
1

Multi-Layer Convolutional Sparse Modeling:
Pursuit and Dictionary Learning

Jeremias Sulam, Member, IEEE, Vardan Papyan, Yaniv Romano, and Michael Elad Fellow, IEEE

Abstract—The recently proposed Multi-Layer Convolutional
Sparse Coding (ML-CSC) model, consisting of a cascade of
convolutional sparse layers, provides a new interpretation of
Convolutional Neural Networks (CNNs). Under this framework,
the forward pass in a CNN is equivalent to a pursuit algorithm
aiming to estimate the nested sparse representation vectors from a
given input signal. Despite having served as a pivotal connection
between CNNs and sparse modeling, a deeper understanding
of the ML-CSC is still lacking. In this work, we propose a
sound pursuit algorithm for the ML-CSC model by adopting
a projection approach. We provide new and improved bounds
on the stability of the solution of such pursuit and we analyze
different practical alternatives to implement this in practice.
We show that the training of the filters is essential to allow
for non-trivial signals in the model, and we derive an online
algorithm to learn the dictionaries from real data, effectively
resulting in cascaded sparse convolutional layers. Last, but not
least, we demonstrate the applicability of the ML-CSC model
for several applications in an unsupervised setting, providing
competitive results. Our work represents a bridge between
matrix factorization, sparse dictionary learning and sparse auto-
encoders, and we analyze these connections in detail.

Index Terms—Convolutional Sparse Coding, Multilayer Pur-
suit, Convolutional Neural Networks, Dictionary Learning,
Sparse Convolutional Filters.

I. INTRODUCTION

New ways of understanding real world signals, and propos-
ing ways to model their intrinsic properties, have led to
improvements in signal and image restoration, detection and
classification, among other problems. Little over a decade ago,
sparse representation modeling brought about the idea that
natural signals can be (well) described as a linear combination
of only a few building blocks or components, commonly
known as atoms [1]. Backed by elegant theoretical results,
this model led to a series of works dealing either with the
problem of the pursuit of such decompositions, or with the
design and learning of better atoms from real data [2]. The
latter problem, termed dictionary learning, empowered sparse
enforcing methods to achieve remarkable results in many
different fields from signal and image processing [3], [4], [5]
to machine learning [6], [7], [8].

Neural networks, on the other hand, were introduced around
forty years ago and were shown to provide powerful classi-
fication algorithms through a series of function compositions
[9], [10]. It was not until the last half-decade, however, that
through a series of incremental modifications these methods
were boosted to become the state-of-the-art machine learning

J. Sulam, and M. Elad are with the Computer Science Department,
Technion-Israel Institute of Technology. Y. Romano and V. Papyan are with
the Statistics Department of Stanford University.

tools for a wide range of problems, and across many different
fields [11]. For the most part, the development of new variants
of deep convolutional neural networks (CNNs) has been driven
by trial-and-error strategies and a considerable amount of
intuition.

Withal, a few research groups have begun providing the-
oretical justifications and analysis strategies for CNNs from
very different perspectives. For instance, by employing wavelet
filters instead of adaptive ones, the work by Bruna and Mallat
[12] demonstrated how scattering networks represent shift
invariant analysis operators that are robust to deformations
(in a Lipschitz-continuous sense). The inspiring work of [13]
proposed a generative Bayesian model, under which typical
deep learning architectures perform an inference process. In
[14], the authors proposed a hierarchical tensor factorization
analysis model to analyze deep CNNs. Fascinating connections
between sparse modeling and CNN have also been proposed.
In [15], a neural network architecture was shown to be able
to learn iterative shrinkage operators, essentially unrolling the
iterations of a sparse pursuit. Building on this interpretation,
the work in [16] further showed that CNNs can in fact improve
the performance of sparse recovery algorithms.

A precise connection between sparse modeling and CNNs
was recently presented in [17], and its contribution is cen-
tered in defining the Multi-Layer Convolutional Sparse Cod-
ing (ML-CSC) model. When deploying this model to real
signals, compromises were made in way that each layer is
only approximately explained by the following one. With this
relaxation in the pursuit of the convolutional representations,
the main observation of that work is that the inference stage
of CNNs – nothing but the forward-pass – can be interpreted
as a very crude pursuit algorithm seeking for unique sparse
representations. This is a useful perspective as it provides
a precise optimization objective which, it turns out, CNNs
attempt to minimize.

The work in [17] further proposed improved pursuits for
approximating the sparse representations of the network, or
feature maps, such as the Layered Basis Pursuit algorithm.
Nonetheless, as we will show later, neither this nor the
forward pass serve the ML-CSC model exactly, as they do
not provide signals that comply with the model assumptions.
In addition, the theoretical guarantees accompanying these
layered approaches suffer from bounds that become looser
with the network’s depth. The lack of a suitable pursuit, in
turn, obscures how to properly sample from the ML-CSC
model, and how to train the dictionaries from real data.

In this work we undertake a fresh study of the ML-
CSC and of pursuit algorithms for signals in this model.

ar
X

iv
:1

70
8.

08
70

5v
2

 [
cs

.C
V

]
 3

0
Ju

n
20

18

2

Our contributions will be guided by addressing the following
questions:

1) Given proper convolutional dictionaries, how can one
project1 signals onto the ML-CSC model?

2) When will the model allow for any signal to be expressed
in terms of nested sparse representations? In other words,
is the model empty?

3) What conditions should the convolutional dictionaries
satisfy? and how can we adapt or learn them to represent
real-world signals?

4) How is the learning of the ML-CSC model related to
traditional CNN and dictionary learning algorithms?

5) What kind of performance can be expected from this
model?

The model we analyze in this work is related to several
recent contributions, both in the realm of sparse represen-
tations and deep-learning. On the one hand, the ML-CSC
model is tightly connected to dictionary constrained learning
techniques, such as Chasing Butterflies approach [18], fast
transform learning [19], Trainlets [20], among several others.
On the other hand, and because of the unsupervised flavor of
the learning algorithm, our work shares connections to sparse
auto-encoders [21], and in particular to the k-sparse [22] and
winner-take-all versions [23].

In order to progressively answer the questions posed above,
we will first review the ML-CSC model in detail in Section
II. We will then study how signals can be projected onto
the model in Section III, where we will analyze the stability
of the projection problem and provide theoretical guarantees
for practical algorithms. We will then propose a learning
formulation in Section IV, which will allow, for the first time,
to obtain a trained ML-CSC model from real data while being
perfectly faithful to the model assumptions. In this work we
restrict our study to the learning of the model in an unsuper-
vised setting. This approach will be further demonstrated on
signal approximation and unsupervised learning applications
in Section V, before concluding in Section VI.

II. BACKGROUND

A. Convolutional Sparse Coding

The Convolutional Sparse Coding (CSC) model assumes
a signal x ∈ RN admits a decomposition as D1γ1, where
γ1 ∈ RNm1 is sparse and D1 ∈ RN×Nm1 has a convolutional
structure. More precisely, this dictionary consists of m1 local
n1-dimensional filters at every possible location (Figure 1
top). An immediate consequence of this model assumption
is the fact that each jth patch P0,jx ∈ Rn1 from the
signal x can be expressed in terms of a shift-invariant local
model corresponding to a stripe from the global sparse vector,
S1,jγ1 ∈ R(2n1−1)m1 . From now on, and for the sake of
simplicity, we will drop the first index on the stripe and patch
extraction operators, simply denoting the jth stripe from γ1

as Sjγ1.
In the context of CSC, the sparsity of the representation

is better captured through the `0,∞ pseudo-norm [24]. This

1By projection, we refer to the task of getting the closest signal to the one
given that obeys the model assumptions.

�1

�

�1 ∈ ℝ�×��1 ∈ ℝ��1∈ ℝ�

∈ ℝ��1

� �1

�2

�1, ∈ ℝ 2� −1 �1

�1,� ∈ ℝ� �1

�2 ∈ ℝ��1×��2 ∈ ℝ��2

�0,�

�1

1

1

� 1

2

1

1

1

2

2

Fig. 1: The CSC model (top), and its ML-CSC extension by
imposing a similar model on γ1 (bottom).

measure, as opposed to the traditional `0, provides a notion
of local sparsity and it is defined by the maximal number of
non-zeros in a stripe from γ. Formally,

‖γ‖s0,∞ = max
i
‖Siγ‖0. (1)

We kindly refer the reader to [24] for a more detailed descrip-
tion of this model, as well as extensive theoretical guarantees
associated with the model stability and the success of pursuit
algorithms serving it.

This model presents several characteristics that make it
relevant and interesting. On the one hand, CSC provides
a systematic and formal way to develop and analyze very
popular and successful patch-based algorithms in signal and
image processing [24]. From a more practical perspective, on
the other hand, the convolutional sparse model has recently
received considerable attention in the computer vision and ma-
chine learning communities. Solutions based on the CSC have
been proposed for detection [25], compressed sensing [26]
texture-cartoon separation [27], [28], inverse problems [29],
[30], [31] and feature learning [32], [33], and different con-
volutional dictionary learning algorithms have been proposed
and analyzed [29], [34], [35]. Interestingly, this model has also
been employed in a hierarchical way [36], [37], [38], [39]
mostly following intuition and imitating successful CNNs’
architectures. This connection between convolutional features
and multi-layer constructions was recently made precise in the
form of the Multi-Layer CSC model, which we review next.

B. Multi Layer CSC

The Multi-Layer Convolutional Sparse Coding (ML-CSC)
model is a natural extension of the CSC described above, as it
assumes that a signal can be expressed by sparse representa-
tions at different layers in terms of nested convolutional filters.
Suppose x = D1γ1, for a convolutional dictionary D1 ∈
RN×Nm1 and an `0,∞-sparse representation γ1 ∈ RNm1 . One
can cascade this model by imposing a similar assumption on

3

the representation γ1, i.e., γ1 = D2γ2, for a corresponding
convolutional dictionary D2 ∈ RNm1×Nm2 with m2 local
filters and a `0,∞-sparse γ2, as depicted in Figure 1. In this
case, D2 is a also a convolutional dictionary with local filters
skipping m1 entries at a time2 – as there are m1 channels in
the representation γ1.

Because of this multi-layer structure, vector γ1 can be
viewed both as a sparse representation (in the context of
x = D1γ1) or as a signal (in the context of γ1 = D2γ2). Thus,
one one can refer to both its stripes (looking backwards to
patches from x) or its patches (looking forward, corresponding
to stripes of γ2). In this way, when analyzing the ML-CSC
model we will not only employ the `0,∞ norm as defined
above, but we will also leverage its patch counterpart, where
the maximum is taken over all patches from the sparse vector
by means of a patch extractor operator Pi. In order to make
their difference explicit, we will denote them as ‖γ‖s0,∞
and ‖γ‖p0,∞ for stripes and patches, respectively. In addition,
we will employ the `2,∞ norm version, naturally defined as
‖γ‖s2,∞ = max

i
‖Siγ‖2, and analogously for patches.

We now formalize the model definition:

Definition 1. ML-CSC model:
Given a set of convolutional dictionaries {Di}Li=1 of appropri-
ate dimensions, a signal x(γi) ∈ RN admits a representation
in terms of the ML-CSC model, i.e. x(γi) ∈Mλ, if

x = D1γ1, ‖γ1‖s0,∞ ≤ λ1,
γ1 = D2γ2, ‖γ2‖s0,∞ ≤ λ2,

...
γL−1 = DLγL, ‖γL‖s0,∞ ≤ λL.

Note that x(γi) ∈ Mλ can also be expressed as x =
D1D2 . . .DLγL. We refer to D(i) as the effective dictionary
at the ith level, i.e., D(i) = D1D2 . . .Di. This way, one can
concisely write

x = D(i)γi, 1 ≤ i ≤ L. (2)

Interestingly, the ML-CSC can be interpreted as a special
case of a CSC model: one that enforces a very specific
structure on the intermediate representations. We make this
statement precise in the following Lemma:

Lemma 1. Given the ML-CSC model described by the set
of convolutional dictionaries {Di}Li=1, with filters of spatial
dimensions ni and channels mi, any dictionary D(i) =
D1D2 . . .Di is a convolutional dictionary with mi local atoms
of dimension neff

i =
∑i
j=1 nj − (i − 1). In other words, the

ML-CSC model is a structured global convolutional model.

The proof of this lemma is rather straight forward, and we
include it in the Supplementary Material A. Note that what was
denoted as the effective dimension at the ith layer is nothing
else than what is known in the deep learning community as
the receptive field of a filter at layer i. Here, we have made
this concept precise in the context of the ML-CSC model.

2This construction provides operators that are convolutional in the space
domain, but not in the channel domain – just as for CNNs.

Fig. 2: From atoms to molecules: Illustration of the ML-CSC
model for a number 6. Two local convolutional atoms (bottom
row) are combined to create slightly more complex structures
– molecules – at the second level, which are then combined
to create the global atom representing, in this case, a digit.

As it was presented, the convolutional model assumes that
every n-dimensional atom is located at every possible location,
which implies that the filter is shifted with strides of s = 1.
An alternative, which effectively reduces the redundancy of the
resulting dictionary, is to consider a stride greater than one.
In such case, the resulting dictionary is of size N ×Nm1/s
for one dimensional signals, and N × Nm1/s

2 for images.
This construction, popular in the CNN community, does not
alter the effective size of the filters but rather decreases the
length of each stripe by a factor of s in each dimension. In the
limit, when s = n1, one effectively considers non-overlapping
blocks and the stripe will be of length3 m1 – the number of
local filters. Naturally, one can also employ s > 1 for any of
the multiple layers of the ML-CSC model. We will consider
s = 1 for all layers in our derivations for simplicity.

The ML-CSC imposes a unique structure on the global
dictionary D(L), as it provides a multi-layer linear composition
of simpler structures. In other words, D1 contains (small) local
n1-dimensional atoms. The product D1D2 contains in each of
its columns a linear combination of atoms from D1, merging
them to create molecules. Further layers continue to create
more complex constructions out of the simpler convolutional
building blocks. We depict an example of such decomposition
in Figure 2 for a 3rd-layer convolutional atom of the digit
“6”. While the question of how to obtain such dictionaries will
be addressed later on, let us make this illustration concrete:
consider this atom to be given by x0 = D1D2d3, where d3

is sparse, producing the upper-most image x0. Denoting by
T (d3) = Supp(d3), this atom can be equally expressed as

x0 = D(2)d3 =
∑

j∈T (d3)

d
(2)
j dj3. (3)

In words, the effective atom is composed of a few elements
from the effective dictionary D(2). These are the building
blocks depicted in the middle of Figure 2. Likewise, focus-
ing on the fourth of such atoms, d

(2)
j4

= D1d2,j4 . In this

3When s = n1, the system is no longer shift-invariant, but rather invariant
with a shift of n samples.

4

particular case, ‖d2,j4‖0 = 2, so we can express d
(2)
j4

=

d
(1)
i1
di12,j1 + d

(1)
i2
di22,j1 . These two atoms from D1 are precisely

those appearing in the bottom of the decomposition.

C. Pursuit in the noisy setting
Real signals might contain noise or deviations from the

above idealistic model assumption, preventing us from en-
forcing the above model exactly. Consider the scenario of
acquiring a signal y = x + v, where x ∈ Mλ and v is a
nuisance vector of bounded energy, ‖v‖2 ≤ E0. In this setting,
the objective is to estimate all the representations γi which
explain the measurements y up to an error of E0. In its most
general form, this pursuit is represented by the Deep Coding
Problem (DCPE

λ), as introduced in [17]:

Definition 2. DCPE
λ Problem:

For a global signal y, a set of convolutional dictionaries
{Di}Li=1, and vectors λ and E:

(DCPE
λ) : find {γi}Li=1 s.t.

‖y −D1γ1‖2 ≤ E0, ‖γ1‖s0,∞ ≤ λ1
‖γ1 −D2γ2‖2 ≤ E1, ‖γ2‖s0,∞ ≤ λ2

...
...

‖γL−1 −DLγL‖2 ≤ EL−1, ‖γL‖s0,∞ ≤ λL

where λi and Ei are the ith entries of λ and E , respectively.

The solution to this problem was shown to be stable in
terms of a bound on the `2-distance between the estimated
representations γ̂i and the true ones, γi. These results depend
on the characterization of the dictionaries through their mutual
coherence, µ(D), which measures the maximal normalized
correlation between atoms in the dictionary. Formally, assum-
ing the atoms are normalized as ‖di‖2 = 1 ∀i, this measure
is defined as

µ(D) = max
i 6=j
|dTi dj |. (4)

Relying on this measure, Theorem 5 in [17] shows that given
a signal x(γi) ∈ PMλ

contaminated with noise of known
energy E20 , if the representations satisfy the sparsity constraint

‖γi‖s0,∞ <
1

2

(
1 +

1

µ(Di)

)
, (5)

then the solution to the DCPE
λ given by {γ̂i}Li=1 satisfies

‖γi − γ̂i‖22 ≤ 4E02
i∏

j=1

4i−1

1− (2‖γj‖s0,∞ − 1)µ(Dj)
. (6)

In the particular instance of the DCPE
λ where Ei = 0 for

1 ≤ i ≤ L − 1, the above bound can be made tighter by a
factor of 4i−1 while preserving the same form.

These results are encouraging, as they show for the first time
stability guarantees for a problem for which the forward pass
provides an approximate solution. More precisely, if the above
model deviations are considered to be greater than zero (Ei >
0) several layer-wise algorithms, including the forward pass of
CNNs, provide approximations to the solution of this problem
[17]. We note two remarks about these stability results:

1) The bound increases with the number of layers or the
depth of the network. This is a direct consequence of the
layer-wise relaxation in the above pursuit, which causes
these discrepancies to accumulate over the layers.

2) Given the underlying signal x(γi) ∈ Mλ, with rep-
resentations {γi}Li=1, this problem searches for their
corresponding estimates {γ̂i}Li=1. However, because at
each layer ‖γ̂i−1 −Diγ̂i‖2 > 0, this problem does not
provide representations for a signal in the model. In other
words, x̂ 6= D1γ̂1, γ̂1 6= D2γ̂2, and generally x̂ /∈Mλ.

III. A PROJECTION ALTERNATIVE

In this section we provide an alternative approach to the
problem of estimating the underlying representations γi under
the same noisy scenario of y = x(γi) + v. In particular, we
are interested in projecting the measurements y onto the set
Mλ. Consider the following projection problem:

Definition 3. ML-CSC Projection PMλ
:

For a signal y and a set of convolutional dictionaries {Di}Li=1,
define the Multi-Layer Convolutional Sparse Coding projec-
tion as:

(PMλ
) : min

{γi}Li=1

‖y − x(γi)‖2 s.t. x(γi) ∈Mλ.

(7)

Note that this problem differs from the DCPE
λ counterpart in

that we seek for a signal close to y, whose representations
γi give rise to x(γi) ∈ Mλ. This is more demanding (less
general) than the formulation in the DCPE

λ . Put differently,
the PMλ

problem can be considered as a special case of the
DCPE

λ where model deviations are allowed only at the outer-
most level. Recall that the theoretical analysis of the DCPE

λ

problem indicated that the error thresholds should increase
with the layers. Here, the PMλ

problem suggests a completely
different approach.

A. Stability of the projection PMλ

Given y = x(γi) + v, one can seek for the underlying
representations γi through either the DCPE

λ or PMλ
problem.

In light of the above discussion and the known stability result
for the DCPE

λ problem, how close will the solution of the
PMλ

problem be from the true set of representations? The
answer is provided through the following result.

Theorem 4. Stability of the solution to the PMλ
problem:

Suppose x(γi) ∈Mλ is observed through y = x + v, where
v is a bounded noise vector, ‖v‖2 ≤ E0, and ‖γi‖s0,∞ = λi <
1
2

(
1 + 1

µ(D(i))

)
, for 1 ≤ i ≤ L. Consider the set {γ̂i}Li=1 to

be the solution of the PMλ
problem. Then,

‖γi − γ̂i‖22 ≤
4E20

1− (2‖γi‖s0,∞ − 1)µ(D(i))
. (8)

For the sake of brevity, we include the proof of this claim
in the Supplementary Material B. However, we note a few
remarks:

1) The obtained bounds are not cumulative across the layers.
In other words, they do not grow with the depth of the
network.

5

2) Unlike the stability result for the DCPE
λ problem, the

assumptions on the sparse vectors γi are given in terms
of the mutual coherence of the effective dictionaries D(i).
Interestingly enough, we will see in the experimental sec-
tion that one can in fact have that µ(D(i−1)) > µ(D(i)) in
practice; i.e., the effective dictionary becomes incoherent
as it becomes deeper. Indeed, the deeper layers provide
larger atoms with correlations that are expected to be
lower than the inner products between two small local
(and overlapping) filters.

3) While the conditions imposed on the sparse vectors
γi might seem prohibitive, one should remember that
this follows from a worst case analysis. Moreover, one
can effectively construct analytic nested convolutional
dictionaries with small coherence measures, as shown in
[17].

Interestingly, one can also formulate bounds for the stability
of the solution, i.e. ‖γi − γ̂i‖22, which are the tightest for the
inner-most layer, and then increase as one moves to shallower
layers – precisely the opposite behavior of the solution to the
DCPE

λ problem. This result, however, provides bounds that are
generally looser than the one presented in the above theorem,
and so we defer this to the Supplementary Material.

B. Pursuit Algorithms
We now focus on the question of how one can solve

the above problems in pracice. As shown in [17], one can
approximate the solution to the DCPE

λ in a layer-wise manner,
solving for the sparse representations γ̂i progressively from
i = 1, . . . , L. Surprisingly, the Forward Pass of a CNN is
one such algorithm, yielding stable estimates. The Layered
BP algorithm was also proposed, where each representation
γ̂i is sparse coded (in a Basis Pursuit formulation) given the
previous representation γ̂i−1 and dictionary Di. As solutions
to the DCPE

λ problem, these algorithms inherit the layer-wise
relaxation referred above, which causes the theoretical bounds
to increase as a function of the layers or network depth.

Moving to the variation proposed in this work, how can
one solve the PMλ

problem in practice? Applying the above
layer-wise pursuit is clearly not an option, since after obtaining
a necessarily distorted estimate γ̂1 we cannot proceed with
equalities for the next layers, as γ1 does not necessarily have
a perfectly sparse representation with respect to D2. Herein
we present a simple approach based on a global sparse coding
solver which yields provable stable solutions.

Algorithm 1: ML-CSC Pursuit

Input: y, {Di}, k;

γ̂L ← Pursuit(y,D(L), k);

for j = L, . . . , 1 do
γ̂j−1 ← Dj γ̂j

return {γ̂i};

Consider Algorithm 1. This approach circumvents the prob-
lem of sparse coding the intermediate features while guaran-

teeing their exact expression in terms of the following layer.
This is done by first running a Pursuit for the deepest repre-
sentation through an algorithm which provides an approximate
solution to the following problem:

min
γ
‖y −D(L)γ‖22 s.t. ‖γ‖s0,∞ ≤ k. (9)

Once the deepest representation has been estimated, we
proceed by obtaining the remaining ones by simply applying
their definition, thus assuring that x̂ = D(i)γ̂i ∈ Mλ. While
this might seem like a dull strategy, we will see in the next
section that, if the measurements y are close enough to a signal
in the model, Algorithm 1 indeed provides stable estimates
γ̂i. In fact, the resulting stability bounds will be shown to
be generally tighter than those existing for the layer-wise
pursuit alternative. Moreover, as we will later see in the Results
section, this approach can effectively be harnessed in practice
in a real-data scenario.

C. Stability Guarantees for Pursuit Algorithms

Given a signal y = x(γi) + v, and the respective solution
of the ML-CSC Pursuit in Algorithm 1, how close will the
estimated γ̂i be to the original representations γi? These
bounds will clearly depend on the specific Pursuit algorithm
employed to obtain γ̂L. In what follows, we will present two
stability guarantees that arise from solving this sparse coding
problem under two different strategies: a greedy and a convex
relaxation approach. Before diving in, however, we present
two elements that will become necessary for our derivations.

The first one is a property that relates to the propagation of
the support, or non-zeros, across the layers. Given the support
of a sparse vector T = Supp(γ), consider dictionary DT as
the matrix containing only the columns indicated by T . Define
‖DT ‖0∞ =

∑n
i=1 ‖RiDT ‖0∞, where Ri extracts the ith row

of the matrix on its right-hand side. In words, ‖DT ‖0∞ simply
counts the number of non-zero rows of DT . With it, we now
define the following property:

Definition 5. Non Vanishing Support (N.V.S.):
A sparse vector γ with support T satisfies the N.V.S property
for a given dictionary D if

‖Dγ‖0 = ‖DT ‖0∞. (10)

Intuitively, the above property implies that the entries in γ
will not cause two or more atoms to be combined in such a
way that (any entry of) their supports cancel each other. Notice
that this is a very natural assumption to make. Alternatively,
one could assume the non-zero entries from γ to be Gaussian
distributed, and in this case the N.V.S. property holds a.s.

A direct consequence of the above property is that of
maximal cardinality of representations. If γ satisfies the N.V.S
property for a dictionary D, and γ̄ is another sparse vector
with equal support (i.e., Supp(γ) = Supp(γ̄)), then neces-
sarily Supp(Dγ̄) ⊆ Supp(Dγ), and thus ‖Dγ‖0 ≥ ‖Dγ̄‖0.
This follows from the fact that the number of non-zeros in
Dγ̄ cannot be greater than the sum of non-zero rows from the
set of atoms, DT .

6

The second element concerns the local stability of the
Stripe-RIP, the convolutional version of the Restricted Isomet-
ric Property [40]. As defined in [24], a convolutional dictionary
D satisfies the Stripe-RIP condition with constant δk if, for
every γ such that ‖γ‖s0,∞ = k,

(1− δk)‖γ‖22 ≤ ‖Dγ‖22 ≤ (1 + δk)‖γ‖22. (11)

The S-RIP bounds the maximal change in (global) energy
of a `0,∞-sparse vector when multiplied by a convolutional
dictionary. We would like to establish an equivalent property
but in a local sense. Recall the ‖x‖p2,∞ norm, given by the
maximal norm of a patch from x, i.e. ‖x‖p2,∞ = max

i
‖Pix‖2.

Analogously, one can consider ‖γ‖s2,∞ = max
i
‖Siγ‖2 to be

the maximal norm of a stripe from γ.
Now, is ‖Dγ‖p2,∞ nearly isometric? The (partially affirma-

tive) answer is given in the form of the following Lemma,
which we prove in the Supplementary Material C.

Lemma 2. Local one-sided near isometry property:
If D is a convolutional dictionary satisfying the Stripe-RIP
condition in (11) with constant δk, then

‖Dγ‖2,p2,∞ ≤ (1 + δk) ‖γ‖2,s2,∞. (12)

This result is worthy in its own right, as it shows for the
first time that not only the CSC model is globally stable for
`0,∞-sparse signals, but that one can also bound the change in
energy in a local sense (in terms of the `2,∞ norm). While the
above Lemma only refers to the upper bound of ‖Dγ‖2,p2,∞,
we conjecture that an analogous lower bound can be shown
to hold as well.

With these elements, we can now move to the stability of
the solutions provided by Algorithm 1:

Theorem 6. Stable recovery of the Multi-Layer Pursuit Algo-
rithm in the convex relaxation case:
Suppose a signal x(γi) ∈ Mλ is contaminated with locally-
bounded noise v, resulting in y = x + v, ‖v‖p2,∞ ≤ ε0.
Assume that all representations γi satisfy the N.V.S. property
for the respective dictionaries Di, and that ‖γi‖s0,∞ = λi <
1
2

(
1 + 1

µ(Di)

)
, for 1 ≤ i ≤ L and ‖γL‖s0,∞ = λL ≤

1
3

(
1 + 1

µ(D(L))

)
. Let

γ̂L = arg min
γ
‖y −D(L)γ‖|22 + ζL‖γ‖1, (13)

for ζL = 4ε0, and set γ̂i−1 = Diγ̂i, i = L, . . . , 1. Then,

1) Supp(γ̂i) ⊆ Supp(γi),

2) ‖γ̂i − γi‖p2,∞ ≤ εL
L∏

j=i+1

√
3cj
2

,

hold for every layer 1 ≤ i ≤ L, where εL = 15
2 ε0

√
‖γL‖p0,∞

is the error at the last layer, and cj depends on the ratio
between the local dimensions of the layers, cj =

⌈
2nj−1−1

nj

⌉
.

Theorem 7. Stable recovery of the Multi-Layer Pursuit Algo-
rithm in the greedy case:
Suppose a signal x(γi) ∈ Mλ is contaminated with energy-
bounded noise v, such that y = x + v, ‖y − x‖2 ≤ E0,

and ε0 = ‖v‖P2,∞. Assume that all representations γi satisfy
the N.V.S. property for the respective dictionaries Di, with
‖γi‖s0,∞ = λi <

1
2

(
1 + 1

µ(Di)

)
, for 1 ≤ i ≤ L, and

‖γL‖s0,∞ <
1

2

(
1 +

1

µ(D(L))

)
− 1

µ(D(L))
· ε0
|γminL |

, (14)

where γminL is the minimal entry in the support of γL.
Consider approximating the solution to the Pursuit step in
Algorithm 1 by running Orthogonal Matching Pursuit for
‖γL‖0 iterations. Then, for every ith layer,

1) Supp(γ̂i) ⊆ Supp(γi),

2) ‖γ̂i − γi‖22 ≤
E20

1−µ(D(L))(‖γL‖s0,∞−1)

(
3
2

)L−i
.

The proofs of both Theorems 6 and 7 are included in
the Supplementary Material D1 and D2, respectively. The
coefficient cj refers to the ratio between the filter dimensions
at consecutive layers, and assuming ni ≈ ni+1 (which indeed
happens in practice), this coefficient is roughly 2. Importantly,
and unlike the bounds provided for the layer-wise pursuit
algorithm, the recovery guarantees are the tightest for the
inner-most layer, and the bound increases slightly towards
shallower representations. The relaxation to the `1 norm, in
the case of the BP formulation, provides local error bounds,
while the guarantees for the greedy version, in its OMP
implementation, yield a global alternative.

Before proceeding, one might wonder if the above con-
ditions imposed on the representations and dictionaries are
too severe and whether the set of signals satisfying these is
empty. This is, in fact, not the case. As shown in [17], multi-
layer convolutional dictionaries can be constructed by means
of certain wavelet functions, effectively achieving mutual
coherence values in the order of 10−3, leaving ample room
for sampling sparse representations satisfying the theorems’
assumptions. On the other hand, imposing a constraint on the
number of non-zeros in a representation γi−1 = Diγi implies
that part of the support of the atoms in Di will be required to
overlap. The N.V.S. property simply guarantees that whenever
these overlaps occur, they will not cancel each other. Indeed,
this happens with probability 1 if the non-zero coefficients are
drawn from a Normal distribution. We further comment and
exemplify this in the Supplementary Material E.

D. Projecting General Signals

In the most general case, i.e. removing the assumption that
y is close enough to a signal in the model, Algorithm 1 by
itself might not solve PMλ

. Consider we are given a general
signal y and a model Mλ, and we run the ML-CSC Pursuit
with k = λL obtaining a set of representations {γ̂j}. Clearly
‖γ̂L‖s0,∞ ≤ λL. Yet, nothing guarantees that ‖γ̂i‖s0,∞ ≤ λi
for i < L. In other words, in order to solve PMλ

one must
guarantee that all sparsity constraints are satisfied.

Algorithm 2 progressively recovers sparse representations
to provide a projection for any general signal y. The solution
is initialized with the zero vector, and then the OMP algorithm
is applied with a progressively larger `0,∞ constraint on the

7

Algorithm 2: ML-CSC Projection Algorithm

Init: x∗ = 0 ;
for k = 1 : λL do

γ̂L ← OMP(y,D(L), k) ;
for j = L : −1 : 1 do

γ̂j−1 ← Dj γ̂j ;

if ‖γ̂i‖s0,∞ > λi for any 1 ≤ i < L then
break;

else
x∗ ← D(i)γ̂i;

return x∗

deepest representation4, from 1 to λL. The only modification
required to run the OMP in this setting is to check at every
iteration the value of ‖γ̂L‖s0,∞, and to stop accordingly. At
each step, given the estimated γ̂L, the intermediate features
and their `0,∞ norms, are computed. If all sparsity constraints
are satisfied, then the algorithm proceeds. If, on the other hand,
any of the constraints is violated, the previously computed
x∗ is reported as the solution. Note that this algorithm can
be improved: if a constraint is violated, one might consider
back-tracking the obtained deepest estimate and replacing the
last obtained non-zero by an alternative solution, which might
allow for the intermediate constraints to be satisfied. For
simplicity, we present the completely greedy approach as in
Algorithm 2.

This algorithm can be shown to be a greedy approximation
to an optimal algorithm, under certain assumptions, and we
provide a sketch of the proof of this claim in the Supple-
mentary Material F. Clearly, while Algorithms 1 and 2 were
presented separately, they are indeed related and one can
certainly combine them into a single method. The distinction
between them was motivated by making the derivations of our
theoretical analysis and guarantees easier to grasp. Neverthe-
less, stating further theoretical claims without the assumption
of the signal y being close to an underlying x(γi) ∈ Mλ is
non-trivial, and we defer a further analysis of this case for
future work.

E. Summary - Pursuit for the ML-CSC

Let us briefly summarize what we have introduced so far.
We have defined a projection problem, PMλ

, seeking for
the closest signal in the model Mλ to the measurements
y. We have shown that if the measurements y are close
enough to a signal in the model, i.e. y = x(γi) + v, with
bounded noise v, then the ML-CSC Pursuit in Algorithm 1
manages to obtain approximate solutions that are not far from
these representations, by deploying either the OMP or the BP
algorithms. In particular, the support of the estimated sparse
vectors is guaranteed to be a subset of the correct support, and
so all γ̂i satisfy the model constraints. In doing so we have

4Instead of repeating the pursuit from scratch at every iteration, one might-
warm start the OMP algorithm by employing current estimate, γ̂L, as initial
condition so that only new non-zeros are added.

introduced the N.V.S. property, and we have proven that the
CSC and ML-CSC models are locally stable. Lastly, if no prior
information is known about the signal y, we have proposed
an OMP-inspired algorithm that finds the closest signal x(γi)
to any measurements y by gradually increasing the support
of all representations γ̂i while guaranteeing that the model
constraints are satisfied.

IV. LEARNING THE MODEL

The entire analysis presented so far relies on the assump-
tion of the existence of proper dictionaries Di allowing for
corresponding nested sparse features γi. Clearly, the ability
to obtain such representations greatly depends on the design
and properties of these dictionaries.

While in the traditional sparse modeling scenario certain
analytically-defined dictionaries (such as the Discrete Cosine
Transform) often perform well in practice, in the ML-CSC
case it is hard to propose an off-the-shelf construction which
would allow for any meaningful decompositions. To see this
more clearly, consider obtaining γ̂L with Algorithm 1 re-
moving all other assumptions on the dictionaries Di. In this
case, nothing will prevent γ̂L−1 = DLγ̂L from being dense.
More generally, we have no guarantees that any collection
of dictionaries would allow for any signal with nested sparse
components γi. In other words, how do we know if the model
represented by {Di}Li=1 is not empty?

To illustrate this important point, consider the case where
Di are random – a popular construction in other sparsity-
related applications. In this case, every atom from the dic-
tionary DL will be a random variable djL ∼ N (0, σ2

LI). In
this case, one can indeed construct γL, with ‖γL‖s0,∞ ≤ 2,
such that every entry from γL−1 = DLγL will be a random
variable γjL−1 ∼ N (0, σ2

L), ∀ j. Thus, Pr
(
γjL−1 = 0

)
= 0.

As we see, there will not exist any sparse (or dense, for that
matter) γL which will create a sparse γL−1. In other words,
for this choice of dictionaries, the ML-CSC model is empty.

A. Sparse Dictionaries

From the discussion above one can conclude that one of the
key components of the ML-CSC model is sparse dictionaries:
if both γL and γL−1 = DLγL are sparse, then atoms in
D must indeed contain only a few non-zeros. We make this
observation concrete in the following lemma.

Lemma 3. Dictionary Sparsity Condition
Consider the ML-CSC model Mλ described by the dic-
tionaries {Di}Li=1 and the layer-wise `0,∞-sparsity levels
λ1, λ2, . . . , λL. Given γL : ‖γL‖s0,∞ ≤ λL and constants

ci =
⌈
2ni−1−1

ni

⌉
, the signal x = D(L)γL ∈Mλ if

‖Di‖0 ≤
λi−1
λici

, ∀ 1 < i ≤ L. (15)

The simple proof of this Lemma is included in the Sup-
plementary Material G. Notably, while this claim does not
tell us if a certain model is empty, it does guarantee that
if the dictionaries satisfy a given sparsity constraint, one

8

can simply sample from the model by drawing the inner-
most representations such that ‖γL‖s0,∞ ≤ λL. One question
remains: how do we train such dictionaries from real data?

B. Learning Formulation

One can understand from the previous discussion that there
is no hope in solving the PMλ

problem for real signals
without also addressing the learning of dictionaries Di that
would allow for the respective representations. To this end,
considering the scenario where one is given a collection of K
training signals, {yk}Kk=1, we upgrade the PMλ

problem to a
learning setting in the following way:

min
{γk

i },{Di}

K∑
k=1

‖yk−xk(γki ,Di)‖22 s.t.
{

xk ∈Mλ,

‖dji‖2 = 1,∀ i, j.
(16)

We have included the constraint of every dictionary atom to
have a unit norm to prevent arbitrarily small coefficients in the
representations γki . This formulation, while complete, is diffi-
cult to address directly: The constraints on the representations
γi are coupled, just as in the pursuit problem discussed in the
previous section. In addition, the sparse representations now
also depend on the variables Di. In what follows, we provide
a relaxation of this cost function that will result in a simple
learning algorithm.

The problem above can also be understood from the
perspective of minimizing the number of non-zeros in the
representations at every layer, subject to an error threshold –
a typical reformulation of sparse coding problems. Our main
observation arises from the fact that, since γL−1 is function
of both DL and γL, one can upper-bound the number of non-
zeros in γL−1 by that of γL. More precisely,

‖γL−1‖s0,∞ ≤ cL‖DL‖0‖γL‖s0,∞, (17)

where cL is a constant5. Therefore, instead of minimizing the
number of non-zeros in γL−1, we can address the minimiza-
tion of its upper bound by minimizing both ‖γL‖s0,∞ and
‖DL‖0. This argument can be extended to any layer, and we
can generally write

‖γi‖s0,∞ ≤ c

L∏
j=i+1

‖Dj‖0‖γL‖s0,∞. (18)

In this way, minimizing the sparsity of any ith representation
can be done implicitly by minimizing the sparsity of the
last layer and the number of non-zeros in the dictionaries
from layer (i + 1) to L. Put differently, the sparsity of the
intermediate convolutional dictionaries serve as proxies for the
sparsity of the respective representation vectors. Following this
observation, we now recast the problem in Equation (16) into
the following Multi-Layer Convolutional Dictionary Learning

5From [17], we have that ‖γL−1‖p0,∞ ≤ ‖DL‖0‖γL‖s0,∞. From here,
and denoting by cL the upper-bound on the number of patches in a stripe from
γL−1 given by cL =

⌈
2nL−1−1

nL

⌉
, we can obtain a bound to ‖γL−1‖s0,∞.

Problem:

min
{γk

L},{Di}

K∑
k=1

‖yk −D1D2 . . .DLγ
k
L‖22 +

L∑
i=2

ζi‖Di‖0

s.t.
{
‖γkL‖s0,∞ ≤ λL,
‖dji‖2 = 1,∀ i, j. (19)

Under this formulation, this problem seeks for sparse represen-
tations γkL for each example yk, while forcing the intermediate
convolutional dictionaries (from layer 2 to L) to be sparse. The
reconstructed signal, x = D1γ1, is not expected to be sparse,
and so there is no reason to enforce this property on D1. Note
that there is now only one sparse coding process involved –
that of γkL – while the intermediate representations are never
computed explicitly. Recalling the theoretical results from the
previous section, this is in fact convenient as one only has to
estimate the representation for which the recovery bound is
the tightest.

Following the theoretical guarantees presented in Section
III, one can alternatively replace the `0,∞ constraint on the
deepest representation by a convex `1 alternative. The resulting
formulation resembles the lasso formulation of the PMλ

problem, for which we have presented theoretical guarantees in
Theorem 6. In addition, we replace the constraint on the `2 of
the dictionary atoms by an appropriate penalty term, recasting
the above problem into a simpler (unconstrained) form:

min
{γk

L},{Di}

K∑
k=1

‖yk −D1D2 . . .DLγ
k
L‖22+

ι

L∑
i=1

‖Di‖2F +

L∑
i=2

ζi‖Di‖0 + λ‖γkL‖1, (20)

where ‖ · ‖F denotes the Frobenius norm. The problem in
Equation (20) is highly non-convex, due to the `0 terms and
the product of the factors. In what follows, we present an
online alternating minimization algorithm, based on stochastic
gradient descent, which seeks for the deepest representation
γL and then progressively updates the layer-wise convolutional
dictionaries.

For each incoming sample yk (or potentially, a mini-batch),
we will first seek for its deepest representation γkL considering
the dictionaries fixed. This is nothing but the PMλ

problem
in (7), which was analyzed in detail in the previous sections,
and its solution will be approximated through iterative shrink-
age algorithms. Also, one should keep in mind that while
representing each dictionary by Di is convenient in terms
of notation, these matrices are never computed explicitly –
which would be prohibitive. Instead, these dictionaries (or
their transpose) are applied effectively through convolution
operators. In turn, this implies that images are not vectorized
but processed as 2 dimensional matrices (or 3-dimensional
tensors for multi-channel images). In addition, these operators
are very efficient due to their high sparsity, and one could in
principle benefit from specific libraries to boost performance
in this case, such as the one in [41].

Given the obtained γkL, we then seek to update the respective
dictionaries. As it is posed – with a global `0 norm over

9

a) b)

c)

Fig. 3: ML-CSC model trained on the MNIST dataset. a) The local filters of the dictionary D1. b) The local filters of the
effective dictionary D(2) = D1D2. c) Some of the 1024 local atoms of the effective dictionary D(3) which, because of the
dimensions of the filters and the strides, are global atoms of size 28× 28.

each dictionary – this is nothing but a generalized pursuit
as well. Therefore, for each dictionary Di, we minimize the
function in Problem (20) by applying T iterations of projected
gradient descent. This is done by computing the gradient of
the `2 terms in Problem (20) (call it f(Di)) with respect
to a each dictionary Di (i.e., ∇f(Di)), making a gradient
step and then applying a hard-thresholding operation, Hζi(·),
depending on the parameter ζi. This is simply an instance of
the Iterative Hard Thresholding algorithm [42]. In addition,
the computation of ∇f(Di) involves only multiplications the
convolutional dictionaries for the different layers. The overall
algorithm is depicted in Algorithm 3, and we will expand on
further implementation details in the results section.

Algorithm 3: Multi-Layer Convolutional Dictionary
Learning

Data: Training samples {yk}Kk=1, initial convolutional
dictionaries {Di}Li=1

for k = 1, . . . ,K do
Draw yk at random;
Sparse Coding:
γL ← arg min

γ
‖yk −D(L)γ‖2 + λ‖γ‖1 ;

Update Dictonaries:
for i = L, . . . , 2 do

for t = 1,. . . ,T do
Dt+1
i ← Hζi [Dt

i − η∇f(Dt
i)] ;

for t = 1,. . . ,T do
Dt+1

1 ← Dt
1 − η∇f(Dt

1) ;

The parameters of the models involve the `1 penalty of
the deepest representation, i.e. λ, and the parameter for each
dictionary, ζi. The first parameter can be set manually or deter-
mined so as to obtain a given given representation error. On the
other hand, the dictionary-wise ζi parameters are less intuitive
to establish, and the question of how to set these values for a
given learning scenario remains a subject of current research.

Nevertheless, we will show in the experimental section that
setting these manually results in effective constructions.

Note this approach can also be employed to minimize
Problem (19) by introducing minor modifications: In the sparse
coding stage, the Lasso is replaced by a `0,∞ pursuit, which
can be tackled with a greedy alternative as the OMP (as
described in Theorem 7) or by an Iterative Hard Thresholding
alternative [42]. In addition, one could consider employing
the `1 norm as a surrogate for the `0 penalty imposed on the
dictionaries. In this case, their update can still be performed
by the same projected gradient descent approach, though
replacing the hard thresholding with its soft counterpart.

Before moving on, and even though an exhaustive compu-
tational complexity analysis is out of the scope of this paper,
we want to briefly comment on the general aspects of the
algorithm’s complexity. For a particular network architecture
(number of layers, number of filters per layer, filter sizes, etc)
let us denote by C the complexity of applying the forward
pass – or in other words, multiplying by D(L)T – on an
input image, or a minibach (i.e., for each kth iteration). The
sparse coding step in our algorithm is carried with iterative
shrinkage methods, and assuming these algorithms are run for
τ iterations, the complexity incurred in each sparse coding step
is6 O(τC). The update of the dictionaries, on the other hand,
requires computing the gradient for each set of filters. Each of
these gradients involves, roughly speaking, the computation of
yet another forward and backward pass7. In this way, the dic-
tionary update stage is O(LTC). Note that we are disregarding
the shrinkage operators both on the representations and on
the filters, which are entry-wise operations that are negligible
when compared to applying D(L) or its transpose. As can
be seen, the complexity of our algorithm is approximately

6Each such iteration actually involves the application of a forward and
backward pass, resulting from the fact that one needs to apply D(L) and
D(L)T .

7The dictionary gradients can actually be computed more efficiently if
intermediate computations are saved (and stored), incurring in O(L log2(L))
convolution operators. Thus, in this case the dictionary update stage is
O(log2(L)TC). We defer the implementation of this more efficient algorithm
for future work.

10

(τ + TL) times that of a similar CNNs architectures. Finally,
note that we are not considering the (important) fact that, in
our case, the convolutional kernels are sparse, and as such they
may incur in significantly cheaper computations. This precise
analysis, and how to maximize the related computational
benefit, is left for future work.

C. Connection to related works

Naturally, the proposed algorithm has tight connections to
several recent dictionary learning approaches. For instance,
our learning formulation is closely related to the Chasing
Butterflies approach in [18], and our resulting algorithm can
be interpreted as a particular case of the FAUST method,
proposed in the inspiring work from [43]. FAUST decomposes
linear operators into sparse factors in a hierarchical way
in the framework of a batch learning algorithm, resulting
in improved complexity. Unlike that work, our multi-layer
decompositions are not only sparse but also convolutional, and
they are updated within a stochastic optimization framework.
The work in [19], on the other hand, proposed a learning
approach where the dictionary is expressed as a cascade of
convolutional filters with sparse kernels, and they effectively
showed how this approach can be used to approximate large-
dimensional analytic atoms such as those from wavelets and
curvelets. As our proposed approach effectively learns a sparse
dictionary, our work also shares similarities with the double-
sparsity work from [44]. In particular, in its Trainlets version
[20], the authors proposed to learn a dictionary as a sparse
combination of cropped wavelets atoms. From the previous
comment on the work from [19], this could also potentially
be expressed as a product of sparse convolutional atoms.
All these works, as well as our approach, essentially enforce
extra regularization into the dictionary learning problem. As
a result, these methods perform better in cases with corrupted
measurements, in high dimensional settings, and in cases with
limited amount of training data (see [44], [20]).

What is the connection between this learning formulation
and that of deep convolutional networks? Recalling the analy-
sis presented in [17], the Forward Pass is nothing but a layered
non-negative thresholding algorithm, the simplest form of a
pursuit for the ML-CSC model with layer-wise deviations.
Therefore, if the pursuit for γ̂L in our setting is solved with
such an algorithm, then the problem in (20) implements a
convolutional neural network with only one RELU operator
at the last layer, with sparse-enforcing penalties on the filters.
Moreover, due the data-fidelity term in our formulation, the
proposed optimization problem provides nothing but a convo-
lutional sparse autoencoder. As such, our work is related to the
extensive literature in this topic. For instance, in [21], sparsity
is enforced in the hidden activation layer by employing a
penalty term proportional to the KL divergence between the
hidden unit marginals and a target sparsity probability.

Other related works include the k-sparse autoencoders [22],
where the hidden layer is constrained to having exactly k non-
zeros. In practice, this boils down to a hard thresholding step
of the hidden activation, and the weights are updated with
gradient descent. In this respect, our work can be thought

of a generalization of this work, where the pursuit algorithm
is more sophisticated than a simple thresholding operation,
and where the filters are composed by a cascade of sparse
convolutional filters. More recently, the work in [23] proposed
the winner-take-all autoencoders. In a nutshell, these are non-
symmetric autoencoders having a few convolutional layers
(with ReLu non-linearities) as the encoder, and a simple linear
decoder. Sparsity is enforced in what the authors refer to as
“spatial” and a “lifetime” sparsity.

Finally, and due to the fact that our formulation effectively
provides a convolutional network with sparse kernels, our
approach is reminiscent of works attempting to sparsify the
filters in deep learning models. For instance, the work in
[41] showed that the weights of learned deep convolutional
networks can be sparsified without considerable degradation
of classification accuracy. Nevertheless, one should perpend
the fact that these works are motivated merely by cheaper and
faster implementations, whereas our model is intrinsically built
by theoretically justified sparse kernels. We do not attempt
to compare our approach to such sparsifying methods at this
stage, and we defer this to future work.

In light of all these previous works, the practical contribu-
tion of the learning algorithm presented here is to demonstrate,
as we will see in the following Experiments section, that
our online block-coordinate descent method can be effectively
deployed in an unsupervised setting competing favorably with
state of the art dictionary learning and convolutional network
auto-encoders approaches.

V. EXPERIMENTS

We now provide experimental results to demonstrate several
aspects of the ML-CSC model. As a case-study, we consider
the MNIST dataset [45]. We define our model as consisting of
3 convolutional layers: the first one contains 32 local filters of
size 7× 7 (with a stride of 2), the second one consists of 128
filters of dimensions 5 × 5 × 32 (with a stride of 1), and the
last one contains 1024 filters of dimensions 7×7×128. At the
third layer, the effective size of the atoms is 28 – representing
an entire digit.

Training is performed with Algorithm 3, using a mini-batch
of 100 samples per iteration. For the Sparse Coding stage,
we leverage an efficient implementation of FISTA [46], and
we adjust the penalty parameter λ to obtain roughly 15 non-
zeros in the deepest representation γ3. The ζi parameters,
the penalty parameters for the dictionaries sparsity levels,
are set manually for simplicity. In addition, and as it is
commonly done in various Gradient Descent methods, we
employ a momentum term for the update of the dictionaries
Di within the projected gradient descent step in Algorithm
3, and set its memory parameter to 0.9. The step size is
set to 1, the update dictionary iterations is set as T = 1,
ι = 0.001, and we run the algorithm for 20 epochs, which
takes approximately 30 minutes. Our implementation uses the
Matconvnet library, which leverages efficient functions for
GPU8. No pre-processing was performed, with the exception

8All experiments are run on a 16 i7 cores Windows station with a NVIDIA
GTX 1080 Ti.

11

0 5 10 15 20

Epochs

101

102

103

104

105
Loss

0 5 10 15 20

Epoch

0.92

0.94

0.96

0.98

1
DictionarydSparsity

D
2

D
3

0 5 10 15 20

Epochs

0.1

0.15

0.2

0.25
AveragedResidual

Fig. 4: Evolution of the Loss function, sparsity of the convo-
lutional dictionaries and average residual norm during training
on the MNIST dataset.

of the subtraction of the mean image (computed on the training
set).

We depict the evolution of the Loss function during training
in Figure 4, as well as the sparsity of the second and third
dictionaries (i.e., 1 minus the number of non-zero coefficients
in the filters relative to the filters dimension) and the average
residual norm. The resulting model is depicted in Figure 3.
One can see how the first layer is composed of very simple
small-dimensional edges or blobs. The second dictionary, D2,
is effectively 99% sparse, and its non-zeros combine a few
atoms from D1 in order to create slightly more complex edges,
as the ones in the effective dictionary D(2). Lastly, D3 is
99.8% sparse, and it combines atoms from D(2) in order to
provide atoms that resemble different kinds (or parts) of digits.
These final global atoms are nothing but a linear combination
of local small edges by means of convolutional sparse kernels.

Interestingly, we have observed that the mutual coherence
of the effective dictionaries do not necessarily increase with
the layers, and they often decrease with the depth. While this
measure relates to worst-case analysis conditions and do not
mean much in the context of practical performance, one can
see that the effective dictionary indeed becomes less correlated
as the depth increases. This is intuitive, as very simple edges
– and at every location – are expected to show large inner
products, larger than the correlation of two more complex
number-like structures. This effect can be partially explained
by the dictionary redundancy: having 32 local filters in D1

(even while using a stride of 2) implies a 8-fold redundancy in
the effective dictionary at this level. This redundancy decreases
with the depth (at this least for the current construction), and
at the third layer one has merely 1024 atoms (redundancy of
about 1.3, since the signal dimension is 282).

We can also find the multi-layer representation for real
images – essentially solving the projection problem PMλ

. In
Figure 5, we depict the multi-layer features γi, i = 1, 2, 3,
obtained with the Algorithm 1, that approximate an image
y (not included in the training set). Note that all the repre-
sentations are notably sparse thanks to the very high sparsity
of the dictionaries D2 and D3. These decompositions (any
of them) provide a sparse decomposition of the number 3 at
different scales, resulting in an approximation x̂. Naturally, the
quality of the approximation can be improved by increasing
the cardinality of the representations.

��

��

��

Fig. 5: Decompositions of an image from MNIST in terms
of its nested sparse features γi and multi-layer convolutional
dictionaries Di.

A. Sparse Recovery

The first experiment we explore is that of recovering sparse
vectors from corrupted measurements, in which we will com-
pare the presented ML-CSC Pursuit with the Layered approach
from [17]. For the sake of completion and understanding, we
will first carry this experiment in a synthetic setting and then
on projected real digits, leveraging the dictionaries obtained
in the beginning of this section.

We begin by constructing a 3 layers “non-convolutional” 9

model for signals of length 200, with the dictionaries having
250, 300, and 350 atoms, respectively. The first dictionary is
constructed as a random matrix, whereas the remaining ones
are composed of sparse atoms with random supports and a
sparsity of 99%. Finally, 500 representations are sampled by
drawing sparse vectors γL, with a target sample sparsity k
and normally distributed coefficients. We generate the signals
as x = D(i)γi, and then corrupt them with Gaussian noise
(σ = 0.02) obtaining the measurements y = x(γi) + v.

In order to evaluate our projection approach, we run Algo-
rithm 1 employing the Subspace Pursuit algorithm [47] for the
sparse coding step, with the oracle target cardinality k. Recall
that once the deepest representations γ̂L have been obtained,
the inner ones are simply computed as γ̂i−1 = Diγ̂i. In the
layered approach from [17], on the other hand, the pursuit
of the representations progresses sequentially: first running a
pursuit for γ̂1, then employing this estimate to run another
pursuit for γ̂2, etc. In the same spirit, we employ Subspace
Pursuit layer by layer, employing the oracle cardinality of
the representation at each stage. The results are presented
in Figure 6a: at the top we depict the relative `2 error of
the recovered representations (‖γ̂i − γi‖2/‖γi‖2) and, at the
bottom, the normalized intersection of the supports [48], both
as a function of the sample cardinality k and the layer depth.

The projection algorithm manages to retrieve the representa-
tions γ̂i more accurately than the layered pursuit, as evidenced

9The non-convolutional case is still a ML-CSC model, in which the signal
dimension is the same as the length of the atoms n, and with a stride of the
same magnitude n. We choose this setting for the synthetic experiment to
somewhat favor the results of the layered pursuit approach.

12

0 1 2 3

0

2

4

6

8

10 0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3

0

2

4

6

8

10
0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3

0

2

4

6

8

10 0

0.05

0.1

0.15

0.2

0 1 2 3

0

2

4

6

8

10 0

0.05

0.1

0.15

0.2

(a) Synthetic signals.

0 1 2 3

Layer

0

2

4

6

8

10

S
am

pl
e

S
pa

rs
ity

0

0.1

0.2

0.3

0 1 2 3

Layer

0

2

4

6

8

10

S
am

pl
e

S
pa

rs
ity

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

Layer

0

2

4

6

8

10

S
am

pl
e

S
pa

rs
ity

0

0.2

0.4

0.6

0.8

0 1 2 3

Layer

0

2

4

6

8

10

S
am

pl
e

S
pa

rs
ity

0

0.2

0.4

0.6

0.8

(b) MNIST signals.

Fig. 6: Recovery of representations from noisy MNIST digits.
Top: normalized `2 error between the estimated and the true
representations. Bottom: normalized intersection between the
estimated and the true support of the representations.

by the `2 error and the support recovery. The main reason
behind the difficulty of the layer-by-layer approach is that the
entire process relies on the correct recovery of the first layer
representations, γ̂1. If these are not properly estimated (as
evidenced by the bottom-left graph), there is little hope for the
recovery of the deeper ones. In addition, these representations
γ1 are the least sparse ones, and so they are expected to be the
most challenging ones to recover. The projection alternative,
on the other hand, relies on the estimation of the deepest
γ̂L, which are very sparse. Once these are estimated, the
remaining ones are simply computed by propagating them to
the shallower layers. Following our analysis in the Section
III-C, if the support of γ̂L is estimated correctly, so will be
the support of the remaining representations γ̂i.

We now turn to deploy the 3 layer convolutional dictionaries
for real digits obtained previously. To this end we take 500
test digits from the MNIST dataset and project them on the
trained model, essentially running Algorithm 1 and obtaining

the representations γi. We then create the noisy measurements
as y = D(i)γi + v, where v is Gaussian noise with σ =
0.02. We then repeat both pursuit approaches to estimate the
underlying representations, obtaining the results reported in
Figure 6b.

Clearly, this represents a significantly more challenging
scenario for the layered approach, which recovers only a
small fraction of the correct support of the sparse vectors.
The projection algorithm, on the other hand, provides accurate
estimations with negligible mistakes in the estimated supports,
and very low `2 error. Note that the `2 error has little signif-
icance for the Layered approach, as this algorithm does not
manage to find the true supports. The reason for the significant
deterioration in the performance of the Layered algorithm is
that this method actually finds alternative representations γ̂1,
of the same sparsity, providing a lower fidelity term than
the projection counterpart for the first layer. However, these
estimates γ̂1 do not necessarily provide a signal in the model,
which causes further errors when estimating γ̂2.

B. Sparse Approximation

A straight forward application for unsupervised learned
model is that of approximation: how well can one approx-
imate or reconstruct a signal given only a few k non-zero
values from some representation? In this subsection, we study
the performance of the ML-CSC model for this task while
comparing with related methods, and we present the results
in Figure 7. The model is trained on 60K training examples,
and the M-term approximation is measured on the remaining
10K testing samples. All of the models are designed with 1K
hidden units (or atoms).

Given the close connection of the ML-CSC model to sparse
auto-encoders, we present the results obtained by approximat-
ing the signals with sparse autoencoders [21] and k-sparse
autoencoders [22]. In particular, the work in [21] trains sparse
auto-encoders by penalizing the KL divergence between the
activation distribution of the hidden neurons and that of a
binomial distribution with a certain target activation rate. As
such, the resulting activations are never truly sparse. For
this reason, since the M-term approximation is computed by
picking the highest entries in the hidden neurons and setting
the remaining ones to zero, this method exhibits a considerable
representation error.

K-sparse auto-encoders perform significantly better, though
they are sensitive to the number of non-zeros used during
training. Indeed, if the model is trained with 25 non-zeros
per sample, the model performs well for a similar range
of cardinalities. Despite this sensitivity on training, their
performance is remarkable considering the simplicity of the
pursuit involved: the reconstruction is done by computing
x̂ = Wγ̂k + b′, where γ̂k is a k-sparse activation (or feature)
obtained by hard thresholding as γ̂k = Hk

[
WTy + b

]
, and

where b and b′ are biases vectors. Note that while a convolu-
tional multi-layer version of this family of autoencoders was
proposed in [23], these constructions are trained in stacked
manner – i.e., training the first layer independently, then
training the second one to represent the features of the first

13

0 10 20 30 40 50 60 70 80 90 100

NNZ

0.05

0.1

0.15

0.2

0.25

0.3
R

el
at

iv
ed

R
ec

on
st

ru
ct

io
nd

E
rr

or

SparsedAutoEncoder
ML-CSCdyIncreasingdSparsity)
k-SparsedAEdy25-50-60)
Trainlets

0.05

0.13

1.36
0.35

0.01
0.006

Fig. 7: M-term approximation for MNIST digits, comparing
sparse autoencoders [21], k-sparse autoencoders [22], trainlets
(OSDL) [20], and the proposed ML-CSC for models with dif-
ferent filter sparsity levels. The relative number of parameters
is depicted in blue.

layer while introducing pooling operations, and so forth. In
this manner, each layer is trained to represent the (pooled)
features from the previous layer, but the entire architecture
cannot be directly employed for comparison in this problem.

Regarding the ML-CSC, we trained 6 different models by
enforcing 6 different levels of sparsity in the convolutional
filters (i.e., different values of the parameters ζi in Algorithm
3), with a fixed target sparsity of k = 10 non-zeros. The sparse
coding of the inner-most γ̂3 was done with the Iterative Hard
Thresholding algorithm, in order to guarantee an exact number
of non-zeros. The numbers pointing at the different models
indicate the relative amount of parameters in the model,
where 1 corresponds to 282 × 1K parameters required in a
standard autoencoder (this is also the number of parameters
in the sparse-autoencoders and k-sparse autoencoders, without
counting the biases). As one can see, the larger the number
of parameters, the lower the representation error the model
is able to provide. In particular, the ML-CSC yields slightly
better representation error than that of k-sparse autoencoders,
for a wide range of non-zero values (without the need to train
different models for each one) and with 1 and 2 orders of
magnitude less parameters.

Since the training of the ML-CSC model can also be
understood as a dictionary learning algorithm, we compare
here with the state-of-the-art method of [20]. For this case,
we trained 1K trainlet atoms with the OSDL algorithm. Note
that this comparison is interesting, as OSDL also provides
sparse atoms with reduced number of parameters. For the sake
of comparison, we employed an atom-sparsity that results in
13% of parameters relative to the total model size (just as one
of the trained ML-CSC models), and the sparse coding was
done also with the IHT algorithm. Notably, the performance of
this relatively sophisticated dictionary learning method, which

Method Test Error
Stacked Denoising Autoencoder (3 layers) [49] 1.28%
k-Sparse Autoencoder (1K units) [22] 1.35%
Shallow WTA Autoencoder (2K units) [23] 1.20%
Stacked WTA Autoencoder (2K units)[23] 1.11%
ML-CSC (1K units) - 2nd Layer Rep. 1.30%
ML-CSC (2K units) - 2nd&3rd Layer Rep. 1.15%

TABLE I: Unsupervised classification results on MNIST.

leverages the representation power of a cropped wavelets base
dictionary, is only slightly superior to the proposed ML-CSC.

C. Unsupervised Classification

Unsupervised trained models are usually employed as fea-
ture extractors, and a popular way to assess the quality of such
features is to train a linear classifier on them for a certain
classification task. While the intention of this paper is not to
provide a state-of-the-art unsupervised learning algorithm, we
simply intent to demonstrate that the learned model generalizes
to unseen examples, providing meaningful representations. To
this end, we train a model with 3 layers, each containing:
16 (5 × 5) atoms, 64 (5 × 5 × 16) atoms and 1024 atoms
of dimension 5 × 5 × 64 (stride of 2) on 60K training
samples from MNIST. Just as for the previous model, the
global sparse coding is performed with FISTA and a target
(average) sparsity of 25 non-zeros. Once trained, we compute
the representations γ̂i with an elastic net formulation and non-
negativity constraints, before fitting a simple linear classifier
on the obtained features. Employing an elastic-net formulation
(by including an `2 regularization parameter, in addition
to the `1 norm) results in slightly denser representations,
with improved classification performance. Similarly, the non-
negativity constraint significantly facilitates the classification
by linear classifiers. We compare our results with similar
methods under the same experimental setup, and we depict
the results in Table I, reporting the classification error on the
10K testing samples.

Recall that within the ML-CSC model, all features γi have
a very clear meaning: they provide a sparse representation
at a different layer and scale. We can leverage this multi-
layer decomposition in a very natural way within this un-
supervised classification framework. We detail the classifi-
cation performance achieved by our model in two different
scenarios: on the first one we employ the 1K-dimensional
features corresponding to the second layer of the ML-CSC
model, obtaining better performance than the equivalent k-
sparse autoencoder. In the second case, we add to the previous
features the 1K-dimensional features from the third layer,
resulting in a classification error of 1.15%, comparable to the
Stacked Winner Take All (WTA) autoencoder (with the same
number of neurons).

Lastly, it is worth mentioning that a stacked version of
convolutional WTA autoencoder [23] achieve a classification
error of 0.48, providing significantly better results. However,
note that this model is trained with a 2-stage process (training
the layers separately) involving significant pooling operations
between the features at different layers. More importantly,

14

the features computed by this model are 51,200-dimensional
(more than an order of magnitude larger than in the other
models) and thus cannot be directly compared to the re-
sults reporter by our method. In principle, similar stacked-
constructions that employ pooling could be built for our model
as well, and this remains as part of ongoing work.

VI. CONCLUSION

We have carefully revisited the ML-CSC model and ex-
plored the problem of projecting a signal onto it. In doing
so, we have provided new theoretical bounds for the solution
of this problem as well as stability results for practical algo-
rithms, both greedy and convex. The search for signals within
the model led us to propose a simple, yet effective, learning
formulation adapting the dictionaries across the different layers
to represent natural images. We demonstrated the proposed
approach on a number of practical applications, showing that
the ML-CSC can indeed provide significant expressiveness
with a very small number of model parameters.

Several question remain open: how should the model be
modified to incorporate pooling operations between the layers?
what consequences, both theoretical and practical, would this
have? How should one recast the learning problem in order
to address supervised and semi-supervised learning scenarios?
Lastly, we envisage that the analysis provided in this work will
empower the development of better practical and theoretical
tools not only for structured dictionary learning approaches,
but to the field of deep learning and machine learning in
general.

VII. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Research Council under European Unions
Seventh Framework Programme, ERC Grant agreement no.
320649. J. Sulam kindly thanks J. Turek for fruitful discus-
sions.

REFERENCES

[1] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From Sparse Solutions
of Systems of Equations to Sparse Modeling of Signals and Images,”
SIAM Review., vol. 51, pp. 34–81, Feb. 2009.

[2] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse
representation modeling,” IEEE Proceedings - Special Issue on Applica-
tions of Sparse Representation & Compressive Sensing, vol. 98, no. 6,
pp. 1045–1057, 2010.

[3] J. Sulam, B. Ophir, and M. Elad, “Image Denoising Through Multi-
Scale Learnt Dictionaries,” in IEEE International Conference on Image
Processing, pp. 808 – 812, 2014.

[4] Y. Romano, M. Protter, and M. Elad, “Single image interpolation via
adaptive nonlocal sparsity-based modeling,” IEEE Trans. on Image
Process., vol. 23, no. 7, pp. 3085–3098, 2014.

[5] J. Mairal, F. Bach, and G. Sapiro, “Non-local Sparse Models for Im-
age Restoration,” IEEE International Conference on Computer Vision.,
vol. 2, pp. 2272–2279, 2009.

[6] Z. Jiang, Z. Lin, and L. S. Davis, “Label consistent k-svd: Learning a
discriminative dictionary for recognition,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 35, no. 11, pp. 2651–2664,
2013.

[7] V. M. Patel, Y.-C. Chen, R. Chellappa, and P. J. Phillips, “Dictionaries
for image and video-based face recognition,” JOSA A, vol. 31, no. 5,
pp. 1090–1103, 2014.

[8] A. Shrivastava, V. M. Patel, and R. Chellappa, “Multiple kernel learning
for sparse representation-based classification,” IEEE Transactions on
Image Processing, vol. 23, no. 7, pp. 3013–3024, 2014.

[9] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.
Hubbard, and L. D. Jackel, “Handwritten digit recognition with a back-
propagation network,” in Advances in neural information processing
systems, pp. 396–404, 1990.

[10] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning
representations by back-propagating errors,” Cognitive modeling, vol. 5,
no. 3, p. 1, 1988.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[12] J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
IEEE transactions on pattern analysis and machine intelligence, vol. 35,
no. 8, pp. 1872–1886, 2013.

[13] A. B. Patel, T. Nguyen, and R. G. Baraniuk, “A probabilistic theory of
deep learning,” arXiv preprint arXiv:1504.00641, 2015.

[14] N. Cohen, O. Sharir, and A. Shashua, “On the expressive power of deep
learning: A tensor analysis,” in 29th Annual Conference on Learning
Theory (V. Feldman, A. Rakhlin, and O. Shamir, eds.), vol. 49 of
Proceedings of Machine Learning Research, (Columbia University, New
York, New York, USA), pp. 698–728, PMLR, 23–26 Jun 2016.

[15] K. Gregor and Y. LeCun, “Learning fast approximations of sparse cod-
ing,” in Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pp. 399–406, 2010.

[16] B. Xin, Y. Wang, W. Gao, D. Wipf, and B. Wang, “Maximal sparsity
with deep networks?,” in Advances in Neural Information Processing
Systems, pp. 4340–4348, 2016.

[17] V. Papyan, Y. Romano, and M. Elad, “Convolutional neural networks
analyzed via convolutional sparse coding,” The Journal of Machine
Learning Research, vol. 18, no. 1, pp. 2887–2938, 2017.

[18] L. Le Magoarou and R. Gribonval, “Chasing butterflies: In search of
efficient dictionaries,” in IEEE Int. Conf. Acoust. Speech, Signal Process,
Apr. 2015.

[19] O. Chabiron, F. Malgouyres, J. Tourneret, and N. Dobigeon, “Toward
Fast Transform Learning,” International Journal of Computer Vision,
pp. 1–28, 2015.

[20] J. Sulam, B. Ophir, M. Zibulevsky, and M. Elad, “Trainlets: Dictionary
learning in high dimensions,” IEEE Transactions on Signal Processing,
vol. 64, no. 12, pp. 3180–3193, 2016.

[21] A. Ng, “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no. 2011,
pp. 1–19, 2011.

[22] A. Makhzani and B. Frey, “K-sparse autoencoders,” arXiv preprint
arXiv:1312.5663, 2013.

[23] A. Makhzani and B. J. Frey, “Winner-take-all autoencoders,” in Ad-
vances in Neural Information Processing Systems, pp. 2791–2799, 2015.

[24] V. Papyan, J. Sulam, and M. Elad, “Working locally thinking globally:
Theoretical guarantees for convolutional sparse coding,” IEEE Transac-
tions on Signal Processing, vol. 65, no. 21, pp. 5687–5701, 2017.

[25] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun, “Pedestrian
detection with unsupervised multi-stage feature learning,” in Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on,
pp. 3626–3633, IEEE, 2013.

[26] K. Li, L. Gan, and C. Ling, “Convolutional compressed sensing using
deterministic sequences,” IEEE Transactions on Signal Processing,
vol. 61, no. 3, pp. 740–752, 2013.

[27] H. Zhang and V. M. Patel, “Convolutional sparse coding-based image
decomposition.,” in BMVC, 2016.

[28] H. Zhang and V. M. Patel, “Convolutional sparse and low-rank coding-
based image decomposition,” IEEE Transactions on Image Processing,
vol. 27, no. 5, pp. 2121–2133, 2018.

[29] V. Papyan, Y. Romano, J. Sulam, and M. Elad, “Convolutional dictionary
learning via local processing,” in The IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

[30] F. Heide, W. Heidrich, and G. Wetzstein, “Fast and flexible convolutional
sparse coding,” in Computer Vision and Pattern Recognition (CVPR),
2015 IEEE Conference on, pp. 5135–5143, IEEE, 2015.

[31] B. Choudhury, R. Swanson, F. Heide, G. Wetzstein, and W. Heidrich,
“Consensus convolutional sparse coding,” in Computer Vision (ICCV),
2017 IEEE International Conference on, pp. 4290–4298, IEEE, 2017.

[32] M. Henaff, K. Jarrett, K. Kavukcuoglu, and Y. LeCun, “Unsupervised
learning of sparse features for scalable audio classification.,” in ISMIR,
vol. 11, p. 2011, Citeseer, 2011.

[33] A. D. Szlam, K. Gregor, and Y. L. Cun, “Structured sparse coding
via lateral inhibition,” in Advances in Neural Information Processing
Systems, pp. 1116–1124, 2011.

15

[34] B. Wohlberg, “Efficient algorithms for convolutional sparse representa-
tions,” IEEE Transactions on Image Processing, vol. 25, pp. 301–315,
Jan. 2016.

[35] J. Liu, C. Garcia-Cardona, B. Wohlberg, and W. Yin, “Online convolu-
tional dictionary learning,” arXiv preprint arXiv:1709.00106, 2017.

[36] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolu-
tional networks,” in Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pp. 2528–2535, IEEE, 2010.

[37] A. Szlam, K. Kavukcuoglu, and Y. LeCun, “Convolutional matching
pursuit and dictionary training,” arXiv preprint arXiv:1010.0422, 2010.

[38] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu,
and Y. L. Cun, “Learning convolutional feature hierarchies for visual
recognition,” in Advances in neural information processing systems,
pp. 1090–1098, 2010.

[39] Y. He, K. Kavukcuoglu, Y. Wang, A. Szlam, and Y. Qi, “Unsupervised
feature learning by deep sparse coding,” in Proceedings of the 2014
SIAM International Conference on Data Mining, pp. 902–910, SIAM,
2014.

[40] E. J. Candes and T. Tao, “Decoding by linear programming,” Information
Theory, IEEE Transactions on, vol. 51, no. 12, pp. 4203–4215, 2005.

[41] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse
convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 806–814, 2015.

[42] T. Blumensath and M. E. Davies, “Iterative Thresholding for Sparse
Approximations,” Journal of Fourier Analysis and Applications, vol. 14,
pp. 629–654, Sept. 2008.

[43] L. Le Magoarou and R. Gribonval, “Flexible multilayer sparse approxi-
mations of matrices and applications,” IEEE Journal of Selected Topics
in Signal Processing, vol. 10, no. 4, pp. 688–700, 2016.

[44] R. Rubinstein, M. Zibulevsky, and M. Elad, “Double Sparsity : Learning
Sparse Dictionaries for Sparse Signal Approximation,” IEEE Trans.
Signal Process., vol. 58, no. 3, pp. 1553–1564, 2010.

[45] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[46] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM journal on imaging sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[47] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sens-
ing signal reconstruction,” IEEE Transactions on Information Theory,
vol. 55, no. 5, pp. 2230–2249, 2009.

[48] M. Elad, Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing. Springer Publishing
Company, Incorporated, 1st ed., 2010.

[49] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” Journal of Machine
Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

APPENDIX

A. Properties of the ML-CSC model

Lemma 1. Given the ML-CSC model described by the set
of convolutional dictionaries {Di}Li=1, with filters of spatial
dimensions ni and channels mi, any dictionary D(i) =
D1D2 . . .Di is a convolutional dictionary with mi local atoms
of dimension neff

i =
∑i
j=1 nj − (i − 1). In other words, the

ML-CSC model is a structured global convolutional model.

Proof. A convolutional dictionary is formally defined as the
concatenation of banded circulant matrices. Consider D1 =[
C

(1)
1 ,C

(1)
2 , . . . ,C

(1)
m1

]
, where each circulant C

(1)
i ∈ RN×N .

Likewise, one can express D2 =
[
C

(2)
1 ,C

(2)
2 , . . . ,C

(2)
m2

]
,

where C
(2)
i ∈ RNm1×N . Then,

D(2) = D1D2 =
[
D1C

(2)
1 ,D1C

(2)
2 , . . . ,D1C

(2)
m2

]
. (21)

Each term D1C
(2)
i is the product of a concatenation of banded

circulant matrices and a banded circulant matrix. Because the
atoms in each C

(2)
i have a stride of m1 (the number of filters

��
��

����
�� + �� − 1

��

���� �� ��
(�)

�(�)

Fig. 8: Illustration of a convolutional dictionary D1 multiplied
by one of the circulat matrices from D2, in this case C

(2)
1 .

in D1) each of these products is in itself a banded circulant
matrix. This is illustrated in Figure 8, where it becomes clear
that the first atom in C

(2)
1 (of length n2m1) linearly combines

atoms from the first n2 blocks of m1 filters in D1 (in this
case n2 = 2). These block are simply the unique set of filters
shifted at every position. The second column in C

(2)
1 will do

the same for the next set n2 blocks, starting from the second
one, etc.

From the above discussion, D1C
(2)
1 results in a banded

circulant matrix of dimension N ×N . In particular, the band
of this matrix is given by the dimension of the filters in the
first dictionary (n1) plus the number of blocks combined by
C

(2)
1 minus one. In other words, the effective dimension of

the filters in D1C
(2)
1 is given by neff

2 = n2 + n1 − 1.
The effective dictionary D(2) = D1D2 is simply a concate-

nation of m2 such banded circulant matrices. In other words,
D(2) is a convolutional dictionary with filters of dimension
neff
2 . The same analysis can be done for the effective dictionary

at every layer, D(i), resulting in an effective dimension of
neff
i = ni + neff

i−1 − 1, and so neff
L =

∑L
i=1 ni − (L− 1).

Finally, note that D(i) has Nmi columns, and thus there
will be mi local filters in the effective CSC model.

B. Stability result for the PMλ
problem

Theorem 4. Stability of the solution to the PMλ
problem:

Suppose x(γi) ∈Mλ is observed through y = x + v, where
v is a bounded noise vector, ‖v‖2 ≤ E0, and ‖γi‖s0,∞ = λi <
1
2

(
1 + 1

µ(D(i))

)
, for 1 ≤ i ≤ L. Consider the set {γ̂i}Li=1 to

be the solution of the PMλ
problem. Then,

‖γi − γ̂i‖22 ≤
4E20

1− (2‖γi‖s0,∞ − 1)µ(D(i))
. (22)

Proof. Denote the solution to the PMλ
problem by x̂; i.e.,

x̂ = D(i)γ̂i. Given that the original signal x satisfies ‖y −
x‖2 ≤ E0, the solution to the PMλ

problem, x̂ must satisfy

‖y − x̂‖2 ≤ ‖y − x‖2 ≤ E0, (23)

as this is the signal which provides the shortest `2 (data-
fidelity) distance from y. Note that because x̂(γi) ∈Mλ, we
can have that x̂ = D(i)γ̂i, ∀ 1 ≤ i ≤ L. Recalling Lemma 1,
the product D1D2 . . .Di is a convolutional dictionary. In addi-
tion, we have required that ‖γ̂i‖s0,∞ ≤ λi < 1

2

(
1 + 1

µ(D(i))

)
.

16

Therefore, from the same arguments presented in [24], it
follows that

‖γi − γ̂i‖22 ≤
4E20

1− (2‖γi‖s0,∞ − 1)µ(D(i))
. (24)

Theorem 9. (Another stability of the solution to the PMλ

problem):
Suppose x(γi) ∈ Mλ is observed through y = x + v,
where v is a bounded noise vector, ‖v‖2 ≤ E0, and 10

‖γi‖s0,∞ = λi <
1
2

(
1 + 1

µ(Di)

)
, for 1 ≤ i ≤ L. Consider

the set {γ̂i}Li=1 to be the solution of the PMλ
problem. If

‖γL‖s0,∞ < 1
2

(
1 + 1

µ(D(L))

)
then

‖γi − γ̂i‖22 ≤
4E20

1− (2‖γL‖s0,∞ − 1)µ(D(L))

L∏
j=i+1

[
1 + (2‖γj‖s0,∞ − 1)µ(Dj)

]
. (25)

Proof. Given that the original signal x satisfies ‖y−x‖2 ≤ E0,
the solution to the PMλ

problem, x̂ must satisfy

‖y − x̂‖2 ≤ ‖y − x‖2 ≤ E0, (26)

as this is the signal which provides a lowest `2 (data-fidelity)
term. In addition, ‖γ̂L‖s0,∞ = λL <

1
2 (1+ 1

µ(D(L))
). Therefore,

from the same arguments presented in [24], it follows that

‖γL − γ̂L‖22 ≤
4E20

1− (2‖γL‖s0,∞ − 1)µ(D(L))
= E2L. (27)

Because the solution x̂({γ̂i}) ∈ Mλ, then γ̂L−1 = DLγ̂L.
Therefore

‖γL−1− γ̂L−1‖22 = ‖DL(γL− γ̂L)‖22 ≤ (1+δ2k)‖γL− γ̂L‖22,
(28)

where δ2k is the S-RIP of DL with constant 2k = 2‖γL‖s0,∞.
This follows from the triangle inequality of the `0,∞ norm
and the fact that, because γ̂L is a solution to the PMλ

problem, ‖γ̂L‖s0,∞ ≤ λL = ‖γL‖s0,∞. The S-RIP can in
turn be bounded with the mutual coherence [24] as δk ≤
(k − 1)µ(DL), from which one obtains

‖γL−1 − γ̂L−1‖22 ≤ E2L (1 + (2‖γL‖s0,∞ − 1)µ(DL)). (29)

From similar arguments, extending this to an arbitrary ith

layer,

‖γi − γ̂i‖22 ≤ E2L
L∏

j=i+1

(1 + (2‖γj‖s0,∞ − 1)µ(Dj)). (30)

For the sake of simplicity, one can relax the above bounds
further obtaining that, subject to the assumptions in Theorem
4,

‖γi − γ̂i‖22 ≤ E2L 2(L−i). (31)

10The assumption that ‖γi‖s0,∞ = λi can be relaxed to ‖γi‖s0,∞ ≤ λi,
with slight modifications of the result.

This follows simply by employing the fact that ‖γi‖s0,∞ <
1
2

(
1 + 1

µ(Di)

)
.

C. Local stability of the S-RIP

Lemma 2. Local one-sided near isometry:
If D is a convolutional dictionary satisfying the Stripe-RIP
condition with constant δk, then

‖Dγ‖2,p2,∞ ≤ (1 + δk) ‖γ‖2,s2,∞ (32)

Proof. Consider the patch-extraction operator Pi from the
signal x = Dγ, and Si the operator that extracts the cor-
responding stripe from γ such that Pix = ΩSiγ, where
Ω is a local stripe dictionary [24]. Denote the ith stripe by
si = Siγ. Furthermore, denote by S̄i the operator that extracts
the support of si from γ. Clearly, x = DS̄Ti S̄iγ. Note that
‖Pi‖2 = ‖Si‖2 = 1. Then,

‖Dγ‖p2,∞ = max
i
‖PiDS̄Ti S̄iγ‖2 (33)

≤ max
i
‖Pi‖2 ‖DS̄Ti S̄iγ‖2 (34)

≤ max
i
‖DS̄Ti ‖2‖S̄iγ‖2 (35)

≤ max
i
‖DS̄Ti ‖2 max

j
‖S̄jγ‖2. (36)

Note that

max
j
‖S̄jγ‖2 = max

j
‖Sjγ‖2 = ‖γ‖s2,∞, (37)

as the non-zero entries in S̄jγ and Sjγ are the same. On the
other hand, denoting by λmax(·) the maximal eigenvalue of
the matrix in its argument, ‖DS̄Ti ‖2 =

√
λmax

(
S̄iDTDS̄Ti

)
,

and if T = Supp(γ),

λmax
(
S̄iD

TDS̄Ti
)
≤ λmax

(
DT
TDT

)
, (38)

because11 S̄iD
TDS̄Ti is a principal sub-matrix of DT

TDT .
Thus, also ‖DS̄Ti ‖2 ≤ ‖DT ‖2.

The Stripe-RIP condition, as in Equation (11), provides a
bound on the square of the singular values of DT . Indeed,
‖DT ‖22 ≤ (1 + δk), for every T : ‖T ‖s0,∞ = k. Including
these in the above one obtains the desired claim:

‖Dγ‖p2,∞ ≤ max
i
‖DS̄Ti ‖2 max

j
‖S̄jγ‖2 ≤

√
1 + δk‖γ‖s2,∞.

(39)

D. Recovery guarantees for pursuit algorithms

1) Convex relaxation case:

Theorem 6. Stable recovery of the Multi-Layer Pursuit Algo-
rithm in the convex relaxation case:
Suppose a signal x(γi) ∈ Mλ is contaminated with locally-
bounded noise v, resulting in y = x + v, ‖v‖p2,∞ ≤ ε0.
Assume that all representations γi satisfy the N.V.S. property

11The inequality in (38) can be shown by considering the equivalent
expression λmax

(
SiD

T
TDT S

T
i

)
, where the matrix DT

TDT is real and
symmetric, and the matrix Si is semi-orthogonal; i.e. SiSTi = I. Thus, from
Poincaré Separation Theorem, λmin

(
DT
TDT

)
≤ λ

(
SiD

T
TDτSTi

)
≤

λmax
(
DT
TDT

)
.

17

for the respective dictionaries Di, and that ‖γi‖s0,∞ = λi <
1
2

(
1 + 1

µ(Di)

)
, for 1 ≤ i ≤ L and ‖γL‖s0,∞ = λL ≤

1
3

(
1 + 1

µ(D(L))

)
. Consider solving the Pursuit stage in Al-

gorithm 1 as

γ̂L = arg min
γ
‖y + D(L)γ‖|22 + ζL‖γ‖1, (40)

for ζL = 4ε0, and set γ̂i−1 = Diγ̂i, i = L, . . . , 1. Then, for
every 1 ≤ i ≤ L layer,

1) Supp(γ̂i) ⊆ Supp(γi),

2) ‖γ̂i − γi‖p2,∞ ≤ εL
L∏

j=i+1

√
3cj
2

,

where εL = 15
2 ε0

√
‖γj‖p0,∞ is the error at the last layer, and

cj is a coefficient that depends on the ratio between the local
dimensions of the layers, cj =

⌈
2nj−1−1

nj

⌉
.

Proof. Denote ∆i = γ̂i − γi. From [24] (Theorem 19), the
solution γ̂L will satisfy:

i) S(γ̂L) ⊆ S(γL); and
ii) ‖∆L‖∞ ≤ 15

2 ε0.
As shown in [17], given the `∞ bound of the representation

error, we can bound its `2,∞ norm as well, obtaining

‖∆L‖p2,∞ ≤ ‖∆L‖∞
√
‖∆L‖p0,∞ ≤

15

2
ε0

√
‖γL‖p0,∞, (41)

because, since S(γ̂L) ⊂ S(γL), ‖∆L‖s0,∞ ≤ ‖γL‖s0,∞.

Define εL = 15
2 ε0

√
‖γL‖p0,∞.

Recall that the N.V.S. property states that the entries in γ
will no cause the support of the atoms in D cancel each other;
i.e., ‖Dγ‖0 = ‖DT ‖0∞ (Definition 5). In other words, this
provides a bound on the cardinality of the vector resulting from
the multiplication of D with any sparse vector with support T .
Concretely, if γ satisfies the N.V.S., then ‖Dγ‖0 ≥ ‖Dγ̂‖0.

Consider now the estimate at the L − 1 layer, obtained as
γ̂L−1 = DLγ̂L. Because γL satisfies the N.V.S. property, and
S(γ̂L) ⊆ S(γL), then ‖γ̂L−1‖0 ≤ ‖γL−1‖0, and more so
S(γ̂L−1) ⊆ S(γL−1).

On the other hand, recalling Lemma 2 and denoting by δλL

the Stripe-RIP constant of the DL dictionary, and because
‖∆L‖s0,∞ ≤ ‖γL‖s0,∞ ≤ λL,

‖∆L−1‖2,p2,∞ = ‖DL∆L‖2,p2,∞ ≤ (1 + δλL
)‖∆L‖2,s2,∞. (42)

Notice that by employing the above Lemma, we have
bounded the patch-wise `2,∞ norm of ∆L−1 in terms of
the stripe-wise `2,∞ of ∆L. Recalling the derivation from
[17] (Section 7.1), at each ith layer, a stripe includes up to
(2ni−1 − 1)/ni patches. Define ci =

⌈
2ni−1−1

ni

⌉
. From this,

one can bound the square of the `2 norm of a stripe with the
norm of the maximal patch within it - this is true for every
stripe, and in particular for the stripe with the maximal norm.
This implies that ‖∆L‖2,s2,∞ ≤ cL‖∆L‖2,p2,∞. Then,

‖∆L−1‖2,p2,∞ ≤ (1 + δk)‖∆L‖2,s2,∞ ≤ (1 + δλL
)cL‖∆L‖2,p2,∞.

(43)
Employing the result in Eq. (41),

‖∆L−1‖2,p2,∞ ≤ (1 + δk)cL‖∆L‖2,p2,∞ ≤ (1 + δk) cL ε
2
L. (44)

We can further bound the Stripe-RIP constant by δk ≤ (k −
1)µ(D) [24], obtaining

‖∆L−1‖2,p2,∞ ≤ (1 + (‖γL‖s0,∞ − 1)µ(DL)) ε2L cL. (45)

Iterating this analysis for the remaining layers yields

‖γ̂i−γi‖2,p2,∞ ≤ ε2L
L∏

j=i+1

cj (1+(‖γj‖s0,∞−1)µ(Dj)). (46)

This general result can be relaxed for the sake of simplicity.
Indeed, considering that ‖γi‖s0,∞ < 1

2

(
1 + 1

µ(Di)

)
, for 1 ≤

i ≤ L,
1 + (‖γj‖s0,∞ − 1)µ(Dj) < 3/2, (47)

and so

‖γ̂i − γi‖p2,∞ ≤ εL
L∏

j=i+1

√
3cj
2

(48)

2) Greedy case:

Theorem 7. Stable recovery of the Multi-Layer Pursuit Algo-
rithm in the greedy case:
Suppose a signal x(γi) ∈ Mλ is contaminated with energy-
bounded noise v, such that y = x + v, ‖y − x‖2 ≤ E0,
and ε0 = ‖v‖P2,∞. Assume that all representations γi satisfy
the N.V.S. property for the respective dictionaries Di, with
‖γi‖s0,∞ = λi <

1
2

(
1 + 1

µ(Di)

)
, for 1 ≤ i ≤ L, and

‖γL‖s0,∞ <
1

2

(
1 +

1

µ(D(L))

)
− 1

µ(D(L))
· ε0
|γminL |

, (49)

where γminL is the minimal entry in the support of γL.
Consider approximating the solution to the Pursuit step in
Algorithm 1 by running Orthogonal Matching Pursuit for
‖γL‖0 iterations. Then

1) Supp(γ̂i) ⊆ Supp(γi),
2) ‖γ̂i − γi‖22 ≤

E20
1−µ(D(L))(‖γL‖s0,∞−1)

(
3
2

)L−i
.

Proof. Given that γL satisfies Equation (49), from [24] (The-
orem 17) one obtains that

‖γ̂L − γL‖22 ≤
E20

1− µ(D(L))(‖γL‖s0,∞ − 1)
. (50)

Moreover, if the OMP algorithm is run for ‖γL‖0 iterations,
then all the non-zero entries are recovered, i.e., Supp(γ̂L) =
Supp(γL). Therefore, ‖γ̂L − γL‖s0,∞ ≤ ‖γL‖s0,∞ = λL.

Now, let γ̂L−1 = DLγ̂L. Regarding the support of
γ̂L−1, because γL satisfies the N.V.S. property, ‖γ̂L−1‖0 ≤
‖γL−1‖0. More so, all entries in γ̂L−1 will correspond to non-
zero entries in γL−1. In other words,

Supp(γ̂L−1) ⊆ Supp(γL−1). (51)

Consider now the error at the L−1 layer, ‖γL−1− γ̂L−1‖22.
Since ‖γL−1 − γ̂L−1‖s0,∞ ≤ ‖γL−1‖s0,∞, we can bound this
error in terms of the Stripe RIP:

‖γL−1−γ̂L−1‖22 = ‖DL(γL−γ̂L)‖22 ≤ (1+δλL
)‖γL−γ̂L‖22,

(52)

18

We can further bound the SRIP constant as δk ≤ (k−1)µ(D),
from which one obtains

‖γ̂L−1 − γL−1‖22 ≤
E20 (1 + (‖γL‖s0,∞ − 1)µ(DL))

1− µ(D(L))(‖γL‖s0,∞ − 1)
. (53)

From similar arguments, one obtains analogous claims for any
ith layer; i.e.,

‖γ̂i − γi‖22 ≤
E20

1− µ(D(L))(‖γL‖s0,∞ − 1)

L∏
j=i+1

(1 + (‖γj‖s0,∞ − 1)µ(Dj)). (54)

This bound can be further relaxed for the sake of simplicity.
Because ‖γi‖s0,∞ < 1

2

(
1 + 1

µ(Di)

)
, for 1 ≤ i ≤ L, then

(1 + (‖γL‖s0,∞ − 1)µ(DL)) < 3/2, and so

‖γ̂i − γi‖22 ≤
E20

1− µ(D(L))(‖γL‖s0,∞ − 1)

(
3

2

)L−i
. (55)

E. Discussion on Theorem 6 and Theorem 7

In this section, we elaborate and comment further on the
conditions impossed in the above theorems, regarding both the
allowed sparsity and the N.V.S. property. While the conditions
of Theorems 6 and 7 might appear restrictive, the set of
representations and dictionaries satisfying these conditions are
not empty. An example of such constructions can be found in
reference [17], where multi-layer overcomplete convolutional
dictionaries are constructed by employing shifted versions of
a discrete Meyer wavelet. This way, the resulting dictionaries
have mutual coherence values in the order of 10−3 and 10−4,
which provide ample room for sampling sparse representations
satisfying the theorems assumptions.

Regarding the NVS assumption, we stress that this is not as
prohibitive as it might seem, and it is only needed because our
theorems consider a deterministic worst-case scenario. Let us
exemplify this better: consider a representation γ2 with 5 non-
zero coefficients, and a dictionary D2 composed of atoms with
3 non-zeros each, uniformly distributed. If the entries in all
non-zero coefficients are sampled from a normal distribution,
the resulting inner representations γ1 = D2γ2 will have
cardinalities in the range [3, 15]. If the mutual-coherence of
D1 is such that the allowed maximal number of non-zeros per
stripe (i.e., the `0,∞ norm) is, say, 7 (an assumption that is
satisfied by the cases explained above), then this implies that
the only signals that are allowed to exist are those composed
of atoms with some overlaps of their support. The NVS
assumption only implies that whenever these overlaps occur,
they will not cancel each other. This, in fact, occurs with
probability 1 if the non-zero coefficients are sampled from
a Gaussian distribution.

We further depict this example in Figure 9. Note how the
number of non-zeros in γ1 is not allowed to be as large as
possible (i.e., it is constrained to be below 7 by means of
overlapping supports). The NVS property simply assumes that

the coefficients multiplying d2 and d3 will not be such that
the entry marked with red dotted line is zero.

Fig. 9: Illustration of the propagation of supports accross
representations. See comments in the text.

F. Projecting General Signals

The method depicted in Algorithm 2 can be shown to be a
greedy approximation to an optimal algorithm, under certain
assumptions, and we now provide a sketch of the proof of this
claim. Consider the first iteration of the above method, where
k = 1. If OMP succeeds in providing the closest γ̂L subject
to the respective constraint, i.e. providing the solution to

min
γ
‖y −D(L)γ‖22 s.t. ‖γ‖s0,∞ ≤ 1, (56)

and if ‖γ̂i‖s0,∞ ≤ λi for every i, then this solution effectively
provides the closest signal to y in the model defined by
λ = [λ1, . . . , 1]. If λL = 1, we are done. Otherwise, if λL > 1,
we might increase the number of non-zeros in γ̂L, while
decreasing the `2 distance to y. This is done by continuing
to the next iteration: running again OMP with the constraint
‖γ̂L‖s0,∞ ≤ 2, and obtaining the respective γ̂i.

At any kth iteration, due to the nature of the OMP algo-
rithm, Supp(γ̂k−1L) ⊆ Supp(γ̂kL). If all estimates γ̂i satisfy
the N.V.S. property for the respective dictionaries Di, then
the sparsity of each γ̂i is non-decreasing through the iterations,
‖γ̂k−1i ‖s0,∞ ≤ ‖γ̂ki ‖s0,∞. For this reason, if an estimate γ̂kL is
obtained such that any of the corresponding `0,∞ constraints is
violated, then necessarily one constraint will be violated at the
next (or any future) iteration. Therefore, the algorithm outputs
the signal corresponding to the iteration before one of the
constraints was violated. A complete optimal (combinatorial)
algorithm would need to retrace its steps and replace the last
non-zero added to γ̂kL by the second best option, and then
evaluate if all constraints are met for this selection of the
support. This process should be iterated, and Algorithm 2
provides a greedy approximation to this idea.

G. Sparse Dictionaries

Lemma 3. Dictionary Sparsity Condition
Consider the ML-CSC model Mλ described by the the
dictionaries {D1}Li=1 and the layer-wise `0,∞-sparsity levels

19

λ1, λ2, . . . , λL. Given γL : ‖γL‖s0,∞ ≤ λL and constants

ci =
⌈
2ni−1−1

ni

⌉
, the signal x = D(L)γL ∈Mλ if

‖Di‖0 ≤
λi−1
λici

, ∀ 1 < i ≤ L. (57)

Proof. This lemma can be proven simply by considering
that the patch-wise `0,∞ of the representation γL−1 can
be bounded by ‖γL−1‖p0,∞ ≤ ‖DL‖0‖γL‖s0,∞. Thus, if
‖DL‖0 ≤ λL−1/λL and ‖γL‖s0,∞ ≤ λL, then ‖γL−1‖p0,∞ ≤
λL−1. Recalling the argument in [17] (Section 7.1), a stripe
from the ith layer includes up to ci = d(2ni−1 − 1)/nie
patches. Therefore, ‖γL−1‖s0,∞ ≤ cL‖γL−1‖

p
0,∞, and so γL−1

will satisfy its corresponding sparsity constraint if ‖DL‖0 ≤
λL−1/(cLλL). Iterating this argument for the remaining layers
proves the above lemma.

