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Abstract—In future full-duplex communications, the cancella-
tion of self-interference (SI) arising from hardware non-idealities
will play an important role in the design of mobile-scale devices.
To this end, we introduce an optimal digital SI cancellation
solution for shared-antenna-based direct-conversion transceivers.
To establish that the underlying widely linear signal model is
not adequate for strong transmit signals, the impact of various
circuit imperfections, including power amplifier (PA) distortion,
frequency-dependent I/Q imbalance, quantization noise and ther-
mal noise, on the performance of the conventional augmented
least mean square (LMS) based SI canceller, is analyzed. In
order to achieve a sufficient signal-to-interference-plus-noise ratio
(SINR) when the nonlinear SI components are not negligible, we
propose an augmented nonlinear LMS based SI canceller for a
joint cancellation of both the linear and nonlinear SI components
by virtue of a widely nonlinear model fit. A rigorous mean
and mean square performance evaluation is conducted to justify
the performance advantages of the proposed scheme over the
conventional augmented LMS solution. Simulations on orthogo-
nal frequency division multiplexing (OFDM)-based wireless local
area network (WLAN) standard compliant waveforms support
the analysis.

Index Terms—Full-duplex communication, I/Q imbalance, self-
interference, augmented LMS, augmented nonlinear LMS, mean
and mean square convergence analysis

I. INTRODUCTION

THE full-duplex (FD) technology aims at doubling the ra-
dio link data rate through simultaneous and bidirectional

communication at the same center frequency, and is widely
considered as a driving-force behind more spectrally efficient
wireless networks and a potential candidate to fulfill the ambi-
tion of 5G to reach a 1000-fold gain in capacity [1], [2]. One
of the major challenges in FD communications is the so-called
self-interference (SI) problem, that is, a strong transmit signal
coupled into the receiver (Rx) path. Since the transmitter (Tx)
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and Rx chains are closely linked together in each transceiver
node of FD communication systems, the SI power leaked into
and reflected from the Tx chain could be even 50 dB to 110 dB
higher than the Rx sensitivity level in either wireless local area
network (WLAN) or cellular scenarios [3]–[5]. The design of
FD transceivers has long been considered impossible for prac-
tical realizations and implementations, and it is only recently
that their feasibility was experimentally demonstrated using
the wireless open-access research platform (WARP) with WiFi
waveforms [6]–[11]. Based on this promising result, it was
recently suggested that a preferable FD network should consist
of backhaul nodes operating in the FD mode and access nodes
remaining in the legacy half-duplex (HD) mode [12]. However,
recent studies have showed that operating access nodes in
the FD mode significantly leverages the gain in degrees of
freedom in either ergodic or fast-fading channel [13], and an
imperative is to design a hardware structure suitable for mass-
production. Owing to the physical constraints, such as small-
size, low-cost and low-energy-consumption, direct-conversion
transceivers are widely applied in HD wireless systems, and
are also suitable for far-end device implementation in the
context of FD communication systems.

In order to provide efficient SI cancellation, there exist
numerous types of hardware solutions. According to the
antenna placement strategies, these can be classified into
separate-antennas-based [14], [15] and shared-antenna-based
schemes [9], [10]. When each transceiver node is equipped
with more than two separate antennas, SI attenuation can
be achieved by improving electromagnetic insulation between
the antennas. Owing to the inherent closed-loop within FD
systems, the knowledge of the SI channel matrix can be
obtained by either placing extra transmit antennas or allocating
specific spatial resources [14], [15]. On the other hand, the
shared-antenna-based design aims to separate the transmit
and receive signals by sharing a common antenna [9], [10],
the key component of which is a three port routing device,
known as a circulator, used to isolate the incoming and
outgoing signals. Requiring only off-the-shelf radio-frequency
(RF) components, the shared-antenna structure stands out as
a cost-effective and energy-saving choice for the design of
mobile-scale FD transceivers. Demonstrations on the WARP
have shown that in this way even 110 dB and 103 dB SI
cancellation can be achieved in SISO [9] and MIMO systems
respectively [10].

In a shared-antenna structure, it is necessary to consider
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further non-trivial analog and digital SI cancellation, due to
the leakage of the circulator, single-path reflection from the
antenna, and multi-path interference from the surrounding
environment [16]. The purpose of analog SI cancellation is
to prevent the saturation of the SI power level within the Rx
low-noise amplifier (LNA), and meanwhile, to ensure that the
difference between the power of residual SI and the received
signal of interest does not exceed the dynamic range of an
analog-to-digital converter (ADC) [17]. Subsequently, further
digital cancellation is performed to deal with the residual SI
components, as well as other RF circuit non-idealities, mainly
including nonlinear distortion, I/Q imbalance and phase noise.
The nonlinearity is largely caused by the power amplifier (PA),
while I/Q imbalance and phase noise are mainly induced by the
imperfect local oscillator (LO). The impact of PA nonlinear
distortion on FD transceivers has been investigated in [18],
[19], while the effect of phase noise was analyzed in [20], [21].
Since the I/Q imbalance is essentially reflected in the mismatch
between in-phase and quadrature components of the complex-
valued I/Q signal, it is also reflected in an image interference
associated with the original signal [22]–[25].

The impact of the image interference caused by Tx I/Q
imbalance on the SI cancellation has been studied in [26],
indicating that it heavily limits the receiver path signal-to-
interference-plus-noise ratio (SINR). However, due to size
constraints of FD transceivers, the Rx and Tx are required
to share a common imperfect LO, therefore, a more accurate
analysis of image interference on SI cancellation should be
performed by a joint consideration of both Tx and Rx I/Q
imbalance. Motivated by this finding, a widely linear pro-
cessing framework was developed in [27] to jointly suppress
both the original transmit SI signal and its complex conjugate,
i.e., the image interference, which arises due to the frequency-
dependent I/Q imbalance in both the Tx and Rx. The cancel-
lation parameters were subsequently estimated in the widely
linear least squares sense. Although the model analysis in
[27] has illustrated that under certain circumstances, e.g., for
large transmit powers, the PA within the FD transceiver is
likely to be operating close to or within its saturation re-
gion, consequently introducing third order nonlinear distortion,
for mathematical simplicity, the higher order SI components
have not been considered by the block-based SI canceller. A
more general arbitrary nonlinear order PA and a simplified
frequency-independent I/Q modulator were considered in [28],
and the corresponding nonlinear SI cancellation was addressed
by a model-fit widely nonlinear least squares approach.

By exploiting the advantages of adaptive estimation al-
gorithms over block-based least squares ones, such as their
lower computational complexities and faster adaptation for
potential time-varying channels, the augmented (widely linear)
least mean square (LMS) adaptive filtering algorithm [29]–[31]
has been employed in a DSP-assisted analog SI cancellation
process, and its theoretical performance in the presence of
Tx and Rx IQ imbalance has been evaluated in [32]. For
simplicity, the I/Q imbalance within transmitters and receivers
were also considered to be frequency-independent in [32].
This is, however, not the case in wideband scenarios, since
their frequency selectivity has been extensively reported and

justified in [23], [24]. Furthermore, although it has been
illustrated by simulations that due to the undermodeling prob-
lem, the augmented LMS yields suboptimal SI cancellation
results in the presence of PA nonlinearity, while a theoretical
understanding of this suboptimality and ways of its mitigation
are still lacking.

Therefore, in this paper, we first conduct a comprehensive
mean and mean square performance analysis on the augmented
LMS based SI canceller for wideband FD transceivers in the
presence of both the PA nonlinear distortion and frequency-
dependent image interference, to theoretically quantify its bias
and variance increase, in the steady-state stage. The proposed
analysis consequently facilitates a physical verification on how
the augmented LMS SI canceller fails to achieve the required
signal-to-noise ratio (SNR) when the transmit power is high
enough. Next, in order to achieve a sufficient amount of
SINR when the nonlinear SI components are not negligible,
an augmented nonlinear LMS, whose underlying estimation
framework generally takes into account both the nonlinear SI
component and its associated image interference, is proposed
for unbiased nonlinear SI cancellation, and a theoretical perfor-
mance evaluation is conducted to demonstrate its performance
advantages over the conventional augmented LMS. It is impor-
tant to note that such further theoretical performance analysis
is not an incremental step from the conventional augmented
LMS, mainly due to the non-Gaussian nature of the higher
order SI components in wideband scenarios. From the statisti-
cal perspective, this analysis also provides physical insights to
the evaluation of the theoretical performance bounds on those
block-based SI cancellers proposed in [27], [28]. Moreover,
to facilitate the use of the proposed augmented nonlinear
LMS based SI canceller in practical applications, a data pre-
whitening scheme is employed to speed up its convergence.
Simulations on orthogonal frequency division multiplexing
(OFDM)-based WLAN standard compliant waveforms support
the analysis.

Notations: Lowercase letters are used to denote scalars, a,
boldface letters for column vectors, a, and boldface uppercase
letters for matrices, A. The symbols 0N and 1N denote
respectively an N × 1 zero and unity vector. An N × N
identity matrix is denoted by IN . The superscripts (·)∗, (·)T ,
(·)H and (·)−1 denote respectively the complex conjugation,
transpose, Hermitian transpose and matrix inversion operation.
The operator Tr[·] represents the trace of a matrix, while the
operators ⊗, ‖·‖ respectively denote the Kronecker product
and Euclidean norm. The statistical expectation operator is
denoted by E[·], matrix determinant by det[·], while the
operators <[·] and =[·] extract respectively the real and imag-
inary part of a complex variable and j =

√
−1. Matrix

vectorization is designated by vec{·}, which returns a column
vector transformed by stacking the successive columns of
matrix, and its inverse operation, i.e., restoring the matrix
from the its vectorized form, is denoted by vec−1{·}. The
extraction of matrix diagonal elements into a vector is denoted
by diag{·}. The operator λmax[·] returns the largest positive
eigenvalue of a matrix.
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Fig. 1. The architecture of a shared-antenna FD transceiver.

II. FULL-DUPLEX TRANSCEIVER AND ITS WIDELY
LINEAR BASEBAND EQUIVALENT MODEL

The structure of a typical shared-antenna FD direct-
conversion transceiver is given in Fig. 1, and this structure
is widely adopted in modern wireless transceivers, due to its
simplicity [33]. In such an architecture, the leakage of the
circulator, the single-path reflection from the antenna, and the
multi-path interference from surrounding environment intro-
duce plenty of residual self-interference (SI), which is firstly
mitigated by the RF cancellation module and then suppressed
by the digital baseband SI canceller [19], [27]. By considering
the fact that low-cost RF components are preferable for the
built-up of mobile transceivers, a precise baseband-equivalent
system model that incorporates their prominent hardware non-
idealities, such as Tx and Rx I/Q imbalance, PA distortion,
ADC quantization noise and thermal noise, is a prerequisite
for the digital SI cancellation control. This in fact yields a
widely linear relation, which at a time instant n during the
digital cancellation process, and between the observed signal
d(n) at the input of the canceller and its corresponding SI
waveform x(n), has the form [27]

d(n) = xT (n)ho + xH(n)go + u(n) (1)

where x(n) = [x(n), x(n− 1), . . . , x(n−M + 1)]T is an SI
vector of length M and is perfectly known by the receiver. The
end-to-end channel impulse responses ho = [ho

1, h
o
2, . . . , h

o
M ]T

and go = [go
1, g

o
2, . . . , g

o
M ]T are determined by frequency-

dependent I/Q imbalance in both the transmitter and receiver,
PA memory, and residual of analog cancellation. The com-
posite noise term u(n) represents the sum of interference
components, including PA nonlinearity, thermal noise and
quantization noise from an ADC, and is given by [27]

u(n) = xTIMD(n)h
o
IMD + xHIMD(n)g

o
IMD + v(n) + q(n) (2)

where xIMD(n) = [xIMD(n), xIMD(n − 1), . . . , xIMD(n −
N +1)]T and xIMD(n) represents third-order intermodulation
(IMD) SI introduced by PA distortion, given by [27]

xIMD(n) = k
3/2
TIQ|x(n)|

2
x(n) (3)

The filter coefficients ho
IMD = [ho

IMD,1, h
o
IMD,2, . . . , h

o
IMD,N ]T

and go
IMD = [go

IMD,1, g
o
IMD,2, . . . , g

o
IMD,N ]T , where N <

M , respectively represent the end-to-end channel impulse

responses of the IMD SI component xIMD(n) and its com-
plex conjugate xIMD

∗(n). In (2), the interference term v(n)
represents the thermal noise during the digital SI cancellation
process, which is assumed to be a zero-mean complex-valued
additive white Gaussian noise (AWGN), and its variance σ2

v

is determined by [19], [27]

σ2
v=

kBBkLNAkRIQpsen
SNRreq

(4)

The quantization noise q(n) in (2) is assumed to be another
zero-mean AWGN process, whose variance σ2

q is computed as
[34]

σ2
q=

pADC

106.02β+4.76−PAPR/10
(5)

Physical meanings of other unmentioned parameters used from
(3) to (5) are provided in Table I.

From (1), it is clear that in a feasible FD transceiver,
the baseband signal before digital SI cancellation d(n) is
composed of various interference components, including SI
x(n), IMD SI xIMD(n), thermal noise v(n) and their image
counterparts, as well as quantization noise q(n). In order to
ascertain which components can be counted as primary inter-
ference under certain circumstances, simulations were carried
out to illustrate their power relations within FD transceivers.
According to the suggestions in [27], two types of practical FD
transceivers were considered, the system parameters of which
are listed in Table II. The main difference lies in their different
analog SI cancellation capabilities. The RF separation and
attenuation capabilities of the Type 1 transceiver are 40 dB and
30 dB respectively, while in a Type 2 transceiver, both were 10
dB lower. Consequently, the Type 2 transceiver exhibited an
inferior analog SI cancellation capability compared to its Type
1 counterpart, weakening both the received signal of interest
xSOI(n) and the thermal noise v(n).

As shown in Fig. 2(a), in a Type 1 FD transceiver, the SI
component x(n) and its image counterpart x∗(n) are both
the dominant interference to the signal of interest in the
entire transmit power range, and when the transmit power
becomes higher, the IMD SI component xIMD(n) linearly
increased to become another major interference [27]. On the
other hand, in Fig. 2(b), when the transmit power of a Type
2 FD transceiver went above 20 dBm, the thermal noise v(n)
became weaker than the quantization noise q(n) and the image
IMD SI x∗IMD(n). This is because either a stronger nonlinear
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TABLE I
USED NOTATIONS AND SYMBOLS.

Symbol Denotation
kVGA Tx variable gain amplifier (VGA) gain
kBB Rx VGA gain
kLNA LNA gain
α0 PA gain
α1 Gain of PA nonlinearity
kTIQ Tx IQ mixer gain
kRIQ Rx IQ mixer gain
fPA(n) Memory polynomials of PA
fRFE(n) Estimation error of analog cancellation
psen Receiver sensitivity

SNRreq SNR requirement
pADC Dynamic range of ADC
PAPR Peak-to-average-power ratio
β ADC bits

TABLE II
SYSTEM PARAMETERS OF TYPICAL FD TRANSCEIVERS.

Parameter Value
Receiver sensitivity -89 dBm
SNR requirement 15 dB

Thermal noise floor -104 dBm

RF separation 40 dB (Type 1)
30 dB (Type 2)

RF attenuation 30 dB (Type 1)
20 dB (Type 2)

IRR 25 dB
Tx mixer gain 6 dB
Rx mixer gain 6 dB

PA gain 27 dB
PA IIP3 20 dBm

LNA gain 25 dB
Transmit power −5 ∼ 25 dBm

ADC dynamic range 7 dB
ADC bits 12

Peak-to-average-power ratio 10 dB

SI xIMD(n) or a less efficient analog cancellation results in a
lower receiver variable gain amplifier (VGA) gain kBB.

III. CONVENTIONAL AUGMENTED LMS BASED SI
CANCELLER AND ITS PERFORMANCE ANALYSIS

In this section, we provide a comprehensive mean and mean
square convergence analysis of the conventional augmented
LMS, employed in [32] as a DSP-assisted analog SI cancella-
tion process, in the presence of both frequency-dependent Tx
and Rx I/Q imbalance and PA nonlinear distortion. For rigor,
the proposed analysis covers both the cases of low and high
transmit powers, as discussed in Section II.

For the compactness of analysis, we first represent the
widely linear model in (1) in an augmented form, given by

d(n) = xaT (n)wao + u(n) (6)

where xa(n) = [xT (n), xH(n)]T is the 2M × 1 augmented
SI vector. In real-world wireless communications, the SI
waveform x(n) is always oversampled and bandlimited, and
consequently non-white. However, for the simplicity of the
analysis, we here assume x(n) is critically sampled, so that,
it can be modeled as a zero-mean proper white Gaussian
random variable with variance σ2

x. Note that the Gaussianity
and properness assumptions on x(n) are valid for wideband
OFDM waveforms. Indeed, the work in [35] has verified
that a bandlimited uncoded OFDM symbol converges to a
proper Gaussian random process as the number of subcarriers
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Fig. 2. Power comparison among different signal components in representa-
tive FD transceivers, before digital SI cancellation and against different levels
of transmit powers. (a) Type 1 FD transceiver, and (b) Type 2 FD transceiver.

increases. The vector wao = [hoT , goT ]T contains the aug-
mented end-to-end system impulse responses, which models
the transmit and receive frequency-dependent I/Q imbalance,
PA distortion, and the residual of analog SI cancellation.

The augmented LMS estimates the set of system parameters
wao by minimizing the MSE cost function Ja(n), defined as
[29]–[32]

Ja(n) = E[|ea(n)|2] = E[ea(n)ea∗(n)] (7)

where ea(n) is the instantaneous output error or residual SI,
given by

ea(n) = d(n)− xaT (n)wa(n) (8)

and the augmented weight vector, that is, wa(n), is updated
as

wa(n+ 1) = wa(n) + µea(n)xa∗(n) (9)

where µ is the step size.
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A. Mean Convergence Analysis
Upon introducing the 2M × 1 weight error vector

w̃a(n) = wa(n)− wao (10)

the output residual SI ea(n) in (8) now becomes

ea(n) = u(n)− xaT (n)w̃a(n) (11)

From (9), the recursion for the update of the weight error
vector w̃a(n) can be derived as

w̃a(n+1)=[I2M−µxa∗(n)xaT (n)]w̃a(n)+µu(n)xa∗(n) (12)

By applying the statistical expectation operator E[·] to both
sides of (12) and upon employing the standard independence
assumptions [36], [37], that is, the composite noise u(n)
is statistically independent of any other variable within the
augmented LMS, and w̃a(n) is statistically independent of the
augmented SI input vector xa(n), we have

E[w̃a(n+1)]=(I2M−µRa∗)E[w̃a(n)]+µE[u(n)xa∗(n)] (13)

where Ra is the covariance matrix of the augmented SI vector
xa(n), defined as

Ra = E[xa(n)xaH(n)] = σ2
xI2M (14)

Therefore, the convergence of the augmented LMS in the mean
weight error sense is guaranteed if the step-size µ satisfies [37]

0 < µ <
2

λmax[Ra]
=

2

σ2
x

(15)

From Fig. 2(a) and Fig. 2(b) in Section II, we observe that the
relative power relationships among different SI components
vary as the transmit power changes. Therefore, in order
to accurately describe the statistical mean behavior of the
augmented LMS based SI canceller, we consider the following
two case studies.

1) Low transmit power. In this situation, both the nonlinear
distortion component xIMD(n) and the quantization noise q(n)
at the receiver are negligible, since their powers are much
weaker than that of the thermal noise v(n) in (2). Therefore,
from (6), we have u(n) ' v(n), and hence, at the steady-state,
as, n→∞, from (13) we have

E[w̃a(∞)] = 0 (16)

2) High transmit power. When the transmit power is high,
the PA nonlinear distortion component xIMD(n) becomes
the third strongest interference among all the imperfections
considered. After employing the independence assumptions
and (2), the second term on the right hand side (RHS) of
(13) can be derived as

E[u(n)xa∗(n)]=E[
(
xTIMD(n)h

o
IMD+xHIMD(n)g

o
IMD

)
xa∗(n)]

= k
3/2
TIQ

{ N∑
i=1

E[hIMD,i|x(n− i+ 1)|2x(n− i+ 1)xa∗(n)]

+

N∑
i=1

E[gIMD,i|x(n− i+ 1)|2x∗(n− i+ 1)xa∗(n)]
}

= k
3/2
TIQE[|x(n)|4][hoT

IMD, 0
T
M−N , g

oT
IMD, 0

T
M−N ]T

= 2k
3/2
TIQσ

4
x[h

oT
IMD, 0

T
M−N , g

oT
IMD, 0

T
M−N ]T (17)

The last step is performed with the help of the Gaussian fourth
order moment factorizing theorem [38]–[40], and since x(n)
is proper (second order circular), we have E[|x(n)|4] = 2σ4

x.
From (13), the steady-state value of the weight error vector,
that is, E[w̃a(∞)], can be evaluated as

E[w̃a(∞)] = (Ra∗)−1E[u(n)xa∗(n)]
= 2k

3/2
TIQσ

2
x[h

oT
IMD, 0

T
M−N , g

oT
IMD, 0

T
M−N ]T (18)

Remark 1: The upper bound on the step size µ for the
mean convergence of augmented LMS for a low transmit
power FD transceiver is identical to that for a high transmit
power one. At the steady state, when the transmit power
is low, the augmented LMS converges in the mean to the
optimal weight coefficients associated with xa(n), that is, wao

in (6), in an unbiased manner. However, as indicated by (18),
when the transmit power is high, this yields a bias in the
estimation of 2N out of 2M entries of the weight error vector
E[w̃a(∞)], quantified by 2k

3/2
TIQσ

2
x[h

oT
IMD, goT

IMD]
T . The level of

this bias depends upon the level of undermodeling, that is, the
transmitter mixer gain kTIQ, the transmit SI signal power σ2

x,
and the channel impulse responses associated with the IMD
SI components, that is, ho

IMD and go
IMD.

B. Mean Square Convergence Analysis

From (7) and (11), and again by employing the standard
independence assumptions stated in Section III-A, the MSE
of augmented LMS based SI canceller, that is, Ja(n), can be
further evaluated as

Ja(n)=E[w̃aH(n)xa∗(n)xaT (n)w̃a(n)]+E[|u(n)|2]
−E[u∗(n)xaT (n)w̃a(n)]−E[u(n)w̃aH(n)xa∗(n)]
=Tr[Ra∗Ka(n)]+E[|u(n)|2]−E[u∗(n)xaT (n)]E[w̃a(n)]
−E[u(n)xaH(n)]E[w̃a∗(n)] (19)

where Ka(n) = E[w̃a(n)w̃aH(n)] is the covariance matrix of
the augmented weight error vector w̃a(n) [38]–[40]. It can be
observed from (19) that the mean square convergence analysis
of augmented LMS now rests upon both the first and second
order statistical properties of w̃a(n). To this end, we first apply
the Hermitian operator (·)H to both sides of (12), to yield

w̃aH(n+1)= w̃aH(n)[I2M−µxa∗(n)xaT (n)]+µu∗(n)xaT (n)
(20)

Upon post-multiplying both sides of (12) by w̃aH(n + 1) in
(20) and taking the statistical expectation E[·], the evolution
of the weight error covariance matrix Ka(n) now becomes

Ka(n+1) = (1−2µσ2
x)K

a(n)+2µ<[Q3(n)]

+ µ2[Q1(n)+Q2(n)−Q4(n)−Q5(n)] (21)

where

Q1(n) = E[|u(n)|2xa∗(n)xaT (n)]
Q2(n) = E[xa∗(n)xaT (n)w̃a(n)w̃aH(n)xa∗(n)xaT (n)]
Q3(n) = E[u(n)xa∗(n)]E[w̃aH(n)]

Q4(n) = E[u(n)xa∗(n)xaH(n)xa∗(n)]E[w̃aT (n)]
Q5(n) = E[u∗(n)xa∗(n)xaT (n)xa(n)]E[w̃a(n)] (22)
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It can be observed that the term Q2(n) is independent of the
IMD component xIMD(n), and hence

Q2(n)=σ
4
xKa(n)+Pa∗KaT (n)Pa+2Mσ4

xI2MTr[Ka(n)] (23)

where Pa is the pseudocovariance matrix of the augmented SI
vector xa(n) [39]–[41], given by

Pa = E[xa(n)xaT (n)] =
[

0 σ2
xIM

σ2
xIM 0

]
The term Tr[Ka(n)] on the RHS of (23) can be decomposed
as 1T2Mκa(n), where κa(n) is a 2M ×1 vector, whose entries
are the diagonal elements of Ka(n), defined as

κa(n) =
[
E[|w̃a1(n)|2], E[|w̃a2(n)|2], . . . , E[|w̃a2M (n)|2]

]T
(24)

Then, based on (21), the evolution of κa(n) becomes

κa(n+1)

={I2M−2µσ2
xI2M+2µ2σ4

xI2M+µ2σ4
x12M1T2M}︸ ︷︷ ︸

Fa

κa(n)

+2µdiag{<[Q3(n)]}+µ2diag{Q1(n)−Q4(n)−Q5(n)}
(25)

The convergence of the recursion for the vector κa(n) in (25)
is subject to two conditions: 1) the terms Q1(n), Q3(n), Q4(n)
and Q5(n) are bounded, which is guaranteed if E[w̃a(n)] is
bounded; 2) all the eigenvalues of the transition matrix Fa

are less than unity [42], [43]. From (15), condition 1) holds
when 0 < µ < 2/σ2

x. Furthermore, the eigenvalues of Fa,
denoted by λai , where i = 1, 2, . . . , 2M , can be obtained by
solving det[Fa − λai I2M ] = 0, while from (25), it is easy to
find that Fa is Toeplitz, for which the diagonal elements are
1−2µ+3µ2σ4

x, and off-diagonal ones are µ2σ4
x. Hence, after

some algebraic manipulations, we have

λa1 = 1− µσ2
x + (2M + 2)µ2σ4

x

λaj = 1− µσ2
x + 2µ2σ4

x, j = 2, 3, . . . , 2M

Note that since M ≥ 1, we have λa1 > λaj for j =
2, 3, . . . , 2M , and hence, condition 2) is satisfied if λa1 < 1,
to yield

0 < µ <
1

(M + 1)σ2
x

(26)

Remark 2: The upper bound in (26) is tighter than that
in Condition 1), and therefore, the mean square convergence
of the augmented LMS based SI canceller in the presence
of frequency-dependent IQ imbalance and PA distortion is
guaranteed if the step-size µ satisfies (26).

C. Steady State Analysis

Suppose that step-size µ is chosen such that the mean square
stability of augmented LMS is guaranteed. Consider n→∞,
then based on (19) and (24), the steady-state MSE Ja(∞) can
be expressed as

Ja(∞)=σ2
x1T2Mκa(∞)+E[|u(∞)|2]−2Tr(<[Q3(∞)]) (27)

where, based on (25), κa(∞) can be derived as

κa(∞) = 2µ(I2M − Fa)−1
[
diag{<[Q3(∞)]}

+µdiag{Q1(∞)−Q4(∞)−Q5(∞)}
]

(28)

Similar to the mean convergence analysis in Section III-A, in
order to evaluate the terms in (27) and (28), which involves
the overall noise u(∞), we need to consider the levels of the
transmit power.

1) Low transmit power. In this case, the power of the thermal
noise v(∞) in u(∞) is much higher than the power of the
nonlinear distortion component xIMD(∞) and the quantization
noise q(∞), so that, u(n) ' v(n), and E[|u(∞)|2] ' σ2

v .
Upon inserting (16) into (22), we obtain Q1(∞) = σ2

vσ
2
xI2M ,

and Q3(∞) = Q4(∞) = Q5(∞) = 0, therefore, κa(∞) in
(28) can be simplified as

κa(∞) =
µσ2

v

2(1− µ(M + 1)σ2
x)

12M

Upon substituting into (27), this yields

Jalow(∞)=
(1− µσ2

x)σ
2
v

1− µ(M + 1)σ2
x

(29)

The achievable SINR is defined as a relative power ratio be-
tween the received signal of interest xSOI(n) and the residual
SI ea(n). According to the analysis in [27], the power of
xSOI(n) can be evaluated as

pxSOI = psenkLNAkBBkRIQ (30)

where the Rx VGA gain kBB ensures the received signal fit
within the voltage range of the ADC, and can be calculated
as [19]

kBB=
pADC

kLNAkRIQ

· 1

[α2
0kVGAkTIQσ2

x+α
2
1k

3
VGAk

3
TIQσ

6
x]‖fRFE(n)‖2+psen

From (4), (29) and (30), the achievable SINR of augmented
LMS at the steady state can be evaluated as

SINRlow=
pxSOI

Jalow(∞)
=

1− µ(M + 1)σ2
x

1− µσ2
x

SNRreq (31)

2) High transmit power. In this case, with typical parameters
of FD transceivers given in Table II, the power of the SI
component σ2

x is guaranteed to be less than unity. Therefore,
in (28), the Euclidean norm of µdiag{Q1(∞) − Q4(∞) −
Q5(∞)} is much smaller than that of diag{<[Q3(∞)]}, as the
terms Q1(∞), Q4(∞) and Q5(∞) contain a larger amount of
higher order SI components. This situation is more pronounced
when a smaller step-size µ is chosen, and based on the analysis
in Appendix A, we have

µdiag{Q1(∞)−Q4(∞)−Q5(∞)}+diag{<[Q3(∞)]}
=µ
(
E[|v(∞)|2]+E|q(∞)|2]

)
diag{Ra∗}+diag{<[Q3(∞)]}

'µ(σ2
x + σ2

q )σ
2
v12M + 8k3TIQσ

4
xpo

IMD (32)

where the definition of po
IMD is given in (59) in Appendix A.

Upon replacing (32) into (28), we arrive at

κa(∞)=
µ(σ2

v + σ2
q )12M + 8k3TIQσ

4
xpo

IMD

2(1− µσ2
x − µMσ2

x)
(33)

According to the analysis in Appendix A, we have

Tr
(
<[Q3(∞)]

)
=4k3TIQσ

6
x[‖ho

IMD‖
2
+‖go

IMD‖
2
] (34)
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and from (2),

E[|u(∞)|2]=σ2
v+σ

2
q+6k3TIQσ

6
x[‖ho

IMD‖
2
+‖go

IMD‖
2
] (35)

Therefore, upon replacing (33)-(35) into (27) and after a few
algebraic manipulations, we arrive at

Jahigh(∞)=σ2
v + σ2

q − 2k3TIQσ
6
x[‖ho

IMD‖
2
+‖go

IMD‖
2
]

+
µM(σ2

v + σ2
q )σ

2
x + 4k3TIQσ

6
x[‖ho

IMD‖
2
+‖go

IMD‖
2
]

1− µσ2
x − µMσ2

x

(36)

to give the achievable SINR of augmented LMS based SI
canceller in the case of high transmit power in (37) at the
top of the next page.

Remark 3: From (31) and (37), we observe that, for both
low and high transmit powers, the achievable SINRs of aug-
mented LMS at the steady state are monotonically decreasing
functions of the step-size µ, the end-to-end channel impulse
response length M , and the SI power σ2

x. Particularly, in
the case of high transmit powers, the achievable SINR of
augmented LMS is impaired by the non-negligible IMD SI
xIMD(n) and its image x∗IMD(n), as well as their associated
end-to-end channel impulse responses, and its degradation in
SINR becomes more severe with an increase in transmit power.

IV. PROPOSED AUGMENTED NONLINEAR LMS BASED SI
CANCELLER AND ITS PERFORMANCE ANALYSIS

From the mean and mean square analysis in Section III, it
is clear that, for high transmit powers, the third order IMD
component xIMD(n), produced by PA distortion, may exceed
the thermal noise floor, or even become stronger than the signal
of interest xSOI(n). This leads to bias as well as suboptimality
in SINR performance of the conventional augmented LMS
based SI canceller. To address these issues, it is desirable to
design an adaptive SI canceller which suppresses the SI, image
SI and IMD components simultaneously. Upon revisiting the
vectorized signal model in (1) and (6), instead of treating
the IMD components xIMD(n) and x∗IMD(n) as a part of the
aggregated interference u(n), we can concatenate them with
the SI component x(n) and its image counterpart x∗(n) to
form a (2M + 2N)× 1 vector xb(n), given by

xb(n) = [xT (n), xTIMD(n), x
H(n), xHIMD(n)]

T (38)

Note that, compared with the augmented SI vector xa(n) in
(6), vector xb(n) is no longer simply widely linear in x(n). In
fact, by defining

xc(n) = [xT (n), xdT (n)]T

where xd(n) = [x(n), x(n− 1), . . . , x(n−N + 1)]T contains
the first N elements in x(n), xb(n) in (38) can be represented
in a widely nonlinear form in xc(n) (or equivalently, in x(n))
as [44], [45]

xb(n) = ΨT
(
[xcT (n), xcH(n)]

)
where Ψ(·) is a vectorized nonlinear function, Based on (3),
Ψ
(
xc(n)

)
can be expressed element by element as

Ψ
(
xc(n)

)
=[ψ1

(
x(n)

)
, ψ2

(
x(n−1)

)
, . . . , ψM

(
x(n−M+1)

)
,

ψM+1

(
x(n)

)
, ψM+2

(
x(n−1)

)
, . . . , ψM+N

(
x(n−N+1)

)
]T

where

ψi(x)=

{
x, i = 1, 2, . . . ,M

k
3/2
TIQ |x|

2
x, i =M+1,M+2, . . . ,M+N

Based on the above discussion, we refer to xb(n) as the
augmented nonlinear SI vector, and for SI cancellation of FD
transceivers in the presence of PA nonlinearity, we should take
into account xb(n) to give a model-fit widely nonlinear relation
between the observed signal d(n) and its corresponding SI
waveform x(n) in the form

d(n) = xbT (n)wbo + v(n) + q(n) (39)

where wbo = [hoT ,hoT
IMD, goT , goT

IMD]
T is the (2M + 2N)× 1

sufficient-length end-to-end filter impulse response of a FD
transceiver. Similar to the conventional augmented LMS, the
proposed augmented nonlinear LMS based SI canceller aims to
estimate wbo by minimizing a mean square error cost function
Jb(n), defined as

Jb(n) = E[
∣∣eb(n)∣∣2] = E[eb(n)eb∗(n)] (40)

where the instantaneous residual SI eb(n) is given by

eb(n) = d(n)− xbT (n)wb(n) (41)

and governs the update of the weight vector wb(n) as

wb(n+1) = wb(n) + µeb(n)xb∗(n) (42)

A. Mean Convergence Analysis

Upon introducing the (2M + 2N)× 1 weight error vector

w̃b(n) = wb(n)− wbo (43)

the output residual SI eb(n) in (41) becomes

eb(n) = v(n) + q(n)− xbT (n)w̃b(n) (44)

and the recursion of w̃b(n) now obeys

w̃b(n+1) = [I2M+2N − µxb∗(n)xbT (n)]w̃b(n)
+ µ[v(n) + q(n)]xb∗(n) (45)

Upon applying the expectation operator E[·] on both sides
of (45) and using the standard independence assumptions
introduced in Section III-A, we arrive at

E[w̃b(n+1)]=(I2M+2N−µRb∗)E[w̃b(n)] (46)

where Rb = E[xb(n)xbH(n)] is the covariance matrix of the
augmented nonlinear SI input vector xb(n). Based on (46), the
step-size µ which guarantees the convergence of the proposed
augmented nonlinear LMS in the mean sense should satisfy∣∣1− µλbk∣∣ < 1, k = 1, . . . , 2M + 2N

where λbk are the eigenvalues of Rb. Note that although Rb is
Hermitian, its positive-definiteness is not always guaranteed
due to the non-Gaussianity of xb(n). To investigate this issue,
we shall further decompose Rb as

Rb=E[xb(n)xbH(n)]=

[
Rb0 0
0 Rb0

]
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SINRhigh=
pxSOI

Jahigh(∞)
=

1−µ(M+1)σ2
x(

1

SNRreq
+

σ2
q

kBBkLNAkTIQpsen

)
+
2[1+µ(M+1)σ2

x]k
2
TIQσ

6
x(‖ho

IMD‖
2
+‖go

IMD‖
2
)

kBBkLNApsen

(37)

where

Rb0=E[xe(n)xeH(n)]=

[
E[|x(n)|2]IM ΩT

Ω k3TIQE[|x(n)|6]IN

]

Ω = [ Rd 0N×(M−N) ]

Rd=E[xd(n)xHIMD(n)]=k
3/2
TIQE[|x(n)|4]IN

in which xe(n) = [xT (n), xTIMD(n)]
T . Now, by solving

det[Rb − λbkI2M+2N ] = 0 and after some algebraic manip-
ulations, we arrive at

λb1=E[|x(n)|2] = σ2
x

λb2,3=
1

2

{
E[|x(n)|2] + k3TIQE[|x(n)|6]

±
√(

E[|x(n)|2]+k3TIQE[|x(n)|6]
)2−k3TIQ

(
E[|x(n)|4]

)2}
=
σ2
x+6k3TIQσ

6
x±σ2

x

√
1−2k3TIQσ

4
x+36k6TIQσ

8
x

2
(47)

where the algebraic multiplicities of λb1, λb2 and λb3 are
respectively 2M − 2N , 2N and 2N .

Remark 4: The covariance matrix Rb is positive-definite
since all the eigenvalues are positive. It is also worth noting
that, although x(n) is considered to be i.i.d. Gaussian, the
positive definiteness of Rb is still valid as long as x(n) comes
from any i.i.d. second order circular constellation, e.g., QPSK
or M-QAM. Note that in (47), the largest eigenvalue of Rb is
λb2, and therefore, the mean convergence bound on the step-
size µ is given by

0 < µ <
2

λmax[Rb]

=
4

σ2
x+6k3TIQσ

6
x+σ

2
x

√
1−2k3TIQσ

4
x+36k6TIQσ

8
x

(48)

which enables the proposed augmented nonlinear LMS based
SI canceller to asymptotically achieve unbiased estimation of
the optimal weight vector wbo, indicated by E[w̃b(∞)] = 0
from (46), and independent on whether the transmit power of
an FD transceiver is low or high.

B. Mean Square Convergence Analysis

Upon taking (44) into (40), and again employing the stan-
dard independence assumptions, the MSE of the proposed
augmented nonlinear LMS based SI canceller can be further
evaluated as

Jb(n)=Tr[RbKb(n)]+σ2
v + σ2

q (49)

where Kb(n) = E[w̃b(n)w̃bH(n)] is the covariance matrix of
the weight error vector w̃b(n). To analyze its evolution, we

first multiply both sides of (45) by w̃bH(n), and apply the
statistical expectation operator E[·], to give

Kb(n+1) = Kb(n) + µ2(σ2
v + σ2

q )R
b

−µE[xb∗(n)xbT (n)w̃b(n)w̃bH(n)]

−µE[w̃b(n)w̃bH(n)xb∗(n)xbT (n)]

+µ2E[xb∗(n)xbT (n)w̃b(n)w̃bH(n)xb∗(n)xbT (n)] (50)

Since the augmented nonlinear SI vector xb(n) in (38) is
non-Gaussian, the Gaussian fourth order moment factorizing
theorem used in Section III is no longer applicable to evaluate
the last term on the RHS of (50), and we therefore resort to
matrix vectorization instead of matrix diagonalization to eval-
uate the mean square convergence behavior of the proposed
augmented nonlinear LMS [46], [47]. By using the following
matrix vectorization lemma for arbitrary matrices {A,B,C}

vec{ABC} = (CT ⊗ A)vec{B}

it is straightforward to verify that the recursion for Kb(n) in
(50) can be transformed into a linear vector relation as

vec{Kb(n+1)} = (I2M+2N − µS + µ2T︸ ︷︷ ︸
Fb

)vec{Kb(n)}

+ µ2(σ2
v + σ2

q )vec{Rb} (51)

where

S = I2M+2N ⊗ Rb + Rb ⊗ I2M+2N

T = E
[(

xb(n)xbH(n)
)
⊗
(
xb∗(n)xbT (n)

)]
The condition on the step-size µ to guarantee the convergence
of Kb(n) now relies on

∣∣λ[Fb]∣∣ < 1. It has been proven in [47]
that for positive definite Rb and S and nonnegative definite T,
the stability of the recursion in (51) is guaranteed when

0<µ<min

{
1

λmax[S−1T]
,

1

λmax[Γ]

}
(52)

where

Γ =

[ S
2 −T

2
I(2M+2N)2 0

]

C. Steady State Analysis

Suppose the step-size µ is chosen to ensure the mean square
stability of the proposed augmented nonlinear LMS. Then,
from (49), its steady-state MSE Jb(∞) can be expressed as

Jb(∞)=Tr[RbKb(∞)]+σ2
v + σ2

q (53)

where Kb(∞) can be evaluated from (51) as

Kb(∞) = vec−1{µ2(σ2
v+σ

2
q )(I2M+2N−Fb)−1vec{Rb}}

=vec−1{µ2(σ2
v+σ

2
q )(µS−µ2T)−1vec{Rb}} (54)



9

Upon substituting (54) into (53), we have

Jb(∞) = (σ2
v+σ

2
q )

·
(
1+µ2Tr

[
Rbvec−1{(µS−µ2T)−1vec{Rb}}

])
Due to the existence of the fourth order moment matrix T, a
detailed evaluation of the steady state MSE Jb(∞) is much
more difficult than that of the standard augmented LMS.
However, as shown in (51), since matrix T is multiplied by
µ2 within the matrix Fb, then for a sufficient small step-
size µ, we can neglect the term µ2T in Fb [46], [47]. In
this way, the standard eigenvalue decomposition (EVD) of
Rb gives Rb = UΛbUH , where U is a unitary matrix
and Λb = diag{λb1, λb2, . . . , λb2M+2N} is a diagonal matrix
comprising of the eigenvalues of Rb, from (50), to give

K̃
b
(n+1)=K̃

b
(n)+µ2(σ2

v+σ
2
q )Λ

b−µΛbK̃
b
(n)−µK̃

b
(n)Λb

where K̃
b
(n) = UHKb(n)U, and its steady-state value

K̃
b
(∞) can be obtained as

K̃
b
(∞) =

µ(σ2
v + σ2

q )

2
I2M+2N

After substituting into (53), we obtain an approximated steady-
state MSE, denoted by Jbap(∞), in the form

Jbap(∞) = Tr[UΛbK̃
b
(∞)UH ] + σ2

v + σ2
q

= (σ2
v+σ

2
q )[µ(Mσ2

x+6Nk3TIQσ
6
x)+1] (55)

Now from (4), (30) and (55), the achievable SINR of the
proposed augmented nonlinear LMS can be evaluated as in
(56) at the top of the next page.

Remark 5: The achievable SINR of the proposed augmented
nonlinear LMS based SI canceller in (56) is a monotonically
decreasing function of the step-size µ, the length of SI channel
impulse response M and that of IMD SI channel impulse
response N , the transmitter mixer gain kTIQ, and the SI power
σ2
x. Moreover, in the situations of high transmit powers, owing

to the model fitting advantage, the optimality of the proposed
augmented nonlinear LMS for nonlinear SI cancellation can be
also observed, since its achievable SINR is no longer impaired
by the IMD channel impulse responses, that is, ‖ho

IMD‖
2

and ‖go
IMD‖

2, which, however, remain the by-products of
the undermodeling problem encountered by the conventional
augmented LMS based SI canceller for FD transceivers in the
joint presence of PA nonlinearity and frequency-dependent IQ
imbalance.

V. COMPUTER SIMULATIONS

In order to validate performance advantages of the pro-
posed augmented nonlinear LMS based digital SI canceller
over the conventional augmented LMS one for full-duplex
direct-conversion transceivers in the presence of PA nonlinear
distortion and frequency-dependent IQ imbalance, simulations
were conducted in the MATLAB programming environment.
The simulated waveforms of the transmit SI x(n) and the
received signal of interest xSOI(n) were both considered to be

generated from OFDM transmission systems compliant with
the wireless LAN (WLAN) 802.11 standards. The numbers of
subcarriers and null subcarriers of the WLAN-OFDM trans-
mission system were respectively K = 64 and Knull = 14. The
length of cyclic prefix was Kcp = 16, the oversampling factor
was Kos = 4, and the waveform bandwidth was Bc = 20 MHz,
to give an OFDM symbol duration Tsym = (K+Kcp)/Bc = 4
µs. The 16-QAM constellation scheme was used in each
subcarrier. The residual analog cancellation error was subject
to a 3-tap static Rayleigh distribution, whose detailed power-
delay-profile is provided in [8]. The frequency-dependent
transmitter and receiver I/Q imbalance impulse responses were
both modeled as 2-tap static FIR filters [24]. In this way, the
length of the end-to-end channel impulse responses for the SI
vector x(n) and its image component x∗(n), that is, ho and
go, was fixed to M = 5, while that for the IMD components
xIMD(n) and x∗IMD(n), that is, ho

IMD and go
IMD, was fixed to

N = 4. All the simulation results were obtained by averaging
200 independent trials.

As stated in Remark 1, for high Tx powers, the conventional
augmented LMS based SI canceller yields an unavoidable
steady-state bias on the estimation of 2N out of 2M en-
tries of the augmented end-to-end system impulse responses
wao = [hoT , goT ]T , due to the arbitrary negligence of the
IMD SI components, and this bias is quantified by (18). This
analysis is supported by Fig. 3(a), in which the evolution
of two representative weight error coefficients, that is, h̃1(n)
and h̃2(n), are provided. A Type 2 FD transceiver with a
transmit power at 25 dBm was considered, and two step-sizes
µ = 0.05µmax1

and µ = 0.1µmax1
were used in augmented

LMS, where µmax1 is the upper bound of the step-size µ,
which guarantees both the mean and mean square stability
of augmented LMS, evaluated by using (26). Observe that
the two weight error coefficients, h̃1(n) and h̃2(n) converged
to their theoretical steady-state biased values, rather than 0.
However, as discussed in Section IV, due to the appropriate
model fitting, the proposed augmented nonlinear LMS based
SI canceller was able to remove this bias, as illustrated in Fig.
3(b). By comparing the simulation results in Fig. 3(a) and Fig.
3(b), there was a cost in convergence paid by the proposed
augmented nonlinear LMS in order to achieve unbiased non-
linear SI cancelleation. This is because the higher order IMD
components xIMD(n) and x∗IMD(n) were considered within its
underlying estimation framework, and consequently, a higher
eigenvalue spread occurred in its input covariance matrix Rb,
as compared with its linear counterpart.

We next validated the proposed mean square analysis of
both augmented LMS and augmented nonlinear LMS based
SI cancellers. Fig. 4(a) illustrates the theoretical and simulated
achievable SINRs in the steady-state stage, with µmax1

and
µ = 0.1µmax1

and against different levels of transmit powers
for a Type 2 FD transceiver. Observe that the empirical results
were closely matched with the analytical ones, evaluated by
using (37) and (56) respectively for augmented LMS and
augmented nonlinear LMS. These also conform with the
analysis in Remark 3 and Remark 5 which states that a smaller
step-size µ enables a better steady-state SINR performance for
both SI cancellers, but at the cost of slower convergence. Fig.
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SINRProposed=
pxSOI

Jbap(∞)
=

1( 1

SNRreq
+

σ2
q

kBBkLNAkTIQpsen

)
[1+µ(Mσ2

x+6Nk3TIQσ
6
x)]

(56)
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(b) Augmented nonlinear LMS

Fig. 3. Normalized absolute values of two representative error coefficients h̃1(n) and h̃2(n) for a Type 2 FD transceiver by using (a) augmented LMS and
(b) augmented nonlinear LMS, where µ ∈ {0.05µmax1 , 0.1µmax1}.
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Fig. 4. Comparison of the theoretical and simulated steady-state mean square performances of both the conventional augmented LMS and the proposed
augmented nonlinear LMS, measured in terms of (a) Achievable SINR, and (b) Digital attenuation.

4(a) also justifies the motivations to propose the augmented
nonlinear LMS based SI canceller in the sense that its SINR
performance is much better than that of augmented LMS in
the high transmit power range where the IMD SI component
xIMD(n) and its image counterpart become dominant, since
both components have been generically considered as a part
of the augmented nonlinear input vector within the proposed
augmented nonlinear LMS. As expected, when the transmit
power was low enough, both SI cancellers provided a nearly

identical SINR performance, since the higher order compo-
nents became negligible. This also resulted in the theoretical
SINR performance of augmented LMS in (37), derived for a
high transmit power, asymptotically converge to that in (31).
The above discussion is also applicable for Fig. 4(b), where
we compared the digital attenuation capability of the two
considered SI cancellers after convergence with a step-size
µ = 0.05µmax1

, for both Type 1 and Type 2 FD transceivers
and against different levels of transmit powers. The digital
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Fig. 5. Convergence speed analysis of the proposed augmented nonlinear LMS. (a) The variations of the condition number of Rb against the SI power σ2
x

and the Tx IQ mixer gain kTIQ. (b) Performance comparison between the theoretical and simulated SINR of augmented nonlinear LMS and the simulated
SINR of its prewhitened counterpart for a Type 2 FD transceiver, with µ = 0.005µmax2 .

attenuation performance is a measure of the amount of SI
before and after applying an SI canceller, defined as the power
ratio between the desired signal d(n) and the corresponding
estimation error of an SI canceller [27]. Observe the excellent
agreement between the simulated results and their theoretical
evaluations, as well as the performance advantages of the
proposed augmented nonlinear LMS over the conventional
augmented LMS in the high transmit power range.

A. Further Convergence Speed Improvement of the Proposed
Augmented Nonlinear LMS based SI Canceller

When higher order IMD components xIMD(n) and x∗IMD(n)
are strong in a FD transceiver, a potential drawback encoun-
tered by adaptive SI cancellers lies in the slow convergence,
incurred by the high eigenvalue spread within the input co-
variance matrix Rb [18]. In fact, based on (47), the condition
number of Rb, the ratio between its maximum and minimum
eigenvalues, is denoted by CRb , and can be calculated as

CRb =
λb2
λb3

=
1+6k3TIQσ

4
x+
√
1−2k3TIQσ

4
x+36k6TIQσ

8
x

1+6k3TIQσ
4
x−
√
1−2k3TIQσ

4
x+36k6TIQσ

8
x

(57)

This reveals that the value of CRb depends on both the Tx
mixer gain, kTIQ, and the SI power, σ2

x. Therefore, for the
FD transceiver with a given kTIQ, one possible solution to
increase the convergence speed of the augmented nonlinear
LMS is to synthetically scale σ2

x, so that, the minimum of CRb

can be achieved. In fact, as first proven in Appendix B and
further illustrated in Fig. 5(a), although the global minimum of
CRb does exist, it is greater than unity. Owing to the closed-
loop structure of the FD transceiver, the knowledge of the
augmented nonlinear SI vector xb(n) is ideally inherent in
the receiver end. Therefore, a more efficient solution can be
established by using standard pre-whitening to decompose Rb

as Rb = UΛbUH and consequently to produce a whitened
input vector, x̃b(n) = Φxb(n), where Φ = (Λb)−

1
2 UH . In this

way, the speed of gradient decent of augmented nonlinear LMS
is fixed and normalized, i.e., with a unity condition number,
thus facilitating practical applications. This is supported by
Fig. 5(b), which shows both the theoretical and simulated
convergence behavior, measured in terms of SINR, of the
proposed augmented nonlinear LMS based SI canceller and
its data-whitening assisted version for a Type 2 FD transceiver
with a Tx power at 15 dBm and a Tx IQ mixer gain kTIQ = 6
dB. The step-size was µ = 0.005µmax2 , where µmax2 is its
upper bound on µ which guarantees both the mean and mean
square stability of augmented nonlinear LMS, evaluated by
using (48) and (52), respectively. In this case, the optimal SI
power σ2

x was roughly -13 dBm for the minimum eigenvalue
spread. The simulation results for a suboptimal SI power, σ2

x =
−10 dBm, are also provided. We observe that the proposed
theoretical evaluation accurately described the empirical SINR
evolution of augmented nonlinear LMS in both the transient
and steady-state stages. We also observe that, with the optimal
SI power, the augmented nonlinear LMS exhibited a faster
convergence, about 7000 iterations, as compared with the
considered suboptimal case. However, when the prewhitening
scheme was employed, it merely required about 3000 iterations
to arrive at the steady state.

VI. CONCLUSION

The impact of typical front-end non-idealities on a future 5G
systems, such as nonlinear PA distortion, IQ imbalance, ther-
mal noise and quantization noise, has been rigorously analyzed
over both the mean and mean square performances of the con-
ventional augmented LMS based digital SI canceller for fully-
duplex direct-conversion transceivers. We have here quantified
the estimation bias and the second order performance sub-
optimality exhibited by the augmented LMS in case of high
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transmit powers. To rectify these drawbacks, an augmented
nonlinear LMS based SI canceller has been proposed, which
naturally accounts for those higher order components by virtue
of a widely nonlinear model fit. Its performance advantages
over augmented LMS have been verified both theoretically and
through numerical validation. To further increase convergence
speed of the proposed scheme, the standard data pre-whitening
scheme has also been employed in this context. Illustrative
simulations on two representative types of FD transceivers for
OFDM-based WLAN standard compliant waveforms support
the analysis.

APPENDIX A
EVALUATION OF THE TERM diag{Q3(∞)} IN THE CASE OF

HIGH TRANSMIT POWER

Based on (2) and (22), the diagonal elements of Q3(n) can
be derived as

diag{E[Q3(n)]}
= diag{E[xTIMD(n)h

o
IMD(n)x

a∗(n)]E[w̃aH(n)]}
+ diag{E[xHIMD(n)g

o
IMD(n)x

a∗(n)]E[w̃aH(n)]}
+ diag{E[v(n)xa∗(n)]E[w̃aH(n)]}

while the standard independence assumptions yield

diag{E[v(n)xa∗(n)]E[w̃aH(n)]} = 0 (58)

Now, based on (17) and (58), we have

diag{E[Q3(n)]}=[hIMD,1k
3/2
TIQE[|x(n)|4]E[w̃∗1(n)],

hIMD,2k
3/2
TIQE[|x(n− 1)|4]E[w̃∗2(n)], . . . ,

hIMD,Nk
3/2
TIQE[|x(n−N + 1)|4]E[w̃∗N (n)], 0TM−N ,

gIMD,1k
3/2
TIQE[|x(n)|4]E[w̃∗1(n)], . . . ,

gIMD,Nk
3/2
TIQE[|x(n)|4]E[w̃∗N (n)], 0TM−N ]

Note that E[|x(n)|4] = 2σ4
x, and hence, the steady-state

evaluation of diag{E[Q3(n)]}, that is, diag{E[Q3(∞)]}, is
now subject to E[w̃a(∞)], and based on (18), this gives

diag{Q3(∞)} = 4k3TIQσ
6
xpo

IMD

where po
IMD is defined as

po
IMD = [|hIMD,1|2, |hIMD,2|2, . . . , |hIMD,N |2, 0TM−N ,
|gIMD,1|2, |gIMD,2|2, . . . , |gIMD,N |2, 0TM−N ]T (59)

Also note that <[Q3(∞)] = Q3(∞), since it is real-valued.

APPENDIX B
MINIMIZATION OF CRb

By defining a positive variable ε = k3TIQσ
4
x, the condition

number CRb in (57) becomes

CRb =
1 + 6ε+

√
1− 2ε+ 36ε2

1 + 6ε−
√
1− 2ε+ 36ε2

After some mathematical manipulations, its first derivative
with respect to ε can be expressed as

∂CRb

∂ε
=

14(6ε− 1)(
1 + 6ε−

√
1− 2ε+ 36ε2

)2√
1− 2ε+ 36ε2

It can be easily verified that this function has a zero only at ε =
1
6 , and its denominator is always positive for ε > 0. Therefore,
for ε ∈ (0, 16 ), we have ∂CRb/∂ε < 0, while for ε ∈ ( 16 ,∞),
we have ∂CRb/∂ε > 0, indicating that the global minimum of
CRb exists at ε = 1

6 . After some algebraic manipulations, the
minimum condition number is found to be 17+4

√
15

7 ≈ 4.64.
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[19] D. Korpi, T. Riihonen, V. Syrjälä, L. Anttila, M. Valkama, and R. Wich-
man, “Full-duplex transceiver system calculations: Analysis of ADC and
linearity challenges,” IEEE Trans. Wirel. Commun., vol. 13, no. 7, pp.
3821–3836, Jul. 2014.
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