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Estimation with Low-Rank Time-Frequency
Synthesis Models

Cédric Févotte, Senior Member, IEEE, and Matthieu Kowalski

Abstract—Many state-of-the-art signal decomposition tech-
niques rely on a low-rank factorization of a time-frequency
(t-f) transform. In particular, nonnegative matrix factorization
(NMF) of the spectrogram has been considered in many audio
applications. This is an analysis approach in the sense that
the factorization is applied to the squared magnitude of the
analysis coefficients returned by the t-f transform. In this paper
we instead propose a synthesis approach, where low-rankness is
imposed to the synthesis coefficients of the data signal over a
given t-f dictionary (such as a Gabor frame). As such we offer
a novel modeling paradigm that bridges t-f synthesis modeling
and traditional analysis-based NMF approaches. The proposed
generative model allows in turn to design more sophisticated
multi-layer representations that can efficiently capture diverse
forms of structure. Additionally, the generative modeling allows
to exploit t-f low-rankness for compressive sensing. We present
efficient iterative shrinkage algorithms to perform estimation in
the proposed models and illustrate the capabilities of the new
modeling paradigm over audio signal processing examples.

I. INTRODUCTION

MATRIX factorization methods currently enjoy a large
popularity in machine learning and signal processing.

In signal processing, the input data is usually a time-frequency
(t-f) transform of some original time series x(t). For example,
in the audio setting, nonnegative matrix factorization (NMF)
is commonly used to decompose magnitude or power spectro-
grams into elementary components [1]; the spectrogram P is
approximately factorized into WH, where W is the dictionary
matrix collecting spectral patterns in its columns and H is
the activation matrix. The approximate WH is generally of
lower rank than P, unless additional constraints are imposed
on the factors. NMF is at the core of classical source separation
systems such as [2], [3].

The spectrogram P is usually obtained from the short-
time Fourier transform Y. The coefficients yfn of Y are
the inner products of x(t) with t-f atoms φfn(t), where f
and n index frequencies and time frames, respectively, and a
common choice is P = |Y|2. The STFT coefficients are so-
called analysis coefficients. As such, spectral decomposition
by NMF can be viewed as a low-rank time-frequency analysis
procedure. Leveraging on the potential of synthesis models as
opposed to analytical ones (see, e.g., [4]–[7]), we propose to
explore a dual view of the usual NMF approach and present a
new paradigm that we name low-rank time-frequency synthesis
(LRTFS). In this new paradigm, the signal is decomposed as

x(t) =
∑
fn

αfnφfn(t) + e(t) (1)
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where the synthesis coefficients {αfn} are endowed with a
low-rank structure such that |αfn|2 ≈ [WH]fn. Formula-
tion (1) provides a generative representation of the raw data
x(t) and extends the modeling capacities of standard NMF-
based signal decomposition towards more advanced multi-
layer hybrid decompositions. Having a generative model of
the raw data (instead of its transform) is also useful for some
inverse problems such as compressive sampling, an application
that will be considered in the paper.

The low-rankness of the synthesis coefficients {αfn} is
induced through a probabilistic model named Gaussian Com-
posite Model (GCM) [8]. The GCM underlies Itakura-Saito
NMF, a baseline method that will be recalled in Section II.
Section III-A presents our new paradigm LRTFS in the
general case of complex-valued signals. It also describes an
alternate minimization algorithm for maximum joint likelihood
estimation of the parameters. Section III-B shows how the
methodology for complex signals can be adapted to real-
valued signals. Section III-C discusses how LRTFS relates
to other temporal models with low-rank spectrograms and/or
structured variance [9]–[15]. Section IV describes how LRTFS
can accommodate more advanced multi-layer decompositions
in which every layer can have its own t-f resolution or structure
(e.g., a sparse instead of low-rank time-frequency structure).
Section V describes a new approach to compressive sampling,
which exploits latent low-rank time-frequency structure in-
stead of sparsity, with superior results for the considered type
of data. The article is illustrated throughout with experiments
on audio signals (the presented methodology is however not
limited to audio signals). In particular, we use a running piano
toy example to illustrate every stage of our contributions.

This article unifies and continues our work presented in
the conference papers [16], [17]. In particular, it provides
more detailed experiments and presents the following novel
methodological contributions: the case of real-valued signals
(which require to properly handle the Hermitian symmetry
of their synthesis coefficients) is now rigorously treated in
Section III-B, algorithm accelerations are presented in Sec-
tion III-A2, and the concept of compressive LRTFS presented
in Section V is entirely novel.

II. A BASELINE: ITAKURA-SAITO NMF AND THE
GAUSSIAN COMPOSITE MODEL (GCM)

NMF was originally designed in a deterministic setting [18]:
a measure of fit between P and WH is minimized with respect
to (w.r.t) W and H. Choosing the “right” measure for a spe-
cific type of data and task is not straightforward. Furthermore,
NMF-based spectral decompositions often arbitrarily discard
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phase information: only the magnitude of the complex-valued
short-time Fourier transform (STFT) is considered. To remedy
these limitations, a generative probabilistic latent factor model
of the STFT, the GCM, was proposed in [8]. It is defined by

yfn ∼ Nc(0, [WH]fn), (2)

where Nc refers to the circular complex-valued normal dis-
tribution.1 As shown by Eq. (2), in the GCM the STFT is
assumed centered and its variance has a low-rank structure.
Many temporal waveforms (such as audio signals) can be
assumed centered and this remains true for their Fourier
coefficients by linearity of the transformation. This explains
the zero-mean assumption in the GCM on the one hand. The
low-rank variance structure on the other hand underlies a
composite signal structure that makes the model relevant for
decomposition task. Indeed, introducing the latent complex-
valued components ykfn, Eq. (2) is equivalent to

yfn =
∑
k

ykfn, (3)

ykfn ∼ Nc(0, wfkhkn). (4)

The latent component Yk with coefficients {ykfn}fn reflects
the contribution of the spectral pattern wk, the kth column of
W, amplitude-modulated in time by the activation coefficients
of the kth row of H.

Under these assumptions, the negative log-likelihood
− log p(Y|W,H) is equal, up to a constant, to the Itakura-
Saito (IS) divergence DIS(P|WH) between the power spec-
trogram P = |Y|2 and WH. The IS divergence between
nonnegative matrices A and B is defined by

DIS(A|B) =
∑
ij

aij
bij
− log

aij
bij
− 1. (5)

The GCM is a step forward from traditional NMF ap-
proaches that fail to provide a valid generative model of the
STFT itself – other approaches have only considered proba-
bilistic models of the magnitude spectrogram under Poisson or
multinomial assumptions, see [1] for a review. Still, the GCM
is not yet a generative model of the raw signal x(t) itself, but
of its STFT. LRTFS fills in this ultimate gap.

III. LOW-RANK TIME-FREQUENCY SYNTHESIS (LRTFS)

In this section we first present LRTFS for complex-valued
signals, closely following [16]. Then we rigorously address
the case of real-valued signals represented as a complex-valued
linear combination of complex-valued t-f atoms (such as Gabor
atoms) with Hermitian symmetry. Finally, we discuss relevant
connections with the state-of-the-art and illustrate the potential
of LRTFS on an audio example.

1A random variable x has distribution Nc(x|µ, λ) = (πλ)−1 exp−(|x−
µ|2/λ) if and only if its real and imaginary parts are independent and with
distribution N(<[µ], λ/2) and N(=[µ], λ/2), respectively.

A. Complex-valued signals

1) Model: Let x(t) denote a complex-valued signal of
length T and {φfn(t)}f=1..F,n=1..N denote a dictionary of
complex-valued t-f atoms of length T . LRTFS is defined as
follows. For t = 1, . . . , T , f = 1, . . . , F , n = 1, . . . , N :

x(t) =
∑
fn

αfnφfn(t) + e(t), (6)

αfn ∼ Nc(0, [WH]fn), (7)
e(t) ∼ Nc(0, λ), (8)

where {αfn} are the complex-valued synthesis coefficients,
W and H are nonnegative matrices of sizes F × K and
K × N , respectively, and e(t) is an additive complex-valued
residual term with Gaussian distribution Nc(0, λ). The synthe-
sis coefficients {αfn} are furthermore assumed independent
given W and H. The synthesis coefficients are dual of the
analysis coefficients, defined by yfn =

∑
t x(t)φ

∗
fn(t), where

·∗ denotes conjugation. IS-NMF assumes that the analysis
coefficients follow a GCM, see Eq. (2). In contrast, LRTFS
assumes that the synthesis coefficients follow a GCM, as given
by Eq. (7). As announced, LRTFS provides a generative model
of the raw data x(t), where IS-NMF only provides a generative
model of the transformed data Y.

Let us denote by x and e the column vectors of size T
with coefficients x(t) and e(t), respectively. Let I be an
arbitrary one-to-one “vectorizing” mapping from (f, n) ∈
{1, . . . , F} × {1, . . . , N} to m = I(f, n) ∈ {1, . . . ,M},
where M = FN . We denote by α the column vector of
dimension M with coefficients αm = αI(f,n) = αfn. We are
abusing the notations by indexing the synthesis coefficients
by either m (unstructured vectorized form) or (f, n) (matrix
form where f indexes frequencies and n indexes time frames).
It should be understood that m and (f, n) are in one-to-one
correspondence and the meaning should be clear from the
context. The notation αm discards the inherent t-f structure
of the coefficients while the notation αfn makes it explicit.
Despite abusing, this convention allows to significantly reduce
cluttering in the following. Similarly, we denote by Φ the
matrix of size T × M with columns φm = φfn, where
φfn is the column vector of size T with coefficients φfn(t).
We denote by v the column vector of dimension M with
coefficients vm = vfn

def
= [WH]fn. We will sometimes write

v = vect[WH], where vect[·] refers to the vectorizing operator
induced by I. Equipped with these notations, we may write
Eq. (6) and (7) as

x = Φα+ e, (9)
α ∼ Nc(0, diag(v)), (10)
e ∼ Nc(0, λ IT ). (11)

Ignoring the low-rank structure of v, Eqs. (9)-(11) resemble
sparse Bayesian learning (SBL), as introduced in [19], [20],
where it is shown that marginal likelihood estimation of the
variance induces sparse solutions of v (and as a consequence,
of α). The essential difference between our model and SBL
is that the coefficients are no longer unstructured in LRTFS.
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Indeed, in SBL, each coefficient αm has a free variance param-
eter vm. This property is fundamental to the sparsity-inducing
effect of SBL [19]. In contrast, in LRTFS, the variances are
now tied together and such that vm = vfn = [WH]fn .

2) Maximum joint likelihood estimation : We now address
the estimation of W, H and α and possibly λ in LRTFS. We
consider maximum joint likelihood estimation (MJLE), also
referred to as type-I maximum likelihood estimation in [20].
MJLE relies on the minimization of the following objective
function:

CJL(α,W,H, λ)
def
= − log p(x,α|W,H, λ) (12)

= − log p(x|α, λ)− log p(α|W,H) (13)

=
1

λ
‖x−Φα‖22 +

∑
fn

[
|αfn|2

[WH]fn
+ log [WH]fn

]
+ cst

(14)

=
1

λ
‖x−Φα‖22 +DIS(|α|2|v) + log(|α|2) + cst (15)

where cst = T log λ+ (T +M) log π and we recall that v =
vect[WH].

Another possible estimation procedure for LRTFS is max-
imum marginal likelihood estimation (MMLE), also referred
to as type-II maximum likelihood estimation in [20]. It relies
on the minimization of − log p(x|W,H, λ), i.e., involves the
marginalization of α from the joint likelihood, following
the principle of SBL. We considered MMLE for LRTFS
in [16] and presented a valid EM algorithm. However our
implementation does not scale with the dimensions involved in
signal processing, as it requires the estimation of the diagonal
elements of the inverse of a M × M matrix. Large-scale
algorithms for MMLE are left as future work.

3) Alternate minimization algorithm for MJLE : We now
describe an alternate minimization algorithm that returns sta-
tionary points of CJL(θ), where θ = {α,W,H, λ}. The
optimization of α given the other parameters reduces to

min
α∈CM

1

λ
‖x−Φα‖22 +

∑
fn

|αfn|2

[WH]fn
(16)

which defines a convex ridge regression problem. The problem
has the closed-form solution

α̂ =
[
ΦHΦ + λdiag(v)−1

]−1
ΦHx (17)

where ·H denotes conjugate transpose. Eq. (17) involves the
resolution of a linear system of size M × M . The linear
system can be reduced to dimension T thanks to the Woodbury
identity, but this is still too large in typical signal processing
applications. Computing Eq. (17) can be done efficiently
with a numerical optimization procedure and several options
are available, such as conjugate gradient descent (GCD),
expectation-minimization (EM), forward-backward optimiza-
tion or majorization-minimization. The latter three are closely
related and lead in the present case to an iterative shrinkage
algorithm (ISA) [21], [22]. We used in our implementation
a complex-valued version of ISA, similar to the complex-
valued cases treated in [23], [24], and using the acceleration
described in [25]. This leads to a simple and parameter-free

implementation with satisfactory speed of convergence. This
in particular results in a faster algorithm than the original EM
algorithm presented in our initial contribution [16]. Moreover,
ISA leads in our case to a simpler algorithm than GCD, with
same theoretical and practical speed of convergence [26]. The
resulting updates are given in Algorithm 1. The value of the
inverse step-size L should be set to the maximum eigenvalue
of ΦHΦ, i.e., the squared spectral norm of Φ. If this value is
not available in closed form or difficult to compute, a larger
value L ≥ ‖Φ‖22 is also permissible but will result in smaller
step sizes. In Algorithm 1, the operations A ◦B, A◦p and A

B
denote entry-wise multiplication, exponentiation and division,
respectively.

The optimization of W and H given α reduces to

min
W,H≥0

∑
fn

DIS(|αfn|2|[WH]fn) (18)

which defines a IS-NMF problem with input matrix S =
[|αfn|2]fn. This a non-convex problem that is generally
approached with alternating updates of W and H and
majorization-minimization (MM) [27]. This results in the
multiplicative updates given in Algorithm 1.

Finally, the optimization of λ given α is trivially given by
λ̂ = ‖x−Φα‖/T . However, the MJLE setting is known to be
inefficient for the estimation of both the variance parameters of
α and of e, with either Φα̂ or ê capturing most of the signal
variance. As such, though the estimation of λ is possible in
principle, we will consider λ to be a fixed hyper-parameter in
the following.

The objective function CJL being non-convex and because
we are using an alternate minimization algorithm, the output of
Algorithm 1 depends on the initialization. In all simulations
we initialized the synthesis coefficients α with the analysis
coefficients ΦHx. The matrices W and H are initialized using
the absolute values of the complex SVD of the synthesis
coefficients [28]. Finally, a tempering strategy with warm
restart is used to speed up convergence for small target values
of λ. The hyper-parameter λ is set to an arbitrarily large value
in the first iterations and is then gradually decreased to its
target value, as proposed in [29]. Convergence of the main
and inner loops is monitored using the relative difference in
norm between successive parameter iterates, see Section III-D.

4) Reconstruction of the latent components: Algorithm 1
outputs an estimate of α, W, H. The approximate signal can
directly be recovered from the estimated synthesis coefficients
as x̂ = Φα̂. LRTFS further assumes that the synthesis
coefficients follow a GCM, see Eq. (7). As such, αfn may
be written as a sum of Gaussian latent components, such that
αfn =

∑
k αkfn, with αkfn ∼ Nc(0, wfkhkn). Denoting

by αk the column vector of dimension M with coefficients
{αkfn}fn, Eq. (9) may be written as

x =
∑
k

Φαk + e =
∑
k

ck + e , (19)

where ck = Φαk. The component ck is the “temporal
expression” of spectral pattern wk, the kth column of W.
Given estimates of α, W and H, the components may be



4

Algorithm 1: Alternate minimization for LRTFS
Set L = ‖Φ‖22 (or a larger value)
Compute the synthesis coefficients y = ΦHx (with

matrix form Y)
Set α(0) = y
Initialize W(0) and H(0) with the absolute values of the

complex SVD of Y
Set i = 0
repeat

%% Update W and H with MM
Compute spectrogram S(i) =

[
|α(i)
fn|2

]
fn

Initialize inner loop: W = W(i), H = H(i)

repeat
W←W ◦ [S(i)◦(WH)◦−2]HT

[(WH)◦−1]HT

H← H ◦ WT[S(i)◦(WH)◦−2]
WT[(WH)◦−1]

until convergence;
Leave inner loop: W(i+1) = W, H(i+1) = H
Set v(i+1) = vect[W(i+1)H(i+1)]

%% Update α with accelerated ISA
Initialize inner loop: a(0) = z(0) = α(i)

Set j = 0
repeat

% Descend
z(j+1/2) = a(j) + 1

LΦH(x−Φa(j))
% Shrink
z(j+1) = v(i+1)

v(i+1)+λ/L
◦ z(j+1/2)

% Accelerate
a(j+1) = z(j+1) + j

j+5 (z
(j+1) − z(j))

j ← j + 1
until convergence;
Leave inner loop: α(i+1) = z(j+1)

until convergence;

reconstructed a posteriori in various ways. A natural choice is
ĉMMSE
k = Φα̂MMSE

k with

α̂MMSE
k

def
= E[αk|x, θ̂] = E[αk|α̂,Ŵ, Ĥ]. (20)

The coefficients of α̂MMSE
k are given by

α̂MMSE
kfn =

ŵfkĥkn

[ŴĤ]fn
α̂fn. (21)

Using this estimate, the latent components are reconstructed
by applying a t-f dependent “Wiener mask” to the synthesis
coefficients. This procedure and the expression of α̂MMSE

fkn is
analog to the standard Wiener estimate of the latent compo-
nents in IS-NMF applied to |Y|2 [8] and given by

ŷMMSE
kfn =

ŵfkĥkn

[ŴĤ]fn
yfn. (22)

The estimate α̂ is used as an intermediate variable in the
expression of α̂MMSE

kfn given by Eq. (21). Another possible
estimate, which marginalizes α, is

α̂k = E[αk|x,Ŵ, Ĥ, λ̂], (23)

where v̂k is the vector of dimension M with coefficients
{ŵfkĥkn}fn. The input of the estimator is now the raw
data x which may be more sensible. The expression of this
alternative estimate can be derived in closed-form but the
resulting expression involves the large-scale inversion of T×T
matrices, which is hardly feasible in practice.

B. Real-valued signals

1) Model: In many signal processing settings the data is
a real-valued signal x(t) expressed as a linear combination
of complex-valued t-f atoms with Hermitian symmetry. More
specifically, the dictionary and synthesis coefficients are such
that φfn = φ∗(F−f)n and αfn = α∗(F−f)n for f = 1, . . . , F/2
(assuming F to be even-valued for simplicity), where ·∗
denotes conjugation. Under this particular structure, we have

F∑
f=1

N∑
n=1

αfnφfn(t) =

F/2∑
f=1

N∑
n=1

2<[αfnφfn(t)] (24)

and we define real-valued LRTFS (rLFTS) as follows. For
t = 1, . . . , T , f = 1, . . . , F/2, n = 1, . . . , N :

x(t) =

F/2∑
f=1

N∑
n=1

2<[αfnφfn(t)] + e(t), (25)

αfn ∼ Nc(0, [WH]fn), (26)
e(t) ∼ N(0, λ). (27)

Note how F now runs from 1 to F/2 instead of 1 to F .
The synthesis coefficients αfn remain complex-valued and the
residual e(t) becomes real-valued. W and H are nonnegative
matrices of sizes F/2×K and K ×N , respectively.

Let us now denote by α and v the vectors of dimension
M/2 with coefficients αfn and vfn = [WH]fn, respectively,
and by Φ the matrix of dimension T×M/2 with columns φfn,
for f = 1, . . . , F/2 and n = 1, . . . , N . With these notations
we have α = [αT,αH]T, Φ = [Φ,Φ∗] and Φα = 2<[Φα].
Consequently, we may write Eq. (25)-(27) as

x = 2<[Φα] + e, (28)
α ∼ Nc(0, diag(v)), (29)
e ∼ N(0, λ IT ). (30)

2) Estimation: The MJLE objective function for rLRTFS
writes

C<JL(α,W,H, λ)
def
= − log p(x,α|W,H, λ) (31)

=
1

2λ
‖x− 2<[Φα]‖22 (32)

+

F/2∑
f=1

N∑
n=1

[
|αfn|2

[WH]fn
+ log [WH]fn

]
+ cst (33)

=
1

2λ
‖x− 2<[Φα]‖22 +DIS(|α|2|v) + log(|α|2) + cst

(34)

where cst = T
2 log(2πλ) + M

2 log π. Using an alternate
minimization setting like in Section III-A3, the updates of
W and H are virtually unchanged. They amount to IS-
NMF of the matrix form of the synthesis spectrogram |α|2



5

(of size F/2 × N ). The update of λ is easily given by
λ̂ = ‖x−2<[Φα]‖22/T , but here again we prefer to treat λ as
an hyper-parameter. The update of α involves the following
minimization problem:

min
α∈CM/2

F (α)
def
=

1

2λ
‖x−<[Φα]‖22 +

F/2∑
f=1

N∑
n=1

|αfn|2

[WH]fn
.

(35)

The problem defined by Eq. (35) has a closed-form solution,
with a less simpler expression than Eq. (17). The solution is
still computationally demanding and the following numerical
procedure is preferable.

Theorem 1 (Iterative shrinking algorithm for rLRTFS). Let
L = ‖Φ‖22 (with Φ = [Φ,Φ∗]) and α(0) be an initial estimate.
The following sequence of updates converge to the global
solution of problem (35):

α(j+1/2) = α(j) +
1

L
ΦH(x− 2<[Φα(j)]), (36)

α(j) =
v

v + λ/L
◦α(j+1/2). (37)

Proof. The proof consists in reformulating Eq. (35) as a
quadratic optimization problem over the real and imaginary
parts of α and applying ISA. Let A = 2[<[Φ],−=[Φ]],
b = [<[α]T=[α]T]T and c = 1

2 [v
TvT]T. Then we may write

F (α) = F (b) =
1

2λ
‖x−Ab‖22 +

1

2

M∑
m=1

b2m
cm

. (38)

Denoting LA = ‖A‖22, the ISA update for problem (38) writes
[21], [22]

b(j+1/2) = b(j) +
1

LA
AT(x−Ab(j)), (39)

b(j) =
c

c + λ/LA
◦ b(j+1/2). (40)

Using the identities Ab = 2<[Φα] and

ATe = 2

[
<[ΦHe]

=[ΦHe]

]
, (41)

Eqs. (39)-(40) can be rearranged in complex form as

α(j+1/2) = α(j) +
2

LA
ΦH(x− 2<[Φα(j)]) (42)

α(j) =
v

v + 2λ/LA
◦α(j+1/2). (43)

To complete the proof we only need to show that L = 2LA.
Let α = [αT

1 ,α
T
2 ]

T be an eigenvector of ΦHΦ with maximum
eigenvalue L = ‖Φ‖22. By definition we have[

ΦHΦ ΦHΦ∗

ΦTΦ ΦTΦ∗

] [
α1

α1

]
= L

[
α1

α1

]
. (44)

By taking the conjugate of Eq. (44), we easily show that
[αH

2 ,α
H
1 ]

T is also an eigenvector with eigenvalue L. It follows
that [α1+αH

2 ,α2+αH
1 ]

T is also an eigenvector, which happens
to have a Hermitian structure. We may thus impose α2 = α∗1

Algorithm 2: Alternate minimization for rLRTFS
Set L = ‖Φ‖22 (or a larger value)
Compute the synthesis coefficients y = ΦHx (with

matrix form Y)
Set α(0) = y
Initialize W(0) and H(0) with the absolute values of the

complex SVD of Y
Set i = 0
repeat

%% Update W and H with MM
Compute spectrogram
S(i) =

[
|α(i)
fn|2

]
f=1,...,F/2,n=1,...,N

Initialize inner loop: W = W(i), H = H(i)

repeat
W←W ◦ [S(i)◦(WH)◦−2]HT

[(WH)◦−1]HT

H← H ◦ WT[S(i)◦(WH)◦−2]
WT[(WH)◦−1]

until convergence;
Leave inner loop: W(i+1) = W, H(i+1) = H
Set v(i+1) = vect[W(i+1)H(i+1)]

%% Update α with accelerated ISA
Initialize inner loop: a(0) = z(0) = α(i)

Set j = 0
repeat

% Descend
z(j+1/2) = a(j) + 1

LΦH(x− 2<[Φa(j)])
% Shrink
z(j+1) = v(i+1)

v(i+1)+λ/L
◦ z(j+1/2)

% Accelerate
a(j+1) = z(j+1) + j

j+5 (z
(j+1) − z(j))

j ← j + 1
until convergence;
Leave inner loop: α(i+1) = z(j+1)

until convergence;

and as such α = [αT,αH]T. Then we have the following
series of equivalences:

ΦHΦα = Lα ⇐⇒ ΦHΦα+ ΦHΦ∗α∗ = Lα (45)

⇐⇒ 2ΦH<[Φα] = Lα (46)

⇐⇒ 1

2
ATAb = Lb. (47)

As such, the spectra of ΦHΦ and ATA coincide up to a factor
2 and we have L = 2LA, which concludes the proof.

3) Comments about implementation: Eq. (36) and (37) can
be accelerated like before and this results in the general
procedure summarized in Algorithm 2. As compared to Al-
gorithm 1, α is essentially replaced by α, of size half, and
the expression of z(i+1) is changed with Eq. (36). Although
the same notations are used for convenience, Y, S(i) and W
become matrices with F/2 rows.

Eq. (36) can be read as follows. The operation 2<[Φα]
consists of reconstructing an approximation x̂ of x based on
the current synthesis coefficients α. The operation ΦHe then
consists in computing the analysis coefficients (restricted to
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“positive” frequencies, i.e., f = 1, . . . , F/2) of the current
residual e = x − x̂. When Φ is a tight Gabor frame, these
operations can be efficiently performed with dedicated time-
frequency libraries, such as the MATLAB & Python Large
Time-Frequency Analysis Toolbox (LTFAT) [30].2 When the
Gabor frame is tight, i.e., ΦΦHx = x, Φ has a unit spectral
norm and we may set L = 1. A MATLAB implementation of
Algorithm 2 is available online.3

Finally, given estimates of α, W and H, latent component
coefficients α̂k may be reconstructed like in Eq. (21), and then
ĉk = 2<[Φα̂k].

C. Related work

The closest to our work are probably the recent papers by
Kameoka [9], [10] which addresses temporal models of the
form x =

∑
k ck, like Eq. (19), where the spectrograms of

the latent components are approximately rank-one. In essence
(and slightly simplifying) these papers address optimization
problems of the form

min
ck,W,H

∑
fkn

D([|ΦHck|2]fn|wfkhkn) s.t. x =
∑
k

ck (48)

where |ΦHck|2 is the spectrogram of ck, indexed by f
and n according to the convention of Section III-A1, and
D(·|·) is a divergence between nonnegative matrices (either
the generalized Kullback-Leibler divergence or the quadratic
cost in [9], [10]). Though very elegant in our opinion, the
approaches of [9], [10] are still analysis-based and do not yet
provide a fully generative synthesis-based model like LRTFS.

Another related trend of work are the approaches of [11]–
[13] which essentially model x(t) as a sum of variance-
structured Gaussian processes. Using our notations, the
model in [13] sets N = T and assumes x(t) =∑
f

√
[WH]ft <[sf (t)e−j2πft/F ] where sf (t) is a complex-

valued Gaussian autoregressive sequence. In [11], [12], x(t)
is modeled as a short-time stationary process. The signal is
segmented into overlapping temporal frames xn of size P ,
like in the first stage of a STFT. Each temporal frame xn is
then assumed to follow a multivariate Gaussian distribution
with covariance Rn =

∑
k hknΣk, where Σk is a full

covariance matrix of size P ×P (real-valued and symmetric).
Estimation then consists in estimating the set of parameters
{Σk}k and H from the entire set of temporal frames (the
whole approach is coined PSDTF in [12]). When it is further
assumed that Σk is the covariance matrix of a real-valued
latent stationary process, Σk becomes circulant and is di-
agonalized by the discrete Fourier transform (DFT). In that
case, it can be shown that PSDTF specializes to IS-NMF [11],
[12]. PSDTF remains close to the analysis view of IS-NMF:
the raw data is segmented into overlapping frames and each
frame is individually assigned a covariance model. In contrast,
LRTFS provides a generative model of the entire signal x(t),

2The specific commands being of the like α = dgtreal(x, ‘parameters’)
and x = idgtreal(α, ‘parameters’), where dgt stands for discrete Gabor
transform.

3https://www.irit.fr/∼Cedric.Fevotte/extras/tsp2018/. Future references to
online material refer to this same url.

(a) Input data

0 2 4 6 8 10 12 14 16
Time (s)

-1

0

1

(b) IS-NMF decomposition

(c) LRTFS decomposition

Fig. 1. Decomposition of a piano sequence consisting of four notes. The
subplots in (b) display the latent components obtained by STFT inversion
of Eq. (22). The subplots in (c) display the latent components ĉMMSE

k . The
components are displayed by decreasing energy (from left to right and top to
bottom).

assumed to be a linear combination of elementary t-f bricks
endowed with a low-rank variance structure. In LRTFS, we
assumed the synthesis coefficients to be conditionally mutually
independent, i.e., p(α|W,H) =

∏
fn(αfn|[WH]fn). We

could very well consider more sophisticated models similar
to PSDTF or extensions [14], [15] which assume some corre-
lation across frequencies or frames. Papers [11]–[13] describe
NMF-related generative probabilistic models rooted in time
series analysis while LRTFS offers a different perspective,
rooted in the sparse approximation literature. In particular,
LRTFS can be used with any time-frequency dictionary Φ,
can easily accommodate multi-layer variants (see Section IV)
or be considered for inverse problems (see Section V).

D. Example

We illustrate the performance of LRTFS compared to
standard IS-NMF using the piano example used in [8]. The

https://www.irit.fr/~Cedric.Fevotte/extras/tsp2018/
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(a) Analysis coefficients of input data
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(b) Synthesis coefficients estimated by LRTFS
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Fig. 2. Time-frequency analyses of the piano sequence displayed in Fig. 1 (a).
Subplot (a) displays the squared magnitude of the analysis coefficients given
by the STFT, i.e., the power spectrogram |yfn|2. Subplot (b) displays the
squared magnitude of synthesis coefficients α estimated by LRTFS, i.e.,
|αfn|2. Common dB scale is used on the two subplots.

sequence has a simple structure: four notes are played together
at once in the first measure and are then played by pairs in
all possible combinations in the subsequent measures. The
duration is 15.6 s and the sampling rate 22050 Hz. In noise-
free conditions and with appropriate initialization, standard
IS-NMF is able to extract six identifiable latent components
from this musical signal: the temporal expression of the four
individual notes in a set of four components, the transient
parts produced by the hammer hitting the strings in a fifth
component and the sound produced by the sustain pedal when
it is released in a sixth component [8]. We here consider
a noisy example using additive white Gaussian noise with
20 dB input Signal to Noise Ratio (SNR). The resulting signal
is displayed in Fig. 1 (a). A tight Gabor dictionary (with
Hermitian symmetry) built on a Hann window of 1024 samples
(46 ms) with 50% overlap is used for Φ. IS-NMF is applied to
the analysis power spectrogram |Φx|2 displayed in Fig. 2 (a).
The number of latent components is arbitrarily set to K = 10
for both IS-NMF and rLTFS and the two methods are run
from the same initialization (based on the SVD of Y, see
Algorithm 2). Iteration of the main and inner loops is stopped
when the relative error between two successive parameter iter-
ates falls under 10−5. rLTFS is run with 30 different values of
λ logarithmically equally spaced between 10−1 and 10−6. The
initialization described in Algorithm 2 was used for the first

value λ = 10−1 and warm restart was used for the subsequent
experiments. The CPU time for the total 30 experiments is
∼5 min using a MATLAB implementation running on a Intel
Core i5 processor. We show results corresponding to the value
of λ that maximizes the output SNR given by

10 log
‖x̂− x‖22
‖x‖22

. (49)

Decomposition results are reported in Fig. 1. LRTFS is
able to recover the four notes in the first four components,
like standard IS-NMF in the noise free case, while the fifth
component recovers the transient components produced by
the hammer and the sustain pedal, corresponding to the last
two components estimated by standard IS-NMF in the noise
free case. As expected, the remaining five components are
inaudible because of the denoising performed by LRTFS. In
this noisy setting, IS-NMF fails to recover this transient part
and splits the first note into two components. The input noise
is spread over the five remaining components. Audio files are
available online. Fig. 2 (b) displays the squared magnitude of
the synthesis coefficients estimated by LRTFS. Denoising is
clearly illustrated by the recovery of high frequencies.

IV. MULTI-LAYER LRTFS

Besides the advantage of modeling the raw signal itself, and
not its STFT, another major strength of LRTFS is that it offers
the possibility of multi-layer modeling. This means we may
envisage models of the form

x = xa + xb + e = Φaαa + Φbαb + e (50)

where xa = Φaαa and xb = Φbαb are referred to as layers.
This setting covers a variety of situations. Φa and Φb may
be equal with αa and αb having a different structure. For
example, αa may follow a GCM like before and αb may
be given a sparsity-inducing prior. In such a case, multi-
layer LRTFS offers a synthesis perspective to sparse + low-
rank spectrogram decompositions, such as those presented in
[31]–[33] which propose variants of robust principal com-
ponent analysis (RPCA) [34] for spectral unmixing. Even
more interestingly, the time-frequency dictionaries Φa and Φb
may be chosen with different t-f resolutions. This yields so-
called hybrid or morphological decompositions [35], [36], in
which each layer may capture specific resolution-dependent
structures. A typical audio example is transient + tonal de-
composition: transient components are by nature adequately
represented by a t-f dictionary with short time resolution while
tonal components (such as the sustained parts of musical notes)
are better represented by a t-f dictionary with larger time
resolution (and as a consequence, finer frequency resolution).
A variety of priors can be considered for αa and αb, such as
frequency grouping for the transient synthesis coefficients and
temporal grouping for the tonal synthesis coefficients [37].

A. Sparse and low-rank time-frequency synthesis

We consider a special case of multi-layer LRTFS that
illustrates the potential of the synthesis approach. We present
the methodology in the complex case for simplicity, but the
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results can readily be adapted to the real case following the
procedure described in Section III.

1) Model: Let Φa and Φb be time-frequency dictionaries
consisting of atoms φa

fn(t) and φb
fn(t) with common dimen-

sion T and t-f pavings of size Fa×Na and Fb×Nb, respectively.
We consider the following model, for t = 1, . . . , T :

x(t) =

Fa∑
f=1

Na∑
n=1

αa
fnφ

a
fn(t) +

Fb∑
f=1

Nb∑
n=1

αb
fnφ

b
fn(t) + e(t)

(51)
αa
fn ∼ Nc(0, [WH]fn), f = 1, . . . , Fa, n = 1, . . . , Na (52)

αb
fn ∼ Nc(0, vb

fn), f = 1, . . . , Fb, n = 1, . . . , Nb (53)

e(t) ∼ Nc(0, λ) (54)

where {αa
fn} and {αb

fn} are the complex-valued synthesis
coefficients, W and H are nonnegative matrices of sizes Fa×
K and K ×Na, respectively, {vb

fn} are nonnegative variance
parameters and e(t) is an additive complex-valued residual
term. Eq. (51) is nothing but the scalar form of Eq. (50).
Eq. (52) defines a GCM, while Eq. (53) defines the sparse-
inducing prior that is used in SBL. Like before, we denote
by va and vb the column vectors with coefficients [WH]fn
and vb

fn, respectively. Both va and vb are parameters of a
hierarchical variance model. Notice however how vb is a free
parameter, while va is structured through W and H. Overall,
Eq. (51)-(54), define a multi-layer LRTFS model with latent
low-rank t-f structure for layer xa and latent sparse t-f structure
for layer xb.

Note that a wavelet dictionary could alternatively be used to
represent the sparse layer: the estimation procedure presented
next would apply in the exact same way. LRTFS however has
to be supported by a regular t-f lattice and is not compat-
ible with wavelets (in which time resolution decreases with
frequency). LRTFS can however accommodate constant-Q t-
f representations (constant time resolution, logarithmic fre-
quency resolution) provided it can be inverted (near-accurate
synthesis operator are proposed in [38], [39]).

2) Estimation: The negative log-likelihood of the data and
parameters in model (51)-(54) is given by

− log p(x,αa,αb|W,H,vb) =
1

λ
‖x−Φaαa −Φbαb‖22

+DIS(|αa|2|va) + log(|αa|2)
+DIS(|αb|2|vb) + log(|αb|2) + cst (55)

where cst = T log λ + (T + FaNa + FbNb) log π. Unfortu-
nately, and similarly to the difficulty of estimating λ raised
in Section III-A2, MJLE fails to evenly distribute the signal
variance onto the two layers, and one of the two layers takes it
all in practice. Such a problem can be mitigated using MMLE
instead of MJLE, but again, MMLE is too costly in our setting.
To solve this issue we introduce an extra hyper-parameter µ
that balances the contributions of each layer and propose to
optimize the following objective

CSLR(θ)
def
=

1

λ
‖x−Φaαa −Φbαb‖22 (56)

+ µ
[
DIS(|αa|2|va) + log(|αa|2)

]

+ (1− µ)
[
DIS(|αb|2|vb) + log(|αb|2)

]
+ cst,

(57)

where 0 ≤ µ ≤ 1, θ = {αa,αb,W,H,vb} is the set of
latent variables and parameters and SLR stands for “sparse +
low-rank”.

We may again find a stationary point of CSLR(θ) by alternate
minimization. The update of vb is trivially given by vb =
|αb|2. The update of W and H amounts to finding an IS-NMF
of the synthesis spectrogram |αa

fn|2 like in Algorithm 1. The
synthesis coefficients αa and αb may be updated jointly via
ridge regression over the joint dictionary [Φa,Φb]. This leads
to the following updates

ê(j) = x−Φaα
(j)
a −Φbα

(j)
b (58)

α(j+1/2)
a = α(j)

a +
1

L
ΦH

a ê(j) (59)

α
(j+1/2)
b = α

(j)
b +

1

L
ΦH

b ê(j) (60)

α(j+1)
a =

va

va + λ/L
◦α(j+1/2)

a (61)

α
(j+1)
b =

vb

vb + λ/L
◦α(j+1/2)

b (62)

where the inverse-step size should satisfy L ≥ ‖[Φa,Φb]‖22. A
convenient choice is L = ‖Φa‖22 + ‖Φb‖22. Eq. (58) computes
the current residual, Eqs. (59) and (60) produce a step in the
descent direction and Eqs. (61) and (62) shrink the resulting
iterates.

B. Example

We use exactly the same data and setting as in Section III-D
but we now add a sparse layer Φbαb to the LRTFS layer. Φb
is set to be a tight Gabor dictionary built on a Hann window
of 128 samples (6 ms) with 50% overlap. Φa is set as in
Section III-D. The parameter µ was experimentally fixed to
µ = 0.05, and λ was again chosen among logarithmically
spaced vales. Fig. 3 displays the 10 latent components charac-
terizing the tonal layer and the transient layer. The components
of the tonal layer are similar to those obtained from the single-
layer LRTFS decomposition of Fig. 1. The fourth component
captures part of the hammer attacks (especially from the first,
most energetic note) with the shortest resolution components
relegated to the transient layer xb(t) as expected. Audio files
are available online.

V. COMPRESSIVE LRTFS

A striking advantage of LRTFS is that it may be used as
a source model in inverse problems. For instance, LRTFS has
been used in multichannel source separation in [40]. We here
consider compressive sensing (CS) in which a source signal
x(t) must be recovered from S << T random projections.
Traditionally, CS exploits the sparsity of the synthesis co-
efficients of x(t) onto a suitable dictionary. In this section
we show that sparsity can be efficiently replaced with low-
rankness, for the class of signals considered.
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(a) Latent components of the tonal layer xa(t)

(b) Transient layer xb(t)
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-0.5

0

0.5

Fig. 3. Two-layer decomposition of the piano sequence displayed in Fig. 1.

A. Model

Let us denote by x ∈ CT the vector source signal. The
source is assumed to be sensed through the given linear
operator A ∈ CS×T (S < T ), with output b ∈ CS . We
assume the following observation model:

b = Ax + e (63)
= AΦα+ e (64)

where Φ ∈ CT×M is a given dictionary, α are the synthesis
coefficients of x, and e is a residual term that accounts for
noise or model errors. Where traditional CS assumes some
form of sparsity for α, we assume the synthesis coefficients
to have the LRTFS low-rank structure described by Eq. (7).
Like in traditional CS settings, we assume A to be a random
matrix. Finally, we assume e to follow a complex Gaussian
distribution like in Eq. (8).

B. Estimation

MJLE amounts to minimizing the following objective func-
tion:

CCS(α,W,H) = − log p(b,α|W,H, λ) (65)

=
1

λ
‖b−AΦα‖22 +DIS(|α|2|WH) + log(|α|2) + cst

where cst = T log λ + (T + M) log π. The problem of
optimizing CCS(α,W,H) is equivalent to the one of opti-
mizing CJL(α,W,H) given by Eq. (15). In the complex case,
the methodology developed in Section III-A3 can be readily
applied by replacing Φ with M = AΦ. The spectral norm
of M may be difficult to derive or compute and we may set
L = ‖A‖22‖Φ‖22 thanks to the inequality

‖AΦ‖22 ≤ ‖A‖22‖Φ‖22. (66)

In the real case, i.e, when x ∈ RT , the methodology developed
in Section III-B may again be applied by assuming A ∈ RS×T
and replacing Φ with M = AΦ. Posterior to estimation, an
estimate of the original source is given by x̂ = Φα̂.

Note that we have addressed compressive sampling of real
or complex-valued signals by exploiting a latent NMF-type
t-f structure, which is different from compressive sampling of
non-negative signals, a topic addressed for example in [41].

C. Example
We evaluate the recovery accuracy of the piano sequence

used in Sections III-D and IV-B using a number of measure-
ments S varying increasingly from T/100 to T/10. For this
experiment, the length of the sequence remains 15.6 s but
the sampling rate has been fixed at 11025 Hz because of the
memory and computational complexities. The Gabor parame-
ters have been adjusted accordingly with a Hann window of
length 512 samples (46 ms) with 50% overlap.

We compare CS recovery methods based on LRTFS, SBL
and `1 regularization, using a common alternating minimiza-
tion setting (only the shrinkage or thresholding operators are
changed). Note that we here consider type-I SBL (equivalent to
MJLE) and not type-II (which again does not scale with the di-
mensions of our problem). The algorithms are initialized with
α = 0M×1. The first IS-NMF step of the LRTFS estimation
was initialized with the absolute value of the complex-SVD as
explained in Section III-A3. LRTFS was applied with K = 10
and the hyper-parameter λ was incrementally decreased from
103 to 10−2. In addition, we provide the performance results
of two oracles. In the first oracle, the vector of variances
in Eq. (29) is set to the power spectrogram of the ground-
truth uncompressed signal x(t) (updates of W, H are thus
removed). In the second oracle, we set the matrices W, H
to their estimates returned by IS-NMF applied to the power
spectrogram of x(t). These two oracles allow one to evaluate
the remaining gap between adaptive and optimal CS recovery.

Estimation accuracy was measured by means of output
SNR. The results are displayed in Fig. 4 and show that LRTFS-
based recovery improves accuracy by several dBs as compared
to sparsity-based methods. This means that for this type of
signals which are endowed with a strong low-rank t-f structure,
there is a significant gain in exploiting low-rankness instead of
mere unstructured sparsity for CS. Such a recovery approach is
made possible thanks to the generative design of LRTFS. Fig. 5
displays the estimated components ĉk returned by LRFTS. It
is interesting to note that only 4 components are meaningful.
The first two notes are well recovered, like in the experiment
of Section III-D, see Fig. 1 (b), while the two other notes
are mixed in the third component. The fourth component still
captures some transient information. We also run experiments
for various values of the rank K in the case S = 5T/100.
The recovery results appeared very robust to this parameter.
For K ∈ {5, 8, 10, 15, 20, 30} the largest difference in the
output SNRs was less than 0.5 dB. This robustness is partially
explained by the fact that LRTFS tends to shrink irrelevant
components, as explained by Eq. (14) and illustrated by Fig. 1.
We believe that the deterministic initialization provided by
SVD is another explanation.
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Fig. 4. Recovery of a compressively sensed piano sequence using LRTFS,
SBL and `1 regularization, compared with two oracles.

Fig. 5. Latent components of the compressively sensed piano sequence
recovered by LRTFS. The temporal components are displayed by decreasing
energy (from left to right and top to bottom).

Finally, we run the same CS experiment using the first
12 s of the song Mamavatu from Susheela Raman. The
excerpt contains acoustic guitar and drums. Output SNRs are
displayed on Fig. 6. Again, LRTFS recovery outperforms `1
regularization and SBL by several dBs which confirms the
potential of the proposed model for audio inverse problems,
where t-f low-rankness is a valid assumption.

VI. CONCLUSION

We have presented a new modeling paradigm that bridges t-f
synthesis modeling and traditional analysis-based approaches.
The proposed generative model allows in turn to design more
sophisticated multi-layer representations that can efficiently
capture diverse forms of structure. Additionally, the generative
modeling allows to exploit NMF-like structure for compressive
sensing which, to the best of our knowledge, is entirely new.
Maximum joint likelihood estimation in the proposed models
can be efficiently addressed using state-of-the-art iterative
shrinkage and NMF algorithms. They can be efficiently imple-
mented thanks to dedicated time-frequency analysis/synthesis
packages. In this paper, we also addressed the modeling and
decomposition of real signals in a rigorous way, which was
missing from our preliminary contributions and appeared more
tricky than initially expected.
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Fig. 6. Recovery of the compressively sensed Mamavatu sequence using
LRTFS, SBL and `1 regularization, compared with two oracles.

The MLJE objective function (15) induced by the proposed
generative modeling suggests more general problems of the
form

C(α,W,H, λ) =
1

λ
‖x−Φα‖22 +D(|α|p|v) (67)

where v = vec[WH], D(·|·) is an arbitrary divergence
between nonnegative numbers and p is an arbitrary exponent.
D = DIS and p = 2 follow naturally from the GCM
assumptions but other choices could be more suitable for other
families of signals or images. Such problems do not seem to
have been addressed yet in the literature and offer stimulating
optimization problems. The exact reconstruction case λ = 0
is also very interesting in itself. Another challenging line of
research is the design of workable large-scale optimization al-
gorithms for type-II maximum marginal likelihood estimation.
As known from [20], such an estimator would be robust to the
joint estimation of λ and v, something in which MJLE fails
in practice. The low-rank structure used in Eq. (7) to model
the variance of the synthesis coefficients could be changed for
more complex structures, such as neural architectures. This has
been considered to model STFT synthesis coefficients in audio
applications [42], using for example variational auto-encoders
for training [43]. The framework presented in this paper can
readily accommodate such variants, in particular in the multi-
layer setting in which a layer can be assigned a pre-trained
variance (for a specific class of signals such as speech) and
another layer can be endowed with a free adaptive low-rank
variance.
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ParisTech (2007-2013), a research engineer at Mist-
Technologies (the startup that became Audionamix,
2006-2007) and a postdoc at University of Cam-
bridge (2003-2006). He holds MEng and PhD de-
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