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Abstract—We study downlink of multiantenna cloud radio
access networks (C-RANs) with finite-capacity fronthaul links.
The aim is to propose joint designs of beamforming and remote
radio head (RRH)-user association, subject to constraints on
users’ quality-of-service, limited capacity of fronthaul links and
transmit power, to maximize the system energy efficiency. To cope
with the limited-capacity fronthaul we consider the problem of
RRH-user association to select a subset of users that can be
served by each RRH. Moreover, different to the conventional
power consumption models, we take into account the dependence
of baseband signal processing power on the data rate, as well as
the dynamics of the efficiency of power amplifiers. The considered
problem leads to a mixed binary integer program (MBIP) which
is difficult to solve. Our first contribution is to derive a globally
optimal solution for the considered problem by customizing a
discrete branch-reduce-and-bound (DBRB) approach. Since the
global optimization method requires a high computational effort,
we further propose two suboptimal solutions able to achieve the
near optimal performance but with much reduced complexity. To
this end, we transform the design problem into continuous (but
inherently nonconvex) programs by two approaches: penalty and
ℓ0-approximation methods. These resulting continuous nonconvex
problems are then solved by the successive convex approximation
framework. Numerical results are provided to evaluate the
effectiveness of the proposed approaches.

Index Terms—Energy efficiency, cloud radio access network,
limited fronthaul capacity, rate-dependent signal processing
power, nonlinear power amplifier, beamforming, mixed binary
integer program, discrete branch-reduce-and-bound, successive
convex approximation.

I. INTRODUCTION

Coordinated multipoint joint transmission (CoMP-JT) [1]

has been proposed in the current LTE standards to deal with

the inter-cell interference, which is one of the key factors

limiting the capacity of modern wireless communications sys-

tems. The central ideal of CoMP-JT is to allow for joint pro-

cessing of the data symbols by multiple transmitters, thereby
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exploiting the cooperative gains efficiently. Thus, CoMP-JT

is expected to improve the system performance significantly,

especially for the cell-edge users. However, CoMP-JT requires

a low-latency and high-capacity backhaul network, and a strict

synchronization mechanism among transmitters [2]. These

requirements are hard to implement in practice.

Cloud radio access networks (C-RANs) are emerging as a

revolutionary solution that can deliver the same benefits as

CoMP-JT [3], [4] but with less stringent synchronization re-

quirements. In C-RANs, the baseband (BB) signal processing

units are no longer installed at base stations (BSs) but relocated

at a central cloud computing platform, which is referred to

as BB unit (BBU) pool. Thus, BSs on C-RANs are solely

responsible for wireless interface of the network, and now

called remote radio heads (RRHs). By these particular features,

C-RANs can potentially facilitate tight synchronization issue

of BB signals required for CoMP-JT technique, and also

leverage powerful computing capabilities for full cooperation

[5]. However, BB signals from the BBU pool still need to be

transported to the RRHs through the fronthaul links of limited

capacity. In addition, the fronthaul links should support the

strict latency and jitter requirements in order to perform the

synchronization across the connected RRHs. Those are the

main challenges of the C-RAN design in practice [5]–[7].

Due to the growing concern over the power consumption

in existing mobile networks, recent research in wireless com-

munications has shifted its focus on energy efficiency (EE)

approaches [8]. In the past, wireless communications systems

were mainly developed to maximize the spectral efficiency,

i.e., with the aim to transmit at high data rates at any cost.

This leads to a huge amount of power consumption on current

wireless networks, since high data rate transmission essentially

requires high transmit power. The notion of EE on the other

hand, measured in bits/Joule, considers the data rate and total

power consumption simultaneously.

C-RANs are a promising solution to address the problem

of EE in future wireless networks, i.e., 5G and beyond. The

potential gains of C-RANs on delivering the EE performance

will be explored in this paper. Since the RRHs are controlled

by the common BBU pool, they can be switched off to reduce

the power consumption, thereby increasing the EE. In doing

so, we also need to assign users to a proper set of serving

RRHs. This should be done taking into account the limited

capacity of fronthaul links.

http://arxiv.org/abs/1808.03107v1
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A. Related Works

The problem of EE maximization (EEmax) has been studied

in prior publications [9]–[16] for different contexts. In the

noise-limited scenarios, parametric fractional programming

(PFP), i.e., Dinkelbach’s algorithms were used to globally

solve the EE power control problems with a linear (even super-

linear) convergence [9]. In multiuser interference channels,

Dinkelbach’s algorithms cannot be applied to the EEmax

problems here since Dinkelbach’s assumptions are not met [9].

Thus, [14] and [15] resorted to using monotonic optimization

in order to achieve optimal EE solution for multiple-input

single-output (MISO) or single-input single-output (SISO)

systems. As such global optimization methods require pro-

hibitively high complexity, efficient suboptimal solutions were

also of particular interest. Among them, the heuristic ap-

proaches developed based on PFP and the successive convex

approximation (SCA) have been widely used in many wireless

applications [10]–[16]. It is observed that the former approach

often leads to a multi-stage iterative procedure [11], [12],

and the convergence may not be guaranteed [9, Section

4.1]. On the other hand, the latter usually results in one-

layer iterative procedures provably converging to stationary

points with a small number of iterations [13], [14]. In fact,

extensive numerical experiments conducted for some EEmax

problems in multiuser MISO systems showed that the SCA-

based methods outperform the heuristic PFP-based methods in

terms of computational complexity [13], [14].

The aforementioned and other related studies assume that

signal processing power is independent of the data rate.

However, this is a simplification as different data rates require

different modulation and coding schemes. In fact, signal

processing power increases proportionally with the data rates

[17]–[19], [20]. Moreover, the efficiency of the power am-

plifiers (PAs) is also assumed to be a constant in previous

studies on EEmax [10]–[16], [21]. As shown in many works,

PA’s efficiency is often dynamic and it is degraded when

operating in the back-off region of the maximum power [22]–

[24]. Thus, it is practically relevant to investigate the impact

of the dynamic of PA’s efficiency and rate dependent power

on EEmax designs.

C-RAN designs concerning limited fronthaul have been

considered in some recent works [25]–[29]. A simple, but

effective and widely used, method is to reduce the amount

of BB signals exchanged through the fronthaul links. This

is done by selecting a set of users that can be served by a

RRH, giving rise to the RRH-user association problem that

is often jointly designed with the transmit beamforming to

optimize a network performance measure such as sum rate,

power consumption or EE [25]–[29]. In the multicarrier

transmission, jointly optimizing RRH selection and spectrum

allocation would improve the network performances [30],

[31]. The RRH-user association and RRH selection problems

are usually modeled by a set of binary preference variables,

leading to a mixed binary integer program (MBIP). As a result,

optimal solutions to C-RANs with RRH-user associations and

RRH selection are difficult to derive. On the other hand, in

the EE perspective, there exists an approach of minimizing

total power consumption for improving EE for C-RANs, e.g.,

[21], [26] for SISO or [32] for MISO. However, since the

achieved data rate is not jointly considered in the objective,

this approach may be far from the optimal [14], [16].

B. Contributions

We investigate the EEmax problem in C-RANs with

capacity-limited fronthaul. Specifically, we propose a joint

design of transmit beamforming and RRH-user association to

maximize the network EE, while satisfying per-RRH fronthaul

capacity, transmit power budget and users’ quality-of-service

(QoS). Towards a more realistic power consumption model,

we account for the rate-dependent signal processing power

and the dynamics of PA’s efficiency. The considered problem is

modeled as an MBIP. Our contributions include the following:

• We propose a globally optimal solution to the consid-

ered MBIP problem by customizing the discrete branch-

reduce-and-bound (DBRB) framework introduced in [33].

To this end, we present transformations to reformulate

the design problem into a form that is amendable to the

application of the DBRB algorithm. Special modifications

are made to improve the convergence performance of the

proposed method.

• As global optimization methods are always of great

concerns for an MBIP, we also propose two suboptimal

solutions to the joint design problem that can achieve

near-optimal solutions but with remarkably reduced com-

plexity. In the first method, we use a set of continuous

constraints to represent the binary variables, and then

apply the penalty method to solve the resulting problem.

In the second one, we approximate the binary variables by

a piecewise linear function which is inspired by [34]. In

both suboptimal methods, the obtained continuous prob-

lems are nonconvex, which are solved by the framework

of the SCA.

• We provide extensive numerical results to justify the

proposed solutions. The achievement of near-optimal per-

formance by the proposed suboptimal methods is demon-

strated by benchmarking against the optimal one. We

compare the proposed solutions to other known methods

in the literature. The impacts of rate-dependent power and

dynamic PA’s efficiency are also numerically investigated.

The rest of the paper is organized as follows. System model,

design constraints, power consumption model and problem

formulation are described in Section II. Section III presents

the preliminaries of the DBRB framework in solving an

MBIP, followed by the customization to solve the considered

problem. Two suboptimal solutions are presented in Section

IV. Numerical results are provided in Section V and Section

VI concludes the paper.

Notation: We follow the standard notations in this paper.

Lowercase letters, bold lowercase letters and bold uppercase

letters represent the scalars, column (row) vectors and ma-

trices, respectively. Z, R and C represent the integer, real

and complex domains, respectively. (.)T and (.)H represent

the transpose and Hermitian transpose operator, respectively.

ℜ(.) and |.| represent the real part and absolute value of a
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complex number, respectively. ‖.‖2 represents the ℓ2 norm.

The expectation of random variable is denoted as E[·]. {ab}b
and {ab}b refer to a set of vectors and scalars with different

index b, respectively. [a]i is the ith element of vector a. ei
denotes the ith unit vector, i.e., the vector such that ei = 1,

ej = 0 ∀j 6= i. Finally, ⌈a⌉S and ⌊a⌋S are the upper and

lower nearest neighbor elements of a in set S.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a multiuser MISO wireless system consisting

of a set of B RRHs, denoted by B , {1, . . . , B}, each

equipped with I antennas1, and a set of K single-antenna

users, denoted by K , {1, . . . ,K}. The RRHs are connected

to a common BBU pool through finite-capacity fronthaul

links. The BBU pool is assumed to achieve perfect channel

state information (CSI) associated with all the users in the

network.2 In this paper, CoMP-JT is considered, i.e., any user

can simultaneously receive data from multiple RRHs [1]. Let

dk denote the data symbol intended for user k which has

unit-energy, i.e., E[|dk|2] = 1, and wb,k ∈ C
I×1 denote the

beamforming vector from RRH b to user k. Assuming a flat

fading channel model, the received signal at user k can be

written as

yk =

(
∑

b∈B

hb,kwb,k

)

dk

︸ ︷︷ ︸

desired signal

+
∑

j∈K\k

(
∑

b∈B

hb,kwb,j

)

dj

︸ ︷︷ ︸

interference

+ nk

(1)

where hb,k ∈ C1×I is the channel between RRH b
and user k, and nk ∼ CN (0, σ2

k) is the additive white

Gaussian noise at user k. For notational convenience,

let hk , [h1,k,h2,k, . . . ,hB,k] ∈ C1×IB and wk ,

[wT
1,k,w

T
2,k, . . . ,w

T
B,k]

T ∈ CIB×1 be the aggregate vectors

of all channels and beamformers from all RRHs to user k,

respectively. We also denote by w the beamforming vector

stacking all wk. Assuming single-user decoding, i.e. interfer-

ence among users is treated as Gaussian noise, the SINR at

user k can be written as

γk(w) ,
|∑b∈B hb,kwb,k|2

∑

j∈K\k |
∑

b∈B hb,kwb,j |2 + σ2
k

=
|hkwk|2

∑

j∈K\k|hkwj |2 + σ2
k

. (2)

Let rk be the achievable data rate transmitted to user k. By

the Shannon’s coding theory, we have

rk ≤ log(1 + γk(w)).

1Herein, the same number of equipped antennas for all RRHs is assumed
purely for notational simplicity.

2From a practical perspective, overhead and accuracy of channel estimation
should be considered, since they have major impacts on the scale of coordi-
nation and performance of C-RANs (see detail discussion in [6], [7], [27]).
Also, there are some channel estimation techniques proposed for C-RANs
which are summarized in [7, Section V].

B. Fronthaul Constraints

In practice the fronthaul link from the BBU pool to RRH b
has a finite capacity, denoted by C̄b. To be feasible, the total

data rate of the wireless physical layer of RRH b should not be

larger than C̄b. For the problem formulation purposes, let us

define xb,k ∈ {0, 1} to be the preference variable representing

the connection between RRH b and user k, i.e., xb,k = 1
indicates that user k receives data from RRH b and xb,k = 0
otherwise. Then it is clear that the total data rate which can

be reliably transmitted by the wireless interface of RRH b is
∑

k∈Kxb,krk, and thus the following constraint

∑

k∈K

xb,krk ≤ C̄b

should hold for RRH b.

C. Power Consumption Model

We consider the power consumption model based on those

in [17], [24], [35], [36] which includes the power consumed

by the electronic circuits in the network and the PAs on RRHs.

Specifically, the circuit power consumption is divided into two

parts as detailed below.

1) Rate-independent Circuit Power Consumption: The rate-

independent power consumption is modeled as [35], [36]

PI , KPms +
∑

b∈B

sb(P
active
RRH + P active

NU )
︸ ︷︷ ︸

active mode

+
∑

b∈B

(1− sb)(P
sleep
RRH + P sleep

NU )
︸ ︷︷ ︸

sleep mode

+ POLT.
(3)

In (3), Pms is the circuit power consumed by a user device,

P active
RRH and P sleep

RRH are the power consumption at a RRH

corresponding to the active and sleep modes, respectively.

In particular, P active
RRH consists of power for feeding signal

processing circuits of transceiver chains, and operating RRHs

(e.g. main supply, site-cooling) and hardware elements for RF

parts (e.g. converters, filters, mixers, etc) [35]. It is assumed

that all RRHs connect to the BBU pool through a passive

optical network which consists of an optical line terminal

(OLT) and a set of network units (NUs) [36]. The OLT is

always active and consumes a fixed power, i.e. POLT in (3).

On the other hand, NUs are switchable between the active and

sleep modes for power saving purposes, each consuming a

power P active
NU and P

sleep
NU , respectively. In order to represent the

operating mode of RRH b and the associated NU, we introduce

binary preference variables {sb}b such that sb = 1 when RRH

and NU b is active and sb = 0 otherwise. The relationship

between sb and xb,k (introduced in the previous subsection)

can be represented as

sb = max
k∈K

{xb,k} ⇔
{

sb ≥ xb,k, ∀k ∈ K
sb ≤

∑

k∈K xb,k
, ∀b ∈ B (4)

i.e., sb = 1 when RRH b serves at least one user and sb = 0
otherwise.
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2) Rate-dependent BB Signal Processing Power: The

power consumed by the signal processing operations at the

BBU pool such as channel encoding, decoding and fron-

thauling expenditure depends on the data rate [17]–[20]. For

RRH b, this power consumption is measured by a continuous

function of the fronthaul rate r̃b denoted as ψb(r̃b) where

r̃b ,
∑

k∈Kxb,krk. According to [17], [20], ψb(r̃b) is linearly

scaled w.r.t. r̃b, i.e.,

ψb(r̃b) = pSPr̃b (5)

where pSP is a constant coefficient in W/(Gnats/s).

3) Dynamic Power Amplifier: Many existing approaches in

relation to energy-efficient design assume a constant efficiency

of PAs in their problem formulation [10]–[15]. However, in

practice, the efficiency of PAs depends on their operating

conditions, and thus is dynamic [22]–[24]. We can model the

PA’s efficiency of RF chain i at RRH b as [24]

ǫb,i({wb,k}k) ,
1

ǫ̃

√
∑

k∈K

|[wb,k]i|2 (6)

where ǫ̃ ,
√
Pa/ǫmax, and Pa and ǫmax ∈ [0, 1] are the

maximum power of the PA and the maximum PA’s efficiency,

respectively. Let φb({wb,k}k) be a function of beamforming

vectors which measures the amount of power consumed by the

PAs for radiating the transmitted signals outwards the antennas

at RRH b. From (6), φb({wb,k}k) is expressed as

φb({wb,k}k) =
I∑

i=1

∑

k∈K |[wb,k]i|2
ǫb,i({wb,k}k)

= ǫ̃

I∑

i=1

||w̃b,i||2 (7)

where w̃b,i , [[wb,1]i; [wb,2]i; ...; [wb,K ]i] ∈ CK×1.

4) Total Power Consumption: For notational convenience,

let us define x , {xb,k}b∈B,k∈K, s , {sb}b∈B, and r ,

{rk}k∈K. Based on the above discussions, the total consumed

power in the considered system is denoted by fP(w,x, r, s)
and can be expressed as

fP(w,x, r, s) , PI +
∑

b∈B

(ψb(r̃b) + φb({wb,k}k))

=
∑

b∈B

(

ǫ̃
I∑

i=1

||w̃b,i||2 +∆Psb + pSP

∑

k∈K

xb,krk

)

+BP sleep +KPms + POLT
︸ ︷︷ ︸

Pconst

(8)

in which P active , P active
RRH +P active

NU , P sleep , P sleep
RRH +P sleep

NU and

∆P , P active − P sleep which are constants.

D. Problem Formulation

We consider the problem of joint beamforming and RRH-

user association design where the overall network EE is

maximized. Mathematically, the problem of interest reads

maximize
w,x,s,r

∑

k∈K rk

fP(w,x, r, s)
(9a)

subject to rk ≤ log(1 + γk(w)), ∀k ∈ K (9b)

rk ≥ r0, ∀k ∈ K (9c)

∑

k∈K

xb,krk ≤ C̄b, ∀b ∈ B (9d)

∑

k∈K

‖wb,k‖22 ≤ P̄b, ∀b ∈ B (9e)

||w̃b,i||22 ≤ Pa, ∀b ∈ B, i = 1, ..., I (9f)

‖wb,k‖22 ≤ xb,kP̄b, ∀k ∈ K, b ∈ B (9g)
∑

b∈B

xb,k ≥ 1, ∀k ∈ K (9h)

sb ≥ xb,k, ∀k ∈ K; sb ≤
∑

k∈K

xb,k, ∀b ∈ B (9i)

x ∈ {0, 1}BK, s ∈ {0, 1}B. (9j)

We impose (9c) to guarantee that the data rate of user k is

not smaller than r0 to meet the required QoS. The constraints

(9e) and (9f) represent the total transmit power and per antenna

power constraints at each individual RRH, respectively. The

constraints in (9g) guarantee that if RRH b does not serve user

k, i.e. xb,k = 0 then it holds that ‖wb,k‖22 = 0. The constraints

in (9h) imply that each user is served by at least one RRH (due

to the required QoS).

We remark that Dinkelbach’s algorithm cannot be applied to

find optimal solutions of (9), since (9a) is intractable [9, Sec-

tion 3].3 In fact, problem (9) is a nonconvex MBIP generally

known to be NP-hard. In the following sections we first derive

an optimal algorithm to solve (9) by customizing the DBRB

framework, and then propose low-complexity suboptimal ap-

proaches that can achieve the near-optimal performance.

III. OPTIMAL JOINTLY ENERGY-EFFICIENT

BEAMFORMING AND RRH-USER ASSOCIATION DESIGN

General monotonic optimization (GMO) is a widely-used

global continuous optimization technique [37] for solving

numerous wireless communications nonconvex problems [14],

[15], [38], [39]. For MBIP problems, the GMO principle is

inapplicable, since it outputs only approximate solutions of

discrete variables at convergence [37]. In recent work of [40],

Luong et al. combined GMO with mixed integer programming

(MIP) to solve their considered problem which is also an

MBIP. Particularly, the GMO works on the continuous domain

of their problem, and at each iteration of GMO, a mixed

integer program is solved. In this paper, we propose below

a new globally optimal approach to solve (9) based on the

so-called discrete monotonic optimization (DMO) [33].

A. Preliminaries: Discrete Branch-reduce-and-bound

To proceed we provide some background of DMO and

briefly review the DBRB procedure. In this paper we follow

the definitions of box, increasing function, and normal cone in

[33]. The standard form of a DMO problem is given by [33]

max
y

f(y) subject to {y ∈ S ⊆ D , [a;b]} (10)

where f(y) is an increasing function w.r.t. variable y; y ,

[yT
d ,y

T
c ]

T ∈ R
Nd+Nc , yd ∈ Z

Nd and yc ∈ R
Nc are the discrete

3Applying Dinkelbach’s method to (9) results in the parametric subproblem
(solved in each iteration) which is still nonconvex.
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0

Branching on continuous variable Branching on Boolean variable

1

Fig. 1. Illustration for branching operator.

and continuous variables respectively; S is normal feasible set

of y; and D is the box containing S with lower and upper

vertices a and b, respectively.

1) DBRB Procedure: Similar to the standard branch-

reduce-and-bound (BRB) algorithm [37], DBRB is an iterative

procedure performing three basic operations at each iteration:

branching, reduction, and bounding. Starting from original

box [a;b], we iteratively divide it into smaller and smaller

ones, remove boxes that do not contain an optimal solution,

search over remaining boxes for an improved solution until an

error tolerance is met. Since the feasible set of the discrete

optimization problem is smaller than that of its continuous

relaxation, DBRB is modified from the standard BRB proce-

dure in order to efficiently remove those regions not belonging

to the discrete constraints, thereby achieving exact solutions

[33]. In particular, during the branching and reduction steps,

elements corresponding to discrete constraints are adjusted to

stay in the discrete set. Details of these three operations are

presented next.

Branching: At iteration n we select a box in the set of

candidate boxes, denoted by Rn, and split it into two new

boxes, which are of equal size. To be bound improving we

pick a box Vc , [p;q] ∈ Rn, which has the largest upper

bound, i.e., Vc = argmaxV ∈Rn
fU(V ) (fU(V ) denotes the

upper bound of V ), and bisect along the longest edge, i.e.,

l = argmax1≤j≤Nd+Nc
(qj − pj) to create two smaller boxes

V 1
c = [p;q′] and V 2

c = [p′;q], in which q′ and p′ are given by

q′j =







qj ∀j 6= l

⌊qj − (qj − pj)/2⌋Z if j = l ≤ Nd,

qj − (qj − pj)/2 if j = l > Nd,

(11)

and

p′j =







pj ∀j 6= l

⌈pj + (qj − pj)/2⌉Z if j = l ≤ Nd,

pj + (qj − pj)/2 if j = l > Nd,

(12)

respectively.

Remark 1. (Branching over Binary variables) If pj , qj ∈
{0, 1} and qj − pj = 1 for j ≤ Nd, then

⌊qj − (qj − pj)/2⌋{0,1} = 0 and ⌈pj + (qj − pj)/2⌉{0,1} = 1
(e.g. see Fig. 1).

Reduction: For any box, it possibly contains segments either

infeasible to (10) or resulting in an objective smaller than the

current best objective (CBO), i.e. the known feasible point that

offers the best objective value at current iteration. Reduction

is to remove those portions of no interest to reduce the search

space in the next iterations. Given a box V = [p;q], we wish

to shrink the size of V without loss of optimality by creating

0

1

0

1

S S

S

p
0
= 0; q

0
= 1 p

0
= 0; q

0
= 0 p

0
= 1; q

0
= 1

0

1

@+G

Reduction on continuous variable Reduction on Boolean variable

p
0

q
0

p

q

Fig. 2. Illustration for reduction operator.

a smaller box r(V ) , [p′;q′] ⊂ V such that an optimal

solution (if exists in V ) must be contained in r(V ). To do

so we eliminate the portions [p;p′) and (q′;q] that result in

an objective value smaller than the CBO and/or are infeasible

to (10). Mathematically, we can replace p by p′ ≥ p where

p′ = q−∑Nd+Nc

j=1 αj(qj − pj)ej and

αj = sup{α |0 ≤ α ≤ 1, q− α(qj − pj)ej ∈ D\S,
f(q− α(qj − pj)ej) ≥ CBO}

(13)

for each j = 1, . . . , Nd + Nc. Similarly, vertex q is replaced

by q′ ≤ q where q′ = p′ +
∑Nd+Nc

j=1 βj(qj − p′j)ej and

βj = sup{β |0 ≤ β ≤ 1, p′ + β(qj − p′j)ej ∈ S}. (14)

The values of αj and βj in (13) and (14) can be found easily

by the bisection method. Note that for j ≤ Nd, the output of

the reduction procedure is then adjusted into the discrete set,

i.e., p′j =
⌈
p′j
⌉

Z
and q′j =

⌊
q′j
⌋

Z
.

Remark 2. (Reduction over Binary variables) If pj , qj ∈ {0, 1}
and qj − pj = 1 for j ≤ Nd, we can quickly set that p′j =
{

1 if q− ej ∈ D\S
0 otherwise,

. If p′j = 0, we then replace qj −p′j =

1 into (14) and obtain q′j =

{

1 if p′ + ej ∈ S
0 otherwise

(e.g. see

Fig. 2).

The reduction procedure above does not drop off any

feasible solution of (10) as shown in [33].

Bounding: Bounding is another basic operation for the

DBRB to ensure the convergence. The main purpose of this

step is to improve the upper and lower bounds of f(y). Due

to its monotonicity, the upper and lower bounds of a box

V = [p;q] can be easily found as f(p) and f(q), respectively.

These bounds are then used to update the CBO as mentioned

above and to remove the boxes whose upper bound is smaller

than the CBO [33].

We are now ready to customize the DBRB procedure to

solve problem (9). Algorithm 1 outlines our proposed optimal

method and its details are presented in the sequel.

B. Customization of DBRB for Solving (9)

We remark that (9) is not a DMO problem in a standard

form, since the objective in (9a) is not an increasing function

w.r.t. the involved variables. To apply the DBRB algorithm we

first reformulate (9) as

maximize
η,w,x,s,r,t

η (15a)
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Algorithm 1 The proposed DBRB algorithm

1: Initialization: Compute a, b and apply box reduction to

box [a;b]. Let n := 1, R1 = r([a;b]) and ηbest
1 = 0

2: repeat {n := n+ 1.}

3: Branching: select a box Vc = [p;q] ⊂ Rn−1 and

branch Vc into two smaller ones V 1
c and V 2

c , then

remove Vc from Rn−1.

4: Reduction: apply box reduction to each box V m
c (m =

{1, 2}) and obtain reduced box r(V m
c ).

5: Bounding: for each box r(V m
c ) not violating (18)

6: if solving (17) is feasible then

7: Achieve w∗,u∗, calculate t∗ and extract x∗.

8: Update t := t∗ and calculate ηU(r(V
m

c )) by (20).

9: Check x∗ with (22), if true, obtain ηL(r(V
m

c )) as (21)

and update CBO ηbest
n := max{ηL(r(V

m
c )), ηbest

n−1},

otherwise ηL(r(V
m

c )) =
∑

k∈K
r
k

f̂P(s,x,r,t)
.

10: Update Rn := Rn−1 ∪ {r(V m
c )|ηU(r(V

m
c )) ≥ ηbest

n }.

11: end if

12: until Convergence

13: Output: With (ηbest
n ,x∗, s∗, r∗, t∗), recover w∗ by (16)

to achieve the globally optimal solution of (9), i.e.

(w∗,x∗, s∗, r∗).

subject to ηf̂P(x, s, r, t)−
∑

k∈Krk ≤ 0 (15b)
∑I

i=1||w̃b,i||2 ≤ tb, ∀b ∈ B (15c)

(9b) − (9j) (15d)

where η and t , {tb}b are newly introduced vari-

ables and fP(w,x, s, r) is redefined as f̂P(x, s, r, t) ,
∑

b∈B

(
ǫ̃tb +∆Psb + pSP

∑

k∈K xb,krk
)
+ Pconst. The equiv-

alence between (9) and (15) in terms of optimal solution set

can be easily proved, since (15) is indeed the epigraph of (9).

Towards solving (15) we have the following lemma.

Lemma 1. Let (η∗,w∗,x∗, s∗, r∗, t∗) denote an optimal so-

lution to (15). Given the value of (x∗, s∗, r∗, t∗), then the

optimal beamforming vector, denoted by w∗, can be computed

as

w∗ = find{w|(9b), (9e) − (9g), (15c)} (16)

in which we replace (x, s, r, t) by (x∗, s∗, r∗, t∗).

Proof: See Appendix A.

The lemma implies that we can obtain w∗ if (x∗, s∗, r∗, t∗)
are known. We remark that η is easily determined when

(x, s, r, t) is fixed as η =
∑

k∈K
rk

f̂P(x,s,r,t)
. Also, the feasibility

of r depends on t, x and s as can be seen in (9d) and

(15b). Furthermore constraints (9d), (9h), (9i) and (15b) are

monotone w.r.t. x, s, r and t. Thus we can develop a DBRB

algorithm to solve (15) by branching over (x, s, r, t), which is

the central idea of the proposed algorithm as described next.

Let S be the feasible set of problem (15), i.e.,

S ,{[x, s, r, t]|(9b), (9c), (9f) − (9j), (15b),
∑

k∈K

xb,krk ≤ sbC̄b,
∑

k∈K

‖wb,k‖22 ≤ sbP̄b,

I∑

i=1

||w̃b,i||2 ≤ sbtb, ∀b ∈ B}.

Remark that we have equivalently rewritten (9d), (9e) and

(15c) by introducing sb to the right hand side of these

constraints so as to improve the proposed algorithm’s effi-

ciency. Specifically, if sb = 0 we can skip examining the

constraints involving sb. Because S is upper bounded by

the power and fronthaul constraints, it satisfies the normal

and finite properties required by a DBRB algorithm. Let

D = [a;b] ∈ R
BK+2B+K
+ be the box such that S ⊆ D,

where the upper and lower vertices of D are defined as

a , [x, s, r, t] and b , [x, s, r, t], respectively. Vertices

in a and b are calculated as follows. It is obvious that

sb = 0, sb = 1, xb,k = 0, xb,k = 1. We can immediately

see that rk ≥ rk = r0 due to (9b) and

rk ≤ rk = min{C̄b, log(1 + |hkwk|2/σ2
k)}

≤ min{C̄b, log(1 +BP̄b‖hk‖22/σ2
k)}

as |hkwk|2 ≤ ‖hk‖22‖wk‖22 by the Cauchy-Schwarz inequal-

ity, and ‖wk‖22 ≤ BP̄b. We also have tb ≥ tb = 0 and

tb ≤ tb = I
√
Pa.

As mentioned above, we can solve (15) by branching over

(x, s, r, t). Recall that branching and reduction for binary

variables x and s follow Remarks 1 and 2. In bounding

step, because the objective η is determined via (x, s, r, t),
the upper and lower bounds of η over a specific box

V = [x, s, r, t;x, s, r, t] ⊂ Rn can be simply calculated

as ηL(V ) ,

∑
k∈K

r
k

f̂P(x,s,r,t)
and ηU(V ) ,

∑
k∈K

rk

f̂P(x,s,r,t)
. Note that

we need to verify whether box V potentially contains a

feasible beamforming solution to (15) before bounding. For

the considered problem, we provide a better way of computing

the lower and upper bounds, and checking the feasibility of

candidate box V during the bounding process. In what follows,

we present modifications (compared to the generic framework)

made in Algorithm 1 to improve its efficiency.

Improved Branching: Normally each entry of (x, s, r, t)
is branched at each iteration, and thus the total number of

iterations may increase quickly with the problem size. For

(15), it turns out that we can skip branching on t while still

guaranteeing the convergence. In particular, let us consider the

following SOCP

minimize
w,u

∑

b∈B

I∑

i=1

ub,i (17a)

subject to hkwk ≥
√

(erk − 1)(
∑K

j 6=k|hkwj |2 + σ2) (17b)

||w̃b,i||2 ≤ ub,i, sbtb ≤
I∑

i=1

ub,i ≤ sbtb, b ∈ B

(17c)

||w̃b,i||22 ≤ sbPa, ‖wb,k‖22 ≤ xb,kP̄b, b ∈ B (17d)
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∑

k∈K

‖wb,k‖22 ≤ sbP̄b ∀b ∈ B (17e)

which can be viewed as minimizing the power consumption

subject to minimum users’ rate requirement r. Let us denote by

u∗ the optimal solution if (17) is feasible and t∗ , {t∗b}b with

t∗b =
∑I

i=1 u
∗
b,i. Obviously t∗ is the minimum power required

to achieve r, and it holds t ≤ t∗. Also, t∗b is unique solution

because the objective in (17) is the epigraph of the function
∑

b∈B

∑I

i=1 ||w̃b,i||2 [41, Chapter 3]. At this point, we can

replace t by t∗ to obtain a tighter lower bound on t. Thus, it

is sufficient to only branch (x, s, r) as the lower bound on t is

always improved with r. The property significantly accelerates

the convergence of the proposed algorithm.

Improved Branching Order: Essentially, in each iteration

of a DBRB algorithm we can randomly select a variable to

perform branching. Exploiting the specifics of the considered

problem, we can potentially reduce the computational com-

plexity if we opt to branch s first due to its dependency

on other factors. Intuitively, the number of active RRHs

provides the degree-of-freedoms that can make the desired

data rate r achievable. Moreover, we can immediately obtain

xb,k = 0, ∀k ∈ K whenever sb = 0, implying that the

effective dimension in V is reduced by K times. Therefore

by first keeping branching on s until s = s , we can quickly

remove combinations of {sb}b infeasible to (15). This is done

by solving (17) with given s and target rate r0 for all users.

Moreover, since the length of s is much smaller than that of

x in most of wireless communications applications, branching

on s may take a relatively small number of iterations.

Improved Memory Requirement: A DBRB algorithm ba-

sically stores a sequence of boxes until an optimal solution

is found, which requires some memory capacity. To reduce

this memory requirement we can eliminate boxes that contain

no feasible solution. Recall that the feasible set of (15) is

determined by the users’ rate requirement, power and fronthaul

constraints. It is easily seen that the rate and power feasibility

of box V is equivalent to solving problem (17). For fronthaul

constraints, we have the following feasibility condition, i.e., if

the inequality below does not hold

∑

k∈K

rk ≤
∑

b∈B

sbC̄b (18)

then V contains no feasible solution. In fact, (18) is due to
∑

b∈B sbC̄b ≥ ∑

b∈B

∑

k∈K xb,krk ≥ ∑k∈K rk
∑

b∈B xb,k ≥
∑

k∈K rk where the last inequality follows (9h). In Algorithm

1, we check (18) prior to (17) for saving computational efforts.

We remark that the computational complexity of checking

the feasibility of V is dominated by solving (17), and is

independent of the dimension of binary variables.

Improved Bounds: Using monotonicity to compute bounds

as mentioned above is inefficient for our considered prob-

lem. We now present a way to obtain tighter bounds which

can improve the convergence rate of Algorithm 1 in prac-

tice. First recall that f̂P(x, s, r, t) =
∑

b∈B(ǫ̃tb + ∆Psb +
pSP

∑

k∈K xb,krk)+Pconst and observe that the terms involving

binary variables are zero if sb = 0 and xb,k = 0 for some

b, k, whereas ∆P and pSP, i.e., the power for operating RRHs

and signal processing circuits are much larger than the power

consumption on the PAs. Let us consider the following bound

f̂
P
(x, s, r, t∗) ,

∑

b∈B

ǫ̃t∗b +∆P max{1,
∑

b∈B

sb}

+ pSP max{
∑

k∈K

rk,
∑

b∈B

∑

k∈K

xb,krk}+ Pconst

(19)

in which the first term is a result of solving (17) (if feasible);

the second term is due to the fact that at least one RRH

is active for transmission; the third term is achieved by
∑

b∈B(
∑

k∈K xb,krk) ≥ ∑

k∈K rk(
∑

b∈B xb,k) ≥ ∑

k∈K rk.

Obviously, f̂P(x, s, r, t) ≤ f̂
P
(x, s, r, t∗) and replacing

f̂P(x, s, r, t) by f̂
P
(x, s, r, t∗) does not remove any feasible

solution. A tighter upper bound on η over V can be recalcu-

lated as

ηU(V ) =

∑

k∈K rk

f̂
P
(x, s, r, t∗)

. (20)

Similarly, suppose (x̂, ŝ, r, t̂)V to be some feasible point

within V . We can easily check that f̂P(x̂, ŝ, r, t̂)V ≤
f̂P(x, s, r, t) due to the monotonicity property of f̂P(x, s, r, t).
Then an improved lower bound on η over V can be obtained

as

ηL(V ) =

∑

k∈K rk

f̂P(x̂, ŝ, r, t̂)V
. (21)

Remark that if ηL(V ) ≥ ηbest
n where ηbest

n denotes the CBO at

iteration n, we can update ηL(V ) as the new CBO and then

remove boxes whose upper bounds are smaller than ηbest
n (see

Step 10 in Algorithm 1). Thus, obtaining a feasible point is

vital for improving the algorithm’s efficiency. For this purpose

we present in the following a heuristic way.

Heuristic Method for Finding a Feasible Solution : We pro-

pose a simple trick which may quickly find a feasible solution

in V . It is worth noting that a feasible point (x̂, ŝ, r, t̂)V of

problem (15) must satisfy two conditions: r is achievable by

(x̂, ŝ, t̂)V ; and

x̂ ∈ {x |
∑

b∈B

xb,k ≥ 1, k ∈ K,
∑

k∈K

xb,krk ≤ C̄b, b ∈ B}.

(22)

As can be easily seen, the feasible solution returned by solving

(17) always satisfies the former condition. Thus, our idea

is to extract x̂ from the optimal point of (17) and verify

(22). Specifically, we can compute x̂ by setting x̂b,k = 0 if

‖w∗
b,k‖2 = 0 and vice versa x̂b,k = 1 if ‖w∗

b,k‖2 > 0 where

w∗ is an optimal solution obtained by solving (17).

Convergence Analysis of Algorithm 1

Algorithm 1 is guaranteed to yield a globally optimal

solution of (9) which can be justified following the same

arguments in the convergence analysis of generic DBRB [33].

Specifically, we first recall that the branching and reduction

operations follow the same manner as in [33], [37]. These

guarantee that the upper and lower bounds of η in each box

are always improved after every iteration (branching rule), and

that no feasible point in a box being lost (reduction operations)

[33]. On the other hand, during the bounding step, it is easy to
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check that the feasibility conditions (i.e., (17) and (18)) and the

calculation of tighter upper and lower bounds (i.e., (20) and

(21)) do not eliminate any feasible point, and the upper bound

(20) (resp. lower bound (21)) is non-increasing (resp. non-

decreasing). We note that the feasible set is upper bounded

by the power and fronthaul constraints, and lower bounded

by the users’ QoS constraints. Therefore, following the proof

of [33, Theorem 17], Algorithm 1 generates a sequence of

boxes such that the gap between the upper bound and lower

bound is guaranteed to converge to a single point, which is

a globally optimal solution of (15). Recall that (9) and (15)

is optimally equivalent, thus Algorithm 1 achieves globally

optimal solution of (9).

IV. SUBOPTIMAL DESIGNS

In general a global optimization algorithm often takes

enormous complexity to output a solution. In this section, we

propose two sub-optimal approaches that are more practically

appealing.

A. Penalty Method

In the first method, a binary variable is equivalently rep-

resented by a set of continuous functions and then a penalty

method is applied. Note that we can rewrite (9) as

maximize
η,t,w,s,x,
r,g,q,ϑ

η (23a)

subject to ηt ≤
∑

k∈K

rk (23b)

t ≥ f̃P(w,x, s,ϑ) (23c)

log(1 + gk) ≥ rk ∀k ∈ K (23d)

qk ≥ ‖[σk, {hkwj}j∈K\k]‖22, ∀k ∈ K (23e)

qkgk ≤ |hkwk|2 ∀k ∈ K (23f)
∑

k∈K

xb,krk ≤ ϑb, ϑb ∈ [0, C̄b], ∀b ∈ B (23g)

(9c), (9e) − (9j) (23h)

where η, t, g , {gk}k, q , {qk}k, ϑ , {ϑb}b
are newly introduced slack variables, and f̃P(w,x, s,ϑ) ,
∑

b∈B(
∑I

i=1 ǫ̃||w̃b,i||2 + ∆Psb + pSPϑb) + Pconst. We can

further reformulate (23) as

maximize
η,t,w,s,x,
r,g,q,ϑ

η (24a)

subject to (η + t)2 ≤ ‖[η, t]‖22 + 2
∑

k∈K

zk (24b)

(qk + gk)
2 ≤ ‖qk, gk,

√
2hkwk]‖22, k ∈ K (24c)

∑

k∈K

(xb,k + rk)
2 ≤ ‖[{xb,k}k, {rk}k]‖22 + 2ϑb

(24d)

(9c), (9e) − (9j), (23c) − (23e). (24e)

Clearly (24) maintains the feasible set of (9). To invoke

continuous optimization, we now represent binary variables

x and s by a continuous constraint. To this end, we can use

the well-known relaxation of binary variables which is given

as [33, Section 1]

xb,k ∈ {0, 1}, ∀b, k⇔
∑

b∈B,k∈K

x2b,k − xb,k ≥ 0, xb,k ∈ [0, 1].

(25)

The above representation is justified by the fact that x2b,k −
xb,k < 0 for xb,k ∈ (0, 1). We note that sb is automatically

binary when xb,k is so, which is due to (9i). Thus we can

simply relax sb ∈ [0, 1] and equivalently rewrite (24) as

max
Ω∈Sc∩Snc

η subject to {(25), sb ∈ [0, 1]} (26)

where Ω , {η, t,w, s,x, r,g,q,ϑ} and

Sc , {Ω|(9c), (9e) − (9i), (23c) − (23e)}
Snc , {Ω|(24b) − (24d)}

which are the set of convex and nonconvex constraints of

(26), respectively. From this point onwards, xb,k’s and sb’s

are understood to be continuous over [0, 1]. Now (26) is a

continuous nonconvex problem, for which one can basically

apply the SCA method to solve. However, finding an initial

point of the iterative process is usually difficult. To overcome

the issue, we apply a penalty method which results in the

following regularized problem

max
Ω∈Sc∩Snc

ψ(Ω, α, ξ) , η + α
∑

b∈B,k∈K

(x2b,k − xb,k)

+ ξ
∑

b∈B

min{0, C̄b − ϑb}
(27)

where α, ξ > 0 are the penalty parameters. Intuitively, the

second term in ψ(Ω, α, ξ) represents the cost when xb,k’s

are not binary, while the last term represents the cost when

the fronthaul constraints are violated. Our expectation is that

solving (27) will eventually produce binary solutions. In this

regard we replace (9g) by

‖wb,k‖22 ≤ xqb,kP̄b. (28)

We can check that (28) is equivalent to (9g) for xb,k ∈ {0, 1}.

To appreciate the above maneuver, let Fq denote the feasible

set of (27) when (9g) is replaced by (28) and η̃q is the resulting

optimal objective. For xb,k ∈ [0, 1] it is clear that xqb,k ≥ xq+1
b,k

for any q > 0, meaning

Fq+1 ⊆ Fq ⊆ · · · ⊆ F1 , Sc ∩ Snc (29)

and thus

η̃∗ ≤ η̃q+1 ≤ η̃q ≤ · · · ≤ η̃1 (30)

where η̃∗ is the optimal value of (27) for xb,k ∈ {0, 1}.

The above inequality simply implies that a tighter continuous

relaxation can be obtained with higher values of q. However

we also note that (28) for q > 1 is noncovex and thus it

has not been used in the development of the proposed global

optimization algorithm.

Now we can apply the SCA to solve (27). In the light of

the SCA principle [42], the nonconvex constraints in Snc and

(28) can be approximated as

(η + t)2 ≤ 2[ηn, tn][η, t]T − ‖[ηn, tn]‖22 + 2
∑

k∈K

rk (31)
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Algorithm 2 Proposed method for solving (23)

1: Initialization: Set n := 0, choose initial values for Ω0

and set α0 small

2: repeat {n := n+ 1}

3: Solve (35) and achieve Ω∗

4: Update Ωn := Ω∗

5: Update αn := min{αmax;α
n−1 + ε} for small ε

6: until Convergence

(qk + gk)
2 ≤ 2ℜ([qnk , gnk ,

√
2hkw

n
k ][qk, gk,

√
2hkwk]

H)

− ‖[qnk , gnk ,
√
2hkw

n
k ]‖22, ∀k

(32)
∑

k∈K

(xb,k + rk)
2 ≤ 2[{xnb,k}k, {rnk}k][{xb,k}k, {rk}k]T

− ‖[{xb,k}k, {rk}k]‖22 + 2ϑb, ∀b
(33)

‖wb,k‖22 ≤ (q(xnb,k)
q−1xb,k + (1− q)(xnb,k)

q)P̄b, ∀b, k.
(34)

Herein, the superscript n denotes the iteration. Moreover,

we also convexify ψ(Ω, α, ξ) using the first order as

ψ(Ω, α, ξ;Ωn) , η + α
∑

b∈B,k∈K(2xb,kx
n
b,k − (xnb,k)

2 −
xb,k)+ξ

∑

b∈B min{0, C̄b−ϑb}. In summary, at iteration n+1
of the proposed method, we solve the following approximate

convex program of (27)

max
Ω∈Sc\(9g)

ψ(Ω, α, ξ;Ωn) subject to {(31) − (34)}. (35)

The convergence of Algorithm 2 can be proved following the

arguments in [43, Section 2]. We also refer the interested

reader to [34], [42], [44] for other convergence results.

An important point in Algorithm 2 is that the value of

penalty parameter α is increased at each iteration, i.e., step

5. We note that a high value of α will encourage xb,k to take

on binary values. The idea is to start Algorithm 2 with a small

value of α to focus on maximizing the original objective, and

then increase α in subsequent iterations to force xb,k to be

binary.

B. ℓ0-Approximation Method

In the second suboptimal method, we view the problem

of RRH selection and RRH-user association as finding a

sparse solution of beamformer vector w. In particular, no

binary variables are introduced to formulate the considered

problem. Instead, RRH selection and RRH-user association

are concluded from the values of beamformers. To clarify this

point, let us consider the inequality ‖wb,k‖2 ≤ vb,k. Then

it is clear that RRH b is switched off if
∑

k∈K vb,k = 0, and

switched on if
∑

k∈K vb,k > 0. In other words, whether RRH b
is active or not is the step function of

∑

k∈K vb,k. The central

idea of the second proposed method is to approximate the

step function by a continuous function to which continuous

optimization can be applied. In fact there are many functions

proposed in the literature for this purpose in different contexts

(see [34] for further discussions on approximations). For the

considered problem, we find the following approximation

function is very efficient

ϕβ(y) , min{1, βy} =

{

1 if y ≥ 1
β

βy if otherwise
(36)

where β is the approximation parameter. In fact the above

approximation function is a special case of (nonconcave)

piecewise linear function presented in [34], [45], which is

modified to be concave for the purpose of applying the SCA

later on. We can easily see that ϕβ(y) well approximates the

step function when β is sufficiently large. Based on the above

discussion, we formulate the joint design problem as

maximize
w,r,v

∑

k∈K rk

f̌P(w, r,v)
(37a)

subject to ‖wb,k‖2 ≤ vb,k,
∑

k∈K

v2b,k ≤ P̄b, ∀b ∈ B (37b)

∑

k∈K

ϕβ(vb,k)rk ≤ C̄b, ∀b ∈ B (37c)

(9b), (9c), (9f) (37d)

where v , {vb,k} and f̌P(w, r,v) ,
∑

b∈B

(∑I

i=1 ǫ̃||w̃b,i||2+
∆Pϕβ(

∑

k∈K vb,k)+pSP

∑

k∈K ϕβ(vb,k)rk
)
+Pconst. We note

that (37) is still nonconvex but it has fewer optimization

variables than (9). Next we rewrite (37) as

maximize
η,t,w,r,v
g,q,ϑ,µ,ν

η (38a)

subject to t ≥
∑

b∈B

(

I∑

i=1

ǫ̃||w̃b,i||2 +∆Pνb + pSPϑb) + Pconst

(38b)
∑

k∈K

µb,krk ≤ ϑb, ϑb ∈ [0, C̄b], ∀b ∈ B (38c)

µb,k ≥ ϕβ(vb,k), ∀b ∈ B, k ∈ K (38d)

νb ≥ ϕβ(
∑

k∈Kvb,k), ∀b ∈ B (38e)

(9c), (9f), (23d), (23e), (24b), (24c), (37b) (38f)

where µ , {µb,k}b,k and ν , {νb}b, and the introduction of

η, t,g,q,ϑ follows exactly the same arguments as those in the

previous subsection. For the ease of description, we define

S̃c , {Ω̃|(9c), (9f), (23d), (23e), (37b), (38b)}
S̃nc , {Ω̃|(24b), (24c), (38c) − (38e)}

where Ω̃ , {η, t,w, r,v,g,q,ϑ,µ,ν}. Note that S̃c and S̃nc

are the convex and nonconvex parts of (38), respectively. Now

the application of SCA to solve (38) is straightforward. The

nonconvex constraints (24b), (24c) and (38c) in S̃nc can be

convexified using the same way as done in the previous sub-

section, given in (31)–(33). Convex approximation of ϕβ(y)
deserves a remark. Note that ϕβ(y) is concave and continuous

but not smooth at y = 1
β

. However we can use the sub-

differential of ϕβ(y) to derive a convex upper bound. It is

easy to check that a subgradient of ϕβ(y) is given by

∂ϕβ(y) =

{

0 if y ≥ 1
β

β if otherwise
(39)
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Algorithm 3 Proposed method for solving (37)

1: Initialization: Set n := 0, choose initial values for Ω̃0

and set β0 small

2: repeat {n := n+ 1}

3: Solve (41) and achieve Ω̃∗

4: Update Ω̃n := Ω̃∗

5: Update βn := min{βmax;β
n−1 + ε} for small ε

6: until Convergence and output Ω̃∗

and thus we can approximate (38d) and (38e) as

µb,k ≥ ϕ̄β(vb,k; v
n
b,k) (40a)

νb ≥ ϕ̄β(
∑

k∈Kvb,k;
∑

k∈Kv
n
b,k) (40b)

where ϕ̄β(y; y
n) ,

{

1 if yn ≥ 1
β

βy otherwise
. Finally, we arrive at the

approximate convex program of problem (38), i.e.,

max
Ω̃∈S̃c

η subject to {(31) − (33), (40a), (40b)}. (41)

We describe the second proposed suboptimal method in Algo-

rithm 3. Similar to Algorithm 2, the approximation parameter

β is also updated after each iteration. The idea is the same as β
is viewed to provide the tightness of the binary approximation

function (36). In Algorithm 3 we start with a small value

of β and then increase β after each iteration. Numerical

results provided in the next section demonstrate the impact

of updating β. To avoid the problem of the initial guess, we

can add the penalty of violating the fronthaul constraints to the

objective of (41) similarly as with Algorithm 2. Convergence

of Algorithm 3 is guaranteed, which is discussed in Appendix

B. It is worth mentioning that the achieved limit point is not

ensured to hold the first-order optimality of (38) since the

approximation of the step function is not smooth.

C. Second-order-cone Representation

This subsection presents a more efficient way to treat (23d).

First we remark that (23d) is indeed a convex constraint

and thus convex approximation is not required. However,

since (23d) involves an exponential cone, (35) and (41)

are generic nonlinear programs, while other constraints are

SOC presentable. This prevents us from exploiting powerful

conic convex solvers such as MOSEK or GUROBI. To take

full advantage of these solvers we will also approximate

(23d) using the SCA framework. More explicitly, we will

approximate log(1 + gk) by a lower bound that makes the

resulting constraint SOC representable. To this end we recall

the following inequality

log(1 + gk) ≥ gk(1 + gk)
−1. (42)

Substituting gk in both sides of (42) by
gk−gn

k

gn

k
+1 results in

log(1 + gk) ≥ log(1 + gnk ) + (gk − gnk )(1 + gk)
−1. (43)

Now we can approximate (23d) as

log(1 + gnk ) + (gk − gnk )(1 + gk)
−1 ≥ rk. (44)

Table I
SIMULATION PARAMETERS

PARAMETERS VALUE

Inter-RRH distance 200 m

Active power for RRH and NU P active [35], [36] 10.65 W

Sleep power for RRH and NU P sleep [35], [36] 5.05 W
Circuit power for user Pms 0.1 W

Max. power efficiency ǫmax [24] 0.55
Number of Tx antennas N 2
Min. rate requirement r0 1 nat/s/Hz

Bandwidth 10 MHz
Noise power -143 dBW

The above constraint can be reformulated as an SOC constraint

as

‖2
√
1 + gnk , log(1 + gnk )− rk − gk‖2

≤ log(1 + gnk )− rk + gk + 2, ∀k ∈ K. (45)

Using (45), the convex program obtained at each iteration of

Algorithms 2 and 3 is an SOCP which is much easier to solve.

D. Complexity Analysis of Algorithms 2 and 3

We now discuss the worst-case per-iteration complexity of

the two proposed suboptimal algorithms. For Algorithm 2, the

SOCP consists of 2BKI + BK + 2B + 3K + 2 real-valued

variables and B(K+I)+2B+3K+2 conic constraints. Thus,

the per-iteration complexity for solving the SOCP problems

corresponding to Algorithms 2 by path-following interior-point

method are O(
√

B(K + I)B3K3I3) [46]. Similarly, the per-

iteration complexity for solving the SOCP in Algorithm 3,

which contains 2BKI + 2BK + 2B + 3K + 2 real-valued

variables and B(K + I) + 2B + 3K + 1 conic constraints, is

O(
√

B(K + I)B3K3I3) [46].

V. NUMERICAL RESULTS

In this section we provide numerical demonstration to eval-

uate the effectiveness of the proposed methods. The simulation

parameters shown in Table I are used, unless mentioned

otherwise. The channel hb,k between RRH b and user k
is assumed to be flat fading which is generated following

Gaussian distribution, i.e., hb,k ∼ CN (0, ρb,kII ), where

ρb,k represents the large-scale fading and is calculated as

ρb,k[dB] = 30 log10(db,k) +38+N (0, 8) (db,k is the distance

in meters). Pa is set to be same for all antenna chains, and we

take P̄ = P̄b = IPa, ∀b. For the maximum fronthaul capacity,

we set C̄b = C̄, ∀b.
We generate initial point Ω0 for starting Algorithm 2 by

solving the power minimization problem (17) with selection

vectors being fixed as x0b,k = 1 and s0b = 1 ∀b, k to

obtain w0; then the values for the remaining variables are

determined based on (23b)–(23g). The initial point Ω̃0 for

starting Algorithm 3 is generated similarly with µ0
b,k = 1 and

ν0b = 1 ∀b, k. For the penalty parameters, we take ξ = 1 and

initialize α0 = 10−5 and β0 = 0.1. Algorithms 2 and 3 are

terminated when the increase in the objective between two

consecutive iterations is less than 10−6.
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Fig. 3. Convergence behavior of Algorithm 1 for one channel realization
with B = 3, K = 4, P̄ = 30 dBm, C̄ = 10 nats/s/Hz and pSP = 10

W/(Gnats/Hz).

A. Convergence Results

The first set of experiments examines the convergence

behavior of the proposed methods. We consider the network

setting where B = 3, K = 4, P̄ = 30 dBm, C̄ = 10 nats/s/Hz

and pSP = 10 W/(Gnats/Hz).

The convergence performance of Algorithm 1 for a random

channel realization is demonstrated in Fig. 3. Particularly,

Fig. 3(a) depicts the upper and lower bounds returned by the

algorithm. We can see that the bounds monotonically converge

to the optimal value. Fig. 3(b) shows the convergence speed

of Algorithm 1 by the gap between the upper bound and the

optimal value over iterations. In this figure, we also provide

the performance of other schemes to confirm the effectiveness

of the proposed modifications made to the DBRB. Specifically,

the schemes labelled ‘w/o. impr. Br.’, ‘w/o. impr. Br.O.’, and

‘w/o. impr. Bo.’ represent for Algorithm 1 without applying

improved branching, improved branching order and improved

bounding, respectively. The results clearly demonstrate that

applying the proposed modifications significantly improves the

convergence performance.

In Fig. 4, we show the convergence behavior of Algorithms

2 and 3 for two random channel realizations. In order to

illustrate the advantages of updating parameter β in Algorithm

3, we also provide the convergence results of Algorithm

3 without updating β dubbed as ‘Alg. 3-fixed β’. For this

scheme, we fix β = 1000. Fig. 4(a) shows the variation of η
over iterations. It is observed that Algorithms 2 and 3 converge

to the points close to the optimal values within a few tens of

iterations. This behavior proves that the proposed algorithms

are fast convergent and effective methods. Another observation
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Fig. 4. Convergence behavior of the proposed suboptimal algorithms for two
random channel realizations with B = 3, K = 4, P̄ = 30 dBm, C̄ = 10

nats/s/Hz and pSP = 10 W/(Gnats/Hz).

is that, with a fixed β, Algorithm 3 converges very fast but

results in poor performance. Whereas, by updating β, the

algorithm needs a bit more iterations to achieve near-optimal

performance. In Fig. 4(b), we study how close the obtained

values of the relaxed variables are to 0 or 1. Let us define

∆n ,

{

maxb,k{xnb,k − (xnb,k)
2} for Algorithm 2

maxb,k{µn
b,k − (µn

b,k)
2} for Algorithm 3

and note that a smaller ∆n indicates a closer gap between

{xnb,k}b,k (or {µn
b,k}b,k) and binary values. As can be seen,

∆n ≈ 0 at convergence for Algorithm 2 which implies that

the penalty method can achieve binary solutions. On the other

hand, although the ℓ0-approximation method (i.e. Algorithm 3)

cannot derive exact binary solutions (for all relaxed variables),

it still returns {µn
b,k}b,k very close to 0 or 1 at convergence

(the maximum gap is about 10−3).

For the solving time, the corresponding average per-iteration

runtime of solver MOSEK [47] with Algorithms 1, 2 and 3

are 0.006 s, 0.008 s, and 0.007 s, respectively. As can be seen,

the per-iteration runtime is relatively small due to the fact that

only an SOCP is solved in each iteration for all algorithms.

B. EE Comparison between Optimal and Suboptimal Algo-

rithms

In Fig. 5, we illustrate the effectiveness of the proposed

suboptimal algorithms by comparing their average EE perfor-

mances with that of Algorithm 1 and the existing schemes,

those are sum rate maximization (maxSR) [25] and power

consumption minimization (minPower) [21], [26], [32]. Fig.
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Fig. 5. Average performances of the considered schemes with B = 3, K = 4,
P̄ = 30 dBm and pSP = 10 W/(Gnats/Hz).

5(a) plots the average EE of the considered schemes as a func-

tion of the fronthaul capacity C̄. It is seen that the proposed

methods remarkably outperform the existing schemes. The im-

portant observation is that the gaps between the curves of the

optimal and suboptimal algorithms are really small in all cases

of C̄ demonstrating the validity of the proposed suboptimal

schemes in terms of the average EE. We can also observe

that the performance of Algorithms 2 and 3 almost agree

with each other. Fig. 5(b) shows the cumulative distribution

function (CDF) of the ratio of achieved EE (of Algorithms

2 and 3, maxSR, and minPower) to the optimal solution.

As can be observed, the probability that Algorithms 2 and

3 achieve more than 90% of the optimal values is up to 75%.

In the worst case, these schemes also achieve about 70% of

the optimal performance. We can also see that most of the

solutions obtained by maxSR and minPower are far from the

optimal values.

C. Performances of the Proposed Suboptimal Algorithms in

Large Network Settings

In the following set of experiments, we consider a larger

network setting and evaluate the impacts of the fronthaul

capacity, the signal processing power and the dynamics of

the PA’s efficiency on the EE performance. In particular,

we evaluate the suboptimal methods in a 7-cell wrap-around

topology with B = 7 RRHs in which a total of K = 14 users

are randomly placed across the network’s coverage.

1) Impact of Fronthaul Capacity: Fig. 6 shows the achieved

EE of Algorithms 2, 3, and maxSR versus the fronthaul

capacity C̄. The corresponding average number of served users

per RRH and average number of serving RRHs per user are
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Fig. 6. Average EE performance of the considered schemes versus C̄ with
B = 7, K = 14, P̄ = 30 dBm and pSP = 10 W/(Gnats/Hz).

provided in Table II. We can see from Fig. 6 that EE increases

as C̄ increases for all considered schemes. However, after a

certain large value of C̄ , further increasing C̄ does not change

the performance. This observation is consistent with that in

Fig. 5(a). The result can be explained as follows. For the EE

schemes, to increase C̄ is to expand feasible set of (9). When

C̄ is small, it is the primary constraint on the network perfor-

mances. Thus the expanded feasible set results in performance

improvement. When C̄ is large enough, other constraints (e.g.

transmit power constraints) become the primary restriction on

the network performance. In this case, increasing C̄ has no

impact on the objective value. For a physical interpretation,

increasing the fronthaul capacity allows a RRH to serve more

users, i.e. the number of RRHs cooperating to transmit data

to a user increases (as can be seen from Table II). This

increases the cooperation gain, and thus improves the system

performance. When the fronthaul capacity is large enough such

that either the additional cooperation gain provides no gain in

the achieved performance or the full connection (each user

is served by all RRHs) is arrived, increasing the fronthaul

capacity does not change the performance. Therefore, in the

large fronthaul capacity regime, we can observe from the table

that maxSR arrives at full connection, since this topology

provides the maximum capacity for wireless transmission. On

the other hand, for the EE schemes, the average number of

serving RRHs per user is smaller than B even when C̄ is

sufficiently large. This is because adding more serving RRHs

for a user degrades the EE performance, if the benefit from the

cooperation gain cannot compensate for the additional signal

processing power.

2) Impact of Rate-dependent Signal Processing Power:

Fig. 7 depicts the EE performance of the considered schemes

versus different values of pSP. We recall that, for a fixed

data rate, a larger pSP leads to larger power consumed in

signal processing. As expected, the EE decreases when pSP

increases for all considered schemes. For SRmax, the sum rate

performance is independent of pSP. Thus, its EE performance

is a decreasing function of pSP due to the increase in the

total consumed power with respect to pSP. The results clearly

show that parameter pSP has a significant impact on the

EE performance, indicating that the model of rate-dependent

signal processing power should be considered for proper EE

designs and evaluation.
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Table II
AVERAGE NUMBER OF SERVED USERS PER RRH AND AVERAGE NUMBER OF SERVING RRHS PER USER CORRESPONDING TO THE SIMULATION RESULTS

SHOWN IN FIG. 6.

C̄ (nats/s/Hz) 22 30 38 46 54 66 70 78 86 118 150

Algorithm 2
Num. of served users per RRH 8.4 9.8 10.3 11.1 11.3 11.4 11.5 11.5 11.6 11.8 12.0
Num. of serving RRHs per user 4.2 4.9 5.1 5.5 5.6 5.7 5.7 5.7 5.8 5.9 6.0

Algorithm 3
Num. of served users per RRH 8.0 8.6 8.9 9.4 9.6 9.7 9.8 9.8 9.8 9.8 9.8
Num. of serving RRHs per user 4.0 4.3 4.5 4.7 4.8 4.9 4.9 4.9 4.9 4.9 4.9

maxSR [25]
Num. of served users per RRH 11.3 12.0 12.3 12.6 13.0 13.6 13.8 13.8 13.8 14 14
Num. of serving RRHs per user 5.6 6.0 6.1 6.3 6.5 6.8 6.9 6.9 6.9 7 7
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Fig. 7. Average EE performance of the considered schemes versus pSP with
B = 7, K = 14 and P̄ = 30 dBm.

0.1 0.3 0.5 0.7 0.9
0.45

0.46

0.47

Pa
P̄

E
ne

rg
y

ef
fic

ie
nc

y
(n

at
s/

J/
H

z)

Alg. 2
Alg. 3

(a) Average EE

0.1 0.3 0.5 0.7 0.9

55

56

57

58

59

Sum rate

Pa
P̄

S
um

ra
te

(n
at

s/
s/

H
z)

Alg. 2
Alg. 3

120

124

128

Total Power Cons.

To
ta

l
po

w
er

co
ns

um
pt

io
n

(W
)

(b) Average sum rate and total power consumption

Fig. 8. Achieved performances versus the ratio Pa

P̄
with B = 7, K = 14,

C̄ = 40 nats/s/Hz, pSP = 10 W/(Gnats/Hz) and P̄ = 30 dBm.

3) Impact of the Dynamics of PA’s Efficiency: In the final

experiment, we fix P̄ = 30 dBm and let Pa vary to investigate

the impact of the dynamics of PA’s efficiency on the EE perfor-

mance. We recall that with some given ǫmax and input power,

the PA’s efficiency is a decreasing function with respect to Pa

(see (6)). Fig. 8(a) plots the EE performances of Algorithms

2 and 3 versus Pa. The corresponding sum rate and consumed

power are shown in Fig. 8(b). As can be seen from Fig. 8(a),

when Pa increases, the EE performance first increases and then

decreases. This observation can be explained as follows. In the

small regime of Pa, the transmit power is small and an increase

in the transmit power results in a significant increase in the

data rate, due to the logarithmic behavior of the data rate w.r.t

the transmit power. For this situation, the PA’s efficiency is

still sufficiently high. Therefore, as Pa increases, the additional

transmit power increases the sum rate more significantly than

the power consumption on PAs, and thus, it achieves better

EE (as can be seen from Fig. 8(b)). However, after a certain

value of Pa, the effective PA’s efficiency becomes small and its

negative impact outweighs the benefit of increasing transmit

power. In this case, the reduced PA’s efficiency due to the

increase of Pa degrades EE performance.

VI. CONCLUSION

This paper has studied the joint designs of beamform-

ing, RRH-user association and RRH selection in C-RANs

to maximize the system EE subject to per-RRH fronthaul

capacity, transmit power budget and per-user QoS. Specially,

we have adopted relatively realistic power consumption model

compared to the previous works where the impacts of rate-

dependent signal processing power and the dynamics of

PA’s efficiency are considered. To investigate the optimal

performance of the formulated problem, we have developed

the new globally optimal method by customizing the DBRB

algorithm. We have also proposed novel modifications on

the generic framework of the DBRB method to improve the

optimal algorithm’s efficiency. Towards practically appeal-

ing methods, we have proposed two suboptimal approaches

which can achieve very close to optimal performance with

much reduced complexity. Numerical evaluations have been

provided to demonstrate the effectiveness of the proposed

schemes. Specifically, the proposed modifications made on the

DBRB framework remarkably reduce the complexity of the

globally optimal method. On the other hand, the two proposed

suboptimal approaches can achieve a near-optimal solutions

with a reasonable complexity and outperform the other known

methods. The impacts of the limited fronthaul capacity, rate-

dependent signal processing power and the dynamic of PA’s ef-

ficiency on the EE performance have also been demonstrated.

APPENDIX

A. Proof of Lemma 1

First we show that (9b) is active, which is proved by the

contradiction. Let (η∗,w∗, r∗, t∗) be an optimal solution of
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(15) and suppose that (9b) is not active at the optimum, i.e.,

r∗k < log(1 + γk(w
∗)) for some k. Then we can scale down

the transmit power for user k, i.e., ‖wk‖22, to achieve a new

beamformer ‖ŵk‖22 such that ‖ŵk‖22 = τ‖wk‖22 < ‖wk‖22 for

τ ∈ (0, 1) while keeping the others unchanged. By this way,

we can achieve r∗k < log(1 + γk(ŵ)) for all k, since interfer-

ence power at all users has reduced. However, the new set of

beamformers also generates a new power consumption vector

on PAs
∑

b∈B t̂b <
∑

b∈B t
∗
b , which immediately implies the

increase of EE objective, i.e., η > η∗. This contradicts to

the fact that (η∗,w∗, r∗, t∗) is the optimal solution and thus

completes the proof. Now for fixed (x∗, s∗, r∗, t∗), problem

(9) reduces to a beamforming design subject to the desired data

rate r∗ and the power constraint
∑I

i=1 ||w̃∗
b,i||2 = t∗b such that

at the output of (16), (9b) must be binding.

B. Convergence Analysis of Algorithm 3

We justify the convergence of Algorithm 3 by showing the

following facts: (i) when βn < βmax, the update of β (see

Step 5) tightens the approximations (40a) and (40b) after every

iteration; and (ii) let n̄ be the iteration such that βn̄−1 < βmax

and βn̄ = βmax, then we have the sequence {ηn}n>n̄ being

non-decreasing, which is guaranteed to converge.

To prove (i), let us consider the non-smooth constraint (40a),

i.e., µb,k ≥ ϕ̄β(vb,k; v
n
b,k) with arbitrary β. Since it holds that

ϕ̄β̄(.) ≥ ϕ̄β(.) for any β̄ ≥ β, we can replace ϕ̄β(vb,k; v
n
b,k)

by ϕ̄β̄(vb,k; v
n
b,k) in (40a) to obtain a tighter approximation,

i.e., µb,k ≥ ϕ̄β̄(vb,k; v
n
b,k). Similarly, we can use the same

argument for (40b).

Next, we prove (ii). We recall that the feasible set of (41)

is bounded by power, fronthaul and users’ QoS constraints.

Thus it is sufficient to prove that solution of (41) returned at

iteration n (i.e., Ω̃n) is feasible to the problem at iteration n+1
for n > n̄, as such we yield ηn+1 ≥ ηn [13], [14]. To this

end we note that Ω̃n satisfies (smooth) constraints (31)–(33) at

iteration n+1. This fact follows from the properties of convex

approximation which is also discussed in [42, Properties (i)

and (ii)]. On the other hand, for non-smooth constraint (40a),

we have ϕ̄βmax
(vnb,k; v

n
b,k) = min{1, βmaxv

n
b,k} ≤ µn

b,k. This is

because (vnb,k, µ
n
b,k) is the solution of (41) at iteration n. The

result for (40b) can be obtained following the same manner.

At this point, we accomplish the argument (ii).
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