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Abstract

We treat the emerging power systems with direct current (DC) MicroGrids, characterized with high penetration of power
electronic converters. We rely on the power electronics to propose a decentralized solution for autonomous learning of and
adaptation to the operating conditions of the DC Mirogrids; the goal is to eliminate the need to rely on an external communication
system for such purpose. The solution works within the primary droop control loops and uses only local bus voltage measurements.
Each controller is able to estimate (i) the generation capacities of power sources, (ii) the load demands, and (iii) the conductances
of the distribution lines. To define a well-conditioned estimation problem, we employ decentralized strategy where the primary
droop controllers temporarily switch between operating points in a coordinated manner, following amplitude-modulated training
sequences. We study the use of the estimator in a decentralized solution of the Optimal Economic Dispatch problem. The
evaluations confirm the usefulness of the proposed solution for autonomous MicroGrid operation.
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I. INTRODUCTION

S INCE their inception, MicroGrids (MGs) have evolved substantially, particularly in the domain of low voltages (LV),
leading to variety of use cases and topologies [1]–[11]: from small clusters of distributed energy resources (DERs) serving

houses or buildings, to large meshes of small MGs covering large areas, such as neighborhoods, industrial complexes and
remote villages. As a result, the future smart grid (SG) is envisioned as a mesh of interconnected autonomous MG systems. It
is also within the field of MGs where direct current (DC) power networks have experienced a renaissance due to the seamless
integration with DC renewable generation, DC energy storage systems and DC smart loads [2]–[4]. Hence, LV DC MGs are
considered as a solution for residential and industrial use cases.

A distinctive characteristic of DC MGs is the use of programmable DC/DC and AC/DC power electronic converters
(PECs) to connect the DERs to the DC distribution system. PECs are digital signal processors (DSPs) that allow for software
implementation of advanced control systems [2], [3]. Leveraging on the advanced features of PECs the control system design
also shifted from simple strategies, suitable for small systems [12]–[14], to modular hierarchical architectures where several
interacting control layers dynamically respond to state variations on different time scales and pursue various complementary
objectives [3], [4], [15]–[23]. Specifically, the MG control plane is organized into dual-layer architecture, comprising primary
and upper control layer [3], [15]. The primary control is decentralized and deals with high frequency dynamic compensation
and state regulation [3]. The upper control layer deals with slow, global changes in the MG by providing updated primary
control references and is implemented in distributed/centralized fashion [15]–[23]. An exemplary upper layer application is the
Optimal Economic Dispatch (OED), which aims to compute the optimal dispatch policies that minimize the total generation
cost while keeping the load balanced [17].

The standard design assumption is that the feedback of the upper control layer is closed via an external communication
system, usually via off-the-shelf wireless technologies [3], [17], [21]. However, this approach was challenged recently due
to several issues [2], [3]. First, the distributed power systems, particularly MGs, are dynamic and ad-hoc in nature, thus the
installation of communication hardware may prove impractical and cost inefficient. Second, the external communication system
reduces the resilience of the overall MG system, as it becomes a factor in the system reliability/availability. Finally, there is a
growing concern about the cyber-security of power systems that exploit external communications, as the related security threats
and attacks might severely compromise their stability and operation, leading to blackouts, equipment damage, data theft and
investment losses [24]–[27].

A straightforward solution would be to remove the upper layer completely and run the DC MG only with primary control
without any further coordination. However, the approach is not suitable for advanced MG topologies, as it can not foster
optimal and sustainable regulation. The DC bus signaling has been introduced as an enhancement of the above idea [12]–[14].
It uses the variations of the steady state bus voltage as an implicit coordination signal that tells the DERs how to behave in
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specific conditions. The idea is motivated by the fact that DC systems are inherently tolerant to steady state voltage variations,
allowing for voltage ripples of up to 10% [2], [3], [5]. Each PEC monitors the local voltage and if it the crosses predefined
threshold, the PEC takes predefined actions. This approach has reliability, availability and security advantages over traditional
networked design and requires only software modifications of the PECs. However, it is configuration-dependent, performing
well in environments with predictable loads, but not in large, dynamic and general-purpose MGs. Moreover, the range of
upper layer applications that can be supported is limited. Another alternative to wireless communications is to use conventional
powerline communications (PLC) [28]. This way, some of the security concerns can be alleviated as now an attacker would
need physical access to the MG. Nevertheless, PLCs are still essentially an external communication system coupled to the
control of the MG, as they require installation of dedicated modems.

Motivated by the shortcomings of the above approaches, we propose a decentralized dual-layer control architecture for
autonomous DC MGs in which each primary controller locally acquires the information required for the operation of the upper
layer and determines the updated primary control references without the support of external communication enabler. To support
the majority of applications, the upper control layer requires information about: i) the generation capacities of the dispatchable
DERs, ii) the demands of the loads, and iii) the conductance matrix of the distribution network [17], [19]. This information
can be inferred from local voltage observations, since the bus voltages are functionally related to the MG parameters through
a non-linear model. To extract these parameters, the PECs deliberately move the MG through a sequence of sub-optimal states
via coordinated and amplitude-modulated perturbations of the primary control parameters, referred to as training sequences.
This way, the PECs obtain sequences of local bus voltage measurements from which the required information can be uniquely
estimated, provided that the training sequences satisfy sufficiency criteria. To this end, we formulate a constrained Maximum
Likelihood (ML) estimation problem that estimates the MG parameters jointly with the state of the DC MG. To solve the
non-convex optimization problem, we develop an iterative algorithm and compare its performance against the Cramer-Rao
Lower Bound (CRLB). We illustrate the practical potential of the method by applying it in decentralized OED (DOED) and
we show how to minimize the operational cost by optimizing the design of the training sequences. The proposed solution does
not rely on any additional communication hardware, as it exploits the signal processing capabilities of the PECs and its locally
available voltage measurements, such that it can be implemented only in software.

The rest of the paper is organized as follows. Section II gives an overview of the main contributions. Section III introduces
the system model. Section IV presents the training protocol and formulates the decentralized system identification problem.
Section V is the pivotal section of the paper, presenting our take to the problem formulated in Section IV. Section VI introduces
the periodic DOED protocol. Section VII presents the results and Section VIII concludes the paper.

Notation: Column vectors and matrices are denoted by lowercase and uppercase bold letters, e.g., a ∈ RN×1 and A ∈ RN×M .
a−n ∈ R(N−1)×1 is obtained from a by removing the element at position n. Similarly, A−m ∈ RN×(M−1) is obtained from A
by removing the m-th column am. (·)T, (·)†, vec(·), dim(·), rank(·), trace(·) and ‖·‖l denote the transpose, the pseudo-inverse,
the vectorization, the dimension, the rank, the trace and the l-norm of the argument. ⊗ denotes the Kroneker product while
� and � denote the Hadamard (element-vise) product and division of vectors/matrices of adequate dimensions. The vectors
1N , 0N and en, n ∈ N , denote the all-one, all-zero and the principal coordinate vector, 1N×M , 0N×M denote the N ×M
all-one and all-zero matrices, and IN is the N ×N identity matrix. D(a) denotes diagonal matrix with the entries of a on the
main diagonal. We frequently use the identity vec(D(a)) = ONa where the N2 ×N matrix ON =

∑N
n=1 en ⊗ (eneT

n).

II. OVERVIEW OF CONTRIBUTIONS

The proposed solution is illustrated in Fig. 1. We consider a generic DC MG model with multiple buses, described in
Sections III and IV. We assume that the MG does not have access to reliable external communication resources. The physical
state of DC MGs is characterized by the steady state bus voltages. We introduce a parameter vector θ that collects all system
variables whose values are determined by exogenous influences; this includes the generation capacities of the DERs, the load
demands and the distribution network topology, i.e., the conductance matrix, see Section IV-A. Using the power balance
equation, we represent the bus voltages thorough a non-linear and implicit model, parametrized by θ, see Section III-B.
Evidently, θ varies with time; to respond to its variations on different time scales, the DC MG is governed by a hierarchical
control system, comprising primary and upper control layer. The primary control is decentralized: several controllers regulate
the bus voltages, using only local feedbacks without exchanging any information with peer controllers. They are very fast
and capable of responding to high frequency variations in θ. Popular primary controller in DC MGs is the Voltage Source
Converter (VSC) with voltage droop control, which is reminiscent to the widespread frequency droop control in AC systems,
but defined over the DC voltage; it is therefore standard practice to refer to it simply as droop controller [2], [3]. The upper
control layer, on the other hand, responds to less frequent changes in θ that affect the global behavior of the system; examples
include changes of the load/generation profile, faults, attacks, etc. Its main role is to adapt the system to the new conditions by
computing updated optimal control references for the primary controllers; all upper layer control applications require full/partial
knowledge of θ to determine the control references that adequately reflect the new conditions [15]–[23].

Unlike conventional centralized networked control solutions, where the upper control layer is supported by an external
communication enabler, we propose a decentralized control architecture that relies solely on the DSP capabilities of the PECs:
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Fig. 1. Overview of the proposed decentralized dual-layer control architecture.

namely, in our solution the upper control layer is implemented locally within each PEC, and uses only the locally available state
measurements, as depicted in Fig. 1. The solution comprises two main functional blocks, i.e., the monitoring and optimization,
executed sequentially.

Monitoring. This functional block exploits the fact that the steady state bus voltages are functionally related with θ through
the power balance equation; hence, each controller can compute a local estimate of θ. The key challenge is that it is impossible
to infer θ by using only local measurements of a single realization of the state, as the system is not observable and the estimation
is ill-conditioned. To address this, the monitoring block comprises two procedures: (1) coordinated decentralized training [29],
[30] via primary control perturbations, see Section IV, and (2) Joint System Identification and State Estimation (J-SISE), see
Section V. During training, the controllers perturb the values of the local droop control parameters, for a limited period of time,
following predetermined training sequences. This generates a sequence of different realizations of the state. The controllers
collect the local measurements of the state sequence and modulate them into the perturbation signals, see Section V-C. In
other words, the relation between the primary control perturbation signals and the induced state deviations is interpreted as
the input-output relation of an implicit communication channel [31]–[35], through which the controllers exchange their local
observations. Hence, the training sequences are used both for generating multiple states and communicating the local state
observations. If the training sequences satisfy sufficiency criteria, see Section V-B, each controller is able to compute unique
estimate θ̂ using the steady state voltage measurements acquired during training and the J-SISE algorithm, see Section V-D. The
J-SISE is formulated as non-convex, constrained ML optimization problem in classical estimation framework which we solve
via iterative algorithm based on partially linearized constraints and evaluate its performance using the CRLB, see Sections V-E
and VII-B.

Optimization. The local estimates θ̂ are used as inputs to an energy management application which computes updated
primary control references, see Fig. 1. Any application for which θ is sufficient can be applied. We focus on DOED with
linear generation cost model, since a simple, decentralized closed form solution is available in this case [17], [35]. To this end,
we design periodic protocol, detailed in Section VI, where the controllers first perform training and obtain θ̂ via J-SISE, then
re-dispatch. Finally, we show how to minimize the operational cost of the protocol by calibrating the training parameters, see
Section VII-C.

We conclude by highlighting the benefits of the proposed solution. First and foremost, it promotes the principle of self-
sustainability in SG as it reuses the DSP features of the available power electronics and obviates critical reliance on external
communication system. Further, the optimization block is not limited only to OED, as the knowledge of θ allows each controller
to solve locally a great deal of energy management optimizations (even if they do not have decentralized formulation) such as
Optimal Power Flow (OPF), Unit Commitment (UC) and security-related applications, such as Fault Detection and Diagnosis
(FDD) [19], [21]. This flexibility strengthens the autonomous operation of the DC MG. Finally, the developed framework can
be adapted for arbitrary DC MG systems, as discussed in Section VII-B.

III. SYSTEM MODEL

The terminology and the notation system applied to the model is standardly used in power engineering literature [3], [19].
Section IV introduces compact, matrix notation of the power balance equation which is easier to manipulate later on; this can
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Fig. 2. System model of general multiple-bus DC MG in steady state.

be also seen as a standalone contribution, as this is the first work that introduces such compact notation for droop-controlled
DC MG.

A. General Multiple-Bus DC MicroGrid

1) Buses and Distribution Network: A DC MG is a collection of DERs and loads, connected to low voltage DC distribution
system, see Fig. 2. The distribution system consist of N ≥ 1 buses, indexed in the set N = {1, ..., N}. Each bus n in steady
state is characterized by a bus voltage vn, and all DERs and loads connected to bus n measure the same voltage vn. The
distribution line connecting buses n and m, n 6= m has a line conductance denoted by yn,m, yn,m ≡ ym,n ≥ 0 [3]. The
topology of the distribution system is specified via the symmetric N ×N conductance matrix Y with elements:

[Y]n,m =

{ ∑
j∈N yn,j , n = m,

−yn,m, n 6= m,
n,m ∈ N (1)

2) Distributed Energy Resources: We model each DER as separate bus, i.e., we assume that each bus hosts at most one
DER; hence, the total number of DERs is N and they are indexed in the set N . This modeling choice simplifies the notation
without losing generality; in fact, if DERs n and m are connected to the same physical point, i.e., the same bus, by definition
yn,m =∞. The n−th DER has current in and power output pn = vnin. We assume that the DERs in the MG are small-scale
power sources such as renewables (RESs) or distributed generators (DGs) based on traditional fossil fuel. Each DER n has an
instantaneous generation capacity gn ≥ 0, and the output power pn should satisfy 0 ≤ pn ≤ gn.

3) Loads: The n−th bus hosts a collection of loads, represented through an aggregate model as a mixture of three components
(also known as ZIP load model [36]): 1) constant conductance yca

n = x−2dca
n , 2) constant current icc

n = x−1dcc
n , and 3) constant

power component dcp
n , see Fig. 2. The quantities dca

n , dcc
n and dcp

n are the instantaneous power demands of the components at
a rated voltage x. For a given dcp

n , the constant power component in steady state is approximated with an equivalent positive
current source in parallel with negative conductance and the electrical parameters are [3]:

icp
n ≈

2dcp
n

vn
, ycp

n ≈ −
v2n
dcp
n
, n ∈ N . (2)

4) Primary Control: The DERs use PECs to interface the buses; the bus voltage vn and/or current in, i.e., power pn are
locally controlled through decentralized primary controller, which is a software program executed by the PEC [3]. Two primary
control schemes, i.e., modes are commonly used, see Fig. 3: 1) a closed loop Voltage Source Converter (VSC), and 2) an open
loop Current Source Converter (CSC). VSC regulates the bus voltage and current of the DER as the loads/generation in the
system change in order to keep the bus voltage within predefined margins and foster fair power sharing. It contains fast inner
and slow outer control loops. An inner control loop consists of a cascade of voltage and current loops with control bandwidth
of the order of several tens of kHz, equal to the sampling frequency φS of the converter. Its role is to maintain the output bus
voltage vn to specific reference value, dictated by the outer control loop. The outer control loop is closed via filtered current
feedback, and is slower than the inner control loop by an order of magnitude. The current feedback generates the reference
value for the inner voltage loop, via the following steady state control law:

vn = xn − (yva
n )−1in, n ∈ N . (3)

This is known as decentralized droop control for DC MGs [3], [15] with two controllable parameters: the reference voltage
xn and the virtual conductance yva

n . Their values are set (i) to keep the bus voltage, as closely as possible to the rated voltage
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x, within predefined margins vmax ≤ vn ≤ vmin for any n ∈ N , and (ii) to enable fair power sharing among DERs based on
their instantaneous generation capacities [3]. Fig. 4 depicts a widespread droop control law that meets the above conditions,
with droop control parameters set as follows:

vmin < xn ≤ vmax, y
va
n =

gn
(xn −∆vn)∆vn

≡ sngn, (4)

where sn ≡ ((xn −∆vn)∆vn)−1 is the droop slope (in volts−2). The configuration yva
n = sngn enables proportional power

sharing among the DERs. When the DER operates close to its capacity, the maximal voltage drop is ∆vn, 0 < ∆vn ≤ xn−vmin.
In steady state, the droop-controlled VSC units are modeled as voltage sources in series with virtual conductance, see Fig. 2.

The other primary control mode CSC does not have outer control loop and inner voltage loops, see Fig. 3. The reference
for the inner current loop is generated via a separate algorithm that gets as an input fixed power reference [3]. Hence, a CSC
acts as a constant power component, neither participating in voltage regulation nor power sharing. It is modeled as a negative
current source and parallel conductance, as in (2) but with opposite sign. It is architecturally equivalent to a negative constant
power load, see Fig. 2.

The subsets of DERs operating in VSC/CSC, denoted respectively by NV/N C, are determined dynamically by the upper
layer application, see Section VI for an example. To support this dynamic operation, each converter is assumed to have dual
mode, and is capable to switch between VSC and CSC control mode seamlessly [3], [37], see also Fig. 3.

B. Steady State Equations

A DC MG is governed by Ohm’s and Kirchhoff’s laws, resulting in a system of N steady state power balance equations
for N buses:

ωn = 0, n ∈ N , (5)
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with ωn given by:

ωn = v2n

(
ζny

va
n +

1

x2
dca
n +

∑
m∈N

yn,m

)
− vn

∑
m∈N

vmyn,m − vn
(
ζnxny

va
n −

1

x
dcc
n

)
+ dcp

n − (1− ζn)pn. (6)

The binary variable ζn in (6) is 1/0 if DER n is configured in VSC/CSC control mode, respectively. The system of equations
is quadratic in the bus voltages, such that, in general, a closed form solution for vn, n ∈ N is not possible. The non-linear
nature of the power balance equations stems from the presence of constant power components [38], both constant power loads
and CSCs. Hence, in the case when dcp

n = 0 for all n and N C = ∅, the system (5) becomes linear in the bus voltages. Another
special case with closed-form solution is the Single-Bus DC MG which we have studied separately [34] due to its practical
importance.

IV. PROBLEM FORMULATION AND TRAINING EPOCH

The DC MG is not connected to an external communication system and the PECs only have the local voltage/current
measurements to work with. To learn (i) the generation capacities of remote DERs, (ii) the power demands of the loads and,
(iii) the conductances of the distribution lines, the controllers need to solve a decentralized system identification problem,
formulated below.

Before we begin, we list the main assumptions:
(A1) The primary controllers are fully synchronized to a common time reference.
(A2) No prior knowledge on the generation capacities, load demands or the conductance matrix is used.
(A3) The rate of load/generation/topology variations is an order of magnitude smaller than the frequency of the primary

controllers.

A. Parameter Vector

Let g = [g1, . . . , gN ]T be a N×1 vector that collects the instantaneous generation capacities of all DERs in the MG. Similarly,
the instantaneous load demands are collected in separate N × 1 vectors: dca = [dca

1 , . . . , d
ca
N ]T, dcc = [dcc

1 , . . . , d
cc
N ]T and

dcp = [dcp
1 , . . . , d

cp
N ]T. The 3N×1 load demand vector is defined as d = [(dca)T, (dcc)T, (dcp)T]Tn∈N . Further, we observe that

Y is fully specified by its supra(infra)-diagonal elements, see (1). We organize these elements in a vector ψ = [. . . , yn,m, . . .]
T,

n,m ∈ N , m > n, with dimension dim(ψ) = 1
2N(N − 1) × 1. Using ψ, we can write Y as the weighted Laplacian

Y = AD(ψ)AT, where A ∈ {−1, 0, 1}N×dim(ψ) is the oriented incidence matrix [39].
The deterministic parameter vector θ is defined as:

θ = [gT,dT,ψT]T, (7)

with dimension dim(θ) = 1
2N(N + 7)× 1. From the discussion in Section III-B, the steady state bus voltage vn depends on

θ, see eq. (4), (6). This suggests that an arbitrary controller can infer the parameter vector θ locally, using local measurements
of the steady state bus voltage (see also [40] and references therein for similar approaches). However, it is impossible to
determine θ uniquely in classical, non-Bayesian estimation framework, using only a single observation of the local steady state
bus voltage. To address this issue, the following subsection introduces a technique based on decentralized training via primary
control perturbations.

B. Training Protocol and Training Sequences

We introduce a dedicated training epoch of predefined duration, in which (i) all controllers switch to VSC mode using a
droop control law of the form (4), (ii) perturb their local droop control parameters, causing deviations of the bus voltages,
and (iii) measure the local bus voltage response, collecting sequences of steady state bus voltage measurements. The training
epoch design uses the assumptions (A1) and (A2). Specifically, the time axis during the training epoch is divided into T time
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slots, see Fig. 5, and all controllers are synchronized to this structure. We index each slot with t ∈ T = {1, . . . , T}. The slot
duration τ complies with the control bandwidth of the primary control loops, allowing the bus to reach a steady state after a
transient time τ transit � τ , yielding φS(τ − τ transit) voltage samples per slot for each controller, see Fig. 5. The system constant
τ transit, usually several milliseconds [3], is determined by the sampling frequency φS and the line capacitors. Following (A2),
θ can be assumed to remain constant during the training epoch.

We use ·̃ to denote the unperturbed, i.e., nominal droop control parameters during the training epoch; we use the law (4)
with equal reference voltages and droop slopes:

x̃n ≡ x̃, ∆ṽn ≡ ∆ṽ, s̃n ≡ s̃, n ∈ N . (8)

In slot t, all controllers simultaneously perturb the reference voltages and droop slopes, according to perturbation signals
xn(t) 6= x̃, sn(t) 6= s̃, n ∈ N ; they are organized in T × N training matrices X, S, defined as [X]t,n = xn(t) and
[S]t,n = sn(t), n ∈ N , t ∈ T . The columns xn/sn of X/S, correspond to the training sequence injected by controller n.

C. Steady State Bus Voltages and Measurement Vectors

The steady state bus voltage ṽn corresponds to the nominal, unperturbed, droop parameters x̃n, s̃n. The steady state bus
voltage response in the t−th slot is vn(t) 6= ṽn, n ∈ N . The T × N steady state bus voltage matrix V is defined as
[V]t,n = vn(t), n ∈ N , t ∈ T . The following proposition characterizes V in terms of X, S and θ:

Proposition 1. The steady state of DC MG during the training epoch is characterized by the implicit power balance equation:

Ω = 0T×N , (9)

where Ω : [vmin, vmax]T×N × X× S× Rdim(θ) 7→ 0T×N is defined as [Ω]t,n = ωn(t), n ∈ N , t ∈ T , and given by:

Ω =

(
SD(g) +

1

x2
1T (dca)T

)
�V �V + (VY)�V −

(
(S�X)D(g)− 1

x
1T (dcc)T

)
�V + 1T (dcp)T. (10)

The subsets X ⊂ RT×N and S ⊂ RT×N comprise all training matrices X and S that keep V within [vmin, vmax]T×N .

Proof. See Appendix A.

The power balance equation (9) reflects the requirement to keep the system balanced and stable, i.e., in a valid (albeit
suboptimal) operating point, in each slot during training. It also gives an implicit relation between V and θ, since (9) cannot
be solved in closed form for V.

The n−th controller measures the n-th column vn of V during the training epoch. The noisy measurement obtained by
controller n in slot t is an average of multiple voltage samples collected during the steady state period of the slot, and can be
written as wn(t) = vn(t) + zn(t) with zn(t) denoting the additive noise. The T × N bus-voltage measurements matrix W,
with [W]t,n = wn(t), n ∈ N , t ∈ T , is given as:

W = V + Z, (11)

where Z represents the noise and vec(Z) is a zero-mean, white Gaussian random vector with standard deviation σ [41], such
that the probability density function (pdf) of vec(W) is:

ρ(vec(W);θ) = N(vec(V), σ2INT ). (12)

The decentralized system identification problem for DC MGs is about devising an efficient and unbiased estimator of the
local parameter vector θ−n, denoted with θ̂−n, using only local bus voltage measurements wn, for any n ∈ N .

D. Relaxing Assumptions (A1)− (A3)

We briefly discuss the implications that arise when assumptions (A1)−(A3) are no longer valid; addressing these implications
is out of the paper’s scope. We start with (A1), as the strongest assumption. Maintaining precise synchronization among the
controllers on the level of slot and training epoch can be easily achieved if the PECs are equipped with GPS modules.
Alternatively, one can use common decentralized network synchronization approaches, typically used in sensor networks [42].
Since the method operates in a time scale in the order of milliseconds, it should be significantly easier to maintain (at
least coarse) synchronization for long periods of time. Finally, if synchronization is not possible, and the controllers inject
perturbation signals without any prior coordination, then the formulation of the problem should be modified accordingly to
account for asynchronous training. For instance, the parameter vector should be extended to include binary variables that
capture the activity patterns of the controllers and the start times of individual training sequences, as well as their end times
in case of variable training sequence durations.

Assumption (A2) simply casts our problem in classical estimation framework. In practice, prior knowledge is always available
to some extent; in fact, θ can be assumed to evolve over time following a stochastic process, paving the way for formulating
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the identification problem in sophisticated Bayesian filtering/prediction framework [43]. Nevertheless, the analysis of the non-
Bayesian case naturally comes first.

We use assumption (A3) to postulate that θ remains fixed during training, which is not true in general. In practice, θ might
change at any time due to load/generation variation or a system fault. To incorporate this notion we should reformulate the
problem accordingly. One way is to first relax assumption (A2) and model the dynamic evolution of θ via stochastic process,
where relaxing assumption (A3) arises naturally. We can avoid relaxing (A2) and still use the classical framework as presented
in the paper, but with modified definition of the parameter vector. For instance, let us assume that θ has changed no more
than J ≥ 0 times during training; then, the parameter vector should comprise J + 1 different values for θ as defined in (7), in
addition to the time instances when the changes have occurred. Such formulations in the literature are known as model change
detection, see [44].

V. DECENTRALIZED GENERATION, DEMAND AND TOPOLOGY ESTIMATION

A. Preliminaries and Notation

In the case when the controllers do not not have any knowledge of the steady state bus voltages at remote buses, the system
is not observable; hence θ−n cannot be uniquely identified in classical, non-Bayesian sense (see Appendix B).

Motivated by the ideas in [31], we propose a decentralized solution that splits the slots into two consecutive training phases:
(i) measurement phase, denoted as M -phase, and (ii) communication phase, denoted as C-phase. The slots in the C-phase are
used to disseminate the local steady state voltage measurements acquired in the M -phase to remote controllers via amplitude
modulation of the reference voltage perturbation signals. Each controller then uses a sequential-type of demodulator to process
the local bus voltage measurements acquired in the C-phase and acquire full knowledge of the portion of W that corresponds
to the M -phase. If the training matrices in the M -phase satisfy predefined conditions, elaborated in subsection V-B, then
knowing only the M -phase portion of W is sufficient to uniquely estimate the parameter vector locally.

The temporal organization of the proposed training protocol is depicted in Fig. 6, see also Fig. 7. The C-phase is further split
into sub-phases α (channel estimation sub-phase) and β (modulation and demodulation sub-phase). The M -phase contains the
first T slots, indexed in T =

{
1, . . . , T

}
, the sub-phase α takes the subsequent Tα slots indexed in T α =

{
T + 1, . . . , T + Tα

}
and the sub-phase β comprises the remaining T β = T − T − Tα slots indexed in T β =

{
T + Tα + 1, . . . , T

}
. The sub-

phase β is further split into T blocks, one for each slot in the M -phase, see Fig. 6; hence, the blocks are indexed in
T . Each block is formed by L consecutive time slots, such that LT = T β . We write T β = ∪b∈T T β;b where T β;b ={
T + Tα + (b− 1)L+ 1, . . . , T + Tα + bL

}
, b ∈ T is the set indexing the slots in block b. As elaborated in subsection V-C,

in block b, the controllers disseminate the measurements obtained in slot b in the M -phase, see Fig. 7. We introduce notation
corresponding to (sub-)phase-wise and block-wise partition of the matrices W, X, S, V and Ω. Take the measurement matrix
W as an example (analogous notation applies to X, S, V and Ω); it can be partitioned as, see Fig. 7:

W =

 W
Wα

Wβ

 , Wβ =

Wβ;1

...
Wβ;T

 .
The T × N matrix W, with [W]t,n = wn(t), n ∈ N , t ∈ T , contains the steady state bus voltage measurements from the
M -phase; Wα, Wβ as well as each of the matrices Wβ;b, b ∈ T are defined analogously. wn denotes the n−th column of
W; analogous notation applies to the other matrices.

B. Sufficient Excitation

The purpose of the C-phase is to enable each controller to learn W, which is sufficient to generate locally a unique estimate
of θ−n for any n ∈ N , if and only if the Jacobians of vec(Ω) w.r.t. θ−n and vec(V), denoted with Υ−n and Γ, respectively,



9

W 
W


W

n

n


w

n


w

Joint System 

Identification & 

State Estimation

 n
W

ˆ
nh

ˆ
n

Training Epoch

Channel 

Estimator

Decentralized Estimation

b bBlock

Demodulator

Fig. 7. Proposed decentralized solution.

satisfy the rank conditions:

rank(Υ−n) = dim(θ−n), (13)

rank(Γ) = NT, (14)

for any n ∈ N . The sufficient excitation conditions provide practical guidelines for designing the training matrices X and S;
this is further discussed in subsection V-F.

We note that the vectorization of Ω is linear in θ:

vec(Ω) = Υθ = 0TN . (15)

In fact, it can be shown that it is always linear in d and ψ; however, the linearity in g is a direct corollary of the virtual
resistance configuration (4) for proportional power sharing based on the instantaneous generation capacities. This result is
useful for finding good initial estimates of θ−n which will be used to initialize the iterative algorithm.

C. Training Phases and Sub-phases

In the M -phase, the n−th controller obtains wn, the n-th column of W. Learning the remaining columns wn, n 6= m
and obtaining local copy of W, denoted with W(n), is done in the C-phase where controller n disseminates wn to remote
controllers by modulating the amplitudes of the reference voltage deviations and, in the same time, demodulates wm, m 6= n

from the locally available measurements w
α/β
n via sequential demodulator, see Fig. 7.

In the C-phase, we adopt the following perturbation signals:

xn(t) = x̃+
√
πn(t)∆xn(t), sn(t) = s̃, n ∈ N , t ∈ T α/β , (16)

where ∆xn(t) ∈ [−1,+1] is the reference voltage perturbation and
√
πn(t) > 0 is the perturbation amplitude; hence, the

droop slopes in the C-phase are kept fixed to the nominal value and the communication channel is established via the reference
voltage perturbation signals. The C-phase training matrices Xα and Xβ can then be written as follows:

Xα/β = x̃1Tα/β×N + Πα/β �∆Xα/β , (17)

where ∆X and Π are the reference voltage perturbation and perturbation amplitude matrices, defined as [∆X]t,n = ∆xn(t)
and [Π]t,n =

√
πn(t), n ∈ N , t ∈ T α/β , respectively. To facilitate the design of the demodulator, we make the following

small signal assumption: the reference voltage deviation amplitudes in the C-phase are relatively small w.r.t. the nominal
reference voltage, i.e., πn(t)� x̃n, n ∈ N , t ∈ T α/β . Using Taylor’s series expansion, the signal collected by controller n in
the C-phase can be written as:

wα/β
n ≈ ṽn1Tα/β + (Πα/β �∆Xα/β)hn + zα/βn . (18)

The model above defines the input-output relation of a real, linear, synchronous communication channel with channel vector
given by the gradient hn (evaluated at the nominal droop values) which contains the real coefficients of the equivalent linear
channels that controller n sees to the other controllers; in localized and strongly connected MGs, the entries in hn do not
differ significantly (see also [33]), i.e., the channel (18) experiences strong all-to-all property.

We use the linear model to design sequential transceiver that operates as follows. First, in sub-phase α, controller k estimates
hk; for this purpose, we fix the perturbation amplitudes to be all known and equal constants:√

πn(t) =
√
πα, n ∈ N , t ∈ T α. (19)
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Then, in sub-phase β the controllers disseminate the information acquired in the M -phase via the following linear amplitude
modulation (without any additional error protection):√

πn(t) =
√
πβ(wn(b)− χn), n ∈ N , t ∈ T β;b, b ∈ T , (20)

where πβ and χn are known positive constants. Clearly, πn(t) remains fixed in block b ∈ T , carrying the information about
wn(b) by embedding it into the amplitude of the perturbation signal ∆xβ;bn . The controllers operate in full duplex transmission
mode, simultaneously broadcasting and receiving one voltage measurement per block to/from all other controllers.1

To guarantee the uniqueness of the local copies W(n), we restrict the columns of the reference voltage perturbation matrices
∆Xα and ∆Xβ;b to be zero mean and orthogonal:

(∆Xα)T1Tα = 0N , (∆Xα)T∆Xα = δαIN , (21)

(∆Xβ;b)T1L = 0N , (∆Xβ;b)T∆Xβ;b = δβIN , (22)

where δα = ‖∆xαn‖22 ≤ Tα, δβ = ‖∆xβ;bn ‖22 ≤ L, for every n ∈ N , b ∈ T . We note that the above assumptions are a bit
restrictive. Given the perturbation signals (19) and (20) in sub-phases α and β, the sufficient conditions for uniqueness of W(n)

for any n ∈ N are rank(∆Xα) = rank(∆Xβ;b) = N for any b ∈ T ; however, we use (21), (22) for convenience, namely, to
obtain compact expression for W(n) without loosing generality. Replacing (19) and (20) in (18) and using assumptions (21),
(22), we derive W(n):

Proposition 2. The local estimators of vec(W) are given by:

vec(W(n)) =

√
παδα√
πβδβ

D−1(Xαwα
n)
∑
b∈T

(X β;bwβ;b
n ) + Iχ, (23)

for any n ∈ N ; for notational brevity, we used Xα = (∆Xα)T ⊗ 1T , X β;b = (∆Xβ;b)T ⊗ eb, I = IN ⊗ 1T and χ =
[χ1, . . . , χN ]T.

Proof. See Appendix C.

By the end of the training epoch, the n−th controller has a local copy of the M -phase measurement matrix vec(W(n)); if
the sufficient excitation conditions (13), (14) hold, then vec(W(n)) is sufficient to estimate θ−n. Formulating an ML estimation
problem using vec(W(n)) requires knowledge of the pdf ρ(vec(W(n));θ); however, obtaining the closed from expression is
tedious since (23) involves ratios of non-zero Gaussian random variables. Therefore, we derive Gaussian approximation for
the pdf of vec(W(n)) based on first-order perturbation-theoretic approach (see supplementary material). Using Neumann series
expansion, we get:

ρ(vec(W(n));θ) ≈ N(vec(V),Σ). (24)

The covariance matrix Σ can be computed via the first-order approximation (see Appendix D) and is given by:

Σ = σ2

ITN +
πα(δα)2

πβδβ
D−2(Xαvαn) +

πα(δα)3

πβ(δβ)2
D−2(Xαvαn)

∑
b∈T

D(X β;bvβ;bn )(IN ⊗ 1T×T )D(X β;bvβ;bn )

D−2(Xαvαn)

 .

(25)

The approximation is valid for sub-phase α signals satisfying 0Tα < wα
n < 2vαn . In practice, this is expected to be satisfied

as the probability that wα
n is negative or larger than 2vαn is negligible. In light of this, one can easily verify that the Gaussian

approximation converges to the true distribution of vec(W(n)) in the limit wα
n → vαn . Expression (25) also captures the effect

of the C-phase and the transmission schemes we adopted there on the uncertainty in the local copies W(n); specifically, the
initial uncertainty in W, represented with the first term in (25), increases due to (1) measurement noise in sub-phase β (second
term) and, (2) the uncertainty in the channel estimates induced in sub-phase α (third term).

D. Joint System Identification and State Estimation

By the end of the training epoch, the n−th controller has W(n) and the C-phase measurement vectors wα
n and wβ

n. The
reference voltage training matrix Xα is deterministic, so wα

n can still be useful when formulating the estimation problem. On
the other hand, the training matrix Xβ in sub-phase β is modulated with M -phase measurements; since controller n knows
only the noisy copy W(n), it is impossible to reconstruct Xβ perfectly which makes wβ

n of no further use. The optimal ML
that uses all available information should be defined over an augmented vector, comprising vec(W(n)) and wα

n . Including

1The scheme suits well channels with strong all-to-all property, i.e., channels where the gains in hk do not differ significantly; this is the case for small
and localized MGs. As the system grows in size and scope, the all-to-all property ceases to be valid and one should consider applying more sophisticated
digital modulation/demodulation and scheduling schemes, including error protection coding; see [32], [33] for alternatives.
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Algorithm 1 J-SISE with partially linearized constraints

Input: W(n), X, S, ε, evaluate Σ via (25) using wα
n and wβ

n

Output: ϑ̂−n
Initialization: j = 0, ε =∞, compute θ(0)−n, vec(V

(0)
) via (32), (31)

1: while ε ≥ ε do
2: evaluate Υ(j), Γ(j) using ϑ(j)

−n

3: compute θ(j+1)
−n , vec(V

(j+1)
) via (29) and (30)

4: compute ε = ‖ϑ(j+1)
−n − ϑ(j)

−n‖, j = j + 1
5: end while
6: return ϑ

(j+1)
−n

wα
n increases the dimensionality of the problem, but the numerical investigations indicate that it does not yield any practically

significant performance gain. We therefore omit wα
n from the ML for clarity of exposition.

The relation between the steady state bus voltages and the parameter vector is defined implicitly in Proposition 1; therefore,
we define a joint system identification and state estimation (J-SISE) problem via constrained ML estimation [43], [45]. We
introduce the joint parameter/state vector:

ϑ =

[
θ

vec(V)

]
. (26)

We define ϑ̂−n, n ∈ N as the globally optimal solution to:

ϑ̂−n = min
ϑ−n

{
− ln ρ(vec(W(n));θ)

}
, (27)

s.t. vec(Ω) = 0TN ,

formulated w.r.t. the true distribution of vec(W(n)). The problem (27) is neither convex nor concave due to the quadratic nature
of the constrains that contain bilinear terms in the decision variables. Since vec(Ω) is sufficiently differentiable in ϑ−n, the
constrained optimization problem (27) can be restated as an unconstrained one using the Lagrange method of multipliers [46].
Using the Gaussian approximation (24) and applying the Karush-Kuhn-Tucker (KKT) conditions yields a non-linear system
of equations. Using the result of the following proposition, we propose Algorithm 1 based on partially linearized constraints
to solve the system iteratively [45]. Specifically, denote ϑ(j) in the j-th iteration and let:

vec(Ω) ≈ Υ(j)θ + Γ(j)(vec(V)− vec(V
(j)

)), (28)

be the linear approximation of vec(Ω) around ϑ(j). The Jacobians Υ(j), Γ(j) are evaluated in ϑ(j). We obtain the following
result:

Proposition 3. If the sufficient excitation conditions (13), (14) are satisfied in ϑ(j), the global solution to (27) after substituting
the power balance constraint with (28) is given by:

θ−n = −((Υ
(j)
−n)T(Γ(j)Σ(Γ(j))T)−1Υ

(j)
−n)−1(Υ

(j)
−n)T(Γ(j)Σ(Γ(j))T)−1(υ(j)

n gn + (Γ(j))T(vec(W(n))− vec(V
(j)

))), (29)

vec(V) = vec(W(n))−Σ(Γ(j))T(Γ(j)Σ(Γ(j))T)−1(Υ(j)θ + (Γ(j))T(vec(W(n))− vec(V
(j)

))). (30)

Proof. See Appendix E.

The algorithm starts with an initial guess ϑ(0)
−n. Then, we apply Proposition 3 iteratively; the solutions (29), (30) in each

iteration serve as an input for the next iteration until convergence. In order to apply Algorithm 1, controller n should know
the covariance matrix Σ up to a scaling factor, i.e., knowledge of the noise variance σ2 is not necessary. To ensure fast
convergence, we propose the following initialization: once W(n) is locally available, a reasonable initial estimate of the state

vec(V
(0)

) can be obtained via eq. (11):
vec(V

(0)
) = vec(W(n)). (31)

Then, we evaluate Υ in vec(V
(0)

) and solve (15) for θ−n:

θ
(0)
−n = −(Υ

(0)
−n)†υ(0)

n gn, (32)

where υ(0)
n is the n-th column of Υ(0). It can be easily verified that ϑ(0)

−n satisfies the KKT conditions and is a stationary point
of the objective in (27). Section VII shows that (32) is unbiased but not efficient estimator of θ−n. In this regard, Algorithm 1
serves to refine the initial estimate ϑ(0)

−n and further reduce its covariance.
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E. Performance

The Mean Squared Error matrix of the unbiased estimator of ϑ−n is defined as:

MSE(ϑ̂−n) = E
{

(ϑ̂−n − ϑ−n)(ϑ̂−n − ϑ−n)T
}
. (33)

MSE(θ̂−n) and MSE(vec(V̂)) are defined analogously. In stead of deriving the MSE matrix directly, we use the CRLB
inequality to bound it and derive an approximate lower bound using the Gaussian approximation (24). Referring to the
optimization problem (27), a straightforward way to bound MSE(ϑ̂−n) is to use the constrained CRLB [47]. Let O denote
the dim(ϑ−n) × dim(θ−n) matrix whose columns form the orthonormal basis for the null space of the Jacobian [Υ−n, Γ].
Then, MSE(ϑ̂−n) can be bounded as follows [47]:

MSE(ϑ̂−n) � O

(
OT

[
0 0
0 Σ−1

]
O

)−1
OT, (34)

where 0 denote all-zero matrices of adequate dimensions. O is is computed numerically, as it is unavailable in closed form.
To bound the MSE matrices of θ̂−k and vec(V̂) separately, we need to perform numerical block inversion of the right-hand
side of (34); the following proposition gives alternative and simpler closed form expressions for these bounds:

Proposition 4. The MSE matrices MSE(θ̂−n) and MSE(vec(V̂)) can be bounded from below as follows:

MSE(θ̂−n) � (ΥT
−n(Γ−1)TΣ−1Γ−1Υ−n)−1 = J −1, (35)

MSE(vec(V̂)) � Γ−1Υ−nJ −1ΥT
−n(Γ−1)T, (36)

where J denotes the Fisher Information Matrix of θ−n.

Proof. See Appendix F.

The expressions (35) and (36) can be verified to be asymptotically tight; it can be shown that if Algorithm 1 converges
to the global optimum, the MSE matrix is of the same analytical form as (35) and (36), but evaluated at ϑ̂−n. Conversely,
expressions (35) and (36) prove the asymptotic efficiency of Algorithm 1.

F. Discussion

We take a closer look on few crucial aspects that set the applicability boundaries of the proposed method. We consider
the sufficient excitation conditions, outlined in subsection V-B; they provide guidelines for designing the training sequences
and they determine the overall duration of the training epoch. A straightforward way to guarantee (13), (14) is to ensure that
T ≥ N−1dim(θ−n) and rank(X) = N and/or rank(S) = N . The minimal duration of the C-phase is determined by the
conditions for uniqueness of W(n), such that the total duration of the training epoch (in slots) T = T (1+L)+Tα in a system
with N DERs is lower bounded as:

T ≥ 1

2
N2 + 5N +

5

2
− 1

N
= Tmin. (37)

The lower bound on T can be attained by random training sequences. Alternatively, when using deterministic codes such as
orthogonal Walsh-Hadamard sequences, meeting the rank conditions and, possibly additional conditions such as (21), (22)
might require more time slots than Tmin.

The frequency of the training epoch should match the requirements of the upper layer application. If the application runs
periodically, then the training epoch should be invoked in each period, preferably at the beginning, while in event-triggered
applications, the training epoch should be invoked whenever the application is triggered. While the frequencies should be equal,
the total duration (in seconds) Tτ is expected to constitute only a fraction 0 < γ < 1 of the average time τ u.app between two
consecutive application runs. Then, we have the following upper bound on the slot duration:

τ ≤ γτ u.app

T
≤ τ u.app

Tmin
= τmax, (38)

where τmax is obtained by fixed γ = 1 and T = Tmin.
Further, since the proposed method is developed in classical estimation framework, each controller requires perfect knowledge

of the training matrices X, S, ∆Xα and ∆Xβ . This means that the training matrices should be designed a priori, delivered to
the controllers and kept fixed afterward (via hard-coding for instance). Relaxing this condition requires adequate modifications
of the problem formulation, which is out of the paper’s scope. For instance, if no prior knowledge is available, we have no
choice but to model the training matrices are deterministic unknowns and modify the definition of the parameter vector to
include them.

The method can only identify buses that host at least one DER whose primary controller engages in decentralized training.
In other words, buses that host only loads are unidentifiable. However, we can still apply the method in MGs with (potentially
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many) load buses; in this case, the method identifies the Kron-reduced conductance matrix, which is obtained by isolating the
DER buses in the original network and applying block inversion on the original conductance matrix. Analyzing the structure of
the Kron-reduced conductance matrix, the controllers might be able to deduce some information on the original conductance
matrix, see [48].

VI. DECENTRALIZED OED VIA TRAINING

We illustrate the practical potential of the proposed system identification method by applying it in decentralized OED
(DOED) as the most common upper layer application in power systems. In OED, each DER n ∈ N is assigned a monotonic
and convex cost function cn(pn) that determines the cost of the output power pn of DER n. The aim of the OED is to find the
optimal local output powers, referred to as optimal dispatch policies p∗n, n ∈ N that minimize the total cost

∑
n∈N cn(pn)

such that the total load demand d? = 1T
3Nd is balanced and the box constraints on the output powers are satisfied:

p∗ = min
p
c(p), (39)

s.t. 1T
Np = d?, 0N ≤ p ≤ g, vmin1N ≤ v ≤ vmax1N ,

where c(p) =
∑
n∈N cn(pn), p = [p1, . . . , pN ]T and v = [v1, . . . , vN ]T. Distributed MGs with small-scale DERs typically

use linear cost functions [17]. Hence, we adopt cn(pn) = anpn where an is the constant marginal cost of the n−th DER
per unit of injected/stored power. Without loss of generality, the costs are ordered as an ≤ an+1, n ∈ N , which divides the
DERs in several ordered cost groups based on the marginal costs. The optimal solution to (39) is the following decentralized
program:

p∗n =


gn d? >

∑
m:am≤an gm,

0 d? <
∑
m:am<an

gm,

gn
d?−

∑
m:am<an

gm∑
m:am=an

gm
otherwise

(40)

for any n ∈ N (see also [17], [35]). Specifically, the total load demand is first filled with the capacities of the DERs from the
cheapest cost groups, until the third condition in (40) is met. Then, the DERs from the cost group that meets this condition share
the remaining net load demand proportionally to their local capacities while the DERs from the remaining, most expensive
cost groups do not inject power. The DERs that satisfy the first condition in (40) are operated at a constant power (at capacity)
and their local controllers are configured in CSC mode (forming the subset N C), whereas the DERs that satisfy the third
condition have flexible power outputs and their local controllers are configured in VSC mode, tuned for proportional power
sharing (forming NV).

Knowing θ, specifically g and d?, is sufficient for implementing the decentralized program (40). We design a OED protocol
in which the controllers utilize decentralized training and Algorithm 1 to acquire the information necessary to execute (40).
Fig. 8 illustrates the temporal organization of the protocol. The OED typically runs periodically, every 5−30 minutes depending
on the average rate of change of g and/or d [3], [17]. Therefore, we (i) divide the time axis into periodic OED epochs, each
of of duration τOED, and (ii) assume that θ changes independently at the beginning of and OED epoch and remains fixed
throughout the epoch [17]. In each epoch, the DERs locally run the program (40) using up-to-date information about the
generation capacities and load demands. To obtain this information, a fraction of the total duration τOED of the OED epoch is
allocated for decentralized training, see Fig. 8. The OED epoch is split into a training epoch of duration Tτ and an optimal
operation epoch of total duration τOED − Tτ . In the training epoch, the DER controllers perform decentralized training and
estimation as described in Sections IV and V. At the end of the training epoch, controller n obtains θ̂−n, used at the beginning
of the optimal operation epoch to determine the local dispatch policy p̂∗n, i.e., to determine which condition in (40) is satisfied
locally. Hence, each DER individually decides its primary control configuration via (40) using θ̂−n and configures the local
controller accordingly, forming the subsets N̂V ⊂ N and N̂ C ⊂ N . We use ·̂ to denote that (40) is solved using θ̂−n.
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Implicit in the derivation of the decentralized program (40) is the assumption that the MG is balanced d? ≤
∑
m∈N C∪NV gm.

However, the stochastic renewable generation might sometimes violate the balance condition. Moreover, due to estimation errors
in θ̂−n, the resulting dispatch policies p̂∗n will in general differ from p∗n, attainable only when θ is known perfectly; hence,
N̂ C/V 6= N C/V in general. This leads to slightly suboptimal MG operation, but it might also violate the balance condition
even when N C/V satisfy it. This results in loss of voltage regulation as the bus voltage quickly (i) drops towards the lower
margin vmin when the net load demand is positive d? >

∑
m∈N̂ C∪N̂V gm or (ii) rises towards the upper margin vmax when

the net-load demand is negative d? <
∑
m∈N̂ C gm. Clearly, additional generation/storage capacity is necessary to balance the

remaining demand. We employ a solution based on classical DC bus signaling, where a backup source/storage is activated
if the bus voltage crosses certain thresholds [12], [13]. The marginal costs of the backups are denoted with cextra

source/c
extra
storage

per unit generated/stored power; these values are always larger than the largest marginal cost among the DERs in N , i.e.,
cextra

source/c
extra
storage > cN . In normal operating conditions, the MG is balanced, the backups are not active, and the bus voltage is

regulated by the DERs in N̂V, using the droop control law (4) with parameters:

xn = (1 + ξ)x, ∆vn = 2ξx, n ∈ N̂V, (41)

dimensioned to maintain the bus voltages in a tight region around the rated voltage x, i.e., in the interval [(1− ξ)x, (1 + ξ)x]
with ξ being a small positive number. If the bus voltage drops below (1− ξ)x, it signals power deficit and the backup source
is activated and configured in droop-controlled VSC mode, using (4) with parameters set as:

xextra
source = (1 + ξ)x, ∆vextra

source = (1− ξ)x− vmin, (42)

maintaining the bus voltages in [vmin, (1− ξ)x]. Conversely, if the voltage rises above (1 + ξ)x, it signals power surplus and
the storage is activated and also configured in droop-controlled VSC mode, using (4) with parameters set as:

xextra
storage = vmax, ∆vextra

storage = vmax − (1 + ξ)x, (43)

maintaining the bus voltages in [(1 + ξ)x, vmax]. Fig. 9 summarizes the complete operational dynamics of the proposed system
on a single v − i diagram. Note that installing backup generation/storage is standard practice when dimensioning standalone
systems [3], [12], [13]. In grid-connected systems, the grid can be used as backup, effectively acting as ideal voltage source
with infinite generation/storage capacity [3].

VII. EVALUATION

A. General Simulation Description and Design Parameters

Table I summarizes the numerical values of the simulation parameters that remain fixed in all simulation studies; the values
of the remaining parameters are provided in the captions of the respective plots. We consider a line, i.e., cut-ring distribution
network topology, where all buses are connected to two other buses except for buses n = 1 and n = N that are connected to
a single bus each. As it is a regular practice for any power system, the MG is dimensioned to operate over a range of load
demands. For simplicity, we use dc·

n ≤ dc· for any n ∈ N (“·” stands for either “a”, “c” or “p”); similarly, gn ≤ g for any
n ∈ N , see Table I.

The measurement noise variance σ2 after averaging φS(τ − τ transit) samples per slot, see Fig. 5, can be computed as:

σ2 =
σ2
S

φS(τ − τ transit)
, (44)

where σ2
S is the noise variance of the PECs’ ADCs [41].
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TABLE I
FIXED SIMULATION PARAMETERS

Parameter Value

Simulation platform MATLAB
Reference voltage x (volts) 400

Lower and upper voltage margins vmin, vmax (volts) 385, 415

Distribution network topology cut-ring
Max. gen. capacity per DER g (kW) 1

Max. const. conductance demand per bus dca (kW) 0.2

Max. const. current demand per bus dcc (kW) 0.2

Max. const. power demand per bus dcp (kW) 0

Average conductance per line y (S) 1

Sampling frequency φS (kHz) 50

Sampling noise standard dev. σS (volts/sample) 0.1

Transient time duration τ transit (ms) 2.5

Nominal droop control params. x̃, ∆ṽ (volts) 400, 15

Max. voltage drop in M -phase ∆v (volts) 15

Total number of slots in the training epoch T = 600

Total number of slots in sub-phase α Tα = 2N

Total number of slots per block in sub-phase β L = 2N

Other C-phase params. κα, κβ , χn, n ∈ N 1, 1, vn
OED epoch duration τOED (s) 300

Backup gen./storage cost cextra
source/c

extra
storage (units/W) 12

DC bus signaling threshold ξ 6.25 · 10−4

The number of slots T in the M -phase for fixed Tα = 2N and L = 2N , see Table I, is determined from the total number
of slots T = (1 + L)T + Tα which is also fixed:

T =

⌊
T − 2N

1 + 2N

⌋
. (45)

The perturbation signals are set as (see also Fig. 10):

xn(t) = x+
√
π∆xn(t), (46)

sn(t) = (∆v(xn(t)− x+ ∆v))−1, t ∈ T , n ∈ N . (47)

The binary sequences ∆xn(t) ∈ {−1,+1} , t ∈ T are formed by tossing a fair coin for any n ∈ N . This is done a priori,
i.e., N binary Bernoulli sequences of length T are generated, confirmed to satisfy (13), (14) and stored. The droop slope
perturbation laws (47) ensure that the bus voltages will not drop below x−∆v ≥ vmin or rise above x+ ∆v ≤ vmin as long
as
√
π < ∆v, see Fig. 10. The reference voltage training sequences in sub-phase α and block b in sub-phase β have fixed

length of 2N slots and are set as:

∆xα/β;bn = en ⊗
[

1
−1

]
, b ∈ T , n ∈ N . (48)

Hence, δα = δβ = 2. We also fix
√
πα = κα

√
π and

√
πβ = κβ

√
π, where 0 < κα, κβ ≤ 1 are set to keep the reference

voltage deviation amplitudes in the C-phase relatively small, ensuring that the model (18) is valid for any
√
π ∈ (0,∆v).

The performance of J-SISE w.r.t. the MSE and the performance of DOED w.r.t. the cost, are determined by the configuration
of the training epoch, which in turn is determined by variety of factors such as slot duration, number of slots, nominal droop
control parameters, training matrices and deviation amplitudes. With all specifications listed above and in Table I, most of
these factors are kept fixed in our evaluations and the design parameters of the training epoch are the slot duration τ and the
reference voltage deviation amplitude

√
π. Next, we evaluate the performance of the J-SISE in terms of the design parameters

and show how to find their optimal values w.r.t. DOED.

B. J-SISE Performance

First, we investigate the performance, the scalability and the convergence properties of Algorithm 1 w.r.t. θ−n from the
perspective of controller n = 1 and compare it against CRLB. We fix the generation capacities of all DERs to have equal
values, i.e., gn = g, n ∈ N and we do the same with the load components dca

n = dca
n , d

cc
n = dcc

n , d
cp
n = dcp

n and the line
conductances yn,m = y for all n,m ∈ N . We use the Relative Root Mean Squared Error (RRMSE) metric, derived from the
MSE matrix as follows:

RRMSE(̂·) =

√
trace(MSE(̂·))
‖ · ‖2

. (49)
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Fig. 10. v − i diagram of the M -phase droop control perturbation law.

To evaluate the MSE matrix, we use statistical average of individual MSE matrices, obtained for 1000 different realizations of
the noise matrix Z. “·” in the above definition stands for either the full vector θ−n or its constituent vectors, i.e., g−n, d or
ψ; in either case, the RRMSE is interpreted as the standard deviation of the estimation error per component of the vector that
is used as argument. Note that, when applied to a constituent vector of θ−n, we plug the diagonal block of the MSE matrix
corresponding to that particular constituent vector. To compute the corresponding lower bound on the RRMSE, we use the
CRLB matrix in (49) instead of the MSE matrix.

We focus particularly on the RRMSE as function of
√
π, since RRMSE decreases linearly with τ in the log-domain, see

eq. (44)). Fig. 11 depicts the performance of J-SISE for each of the constituent vectors of θ−n, i.e., g−n, d and ψ against
the corresponding lower bounds, for N = 6 DERs. We have evaluated the lower bounds using both, the constrained CRLB
(34) and expression (35) from Proposition 4, and they both yield numerically identical results. Empty markers correspond to
the initial estimate that initializes Algorithm 1, obtained via (32), while filled markers correspond to θ̂−n after Algorithm 1
converges. As expected, J-SISE is efficient and attains the CRLB as

√
π increases, except for values very close to ∆v; here,

the RRMSE hits a turning point, after which it increases sharply as a result of the fact that when
√
π → ∆v, the droop slope

sn(t) grows arbitrarily large and the virtual resistance yva
n → 0. Hence, the controller starts to behave as an ideal voltage source

with infinite capacity, pushing the bus voltages to a fixed value x−∆v and making the MG insusceptible to reference voltage
perturbations.

We further observe that the generation capacities, Fig. 11(a), and the line conductances, Fig. 11(c), can be identified with
very high precision (less than 1% of the true value). In contrast, the RRMSE of the load demands of individual components,
Fig. 11(b), is several orders of magnitude higher. We conclude that, identifying the individual components of the loads with
satisfactory performance might require excessive (even prohibitive) training epoch durations to suppress the noise. However, in
many upper layer applications, detailed knowledge on the individual load component demands is not necessary and knowing
only the total bus demand d?n = dca

n + dcc
n + dcp

n is sufficient [17], [35]; in such case, an estimate of the total load demand
vector d? = [d?1, . . . , d

?
N ]T, comprising the total demands at each bus, can be obtained from d̂ via d̂? = [IN , IN , IN ]d̂.

Fig. 11(b) shows that d̂? can be identified with a precision comparable to the one achieved for the generation capacities and
line conductances.

The improvement of θ̂−n w.r.t. θ(0)−n given with (32), is also evident, clearly showing that the initial estimate is not efficient.
The numerical results (not shown here due to space limitations) show that the average of θ(0)−n− θ̂−n converges to zero vector
asymptotically. We conclude that the initial estimate θ(0)−n is indeed unbiased estimator of θ−n and can be still used in practice
even though it is not efficient, particularly, when

√
π is of the same order as/smaller than σ or for small N . In the first case,

Algorithm 1 does not converge, see Fig. 11, and θ(0)−n remains as the only reasonable choice. The second case can be more
clearly observed in Fig. 12 that investigates the performance of the framework for increasing number of buses; we see that for
small number of buses (e.g. N = 2), the RRMSE of the initial estimate approaches the CRLB; in such case, the gain from
applying Algorithm 1 is marginal, and θ(0)−n is sufficient for all practical purposes.

From Fig. 12, we also observe that, the performance of J-SISE tends to deteriorate as the number of buses increases, which
is expected due to the increase of dim(θ−n). A straightforward way to improve the performance of Algorithm 1 and make
the estimation error arbitrarily small for large N , is to increase τ . However, note that (27) treats the vector ψ as full vector,
when in fact it may be sparse, containing many zero entries. This might prove to be problematic as the size of the MG scales,
i.e., as the number of buses increases since larger distribution systems are significantly sparser [39], so estimating ψ as if it is
full vector might lead to performance degradation [49]. So, an appropriate way to improve the performance when N is large
(which is out of the scope of this work) is to modify (27) by adding sparsity constraint on ψ and apply a common relaxation
method [49].
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Fig. 11. Standard deviation of the estimation error per component of the vectors g−n, d, d? and ψ in a cut-ring MG with N = 6 DERs and slot duration
τ = 50 ms.
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Fig. 12. Scalability performance per component of the parameter vector θ?−n = [gT, (d?)T,ψT] in cut-ring MG with increasing number of DERs and slot
duration τ = 50 ms.

Finally, we comment on the convergence speed of Algorithm 1; in all tested cases, that is for N ≤ 12, Algorithm 1 converges
already after 10 iterations. This remarkable result can be mainly attributed to the fact that the initial estimates χ(0), θ(0)−n, given
with eq. (31), (32), respectively, form a stationary point of the optimization problem (27) (see subsection V-D). The additional
fact that they are also (asymptotically) unbiased, implies that θ(0)−n must lie in a neighborhood around θ̂−n, possibly being an
inflection point from which it can easily converge to the global optimum only after several iterations.

C. Optimizing the Cost Trade-off in DOED

The results presented in the previous subsection do not consider (i) the effect that the estimation error has on the upper layer
applications, and (ii) the effect that the power dissipation during training has on the overall performance of the MG. In other
words, improving the performance of J-SISE, which is desirable from the perspective of the upper layer application, comes at
the “price” of increased power dissipation during training, either by using large perturbation amplitudes or long slot durations,
which in turn compromises the performance of the upper layer control application. This leads to a fundamental trade-off
between the performance of J-SISE, which is determined by the configuration of the training epoch, and the performance
of the application. Our goal is to (i) show how to characterize this trade-off via utility function that jointly captures the
performances of J-SISE and the upper layer application, and (ii) provide guidelines on how to design optimal training epochs,
namely, how to choose τ and

√
π such that the utility function is optimized.
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As a case study, we take the DOED protocol, described in subsection VI, noting that the approach described below can be
applied to any upper layer application. The performance of specific DOED policy vectors p is assessed via the cost c(p) = aTp.
The cost of the optimal policy p∗ is c∗ = c(p∗)+cextra = aTp∗+cextra with cextra denoting any extra cost entailed by activating
backups in case the MG is unbalanced. c∗ is in fact the minimal cost, attainable only when g and d? are perfectly known
to each controller. However, when running the DOED protocol using the estimated parameter vector, see subsection VI, the
cost of the resulting dispatch policy vector p̂∗ should also account for (i) the fact that p̂∗ 6= p∗, i.e., the DOED policy p̂∗ is,
in general, suboptimal, (ii) the fact that p̂∗ is valid only in the optimal operation epoch within the OED epoch, and (iii) the
power dissipation incurred in the training epoch. We denote this cost with ĉ∗ and we write:

ĉ∗ =
τ

τOED 1T
TPa +

τOED − Tτ
τOED

(
aTp̂∗ + ĉextra) , (50)

where the T ×N matrix P is defined as [P]t,n = pn(t), n ∈ N , t ∈ T and pn(t) is the output power of DER n in slot t.
The first term corresponds to the cost of training, whereas the second gives the actual cost of p̂∗. We define the Relative Cost
Increase (RCI) µ̂, relative to the optimal cost c∗:

µ̂ =
τ

τOED

1T
TPa

aTp∗ + cextra +
τOED − Tτ
τOED

aTp̂∗ + ĉextra

aTp∗ + cextra − 1. (51)

The RCI can be interpreted as a measure of the additional monetary charge that the the community served by the MG will be
subjected to when operating autonomously using the proposed DOED protocol, without any access to external communication
enabler. We observe that µ̂ is a random variable whose pdf is parametrized w.r.t fixed θ. In practice, it is desirable to optimize
the performance of the upper layer application over the range of θ, which the MG is foreseen to operate in. Therefore, we
choose the average RCI, denoted by µ and computed as an average of µ̂ over θ, to be the utility function for the DOED. The
aim is to find the optimal training epoch configuration parameters, namely, τ and

√
π, that minimize the average RCI:

τ∗,
√
π∗ = min

τ,
√
π
µ(τ,
√
π), (52)

s.t. τ transit < τ ≤ τmax, 0 <
√
π < ∆v.

Computing µ in closed form is far from trivial; therefore, we resort to Monte-Carlo simulation, run the DOED protocol for
100000 different values of θ and use the statistical average of the individual RCIs as an estimate of µ. In each trial, θ is
generated independently from the uniform distribution, i.e., g ∈ Unif[0N , g1N ], dc· ∈ Unif[0N , d

c·1N ], where g, dc· are given
in Table I; note that we keep the line conductances fixed to y as the topology changes very infrequently compared to the
generation and the load.

Rewriting pn(t) = p̃n + ∆pn(t), where p̃n is the output power of DER n corresponding to the nominal droop parameters,
the time average of the power dissipation

∑
t∈T ∆pn(t) ≈ 0. We conclude that with (51) and linear OED cost function, it

is difficult to asses the impact of power dissipation during training. Therefore, we introduce a quadratically-modified RCI
(QRCI), denoted with η̂:

η̂ = µ̂+ q1T
TQ1N , (53)

where the T ×N matrix Q is defined as [Q]t,n = (pn(t)− p̃n)2, n ∈ N , t ∈ T and 0 < q ≤ τ
τOEDc∗

= qmax. In similar way
as µ, we define the average QRCI, denoted with η and restate the optimization problem (52) with η as utility function.

The results are presented in Fig. 13. We observe that within the investigated domain, the average RCI, see Fig. 13a is a
convex function of τ and

√
π. Specifically, for fixed

√
π, µ decrease as τ increases due to the effect of noise suppression,

see (44). In this regime, the duration of the training epoch is still very short relative to τOED, such that the first term in (50)
is negligible and the RCI is dominated by the second term which decreases towards c∗ as the estimation error is reduced.
However, µ hits a turning point when τ and, consequently, the duration of the training epoch become long enough such that the
first term in (50) starts to dominate over the second; after this, it makes no sense to keep increasing τ as µ will also increase.
Conversely, for fixed τ , µ decreases as

√
π increases until it hits the turning point after which it starts to increase quickly;

evidently, this is happening when we get very close to ∆v. As discussed in the previous subsection, the performance of J-SISE
starts to deteriorate when

√
π → ∆v, pushing the second term in (50) away from its lower bound c∗. Hence, within the domain

of interest, the average RCI for an MG, specified in Table I and the caption of Fig. 13a, is minimized when
√
π ≈ 8.8 volts

and τ ≈ 13 milliseconds. The minimized average RCI is µ∗ ≈ 0.008; in other words, the average increase of the cost is less
than 1% of the optimal cost c∗. This increase, besides being completely tolerable by the OED [3], it is also comparable to the
additional operating cost charges imposed by mobile operators when employing wireless cellular solution not including the
cost of installing dedicated communication hardware [3], [17].

Similarly as the average RCI, the average QRCI, see Fig. 13b, is also a convex function of τ and
√
π within the investigated

domain with behaviour governed by the same reasoning we used on the average RCI. However, the minimum this time moves
closer to the down-left corner due to the second term in (53). Specifically, η is minimized when

√
π ≈ 4 volts and τ ≈ 5.1

milliseconds with average RCI µ ≈ 0.015, i.e., still around 1% of c∗.
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Fig. 13. Finding the optimal training epoch parameters τ and
√
π that minimize the DOED utility function in DC MG with N = 6 DERs and marginal

costs a = [3, 3, 5, 5, 8, 11]T units/W, q = qmax. The utility functions, i.e., the average RCI (51) and its quadratically modified variant (53) that penalizes
power dissipation during training more heavily, quantify the additional monetary cost (expressed in log-domain in the figure) entailed by the proposed solution
relative to the cost of the optimal dispatch policy. It is interesting to note that both, the average RCI and the QRCI are below 5% (in log-domain below
≈ −1.3) for a wide range of training epoch configurations.

VIII. CONCLUDING REMARKS

We introduced autonomous system identification solution, based on temporary primary control perturbations and iterative
ML-based algorithm for DC MGs and without access to an external communication system. The method is implemented
in a decentralized manner within the primary droop controllers of the PECs and enables the controllers to learn i) the
generation capacities of power sources, ii) the load demands, and iii) distribution network topology using only local bus
voltage measurements. The key enabling tool is the decentralized training where the primary controllers inject small, amplitude-
modulated training sequences that complete the rank of the estimation problem and enable regaining full system observability.
We evaluated the performance of the ML-based algorithm, showing that we can achieve high reliability in DC MGs of small
to moderate size (N ≤ 12). Then, we showcased the potential of the solution in fully decentralized OED where the controllers
perform training periodically and reconfigure according to the locally estimated information. Last but not least, we illustrated
an elaborate methodology for designing training epochs that optimize the operational cost of an autonomous DC MG.

Although we focused on DC MGs and we used several assumptions that simplified the developments, the same design
principles introduced in this paper can be applied to any cyber-physical system with dual-layer control architecture that does
not not have access to external communication resources, under broader circumstances. Such investigations are part of our
on-going and future work.

APPENDIX A
PROOF OF PROPOSITION I

The power balance condition in each slot states that:

ωn(t) = 0, n ∈ N , t ∈ T . (54)

Recall that during training all DERs are in droop-controlled VSC mode configured for proportional power sharing. Hence
ζn = 1 for any n ∈ N . In such case (54) can be rewritten as:

ωn(t) = v2n(t)

(
sn(t)gn +

1

x2
dca
n

)
+ vn(t)

∑
m∈N

(vn(t)− vm(t))yn,m − vn(t)

(
xn(t)sn(t)gn −

1

x
dcc
n

)
+ dcp

n . (55)

Let ωt be defined as [ωt]n = ωn(t); we get:

ωt =

(
D(g)st +

1

x2
dca
)
� vt � vt + (Yvt)� vt −

(
D(g)(xt � st)− 1

x
dcc
)
� vt + dcp, (56)
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where vt, xt and vt, defined as [vt]n = vn(t), [xt]n = xn(t) and [st]n = sn(t), represent the t-th rows of V, X and S,
respectively. Stacking (ωt)T vertically for each t ∈ T , we get the power balance matrix Ω:

Ω =


(s1)TD(g) + (dca)T

x2

...
(sT )TD(g) + (dca)T

x2

�
(v1)T

...
(vT )T

�
(v1)T

...
(vT )T

+

(v1)TY
...

(vT )TY

�
(v1)T

...
(vT )T



−


((s1)T � (x1)T)D(g)− (dcc)T

x
...

((s1)T � (x1)T)D(g)− (dcc)T

x

�
(v1)T

...
(vT )T

+

(dcp)T

...
(dcp)T

 = 0T×N , (57)

yielding the compact form (10) which completes the derivation.

APPENDIX B
θ−n IS NOT IDENTIFIABLE WHEN THE SYSTEM IS NOT OBSERVABLE

We consider the following situation: controller n knows only wn and knows X and S completely. In other words, the
controllers do not exchange any local steady state voltage measurements as in the proposed solution, i.e., the C-phase training
matrices are completely deterministic and known. Hence, all other columns wm,m 6= n are not observable. Since the power
balance equation concerning the observable voltages ωn = 0T also includes and depends on vm,m 6= n (as a result of the
fact that the buses are connected through Y) and if classical, non-Bayesian framework is employed (without exploiting any
prior knowledge), vm,m 6= n should be treated as unknown parameters in the same way as the generation capacities, load
demands and line conductances. Therefore, the parameter vector θ should be redefined as:

θ = [gT,dT,ψT,vT
m]Tm6=n, (58)

with
dim(θ) =

1

2
N(N + 7) + (N − 1)T. (59)

The sufficient excitation conditions in this case should be restated in term of ωn since only vn is observable; we get:

rank(Υ−n) = dim(θ−n), (60)
rank(Γ) = NT, (61)

where Υ−n and Γ are the Jacobians of ωn w.r.t. θ−n and vec(V), respectively. It becomes immediately evident that Υ−n is
a fat matrix, i.e., dim(Υ−n) = T × dim(θ−n) with column rank at most T < dim(θ−n); hence, the first sufficient excitation
condition is not satisfied and θ−n cannot be uniquely identified.

Equivalently, one can look at the same problem from the perspective of the constrained ML optimization. Namely, the joint
parameter/state vector now is:

ϑ =

[
θ
vn

]
. (62)

The constrained ML optimization problem should be formulated over ωn since only vn is observable:

ϑ̂−n = min
ϑ−n
{− ln ρ(wn;θ)} (63)

s.t. ωn = 0T .

Clearly, the number of linearly independent equality constraints is at most T < dim(θ−n), yielding an ill-conditioned
optimization problem that does not converge to any meaningful solution.

APPENDIX C
PROOF OF PROPOSITION II

Controller n derives the channel estimator ĥn using the measurement vector from sub-phase α, i.e., wα
n . Replacing

√
πn(t) =√

πα, n ∈ N , t ∈ T α in the linear model

wα/β
n ≈ ṽn1Tα/β + (Πα/β �∆Xα/β)hn + zα/βn , (64)

we get:

wα
n ≈ ṽn1Tα +

√
πα∆Xαhn + zαn. (65)
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Using the above, ĥn is obtained by solving the linear least squares problem:

ĥn = min
hn
‖wα

n − ṽn1Tα −
√
πα∆Xαhn‖22 (66)

=
1√
παδα

(∆Xα)Twα
n . (67)

Using
√
πn(t) =

√
πβ(wn(b)− χn), n ∈ N , t ∈ T β;b, b ∈ T , (64) can be rewritten as:

wβ;b
n = ṽn1L +

√
πβ∆Xβ;bD(wb − χ)hn + zβ;bn (68)

= ṽn1L +
√
πβ∆Xβ;bD(hn)(wb − χ) + zβ;bn , b ∈ T , (69)

where we used the commutative property of the product D(wb−χ)hn. Note that wb is the b-th row of the M -phase measurement
matrix W and contains the data transmitted by the controllers in block b. Using the the channel estimate, controller n obtains
a local copy of wb, denoted with wb

(n) by solving the following linear least squares problem:

wb
(n) = min

wb
‖wβ;b

n − ṽn1L −
√
πβ∆Xβ;bD(ĥn)(wb − χ)‖22 (70)

=
1√
πβδβ

D−1(ĥn)(∆Xβ;b)Twβ;b
n + χ. (71)

Note that W(n) =
∑
b∈T eb(w

b
(n))

T; so we get:

W(n) =
1√
πβδβ

∑
b∈T

eb(w
β;b
n )T∆Xβ;b

� (1T ĥT
n)− 1Tχ

T (72)

. Vectorizing the above, we obtain:

vec(W(n)) =
1√
πβδβ

∑
b∈T

vec(eb(w
β;b
n )T∆Xβ;b)

� vec(1T ĥT
n) + vec(1Tχ

T) (73)

=

√
παδα√
πβδβ

∑
b∈T

X β;bwβ;b
n

� (Xαwα
n) + Iχ (74)

=

√
παδα√
πβδβ

D−1(Xαwα
n)
∑
b∈T

X β;bwβ;b
n + Iχ, (75)

which completes the derivation.

APPENDIX D
DERIVATION OF THE GAUSSIAN APPROXIMATION OF ρ(vec(W);θ)

Let wα
n = vαn + ∆wα

n where ∆wα
n ∼ N(0Tα , σ

2ITα). Similarly, wβ;b
n = vβ;bn + ∆wβ;b

n where ∆wβ;b
n ∼ N(0L, σ

2IL) for
b ∈ T . Then, (23) can be written as:

vec(W(n)) =

√
παδα√
πβδβ

D−1(Xαwα
n)
∑
b∈T

X β;bwβ;b
n + Iχ (76)

=

√
παδα√
πβδβ

D−1(Xα(vαn + ∆wα
n))
∑
b∈T

X β;b(vβ;bn + ∆wβ;b
n ) + Iχ (77)

=

√
παδα√
πβδβ

D−1(Xαvαn)(ITN + D−1(Xαvαn)D(Xα∆wα
n))−1

∑
b∈T

X β;b(vβ;bn + ∆wβ;b
n ) + Iχ (78)

(a)
≈
√
παδα√
πβδβ

D−1(Xαvαn)(ITN − D−1(Xαvαn)D(Xα∆wα
n))
∑
b∈T

X β;b(vβ;bn + ∆wβ;b
n ) + Iχ (79)

≈
√
παδα√
πβδβ

D−1(Xαvαn)
∑
b∈T

X β;bvβ;bn + Iχ

︸ ︷︷ ︸
vec(W)

+

√
παδα√
πβδβ

D−1(Xαvαn)
∑
b∈T

X β;b∆wβ;b
n +

√
παδα√
πβδβ

D−2(Xαvαn)
∑
b∈T

D(X β;bvβ;bn )(Xα∆wα
n), (80)
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where (a) follows from the Neumann expansion valid on the subset 0Tα < wα
n < 2vαn . From (80), we see that vec(W(n))

can be approximated with Gaussian random vector with mean:

E
{
vec(W(n))

}
≈ E

{
vec(W)

}
= vec(V), (81)

and covariance matrix:

Σ ≈ cov
{
vec(W)

}
+ cov


√
παδα√
πβδβ

D−1(Xαvαn)
∑
b∈T

X β;b∆wβ;b
n

+ cov


√
παδα√
πβδβ

D−2(Xαvαn)
∑
b∈T

D(X β;bvβ;bn )(Xα∆wα
n)


(82)

= σ2ITN +
πα(δα)2

πβ(δβ)2
D−1(Xαvαn)

∑
b∈T

X β;bcov
{

∆wβ;b
n

}
(X β;b)T

D−1(Xαvαn)

+
πα(δα)2

πβ(δβ)2
D−2(Xαvαn)

∑
b∈T

D(X β;bvβ;bn )Xαcov {∆wα
n} (Xα)TD(X β;bvβ;bn )

D−2(Xαvαn) (83)

= σ2ITN + σ2π
α(δα)2

πβδβ
D−1(Xαvαn)

∑
b∈T

IN ⊗ (ebe
T
b )

D−1(Xαvαn)

+ σ2π
α(δα)3

πβ(δβ)2
D−2(Xαvαn)

∑
b∈T

D(X β;bvβ;bn )(IN ⊗ 1T×T )D(X β;bvβ;bn )

D−2(Xαvαn) (84)

= σ2

ITN +
πα(δα)2

πβδβ
D−2(Xαvαn) +

πα(δα)3

πβ(δβ)2
D−2(Xαvαn)

∑
b∈T

D(X β;bvβ;bn )(IN ⊗ 1T×T )D(X β;bvβ;bn )

D−2(Xαvαn)

 .

(85)

APPENDIX E
PROOF OF PROPOSITION III

The Lagrange method of multipliers casts the original constrained ML problem into an unconstrained as follows:

ϑ̂−n = min
ϑ̂−n,λ

{
−1

2

∥∥∥Σ− 1
2 (vec(W(n))− vec(V))

∥∥∥2
2

+ λTvec(Ω)

}
, (86)

where we used the Gaussian approximation for the pdf ρ(vec(W(n));θ). λ is TN × 1 vector of multipliers. Applying the
KKT conditions to (86) after replacing the power balance constraint with its first order approximation, we get the following
system of equations:

Σ−1(vec(W(n))− vec(V))− (Γ(j))Tλ = 0TN , (87)

(Υ
(j)
−n)Tλ = 0dim(θ−n), (88)

Υ(j)θ + Γ(j)(vec(V)− vec(V
(j)

)) = 0TN , (89)

The above system is linear in ϑ−n and can be solved efficiently; the derivation of the solution follows similar steps as in (??).
Multiplying (87) with Γ(j)Σ yields:

Γ(j)vec(V) = Γ(j)vec(W(n))− Γ(j)Σ(Γ(j))Tλ, (90)

which is substituted in (89) to yield:

Υ(j)θ + Γ(j)(vec(W(n))− vec(V
(j)

))− Γ(j)Σ(Γ(j))Tλ = 0TN . (91)

Solving for λ gives:

λ = (Γ(j)Σ(Γ(j))T)−1(Υ(j)θ + Γ(j)(vec(W(n))− vec(V
(j)

))). (92)

Multiplying (92) with (Υ
(j)
−n)T on both sides, gives:

(Υ
(j)
−k)λ = (Υ

(j)
−k)T(Γ(j)Σ(Γ(j))T)−1(Υ(j)θ + Γ(j)(vec(W(n))− vec(V

(j)
))), (93)

which, after replacing Υ(j)θ = Υ
(j)
−nθ−n +υ

(j)
n gn and solving for θ−n gives (29). Finally, replacing (92) in (87) and solving

for vec(V) produces (30), completing the proof.
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APPENDIX F
PROOF OF PROPOSITION IV

Recall that the implicit function theorem governs the existence of an explicit solution of the system of power balance
equations ωn = 0, n ∈ N of the following form:

vn = fn(θ), n ∈ N . (94)

Hence, again by the implicit function theorem, the solution of the M -phase power balance equation Ω = 0T×N exists and
can be written in the following form:

V = F(θ), (95)

where the T × N matrix F is defined as [F]b,n = fn(b) n ∈ N , b ∈ T . If F is available in closed form, the M -phase
measurement matrix (i.e., its vectorization) can be written explicitly in terms of θ as:

vec(W) = vec(F(θ)) + vec(W). (96)

Using the above, we derive the CRLB. In particular, the MSE matrix of θ̂−n can be bounded from below as:

MSE(θ̂−n) � J −1(θ−n), (97)

where J (θ−n) is the Fisher Information Matrix (FIM) defined as:

J (θ−n) = E
{
∇T
θ−n

ln ρ(vec(W);θ)∇θ−n ln ρ(vec(W);θ)
}
. (98)

Using the Gaussian approximation for the pdf of vec(W), the FIM can be approximated with the following Grammian:

J (θ−n) ≈ ∇T
θ−n

vec(F(θ))Σ−1∇θ−nvec(F(θ)). (99)

Applying the implicit function theorem, we obtain the following expression for the Jacobian ∇θ−nvec(F(θ)):

∇θ−nvec(F(θ)) = −∇−1
vec(V)

vec(Ω)∇θ−nvec(Ω) (100)

= −Γ−1Υ−n. (101)

Substituting the above in (99) gives expression (35). To bound the MSE matrix of vec(V̂), we use (95), i.e., the fact that
vec(V) is a transformed version of θ and apply the corresponding CRLB formula, i.e.:

MSE(vec(V̂)) � ∇θ−nvec(F(θ))J −1(θ−n)∇T
θ−n

vec(F(θ)) (102)

= Γ−1Υ−nJ −1(θ−n)ΥT
−n(Γ−1)T, (103)

completing the proof.
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