, 0]T , Pγ),

N (· , [−800,−200, 0, 0]T , Pγ),

N (· , [−200, 800, 0, 0]T , Pγ),

where Pγ = diag([50, 50, 50, 50]). The probability of survival
is set at 0.99.

Objects of interest enter and leave the observation region
[−1000, 1000]m× [−1000, 1000]m at different times reaching
a maximum of ten targets. The measurements are the object
positions obtained through a sensor located at coordinate
(0, 0). Measurement noise is assumed to be distributed Gaus-
sian with zero-mean and covariance Qr where vr = 3ms−1.

Qr = vr
2

[
1 0
0 1

]
The detection model parameters for all new born objects of

interest are set at s = 9 and t = 1 resulting in a mean of 0.9 for
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Scenario ID Clutter Rate Detection Probability

1 10 0.97

2 10 0.85

3 70 0.97

4 varying between 25-35 0.95

TABLE I: Simulation Parameters unknown to the filter

the detection probability. At the initial timestep, clutter genera-
tors are born from a (labeled) multi-Bernoulli distribution with
120 components, each with 0.5 birth probability and uniform
birth density. At subsequent timesteps clutter generators are
born from a (labeled) multi-Bernoulli distribution with 30
components, each with 0.5 birth probability and uniform birth
density. Probability of survival and probability of detection of
the clutter generators are both set at 0.9.

Four scenarios corresponding to four different pairings of
average (unknown) clutter rate and detection probability (see
Table 1) are studied.

The Fig. 3(a) shows the OSPA [33] errors obtained from
100 Monte Carlo runs (OSPA c = 300, p = 1) for the pro-
posed GLMB filter in comparison with λ-CPHD [9] filter for
scenario 1. Estimated clutter rates and detection probabilites
by the two filters are shown in Fig. 3(b), while estimated tracks
for objects of interest taken from a single run is shown in Fig.
3(c). It can be seen that for the given parameters, the GLMB
filter performs far better than the λ-CPHD in terms of clutter
rate, detection probability and track estimation for objects of
interest.

We further investigate the performance of the proposed
algorithm by varying the background parameters in scenarios
2 and 3. The average detection probability in scenario 2 is
lower than that of scenario 1, while the average clutter rate in
scenario 3 is higher than that of scenario 1. Note from Figure
3 that λ-CPHD filter begins to fail in scenario 1. The OSPA
errors for 100 Monte Carlo runs, estimates of the clutter rate
and detection probabilities for the more challenging scenarios
2 and 3 are given in Fig. 4, Fig. 5 at which λ-CPHD competely
breaks down. On the other hand the proposed GLMB filter is
capable of accurately tracking the objects of interest as well
as estimating the unknown clutter and detection parameters.
The fourth scenario comprises of a wavering clutter rate with
comparison to the λ-CPHD filter. Perceiving Fig. 6 it is clear
that that the proposed filter outperforms λ-CPHD and is quite
adept at converging swiftly to the shifted clutter rate.

B. Video Data

The proposed filter for jointly unknown clutter rate and
detection probability is tested on two image sequences: S2.L1
from PETS2009 datasets [34] and KITTI-17 from KITTI
datasets [5]. The detections are obtained using the detection
algorithm in [35].

Dataset 1: The state vector consists of the target x, y
positions and the velocities in each direction. The process
noise is assumed to be distributed from a zero-mean Gaussian
with covariance Qf where vf = 2 pixels. Actual targets are

(a) OSPA Error

(b) estimated clutter and detection parameters

(c) Track Estimations

Fig. 3: Scenario 1. The bumps in the OSPA error for GLMB
in 3(a) appear close to time steps where a new birth or a death
of an object of interest occurs.

assumed to be born from a labeled multi Bernoulli distribution
with seven components of 0.03 birth probability, and Gaussian
birth densities,
N (· , [260; 260; 0; 0]T , Pγ),N (· , [740; 370; 0; 0]T , Pγ),

N (· , [10; 200; 0; 0]T , Pγ),N (· , [280; 80; 0; 0]T , Pγ),

N (· , [750; 130; 0; 0]T , Pγ),N (· , [650; 270; 0; 0]T , Pγ),

N (· , [500; 200; 0; 0]T , Pγ), where Pγ = diag([10; 10; 3; 3]).

The observation space is a 756 × 560 pixel image frame.
Actual target measurements contain the x, y positions with
measurement noise assumed to be distributed zero-mean Gaus-
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(a) OSPA Error

(b) estimated clutter and detection parameters

Fig. 4: Scenario 2. Comparison with λ-CPHD not included as
it completely fails at this juncture.

sian with covariance Qr with vr = 3 pixels. Clutter targets
are born from a multi Bernoulli distribution with 30 birth
components in the firstmost time step and 12 components
in subsequent time steps each with 0.5 birth probability and
uniform birth density. Probability of survival and detection for
clutter targets are both set at 0.9.

The Fig. 7 shows tracking results at frames 20, 40 and 100
respectively. True and estimated clutter cardinality statistics
are given in Fig. 8. From these figures it can be observed
that the filter successfully outputs object tracks and that the
estimated clutter rate nearly overlays the true clutter rate.

Dataset 2: The detection results from this dataset (KITTI17)
comprises of a higher number of false measurements than
the PETS2009 S2.L1 dataset. The state vector consists of the
target x, y positions and the velocities in each direction. The
process noise is assumed to be distributed from a zero-mean
Gaussian with covariance Qf where vf = 2 pixels. Actual
targets are assumed to be born from a labeled multi Bernoulli
distribution with three components of 0.05 birth probability,
and birth densities

N (· , [550; 200; 0; 0]T , Pγ),N (· , [1200; 250; 0; 0]T , Pγ),

N (· , [500; 250; 0; 0]T , Pγ)where Pγ = diag([10; 10; 1; 1]).

State transition function for actual targets are based on
constant velocity model with a 0.99 probability of survival.
Process noise is assumed to be distributed from a zero-
mean Gaussian with covariance Qf with vf = 2 pixels per
frame. The observation space is a 1220×350 pixel image
frame. Actual target measurements contain the x, y positions
with measurement noise assumed to be distributed zero-mean

(a) OSPA Error

(b) estimated clutter and detection parameters

Fig. 5: Scenario 3. Comparison with λ-CPHD not included as
it completely fails at this juncture.

(a) OSPA Error

(b) estimated clutter and detection parameters

Fig. 6: Scenario 4.

Gaussian with covariance Qr with vr = 3 pixels. Clutter
target are born from 60 identical and uniformly distributed
birth regions in the firstmost time step and 20 birth regions
in the subsequent time steps each with a birth probability of
0.5. Probability of survival and detection for clutter targets are
both set at 0.9.
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Fig. 7: Tracking results for frames 20, 40, 100 in dataset 1.

The frames on the left of Fig. 9 shows tracking results
for frames 15, 35 and 50 obtained from the standard GLMB
filter for the guessed clutter rate of 60. The frames on the
right of Fig. 9 shows tracking results for the same frames
using the proposed filter. When comparing each frame pair
it can be noted that some objects that were missed by the
standard algorithm with the guessed clutter rate has been
picked up by the proposed algorithm. Comparison between
true and estimated clutter cardinality statistics given in Fig.
10 demonstrates that the estimated clutter rate is close enough

Fig. 8: Estimated clutter rate for dataset 1.

to the true clutter rate to achieve a similar performance if fed
back to the standard algorithm [8].

VI. CONCLUSION

In this paper we have proposed a tractable algorithm
for tracking multiple objects in environments with unknown
model parameters, such as clutter rate and detection prob-
ability, based on the GLMB filter. Specifically, objects of
interest and clutter objects are treated as non-interacting
classes of objects, and a GLMB recursion for propagating
the joint filtering density of these classes are derived, along
with an efficient implementation. Simulations and applications
to video data demonstrate that the proposed filter has good
tracking performance in the presence of unknown background
and outperforms the λ-CPHD filter. Moreover, it can also
estimate the clutter rate and detection probability parameters
while tracking.
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